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Introduction

Framework

(M, g) is a complete and non-compact Riemannian manifold,

1 and p are the Riemannian measure and the Riemannian distance
induced by g on M,

o L= A+ Vis a Schrédinger operator with a potential 0 < V € L} _
and A is the Laplace-Beltrami operator,

e tLf is the solution of the heat equation

2u(t,x) + Lu(t,x) =0
Ot

with initial data f € LP(M),
C5°(M) is the set of smooth and compactly supported functions on M.
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Introduction
Framework

Vertical LPS function for L = A + V

1/2

H(f)(x) = (/OOO |Ve thf(x)]2 + V(x)\e—fo(x)th)

One may consider

H' (F)(x) = (/Ooo |Fe_th(x)|2dt) 1/2.

withT=Vor = Vv1/2

Problem of LP boundedness
Is there a constant C, > 0 such that for all f € C5°,

| N\

1H"(F)]lp < Gollfllo?
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Introduction
Vertical LPS functions for A

Here V =0, so L = A is the Laplace-Beltrami operator.
Q@ If M =R", H is bounded on LP(M) for all p € (1,400) and of
weak-type (1,1).!
@ On an arbitrary manifold, H is bounded on LP(M) for all p € (1,2].
© On compact Lie groups, H is bounded LP(M) for all p € (1, +oc0).?
@ If there exists C,§ > 0 such that

Ve t8f| < Ce ™A |Vf], (*)

then H is bounded LP(M) for all p € (1, +00)?. This is in particular
true if the Ricci curvature is non-negative.

Remark: (*) is difficult to obtain on arbitrary manifold, or replacing A by
L=A+V with V #0.

!Stein
2Coulhon-Duong
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Introduction

Motivation 1: the Riesz transform

It is a major question in harmonic analysis to determine for which values of
p € (1,400), the Riesz transform VA~1/2 is bounded on LP(M), that is
there exists C, > 0 such that for all f € C§°(M),

IVFllp < Gol AY2F. (Rp)

The values of p such that (R)) is satisfied form an interval containing 2.
Assume that H is bounded on LP(M) and there exists C > 0 such that for
allwe C§e(NTT*M

Beo(x)

5 1/2
dt
t) < Cllwll

X

Then the Riesz transform VA~/2 is bounded on LP(M).
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Introduction
Motivation 2: regularity

The boundedness of H on LP gives the regularity estimate

IVe ™|, < \[Ilpr

.= {V/tVe A t > 0} is uniformly bounded on LP(M).

Remark: The representation formula for A=1/2

VA—1/2f:/ [\/—V —tAf} dt

0

gives
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Introduction
The case p =2

By integration by parts we obtain

IH(F)|1Z = / / Ve trP 1 Vie "t Pdt dx

/ / Ae tf.etf + Ve ™ fPdt dx

// Le ttf et fdt dx
:_—/ / —|e_th| dt dx
1 2, 1.5
= 5 [ 1/ = 31715

Then H is always bounded on L2(M).
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Introduction

Vertical Littlewood-Paley-Stein functions

Questions:
@ Is H" bounded on LP for p #27?
@ Can we replace et by a more general function of tL ?

© Can we obtain better than |/tFe ||, < C from the boundedness of
H" ? What can we deduce about the Riesz transform I'L~1/2,
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Introduction

Some results about H ...

o H is bounded! on LP(M) for p € (1,2] for arbitrary manifolds,

@ Assume V # 0. H is unbounded? on LP(M) for p > N if the manifold
satisfies the Sobolev inequality

1£(x) — F(y)| < Cp(x, )7 IV,

and if there exists 0 < ¢ € L>°(M) such that e~t¢p = ¢.

@ Positive results for p < 2 in the case of potentials with non trivial
negative part3,

1Quhabaz
2Chen-Magniez-Ouhabaz
3C.
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Introduction

. and the Riesz transform

For p € (1,2], the Riesz transform VL~%/2 is bounded on LP(M) if we

assume two assumptions?.

