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Introduction

Framework

(M, g) is a complete and non-compact Riemannian manifold,
µ and ρ are the Riemannian measure and the Riemannian distance
induced by g on M,
L = ∆ + V is a Schrödinger operator with a potential 0 ≤ V ∈ L1

loc

and ∆ is the Laplace-Beltrami operator,
e−tLf is the solution of the heat equation

∂

∂t
u(t, x) + Lu(t, x) = 0

with initial data f ∈ Lp(M),
C∞0 (M) is the set of smooth and compactly supported functions on M.
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Introduction

Framework

Vertical LPS function for L = ∆ + V

H(f )(x) =

(∫ ∞
0
|∇e−tLf (x)|2 + V (x)|e−tLf (x)|2dt

)1/2

.

One may consider

HΓ(f )(x) =

(∫ ∞
0
|Γe−tLf (x)|2dt

)1/2

.

with Γ = ∇ or Γ = V 1/2.

Problem of Lp boundedness
Is there a constant Cp > 0 such that for all f ∈ C∞0 ,

‖HΓ(f )‖p ≤ Cp‖f ‖p?
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Introduction

Vertical LPS functions for ∆

Here V = 0, so L = ∆ is the Laplace-Beltrami operator.
1 If M = Rn, H is bounded on Lp(M) for all p ∈ (1,+∞) and of

weak-type (1,1).1

2 On an arbitrary manifold, H is bounded on Lp(M) for all p ∈ (1, 2].1

3 On compact Lie groups, H is bounded Lp(M) for all p ∈ (1,+∞).1

4 If there exists C , δ > 0 such that

|∇e−t∆f | ≤ Ce−tδ∆|∇f |, (*)

then H is bounded Lp(M) for all p ∈ (1,+∞)2. This is in particular
true if the Ricci curvature is non-negative.

Remark: (*) is difficult to obtain on arbitrary manifold, or replacing ∆ by
L = ∆ + V with V 6= 0.

1Stein
2Coulhon-Duong
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Introduction

Motivation 1: the Riesz transform

It is a major question in harmonic analysis to determine for which values of
p ∈ (1,+∞), the Riesz transform ∇∆−1/2 is bounded on Lp(M), that is
there exists Cp > 0 such that for all f ∈ C∞0 (M),

‖∇f ‖p ≤ Cp‖∆1/2f ‖p. (Rp)

The values of p such that (Rp) is satisfied form an interval containing 2.
Assume that H is bounded on Lp(M) and there exists C > 0 such that for
all ω ∈ C∞0 (Λ1T ∗M),∥∥∥∥∥∥

(∫ ∞
0

∣∣∣∣ ∂∂t e−t ~∆ω(x)

∣∣∣∣2
x

dt

t

)1/2
∥∥∥∥∥∥
p′

≤ C ‖ω‖p′ .

Then the Riesz transform ∇∆−1/2 is bounded on Lp(M).
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Introduction

Motivation 2: regularity

The boundedness of H on Lp gives the regularity estimate

‖∇e−t∆f ‖p ≤
C√
t
‖f ‖p.

. ⇒ {
√
t∇e−t∆, t ≥ 0} is uniformly bounded on Lp(M).

Remark: The representation formula for ∆−1/2 gives

∇∆−1/2f =

∫ ∞
0

[√
t∇e−t∆f

] dt
t
.
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Introduction

The case p = 2

By integration by parts we obtain

‖H(f )‖22 =

∫
M

∫ ∞
0
|∇e−tLf |2 + V |e−tLf |2dt dx

=

∫
M

∫ ∞
0

∆e−tLf .e−tLf + V |e−tLf |2dt dx

=

∫
M

∫ ∞
0

Le−tLf .e−tLfdt dx

= −1
2

∫
M

∫ ∞
0

∂

∂t
|e−tLf |2dt dx

=
1
2

∫
M
|f |2dx =

1
2
‖f ‖22.

