Littlewood-Paley-Stein functions and R-boundedness

Thomas Cometx (joint work with E.M. Ouhabaz)

Institut de Mathématiques de Bordeaux

Journée du projet ANR RAGE, 11 décembre 2020

Outline

- 2 LPS functions and R-boundedness
- Other LPS functionals
- 4 Lower bounds
- 5 Applications and examples

Framework

- (M,g) is a complete and non-compact Riemannian manifold,
- μ and ρ are the Riemannian measure and the Riemannian distance induced by g on M,
- $L = \Delta + V$ is a Schrödinger operator with a potential $0 \le V \in L^1_{loc}$ and Δ is the Laplace-Beltrami operator,
- $e^{-tL}f$ is the solution of the heat equation

$$\frac{\partial}{\partial_t}u(t,x)+Lu(t,x)=0$$

with initial data $f \in L^p(M)$,

• $C_0^{\infty}(M)$ is the set of smooth and compactly supported functions on M.

Framework

Vertical LPS function for $L = \Delta + V$

$$H(f)(x) = \left(\int_0^\infty |\nabla e^{-tL} f(x)|^2 + V(x)|e^{-tL} f(x)|^2 dt\right)^{1/2}$$

One may consider

$$H^{\Gamma}(f)(x) = \left(\int_0^\infty |\Gamma e^{-tL} f(x)|^2 dt\right)^{1/2}$$

with $\Gamma = \nabla$ or $\Gamma = V^{1/2}$.

Problem of L^p boundedness

Is there a constant $C_p > 0$ such that for all $f \in C_0^{\infty}$,

 $\|H^{\Gamma}(f)\|_{p} \leq C_{p}\|f\|_{p}?$

Vertical LPS functions for Δ

Here V = 0, so $L = \Delta$ is the Laplace-Beltrami operator.

- If $M = \mathbb{R}^n$, H is bounded on $L^p(M)$ for all $p \in (1, +\infty)$ and of weak-type (1,1).¹
- **②** On an arbitrary manifold, H is bounded on $L^p(M)$ for all $p \in (1, 2]$.¹
- **③** On compact Lie groups, H is bounded $L^p(M)$ for all $p \in (1, +\infty)$.¹
- **④** If there exists $C, \delta > 0$ such that

$$|
abla e^{-t\Delta}f| \le C e^{-t\delta\Delta} |
abla f|,$$
 (*)

then H is bounded $L^{p}(M)$ for all $p \in (1, +\infty)^{2}$. This is in particular true if the Ricci curvature is non-negative.

<u>Remark</u>: (*) is difficult to obtain on arbitrary manifold, or replacing Δ by $L = \Delta + V$ with $V \neq 0$.

¹Stein ²Coulhon-Duong

Motivation 1: the Riesz transform

It is a major question in harmonic analysis to determine for which values of $p \in (1, +\infty)$, the Riesz transform $\nabla \Delta^{-1/2}$ is bounded on $L^p(M)$, that is there exists $C_p > 0$ such that for all $f \in C_0^{\infty}(M)$,

$$\|\nabla f\|_{p} \leq C_{p} \|\Delta^{1/2} f\|_{p}. \tag{R_{p}}$$

The values of p such that (R_p) is satisfied form an interval containing 2. Assume that H is bounded on $L^p(M)$ and there exists C > 0 such that for all $\omega \in C_0^{\infty}(\Lambda^1 T^*M)$,

$$\left\| \left(\int_0^\infty \left| \frac{\partial}{\partial t} e^{-t\vec{\Delta}} \omega(x) \right|_x^2 \frac{dt}{t} \right)^{1/2} \right\|_{\rho'} \le C \left\| \omega \right\|_{\rho'}.$$

Then the Riesz transform $\nabla \Delta^{-1/2}$ is bounded on $L^p(M)$.

Motivation 2: regularity

The boundedness of H on L^{p} gives the regularity estimate

$$\|\nabla e^{-t\Delta}f\|_p \leq \frac{C}{\sqrt{t}}\|f\|_p.$$

 $. \Rightarrow \{\sqrt{t}\nabla e^{-t\Delta}, t \ge 0\}$ is uniformly bounded on $L^p(M)$.

<u>Remark:</u> The representation formula for $\Delta^{-1/2}$ gives

$$\nabla \Delta^{-1/2} f = \int_0^\infty \left[\sqrt{t} \nabla e^{-t\Delta} f \right] \frac{dt}{t}.$$

The case p = 2

By integration by parts we obtain

$$\begin{split} \|H(f)\|_{2}^{2} &= \int_{M} \int_{0}^{\infty} |\nabla e^{-tL} f|^{2} + V|e^{-tL} f|^{2} dt \, dx \\ &= \int_{M} \int_{0}^{\infty} \Delta e^{-tL} f. e^{-tL} f + V|e^{-tL} f|^{2} dt \, dx \\ &= \int_{M} \int_{0}^{\infty} L e^{-tL} f. e^{-tL} f dt \, dx \\ &= -\frac{1}{2} \int_{M} \int_{0}^{\infty} \frac{\partial}{\partial t} |e^{-tL} f|^{2} dt \, dx \\ &= \frac{1}{2} \int_{M} |f|^{2} dx = \frac{1}{2} \|f\|_{2}^{2}. \end{split}$$

Then H is always bounded on $L^2(M)$.