@ Doubling property : there exists C > 0 such that for all x € M, r > 0,

u(B(x,2r)) < Cu(B(x,r)) (D)

@ Gaussian upper estimate for the heat kernel : there exist C,c > 0
such that for all x,y € M, t > 0,
exp(—c p(X;:y)2 )
p(B(x, t1/2))

No proof of this result without (D) or (G) whereas we know examples
where (G) is false?.

! Coulhon-Duong
2Chen-Coulhon-Feneuil-Russ

pe(x,y) < C (G)
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LPS functions and R-boundedness

Riesz = LPS

LPS functions and R-boundedness

Vector-valued extension

If FTL=1/2 is bounded LP(M), then it is bounded on LP(M, L2(R)).

Let f be in LP(M). One has

H (/OOO |refo(x)|2dt)1/2

Question: Can we have better than the boundedness of H from the
boundeness of ML=1/2 ?

<C
p

0o 1/2
( / |L1/2eth(x)\2dt>
0

< ClIfllp-

p
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LPS functions and R-boundedness LPS functions and R-boundedness

R-boundedness

Rademacher variables
A random variable is a Rademacher variable if

P(r=1)=P(r=-1)=1/2.

Definition
A family of operators (T¢):c; on LP is R-bounded if there exists C > 0
such that for all n € N, ty,....,t, € [ and fi,...f, € LP,

n n
ZT; Tt,-f'—,' ZTif;'
i=1 i=1

where (77) is a sequence of Rademacher variable.

E

I

p

< CE
p
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LPS functions and R-boundedness LPS functions and R-boundedness

R-boundedness

Khintchine-Kahane inequality

Let p be in (0,+00). There exists A, B > 0 such that for all n € N and

X1,y Xp € CY,

n 1/2
i=1 =

n
g TiXj
i=1

p\ 1/p n 1/2
i=1

Let / C R be an interval. If (T¢):cs is R-bounded on LP(M), there exists

C > 0 such that
1/2 1/2
Vf e LP(M, L3(])), H(/I|th(t, .)|2dt> (/I|f(t,.)|2dt>
P P
15/ 44
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LPS functions and R-boundedness LPS functions and R-boundedness

Link Riesz - R-boundedness

Given a p € (1,00) and suppose that the Riesz transform FL=1/2 is

bounded on LP(M). Then the set {y/tTe~t, t >0} is R-bounded on
LP(M).

Let Ty := /txle %L for ty > 0 and f, € LP(M) for k = 1,...,n. We have

E ZTkafk = E rL_l/zsz(tkL)l/2e_tkak
k=1 p k=1 p
< CE ZTk(tkL)l/zeftkak
k=1

p

The R-boundedness of {(tL)/2e~t t > 0} completes the proof.
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LPS functions and R-boundedness LPS functions and R-boundedness

Link LPS - R-boundedness

Let L = A+ V be a Schrodinger operator with 0 < V € L} _and I = V or
[ = V1/2. The following properties are equivalent

@ There exists C > 0 such that for all f € LP,

00 1/2
H (/ yre—th\zdt>
0

@ The operator family {\/tFe~*: t > 0} is R-bounded on L?,

< Clifllp,
p

o The set {V/tVe t t > 0} and {V/tV¥2e t t > 0} are always
R-bounded on LP for p € (1,2].

@ (2) = (1): we prove a more general result in the next section.
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LPS functions and R-boundedness LPS functions and R-boundedness

(1) = (2) : idea of proof

Set | . =K }Zk T/t T e_tk"fkf. Using the independance of the
Rademacher variables we obtain

/

< d L —tilg |2

—/0 GEIre " e v
oo

2/ [ tLZTk\/_e tkak) tLZTk\/_Le tkak)]
0

2/ E Z Fe"riy/te * fy - Te " ri/tLe™ % f dt

2/ EZI’e e Wb Te thr (teL)e L f dt

)
2/ [ tLZTke t"Lfk tLZTk tkL tkak)] dt.
0
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LPS functions and R-boundedness LPS functions and R-boundedness