Then H is always bounded on L2(M).
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Introduction

Vertical Littlewood-Paley-Stein functions

Questions:
1 Is HΓ bounded on Lp for p 6= 2 ?
2 Can we replace e−tL by a more general function of tL ?
3 Can we obtain better than ‖

√
tΓe−tL‖p ≤ C from the boundedness of

HΓ ? What can we deduce about the Riesz transform ΓL−1/2.
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Introduction

Some results about H ...

H is bounded1 on Lp(M) for p ∈ (1, 2] for arbitrary manifolds,
Assume V 6= 0. H is unbounded2 on Lp(M) for p > N if the manifold
satisfies the Sobolev inequality

|f (x)− f (y)| ≤ Cρ(x , y)1−N
p ‖∇f ‖p

and if there exists 0 < φ ∈ L∞(M) such that e−tLφ = φ.
Positive results for p < 2 in the case of potentials with non trivial
negative part3,

1Ouhabaz
2Chen-Magniez-Ouhabaz
3C.
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Introduction

... and the Riesz transform

For p ∈ (1, 2], the Riesz transform ∇L−1/2 is bounded on Lp(M) if we
assume two assumptions1.

1 Doubling property : there exists C > 0 such that for all x ∈ M, r > 0,

µ(B(x , 2r)) ≤ Cµ(B(x , r)) (D)

2 Gaussian upper estimate for the heat kernel : there exist C , c > 0
such that for all x , y ∈ M, t > 0,

pt(x , y) ≤ C
exp(−c ρ(x ,y)2

t )

µ(B(x , t1/2))
(G)

No proof of this result without (D) or (G) whereas we know examples
where (G) is false2.

1Coulhon-Duong
2Chen-Coulhon-Feneuil-Russ
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LPS functions and R-boundedness LPS functions and R-boundedness

Riesz ⇒ LPS

Vector-valued extension
If ΓL−1/2 is bounded Lp(M), then it is bounded on Lp(M, L2(R+)).

Let f be in Lp(M). One has

∥∥∥∥∥
(∫ ∞

0
|Γe−tLf (x)|2dt

)1/2
∥∥∥∥∥
p

≤ C

∥∥∥∥∥
(∫ ∞

0
|L1/2e−tLf (x)|2dt

)1/2
∥∥∥∥∥
p

≤ C‖f ‖p.

Question: Can we have better than the boundedness of H from the
boundeness of ΓL−1/2 ?
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LPS functions and R-boundedness LPS functions and R-boundedness

R-boundedness

Rademacher variables
A random variable is a Rademacher variable if

P(τ = 1) = P(τ = −1) = 1/2.

Definition
A family of operators (Tt)t∈I on Lp is R-bounded if there exists C > 0
such that for all n ∈ N, t1, ..., tn ∈ I and f1, ...fn ∈ Lp,

E

∥∥∥∥∥
n∑

i=1

τiTti fi

∥∥∥∥∥
p

≤ CE

∥∥∥∥∥
n∑

i=1

τi fi

∥∥∥∥∥
p

,

where (τi ) is a sequence of Rademacher variable.
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LPS functions and R-boundedness LPS functions and R-boundedness

R-boundedness

Khintchine-Kahane inequality
Let p be in (0,+∞). There exists A,B > 0 such that for all n ∈ N and
x1, ..., xn ∈ Cd ,

A

(
n∑

i=1

|xi |2
)1/2

≤

(
E

∣∣∣∣∣
n∑

i=1

τixi

∣∣∣∣∣
p)1/p

≤ B

(
n∑

i=1

|xi |2
)1/2

.

Theorem (Weis)
Let I ⊂ R be an interval. If (Tt)t∈I is R-bounded on Lp(M), there exists
C > 0 such that

∀f ∈ Lp(M, L2(I )),

∥∥∥∥∥
(∫

I
|Tt f (t, .)|2dt

)1/2
∥∥∥∥∥
p

≤ C

∥∥∥∥∥
(∫

I
|f (t, .)|2dt

)1/2
∥∥∥∥∥
p

.
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LPS functions and R-boundedness LPS functions and R-boundedness

Link Riesz - R-boundedness

Theorem
Given a p ∈ (1,∞) and suppose that the Riesz transform ΓL−1/2 is
bounded on Lp(M). Then the set {

√
t Γe−tL, t > 0} is R-bounded on

Lp(M).

