Université de Bordeaux, L3 de Mathématiques, Automne 2020

TD

Equations différentielles et calcul différentiel

Feuille 2 - Norme et complétude

Exercice 1.1.9. Pour une matrice A de dimension $n \times n$ soit $||A|| = \max_{i=1..n} \sum_{j=1}^{n} |a_{ij}|$.

- a) Justifier que $||AB|| \le ||A|| \cdot ||B||$.
- b) Déduire que $\exp(A) := \sum_{n=0}^{\infty} \frac{1}{n!} A^n$ est une série convergente, et que $\|\exp(A)\| \le \exp(\|A\|)$.
- c) Que se pass-t-il si on munit $\mathbb{R}^{n\times n}$ d'une autre norme?

Exercice 1.1.10. On dénote $\ell_p^n = (\mathbb{R}^n, \|\cdot\|_p)$. Soit $A = (a_{j,k})$ une matrice $n \times n$. Expliciter en termes des coefficients $a_{j,k}$ la norme d'opérateur de A, vu comme opérateur linéaire $A: \ell_1^n \to \ell_1^n$. Même question pour la norme d'opérateur de $A: \ell_1^n \to \ell_\infty^n$.

Exercice 1.1.11. Soit $E = \mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels. On définit $||P|| = \sup_{x \in [0,1]} |P(x)|$.

- a) Démontrer que l'application $\|.\|$ est une norme sur E. Dans les questions suivantes, E est muni de cette norme.
- b) Soit c un réel positif et L l'application de E dans \mathbb{R} définie par L(P) = P(c). Démontrer que L est linéaire et continue si et seulement si $c \in [0, 1]$. Calculer la norme de L lorsque L est continue.
- c) L'application $P \to P'$ est elle continue sur E?

Exercice 1.1.12. Soit X = C([0,1]) muni de la norme sup et Y = C([0,1]) muni de la norme $||f||_Y = \int_0^1 |f(t)| dt$. On définit $T: X \to \mathbb{R}$ par Tf = f(0). Montrer que T est linéaire et borné, puis calculer ||T||. Qu'en est il de $T: Y \to \mathbb{R}$?

Exercice 1.1.13. Soit $E = C([0, \pi], \mathbb{R})$ muni de la norme $||f||_{\infty} = \sup_{x \in [0, \pi]} |f(x)|$. On désigne par φ un élément fixé de E et par T l'application de E dans \mathbb{R} définie par

$$T(f) = \int_0^{\pi} f(x)\varphi(x) dx.$$

- a) Démontrer que T est linéaire et continue.
- b) Calculer la norme de T lorsque φ est φ est > 0.
- c) Calculer la norme de T lorsque φ est la fonction $x \to \cos x$.

Exercice 1.1.14. Soit $J: C([0,1]) \to C([0,1])$ donné par $(Jf)(x) = \int_0^x f(t) dt$. Montrer que J est linéaire et borné, puis calculer ||J||.

Exercice 1.1.15. Soit $X = \{f \in C([0,1]) : f(1) = 0\}$ muni de la norme sup. Soit $T: X \to X$ donné par (Tf)(x) = xf(x). Montrer que T est linéaire et borné, puis calculer ||T||.

Exercice 1.1.16. Montrer que les concepts "ouvert", "fermé", "borné", "compact" pour un sous-ensemble $A \subset \mathbb{R}^n$ ne dépendent pas de la norme choisie.

Exercice 1.1.17. Soit $(E, \| \cdot \|)$ un espace vectoriel normé. Prouver chacune des affirmations suivantes, ou en donner un contre-exemple :

- a) L'ensemble vide est compact.
- b) Un singleton est compact.
- c) Un ensemble fini est compact (on pourra commencer par un ensemble à deux éléments).
- d) Un ensemble dénombrable est compact.

Les sous-ensembles suivants sont-ils des compacts de \mathbb{R}^2 ?

$$A = \{(x, y), 2x^2 + 3y^2 < 1\}$$
 et $B = \{(x, y), 0 \le x, y \text{ et } xy \le 1\}.$

Pour des sous-ensembles de \mathbb{R}^n , prouver chacune des affirmations suivantes, ou en donner un contre-exemple :

- a) Une intersection d'ensembles compacts est compacte.
- b) Un ensemble compact est fermé.
- c) Un sous-ensemble fermé d'un ensemble compact est compact.
- d) Une union finie d'ensembles compacts est compacte (on pourra commencer par deux ensembles compacts).
- e) Une union quelconque d'ensembles compacts est compacte.

Exercice 1.1.18. Soient $K \subset \mathbb{R}^n$ un compact et r > 0. On munit \mathbb{R}^n de sa norme usuelle $\|\cdot\|$ définie par $\|x\| = \left(\sum_i (x_i)^2\right)^{1/2}$. La boule fermée de centre x et de rayon r vaut $B_f(x,r) = \{y \in \mathbb{R}^n, \|y-x\| \le r\}$. Montrer que $K_r := \bigcup_{x \in K} B_f(x,r)$ est compact.