(1) = (2) : idea of proof

Cauchy-Schwarz inequality gives

1/2
oo
/<2 / (E\Fe‘fLZne—mLko -E|re—fLZm(tkL)e—tkakf) dt
0 P p

S/ E|re,tLZTke7tka‘k|2 dt+/ E|re7tLZTk(tkL)eftkak|2 dt
0 k 0 k

<E {(Hr(znet“fk)> ] +E |:(Hr(27k(tkL)etkak)) ] :
k k

Therefore, by Khintchine inequality,

<HF(Z Tke_tkak))
k

1/p

CPWSE +|E

<Hr(27—k(tkL)e_tkak)) ]

k
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LPS functions and R-boundedness LPS functions and R-boundedness

(1) = (2) : idea of proof

The boundedness of H" implies

p|1/P
kae_tkak + |E
k

p|1/P

Z Tk(tkL)e_t"Lfk

< f
P K

<C'|E

Zrke_tkak +E
k P

ZTk(tkL)e_t"Lfk
k

p

Then (2) comes from the R-boundedness of the sets {e~t, t > 0} and
{tLe~t t > 0}.
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LPS functions and R-boundedness LPS functions and R-boundedness

Link LPS - Riesz

(a)— The Riesz transform I'L=1/2 is bounded on LP,

4
(b)— {VtTe t, t>0}is R-bounded on LP,

(c)— the LPS functional H" is bounded on L7,

4
(d)— {/tT ettt >0} is uniformly bounded on LP.

Remark : Under some assumptions, (c¢) = (a), (d) = (a).
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LPS functions and R-boundedness Generalized LPS function

H®° functionnal calculus

For w > 0, set
Y(w) ={z#0 larg(z)| <w}.
Let H*°(X(w)) be the set of bounded holomorphic functions on X (w).

H°(E(w)) ={f € H*(X(w)) : 7, C > 0Vz € X(w), |F(2)| < C%}

Let F € H°(X(w)). For an appropriate contour ~ one defines
1
F(L) = 5 / f(z)(zl — L) tdz.
17T

One says that L has an bounded holomorphic functional calculus with angle
w if for some constant C,, and for all F € H3°(X(w)),

IF(Dllzry < Co sup [F(2)]- (CF)

z€¥(w)
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LPS functions and R-boundedness Generalized LPS function

Square functions estimates

In this case, F(L) is well-defined for all F € H>(X(w)) and satisfies (CF).
—L is the generator of a sub-Markovian semigroup, then L has a bounded
holomorphic functional calculus on LP(M) for all p € (1, +00).

— Most recent result! : w, = arcsin |% -1 +e.

Square functions estimates?
Let L be a Schrddinger operator. Let p € (1,+00). If ¢ € Ho(X(wp)) then

1£llp ~

(/000 |¢(tL)f|2%)1/2 |

L Carbonaro-Dragicevi¢

2Cowling-Doust-Mclntosh-Yagi
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LPS functions and R-boundedness Generalized LPS function

Theorem

Let L = A + V be a Schrodinger operator with V' > 0. Let [ =V or
M= VY2 Let F € H®(X(wp)). Assume there exists ¢ > 0 and § > 1/2
such that |F(z)| < ﬁ when |z| — 400 and |F(z)| < C|z|*"1 when
z— 0.

If {/tFre~tt t > 0} is R-bounded on LP(M), then there exists C > 0 such
that for all f € LP(M),

H </OOO |FF(tL)f|2dt> v

Remark : Always true for p € (1,2].

< Clfll,-

p
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LPS functions and R-boundedness Generalized LPS function

Proof

O Set I(x) = ([yT ITF(tL)f(x)|?dt) /2 An integration by parts gives
I2="lim tyrF(tL)f|2—2/ tTLF'(tL)f - TF(tL)fdt
t——+o00 0

= —2/ tCLF'(tL)f - TF(tL)fdt
0
0o 1/2
=2 (/ |FtLF’(tL)f|2dt> I
0

Then it is sufficient to bound || ([, [T G(tL)f|?dkt) 1/2 llp where
G(z) = zF'(z). Note that G(z) < |z|* when z — 0.
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LPS functions and R-boundedness Generalized LPS function