Let Tk :=
√
tkΓe−tkL for tk > 0 and fk ∈ Lp(M) for k = 1, ..., n. We have

E

∥∥∥∥∥
n∑

k=1

τkTk fk

∥∥∥∥∥
p

= E

∥∥∥∥∥ΓL−1/2
n∑

k=1

τk(tkL)1/2e−tkLfk

∥∥∥∥∥
p

≤ C E

∥∥∥∥∥
n∑

k=1

τk(tkL)1/2e−tkLfk

∥∥∥∥∥
p

.

The R-boundedness of {(tL)1/2e−tL, t > 0} completes the proof.
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LPS functions and R-boundedness LPS functions and R-boundedness

Link LPS - R-boundedness

Theorem (C.-Ouhabaz 2020)

Let L = ∆ + V be a Schrödinger operator with 0 ≤ V ∈ L1
loc and Γ = ∇ or

Γ = V 1/2. The following properties are equivalent
1 There exists C > 0 such that for all f ∈ Lp,∥∥∥∥∥

(∫ ∞
0
|Γe−tLf |2dt

)1/2
∥∥∥∥∥
p

≤ C‖f ‖p,

2 The operator family {
√
tΓe−tL, t ≥ 0} is R-bounded on Lp,

The set {
√
t∇e−tL, t ≥ 0} and {

√
tV 1/2e−tL, t ≥ 0} are always

R-bounded on Lp for p ∈ (1, 2].
(2)⇒ (1): we prove a more general result in the next section.
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LPS functions and R-boundedness LPS functions and R-boundedness

(1)⇒ (2) : idea of proof

Set I := E
∣∣∑

k τk
√
tk Γ e−tkLfk

∣∣2. Using the independance of the
Rademacher variables we obtain

I = −
∫ ∞

0

d

dt
E|Γe−tL

∑
k

τk
√
tke
−tkLfk |2 dt

= 2
∫ ∞

0
E

[
(Γe−tL

∑
k

τk
√
tke
−tkLfk) · (Γe−tL

∑
k

τk
√
tkLe

−tkLfk)

]
dt

= 2
∫ ∞

0
E
∑
k

Γe−tLτk
√
tke
−tkLfk · Γe−tLτk

√
tkLe

−tkLfk dt

= 2
∫ ∞

0
E
∑
k

Γe−tLτke
−tkLfk · Γe−tLτk(tkL)e−tkLfk dt

= 2
∫ ∞

0
E

[
(Γe−tL

∑
k

τke
−tkLfk) · (Γe−tL

∑
k

τk(tkL)e−tkLfk)

]
dt.
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LPS functions and R-boundedness LPS functions and R-boundedness

(1)⇒ (2) : idea of proof

Cauchy-Schwarz inequality gives

I ≤ 2
∫ ∞

0

(
E|Γe−tL

∑
k

τke
−tkLfk |2 · E|Γe−tL

∑
k

τk(tkL)e−tkLfk |2
)1/2

dt

≤
∫ ∞

0
E|Γe−tL

∑
k

τke
−tkLfk |2 dt +

∫ ∞
0

E|Γe−tL
∑
k

τk(tkL)e−tkLfk |2 dt

≤ E

(HΓ(
∑
k

τke
−tkLfk)

)2
+ E

(HΓ(
∑
k

τk(tkL)e−tkLfk)

)2
 .

