Université de Bordeaux, L3 de Mathématiques, Automne 2020

TD

Equations différentielles et calcul différentiel

Feuille 10 - Méthodes qualitatives

Exercice 1. On considère l'équation $x'(t) = \sin(tx)$. Dessiner les isoclines associées aux pentes -1, 0, 1. Dessiner les entonnoirs et anti-entonnoirs.

Exercice 2 (Une nouvelle démonstration de non-porosité). On considère une équation différentielle

$$x'(t) = f(t, x(t))$$

où $f: I \times \mathbb{R} \to \mathbb{R}$ est une fonction localement lipschitzienne en la seconde variable. Soit α une barrière inférieure (ie. $(\alpha'(t) \leq f(t, \alpha(t)))$ et $u: J \to \mathbb{R}$ une solution de l'équation différentielle vérifiant $u(t_0) \geq \alpha(t_0)$. On souhaite montrer que pour tout $t \geq t_0$, $u(t) \geq \alpha(t)$. On raisonne par l'absurde et on suppose que cela est faux.

1. Montrer qu'il existe t^* et t_1 dans $I \cap J$ tel que $t_0 \leq t_1 < t^*$ tels que l'on ait

$$u(t_1) = \alpha(t_1) \text{ et } u(t) < u(t), \forall t \in]t_1, t^*].$$

2. Établir l'existence de $t_2 \in]t_1, t^*]$ et d'un nombre réel C > 0 tel que, pour tout $t \in [t_1, t_2]$,

$$|f(t,\alpha(t)) - f(t,u(t))| \le C|\alpha(t) - u(t)|.$$

3. En utilisant le Lemme de Grönwall, en déduire que $sur[t_1, t_2]$, on a

$$\alpha' - u' \le C(\alpha - u).$$

4. Conclure.

Indication pour le Lemme de Grönwall : Soit $h : [a, b] \to \mathbb{R}$ une fonction dérivable telle que h(a) = 0 et $h' \le Kh$. Montrer que h est négative. On pourra chercher une fonction ϕ telle que $(h' - Kh)\phi$ est la dérivée d'une fonction simple.

Exercice 3. On considère le problème de Cauchy suivant :

$$\begin{cases} x'(t) = x^2 + \sin(tx)^2 \\ x(t_0) = x_0. \end{cases}$$

- 1. Montrer que, pour tout $\lambda > 0$, la fonction $\alpha(t) = 1/(\lambda t)$ est une barrière inférieure sur $]-\infty, \lambda[$.
- 2. Si $x_0 > 0$, et si x est une solution sur I, montrer que I est majoré.

Exercice 4. On considère le problème de Cauchy suivant :

$$\begin{cases} x'(t) = t - x + g(t, x) \\ x(t_0) = x_0 \end{cases}$$

où q est une fonction C^1 vérifiant

$$\begin{cases} g(t, x) \ge 1 \text{ pour } x < t \\ g(t, x) \le 1 \text{ pour } x > t \end{cases}$$

- 1. Montrer que, pour tout $\lambda > 0$, les fonctions $\alpha(t) = t \lambda e^{-t}$ et $\beta(t) = t + \lambda e^{-t}$ forment un entonnoir sur \mathbb{R} .
- 2. En déduire que toute solution maximale du problème de Cauchy est définie sur un intervalle non majoré et admet une asymptote en $+\infty$.

Exercice 5. Dans cet exercice, on étudie à nouveau le système proie-prédateurs du Devoir 3.

$$\begin{cases} x'(t) = x(t)(a - by(t)) \\ y'(t) = y(t)(-c + dx(t)) \\ x(0) = x_0 \ge 0 \\ y(0) = y_0 \ge 0 \end{cases}$$

On suppose maintenant $x_0 > c/d$ et $y_0 = a/b$. On souhaite démontrer qu'il existe T > 0 tel que y(T) = a/b et x(T) > c/d. Pour cela, on découpe le plan en quatre secteurs autour du point d'équilibre (c/d, a/b).

- 1. Sur la figure, tracer le champ de vecteur X' en fonction de X.
- 2. Quelle est l'allure de la solution autour de t = 0?
- 3. Montrer qu'il existe $t_1 > 1$ tel que $X(t_1) \in III$.
- 4. De la même façon, montrer que la solution va ensuite aller dans IV en un temps t_2 , puis dans I en un temps t_3 .
- 5. De la même façon, montrer l'existence de T.

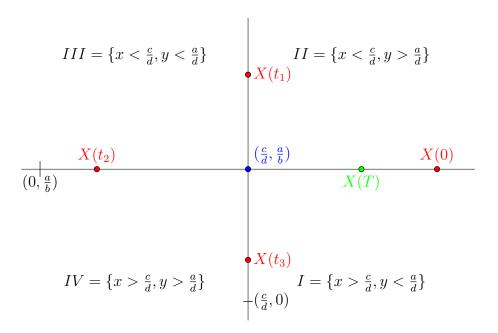


Figure 1: Tracé de la solution