Université de Bordeaux, L3 de Mathématiques, Automne 2020

TD

Equations différentielles et calcul différentiel

Feuille 7 - Théorème de Cauchy-Lipschitz, théorème des bouts

Exercice supplémentaire 1. (Retour vers la feuille 5) Résoudre le problème de Cauchy

$$y' = y + y^2$$
, $y(t_0) = -1$.

Exercice 2.4.4. Soient $(x_0, y_0) \in \mathbb{R}^2$. On s'intéresse au problème de Cauchy suivant :

$$\begin{cases} x'(t) = -x(t) - 2y(t)^2 \\ y'(t) = x(t)y(t) - y(t) \\ x(0) = x_0, y(0) = y_0 \end{cases}$$

- 1. Monter que ce problème de Cauchy admet une unique solution maximale (X, I).
- 2. En utilisant l'énergie $H(x,y)=x^2+2y^2$, monter que cette solution est, en fait, globale.

Exercice 2.4.8. (Zéros isolés) Soient $a_0, a_1, ..., a_n : [0, 1] \to \mathbb{R}$ des fonctions continues. Montrer que toute solution de l'équation différentelle $y^{(n+1)} = \sum_{k=0}^{n} a_k(t)y^{(k)}$ a ses zéros isolés.

Exercice 2.4.9. Soient $v \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ et $x_0 \in \mathbb{R}^n$. On considère le problème de Cauchy suivant :

$$(P) \begin{cases} x'(t) = v(x(t)), t \ge 0 \\ x(0) = x_0 \end{cases}$$

- 1. On suppose que $\forall x \in \mathbb{R}^n$, $\langle v(x), x \rangle \leq 0$. Montrer qu'il existe une unique solution globale au problème (P).
- 2. On suppose à présent, que $\forall ||x|| = 1$, $\langle v(x), x \rangle < 0$. Montrer que si x_0 est dans la boule unité, la solution maximale de (P) reste dans cette boule. En déduire qu'elle est globale.
- 3. Montrer que le résultat de la question précédente persiste si l'on suppose seulement $\forall \|x\| = 1, \ \langle v(x), x \rangle \leq 0$. On pourra comparer la solution maximale de (P) à celle de (P_{ε}) où v est remplacée par $v_{\varepsilon}(x) = v(x) \varepsilon x$.

Exercice 2.4.10. On considère le problème de Cauchy suivant, pour $x \ge 0$:

(E)
$$y' = y^2 - x$$
, $y(0) = 0$.

- 1. Montrer que (E) admet une unique solution maximale. On la notera (y, [0, T]), avec $T \in \mathbb{R}$.
- 2. Donner un équivalent simple de y en 0. En déduire l'existence de $\delta \in]0,T[$ tel que pour tout $x \in]0,\delta[$, on ait $y^2(x) < x$.
- 3. Montrer que pour tout $x \in]0, T[$, on a $y^2(x) < x$.
- 4. En déduire que $b = +\infty$.

Exercice 2.4.11. On considère l'équation différentielle $x' = t + x^2$. On se donne une donnée initale $x(0) = x_0$.

- 1. Montrer que le problème admet une unique solution maximale.
- 2. Supposons par l'absurde que l'intervalle maximal n'est pas majoré, montrer que

$$\forall t > 1$$
, $\operatorname{Arctan}(x(t)) - \operatorname{Arctan}(x(1)) \ge t - 1$.

- 3. En déduire que I est majoré.
- 4. Montrer que x est croissante au voisnage de $b = \sup I$.
- 5. Donner un équivalent de x(t) en b.

Exercice 2.4.12. On considère le problème de Cauchy $x'(t) = e^{-tx}$ avec la donnée initiale x(0) = 0.

- 1. Montrer que l'unique solution maximale est impaire et strictement croissante.
- 2. Montrer que l'intervalle maximal est \mathbb{R} .
- 3. Montrer que $t \mapsto e^{-tx}$ est intégrable sur $[0, \infty)$.
- 4. En déduire que x admet une limite en $+\infty$. On la note l.
- 5. Montrer que l > 1.

Exercice supplémentaire 2. (Une étude qualitative.)

$$x(0) = 0,$$
 $x'(t) = \frac{1}{1 + t x(t)}$

1. Montrer que c'est un problème de Cauchy qui admet une solution unique

- 2. Montrer que la solution maximale est impaire et croissante
- 3. Montrer que la solution maximale est définie sur \mathbb{R} (Penser au théorème des bouts)
- 4. Déterminer la limite en $+\infty$ de x(t).

Exercice supplémentaire 3. (En autonomie.)

On consière le problème de Cauchy

$$x'(t) = \sin(tx(t)), \quad x(0) = x_0.$$

Montrer qu'il admet une unique solution maximale. Montrer que celle-ci est globale et paire.

Exercice supplémentaire 4 (théorème d'unicité d'Osgood). Soit I un intervalle de \mathbb{R} et $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue. Soit Ω un ouvert de \mathbb{R}^n . On suppose que pour tout $(t, x_1, x_2) \in I \times \Omega \times \Omega$

$$||f(t,x_1) - f(t,x_2)|| \le \omega(||x_1 - x_2||),$$

où $\omega \in \mathcal{C}(\mathbb{R}_+, \mathbb{R}_+)$ satisfait

$$\forall \sigma > 0, \omega(\sigma) > 0, \quad \forall \alpha > 0, \int_0^\alpha \frac{d\sigma}{\omega(\sigma)} = +\infty.$$

Montrer que pour toute condition initiale $(t_0, x_0) \in I \times \Omega$, et $x_1, x_2 : I \to \Omega$ solutions du problème de Cauchy

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

on a $x_1 = x_2$.