Therefore, by Khintchine inequality,

cp
√
I ≤

∣∣∣∣∣E
[(

HΓ(
∑
k

τke
−tkLfk)

)p]∣∣∣∣∣
1/p

+

∣∣∣∣∣E
[(

HΓ(
∑
k

τk(tkL)e−tkLfk)

)p]∣∣∣∣∣
1/p

.
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LPS functions and R-boundedness LPS functions and R-boundedness

(1)⇒ (2) : idea of proof

The boundedness of HΓ implies

∥∥∥√I∥∥∥
p
≤ C


∣∣∣∣∣∣E
∥∥∥∥∥∑

k

τke
−tkLfk

∥∥∥∥∥
p

p

∣∣∣∣∣∣
1/p

+

∣∣∣∣∣∣E
∥∥∥∥∥∑

k

τk(tkL)e−tkLfk

∥∥∥∥∥
p

p

∣∣∣∣∣∣
1/p


≤ C ′

E

∥∥∥∥∥∑
k

τke
−tkLfk

∥∥∥∥∥
p

+ E

∥∥∥∥∥∑
k

τk(tkL)e−tkLfk

∥∥∥∥∥
p

 .

Then (2) comes from the R-boundedness of the sets {e−tL, t ≥ 0} and
{tLe−tL, t ≥ 0}.
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LPS functions and R-boundedness LPS functions and R-boundedness

Link LPS - Riesz

(a)− The Riesz transform ΓL−1/2 is bounded on Lp,
⇓

(b)− {
√
t Γ e−tL, t ≥ 0} is R-bounded on Lp,

m
(c)− the LPS functional HΓ is bounded on Lp,

⇓
(d)− {

√
t Γ e−tL, t ≥ 0} is uniformly bounded on Lp.

Remark : Under some assumptions, (c)⇒ (a), (d)⇒ (a).
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LPS functions and R-boundedness Generalized LPS function

H∞ functionnal calculus

For ω > 0, set
Σ(ω) = {z 6= 0, |arg(z)| < ω}.

Let H∞(Σ(ω)) be the set of bounded holomorphic functions on Σ(ω).

H∞0 (Σ(ω)) = {f ∈ H∞(Σ(ω)) : ∃γ,C > 0 ∀z ∈ Σ(ω), |F (z)| ≤ C
|z |γ

1 + |z |2γ
}.

Let F ∈ H∞0 (Σ(ω)). For an appropriate contour γ one defines

F (L) =
1
2iπ

∫
γ
f (z)(zI − L)−1dz .

One says that L has an bounded holomorphic functional calculus with angle
ω if for some constant Cω and for all F ∈ H∞0 (Σ(ω)),

‖F (L)‖L(Lp) ≤ Cω sup
z∈Σ(ω)

|F (z)|. (CF)

22 / 44



LPS functions and R-boundedness Generalized LPS function

Square functions estimates

In this case, F (L) is well-defined for all F ∈ H∞(Σ(ω)) and satisfies (CF).
−L is the generator of a sub-Markovian semigroup, then L has a bounded
holomorphic functional calculus on Lp(M) for all p ∈ (1,+∞).
→ Most recent result1 : ωp = arcsin | 2p − 1|+ ε.

Square functions estimates2

Let L be a Schrödinger operator. Let p ∈ (1,+∞). If φ ∈ H0(Σ(ωp)) then

‖f ‖p '

∥∥∥∥∥
(∫ ∞

0
|φ(tL)f |2 dt

t

)1/2
∥∥∥∥∥
p

.

1Carbonaro-Dragičević
2Cowling-Doust-McIntosh-Yagi
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LPS functions and R-boundedness Generalized LPS function

Theorem

Theorem (C.-Ouhabaz, 2020)
Let L = ∆ + V be a Schrödinger operator with V ≥ 0. Let Γ = ∇ or
Γ = V 1/2. Let F ∈ H∞(Σ(ωp)). Assume there exists ε > 0 and δ > 1/2
such that |F (z)| ≤ C

|z|δ when |z | → +∞ and |F ′(z)| ≤ C |z |ε−1 when
z → 0.

If {
√
tΓe−tL, t ≥ 0} is R-bounded on Lp(M), then there exists C > 0 such

that for all f ∈ Lp(M),∥∥∥∥∥
(∫ ∞

0
|ΓF (tL)f |2dt

)1/2
∥∥∥∥∥
p

≤ C ‖f ‖p .