Proof

@ Multiply by (/ 4 tL)% (I + tL)=%, with § > & > 1/2, to obtain

(/OOO ]I’G(tL)f]zdt) v

%0 : : de\ /2
— </ V(14 tL)7% (1 + tL)° G(tL)f|2T> .
0
© The R-boundedness of {\/t[(/ 4 tL)~} (equivalent to the

R-boundedness of v/tle™ ) gives
00 1/2
(/ |G(tL)(! + tL)‘Slf\z%)
0

(/ooo ’rF(tL)f‘2dt> 1/2
</0°o |¢“‘L)f|2%)1/2

<C

p

=C

with ¢(z) = zF'(2)(1 + 2)?".
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LPS functions and R-boundedness Generalized LPS function

6(2) = zF'(2)(1 + 2)"

@ The choice ¢’ < § gives that ¢ € H3®(X(w})) for
wy, € (arcsin |% — 1|, wp):
o Cauchy's integral formula for f" implies |¢(z)| < W% when

|z| = 400,
o The assumption |F’(z)| < C|z|*~! implies |¢(z)| < |z|¢ when z — 0.

Then 12
( / |¢(tL)f|2ﬂ>
0 t ,

and the theorem follows.

< [Ifll
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LPS functions and R-boundedness Generalized LPS function

Generalized LPS functions

Using the R-boundedness of holomorphic functional calculus and
Khintchine-Kahane inequality we obtain the more general result.

Let my,...,m, € H®(X(wp))-

Under the same assumptions on F, there exists C > 0 (independent of my)
such that for all f1, ..., f, € LP(M),

1/2

1/2 n
Z|rmk tL)fk| dt) < CSI;I(pHmkHoo (Z|fk|2>

k=1
p p
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LPS functions and R-boundedness Generalized LPS function

A result for spectral multipliers

Here we assume (D) and (G). Then,

Vx € M,YA, r >0, u(B(x,Ar)) < CANu(B(x, r)).

Let my : [0, +00) — C with support contained in [3,2] for every k. If
{V/tre™t t > 0} is R-bounded then for some C > 0 independent of n,

1/2 n 1/2
/ Z\ka (tL) k] dt) < Csup ||mgl|yws.2 (Z |fk’2>
k
p

k=1
P

v

@ 0 depends on N,

@ This relies on the same proof and on results by Deléaval-Kriegler.
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Other LPS functionals

Outline

© Other LPS functionals
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Other LPS functionals
Other Riesz transforms

One can define a local Riesz transform and a Riesz transform "at infinity"?.
Rl =T(L+1)"Y2 Rl =Te L1712,
Note that

FL=%/2 is bounded on [P <= Rl _and R'_ are bounded on LP.

Proof :

IFL=Y2 ]y < L2 4 IF(L 4+ 1)L Y2(L 4+ 1)M3( = el
< C [Ifllp + ILTY2(L+ )20 = e 1)f
< C[f]]p-

1Chen
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Other LPS functionals
Other LPS functionals

The boundedness of these functionals implies the boundedness the
following LPS functions.

1/2
HE (F)(x ( / Fe=t£(x) |dt> ,

HoI) = [ Ire fo<x>|2dr)l/2.

@ If R< is bounded on LP, then H,ZC is bounded on LP,
Q@ If R is bounded on LP, then H(roo) is bounded on LP,

Hr is bounded on P <= H] . and H(roo) are bounded on L.
All these functionals are always bounded on LP for p € (1,2].
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Other LPS functionals
Other LPS functionals

Let p € (2, +0),
@ If the set {\/tFe t t € (0,1]} is R-bounded on LP, then H
bounded on LP.
Q If the set {\/t — IFe~t5, t > 1} is R-bounded on LP, then H(roo) is
bounded on LP.

r .
loc 'S

Let M be a complete Riemannian manifold with Ricci curvature bounded
from below, then V(A + 1)~1/2 is bounded on LP for all p € (1, +00).

v
Corollary

On these manifolds, the local LPS functional Hj,. for L = A is bounded on
LP for all p € (1, +00).

v
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Lower bounds

Outline

@ Lower bounds

34 /44



Lower bounds

Lowers bounds - a useful example

The boundedness of these generalized functionals implies lower bounds on
the dual space.