Remark : Always true for p ∈ (1, 2].
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LPS functions and R-boundedness Generalized LPS function

Proof

1 Set I (x) =
(∫∞

0 |ΓF (tL)f (x)|2dt
)1/2. An integration by parts gives

I 2 = lim
t→+∞

t|ΓF (tL)f |2 − 2
∫ ∞

0
tΓLF ′(tL)f · ΓF (tL)fdt

= −2
∫ ∞

0
tΓLF ′(tL)f · ΓF (tL)fdt

= 2
(∫ ∞

0
|ΓtLF ′(tL)f |2dt

)1/2

I .

Then it is sufficient to bound ‖
(∫∞

0 |ΓG (tL)f |2dt
)1/2 ‖p where

G (z) = zF ′(z). Note that G (z) ≤ |z |ε when z → 0.
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LPS functions and R-boundedness Generalized LPS function

Proof

2 Multiply by (I + tL)δ
′
(I + tL)−δ

′
, with δ > δ′ > 1/2, to obtain(∫ ∞

0
|ΓG (tL)f |2dt

)1/2

=

(∫ ∞
0
|
√
tΓ(1 + tL)−δ

′
(1 + tL)δ

′
G (tL)f |2 dt

t

)1/2

.

3 The R-boundedness of {
√
tΓ(I + tL)−δ

′} (equivalent to the
R-boundedness of

√
tΓe−tL) gives∥∥∥∥∥

(∫ ∞
0
|ΓF (tL)f |2dt

)1/2
∥∥∥∥∥
p

≤ C

∥∥∥∥∥
(∫ ∞

0
|G (tL)(I + tL)δ

′
f |2 dt

t

)1/2
∥∥∥∥∥
p

= C

∥∥∥∥∥
(∫ ∞

0
|φ(tL)f |2 dt

t

)1/2
∥∥∥∥∥
p

with φ(z) = zF ′(z)(1 + z)δ
′
.
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LPS functions and R-boundedness Generalized LPS function

Proof

φ(z) = zF ′(z)(1 + z)δ
′

.
4 The choice δ′ < δ gives that φ ∈ H∞0 (Σ(ω′p)) for
ω′p ∈ (arcsin | 2p − 1|, ωp):

Cauchy’s integral formula for f ′ implies |φ(z)| ≤ C
|z|δ−δ′ when

|z | → +∞,
The assumption |F ′(z)| ≤ C |z |ε−1 implies |φ(z)| ≤ |z |ε when z → 0.

Then ∥∥∥∥∥
(∫ ∞

0
|φ(tL)f |2 dt

t

)1/2
∥∥∥∥∥
p

≤ ‖f ‖p

and the theorem follows.
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LPS functions and R-boundedness Generalized LPS function

Generalized LPS functions

Using the R-boundedness of holomorphic functional calculus and
Khintchine-Kahane inequality we obtain the more general result.

Theorem (C.-Ouhabaz, 2020)
Let m1, ...,mn ∈ H∞(Σ(ωp)).

Under the same assumptions on F , there exists C > 0 (independent of mk)
such that for all f1, ..., fn ∈ Lp(M),∥∥∥∥∥∥
(∫ ∞

0

n∑
k=1

|Γmk(L)F (tL)fk |2dt

)1/2
∥∥∥∥∥∥
p

≤ C sup
k
‖mk‖∞

∥∥∥∥∥∥
(

n∑
k=1

|fk |2
)1/2

∥∥∥∥∥∥
p

.
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LPS functions and R-boundedness Generalized LPS function

A result for spectral multipliers

Here we assume (D) and (G). Then,

∀x ∈ M,∀λ, r > 0, µ(B(x , λr)) ≤ CλNµ(B(x , r)).

Theorem (C.-Ouhabaz, 2020)

Let mk : [0,+∞)→ C with support contained in [1
2 , 2] for every k . If

{
√
tΓe−tL, t ≥ 0} is R-bounded then for some C > 0 independent of n,∥∥∥∥∥∥
(∫ ∞

0

n∑
k=1

|Γmk(tL)fk |2dt

)1/2
∥∥∥∥∥∥
p

≤ C sup
k
‖mk‖W δ,2

∥∥∥∥∥∥
(

n∑
k=1

|fk |2
)1/2

∥∥∥∥∥∥
p

.

δ depends on N,
This relies on the same proof and on results by Deléaval-Kriegler.
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Other LPS functionals

Other Riesz transforms

One can define a local Riesz transform and a Riesz transform "at infinity"1.

RΓ
loc = Γ(L + I )−1/2, RΓ

∞ = Γe−LL−1/2.

Note that

ΓL−1/2 is bounded on Lp ⇐⇒ RΓ
loc and RΓ

∞ are bounded on Lp.

Proof :

‖ΓL−1/2f ‖p ≤ ‖ΓL−1/2e−Lf ‖p + ‖Γ(L + I )−1/2L−1/2(L + I )1/2(I − e−L)f ‖p

≤ C
[
‖f ‖p + ‖L−1/2(L + I )1/2(I − e−L)f ‖p

]
≤ C‖f ‖p.

1Chen
31 / 44



Other LPS functionals

Other LPS functionals

The boundedness of these functionals implies the boundedness the
following LPS functions.

HΓ
loc(f )(x) =

(∫ 1

0
|Γe−tLf (x)|2dt

)1/2

,

HΓ
(∞)(f )(x) =

(∫ ∞
1
|Γe−tLf (x)|2dt

)1/2

.

Theorem
1 If R loc is bounded on Lp, then HΓ

loc is bounded on Lp,
2 If R∞ is bounded on Lp, then HΓ

(∞) is bounded on Lp,

HΓ is bounded on Lp ⇐⇒ HΓ
loc and HΓ

(∞) are bounded on Lp.

All these functionals are always bounded on Lp for p ∈ (1, 2].
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Other LPS functionals

Other LPS functionals

Proposition
Let p ∈ (2,+∞),

1 If the set {
√
tΓe−tL, t ∈ (0, 1]} is R-bounded on Lp, then HΓ

loc is
bounded on Lp.

2 If the set {
√
t − 1Γe−tL, t ≥ 1} is R-bounded on Lp, then HΓ

(∞) is
bounded on Lp.

Theorem (Bakry)
Let M be a complete Riemannian manifold with Ricci curvature bounded
from below, then ∇(∆ + I )−1/2 is bounded on Lp for all p ∈ (1,+∞).

Corollary
On these manifolds, the local LPS functional Hloc for L = ∆ is bounded on
Lp for all p ∈ (1,+∞).
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Lower bounds

Lowers bounds - a useful example

The boundedness of these generalized functionals implies lower bounds on
the dual space.

Example: Q(f ) = |e−Lf |+ Hloc(f ).

Theorem (C.-Ouhabaz 2020)
Let p ∈ (1,∞) and suppose that Hloc is bounded on Lp(M). Then there
exists a constant C > 0 such that for all g in the dual space Lq(M).

C‖g‖q ≤ ‖Q(g)‖q
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Lower bounds

Proof

Let f ∈ Lp(M) ∩ L2(M) and g ∈ Lq(M) ∩ L2(M). We have∫ 1

0

∫
M
∇e−tLf .∇e−tLg +

√
Ve−tLf .

√
Ve−tLg dx dt

=

∫ 1

0

∫
M

(Le−2tLf )g dx dt

= −1
2

∫
M

∫ 1

0

d

dt
(e−2tLf )g dx dt

=
1
2

∫
M
fg dx − 1

2

∫
M

(e−Lf )(e−Lg) dx .
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Lower bounds

Proof

Therefore,∣∣∣∣∫
M
fg dx

∣∣∣∣ ≤ ∫
M
|e−Lf ||e−Lg | dx + 2

∫
M
Hloc(f )Hloc(g) dx

≤ 2
∫
M

(|e−Lf |+ Hloc(f ))(|e−Lg |+ Hloc(g))dx

≤ 2‖Q(f )‖p‖Q(g)‖q
≤ C ‖f ‖p‖Q(g)‖q.