Example: Q(f) = |e 1| + Hioc(f).

Let p € (1,00) and suppose that Hjoc is bounded on LP(M). Then there
exists a constant C > 0 such that for all g in the dual space LI(M).

Cllglls < 1Q(8)llq
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Lower bounds
Proof

Let f € LP(M) N L2(M) and g € L9(M) N L2(M). We have

1
//Ve_th.Ve_tLg—l—\/Ve_th.\/Ve_tLgdxdt
0o Jm

1
:/ /(Le2th)gdxdt
0o Jm
1 td o
S L (e2Lf
2//\///0 dt(e )g dx dt

= l/ ﬂgdx—l/ (e Ltf)(e7tg) dx.
2 /M 2 /m
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Lower bounds
Proof

Therefore,

’/ fg dx
M

IN

/ |e—Lf||e—Lg|dx+2/ Hioe(F) Hioe (&) dx
M M

2 [ (J&7 61+ Hoc(F)(e el + Hoc(g)) o
M

<
< 2Q(N N Q&)llq
< ClfllpllQ(g)llg-

The latter inequality extends by density to all f € LP(M) and the
proposition follows.
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Applications and examples

Outline

© Applications and examples
@ to the Riesz transform VA~1/2
e to divergence form operators on domains
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Applications and examples to the Riesz transform VA~1/2

Application 1: A on R"#R"

Let M, = R"#R" be the connected sum of two copies of R"\B(0, 1) glued
among the unit spheres. On M,

@ The Riesz transform is bounded on LP for p € (1, n) and this is sharp?,
@ M, has Ricci curvature bounded from below.
Consequently,

@ The LPS function associated with A is bounded on LP for all
p e (1,n),

@ The local Riesz transform and LPS function are bounded on LP for all
p € (1,+0),

© The Riesz transform at infinity is unbounded for p > n.

! Coulhon-Duong, Carron-Coulhon-Hassell
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Applications and examples to the Riesz transform VA~1/2

Application 1: A on R"#R"

@ The heat kernel on M, satisfies (G),
@ The balls on M, have polynomial growth,

o M, satisfies a global Sobolev inequality.

x 2
eXp(—Cp( ;.y) )

p(B(x, t1/2)) °

= H is unbounded on LP for p > n. As Hjec is bounded, H( is
necessarily unbounded.

= pe(x,y) > C
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Applications and examples to divergence form operators on domains

Application 2: Elliptic operators on domains

All our results remain valid for elliptic operators with real bounded
measurable coefficients ay. Let Q be an open subset of RV and

L = —div(A(x)V-) be a self-adjoint elliptic operator with Dirichlet
conditions on €.

Let L = —div(A(x)V-) be as previously. For q € [2,+0),

1 1/2
(/ \Ve_th\2dt>
0
00 1/2
(/ yVe—foy2dt)
0

Clifllg < lle™ fllq +

q
and

Clifllq <

q

No assumption of regularity on A or Q!
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Applications and examples to divergence form operators on domains

Application 2: Elliptic operators on domains

Let L = —div(A(x)V-) be a self-adjoint elliptic operator with real bounded
measurable coefficients ay. Then for all g € (1, 00)

00 1/2
(/ |Ve_th|2dt)
0

)

La(RN)

1 1/2
</ |Ve—fo|2dt)
0

Cllfllammy <

and

CllfllLomny < ||e_Lf||Lq(RN) +

La(RN)
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Applications and examples to divergence form operators on domains

We consider the case g € (1,2] only. There exists a Calderon-Zygmund
operator U such that L1/2f = UV L. Therefore, square functions

estimates for L give

() 1/2
< e t
Il < ¢ ([ 1 i)
0
() 1/2
=C (/ \UVe_th\zdt)
0
() 1/2
<C (/ |Ve—fo|2dt)
0

L Auscher-Tchamitchian

q

q

< Cllfllg-
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Merci pour votre attention !
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