The latter inequality extends by density to all f ∈ Lp(M) and the
proposition follows.
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Applications and examples
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Applications and examples to the Riesz transform ∇∆−1/2

Application 1: ∆ on Rn#Rn

Let Mn = Rn#Rn be the connected sum of two copies of Rn\B(0, 1) glued
among the unit spheres. On Mn,

The Riesz transform is bounded on Lp for p ∈ (1, n) and this is sharp1,
Mn has Ricci curvature bounded from below.

Consequently,
1 The LPS function associated with ∆ is bounded on Lp for all

p ∈ (1, n),
2 The local Riesz transform and LPS function are bounded on Lp for all

p ∈ (1,+∞),
3 The Riesz transform at infinity is unbounded for p > n.

1Coulhon-Duong, Carron-Coulhon-Hassell
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Applications and examples to the Riesz transform ∇∆−1/2

Application 1: ∆ on Rn#Rn

The heat kernel on Mn satisfies (G),
The balls on Mn have polynomial growth,
Mn satisfies a global Sobolev inequality.

⇒ pt(x , y) > C
exp(−c ρ(x ,y)2

t )

µ(B(x , t1/2))
,

⇒ H is unbounded on Lp for p > n. As Hloc is bounded, H(∞) is
necessarily unbounded.
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Applications and examples to divergence form operators on domains

Application 2: Elliptic operators on domains

All our results remain valid for elliptic operators with real bounded
measurable coefficients akl . Let Ω be an open subset of RN and
L = −div(A(x)∇·) be a self-adjoint elliptic operator with Dirichlet
conditions on Ω.

Theorem (C.-Ouhabaz 2020)
Let L = −div(A(x)∇·) be as previously. For q ∈ [2,+∞),

C‖f ‖q ≤ ‖e−Lf ‖q +

∥∥∥∥∥
(∫ 1

0
|∇e−tLf |2dt

)1/2
∥∥∥∥∥
q

and

C‖f ‖q ≤

∥∥∥∥∥
(∫ ∞

0
|∇e−tLf |2dt

)1/2
∥∥∥∥∥
q

.

No assumption of regularity on A or Ω !
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Applications and examples to divergence form operators on domains

Application 2: Elliptic operators on domains

Theorem (C.-Ouhabaz 2020)
Let L = −div(A(x)∇·) be a self-adjoint elliptic operator with real bounded
measurable coefficients akl . Then for all q ∈ (1,∞)

C ‖f ‖Lq(RN) ≤

∥∥∥∥∥
(∫ ∞

0
|∇e−tLf |2dt

)1/2
∥∥∥∥∥
Lq(RN)

,

and

C ‖f ‖Lq(RN) ≤ ‖e−Lf ‖Lq(RN) +

∥∥∥∥∥
(∫ 1

0
|∇e−tLf |2dt

)1/2
∥∥∥∥∥
Lq(RN)

.
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Applications and examples to divergence form operators on domains

Proof

We consider the case q ∈ (1, 2] only. There exists a Calderòn-Zygmund
operator U such that L1/2f = U∇f 1. Therefore, square functions
estimates for L give

‖f ‖q ≤ C

∥∥∥∥∥
(∫ ∞

0
|L1/2e−tLf |2dt

)1/2
∥∥∥∥∥
q

= C

∥∥∥∥∥
(∫ ∞

0
|U∇e−tLf |2dt

)1/2
∥∥∥∥∥
q

≤ C

∥∥∥∥∥
(∫ ∞

0
|∇e−tLf |2dt

)1/2
∥∥∥∥∥
q

≤ C‖f ‖q.

1Auscher-Tchamitchian
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Merci pour votre attention !
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