Vertical Littlewood-Paley-Stein functions

Questions:

- Is H^{Γ} bounded on L^{p} for $p \neq 2$?
- 2 Can we replace e^{-tL} by a more general function of tL?
- **③** Can we obtain better than $\|\sqrt{t}\Gamma e^{-tL}\|_p \leq C$ from the boundedness of H^{Γ} ? What can we deduce about the Riesz transform $\Gamma L^{-1/2}$.

Some results about H ...

- H is bounded¹ on $L^p(M)$ for $p \in (1,2]$ for arbitrary manifolds,
- Assume V ≠ 0. H is unbounded² on L^p(M) for p > N if the manifold satisfies the Sobolev inequality

$$|f(x) - f(y)| \le C\rho(x, y)^{1-\frac{N}{p}} \|\nabla f\|_p$$

and if there exists $0 < \phi \in L^{\infty}(M)$ such that $e^{-tL}\phi = \phi$.

 Positive results for p < 2 in the case of potentials with non trivial negative part³,

¹Ouhabaz ²Chen-Magniez-Ouhabaz ³C.

... and the Riesz transform

For $p \in (1,2]$, the Riesz transform $\nabla L^{-1/2}$ is bounded on $L^{p}(M)$ if we assume two assumptions¹.

() Doubling property : there exists C > 0 such that for all $x \in M, r > 0$,

$$\mu(B(x,2r)) \le C\mu(B(x,r)) \tag{D}$$

② Gaussian upper estimate for the heat kernel : there exist C, c > 0 such that for all $x, y \in M, t > 0$,

$$p_t(x,y) \le C \frac{exp(-c\frac{\rho(x,y)^2}{t})}{\mu(B(x,t^{1/2}))}$$
 (G)

No proof of this result without (D) or (G) whereas we know examples where (G) is $false^2$.

¹Coulhon-Duong

²Chen-Coulhon-Feneuil-Russ

Outline

Introduction

2 LPS functions and R-boundedness

- LPS functions and R-boundedness
- Generalized LPS function

3 Other LPS functionals

4 Lower bounds

6 Applications and examples

$\mathsf{Riesz} \Rightarrow \mathsf{LPS}$

Vector-valued extension

If $\Gamma L^{-1/2}$ is bounded $L^{p}(M)$, then it is bounded on $L^{p}(M, L^{2}(\mathbb{R}_{+}))$.

Let f be in $L^{p}(M)$. One has

$$\left\| \left(\int_0^\infty |\Gamma e^{-tL} f(x)|^2 dt \right)^{1/2} \right\|_p \le C \left\| \left(\int_0^\infty |L^{1/2} e^{-tL} f(x)|^2 dt \right)^{1/2} \right\|_p$$
$$\le C \|f\|_p.$$

Question: Can we have better than the boundedness of *H* from the boundeness of $\Gamma L^{-1/2}$?

R-boundedness

Rademacher variables

A random variable is a Rademacher variable if

$$\mathbb{P}(au=1)=\mathbb{P}(au=-1)=1/2.$$

Definition

A family of operators $(T_t)_{t \in I}$ on L^p is R-bounded if there exists C > 0 such that for all $n \in \mathbb{N}$, $t_1, ..., t_n \in I$ and $f_1, ..., f_n \in L^p$,

$$\mathbb{E}\left\|\sum_{i=1}^{n}\tau_{i}T_{t_{i}}f_{i}\right\|_{p}\leq C\mathbb{E}\left\|\sum_{i=1}^{n}\tau_{i}f_{i}\right\|_{p},$$

where (τ_i) is a sequence of Rademacher variable.

R-boundedness

Khintchine-Kahane inequality

Let p be in $(0, +\infty)$. There exists A, B > 0 such that for all $n \in \mathbb{N}$ and $x_1, ..., x_n \in \mathbb{C}^d$,

$$A\left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \le \left(\mathbb{E}\left|\sum_{i=1}^{n} \tau_i x_i\right|^p\right)^{1/p} \le B\left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$

Theorem (Weis)

Let $I \subset \mathbb{R}$ be an interval. If $(T_t)_{t \in I}$ is R-bounded on $L^p(M)$, there exists C > 0 such that

$$\forall f \in L^p(M, L^2(I)), \left\| \left(\int_I |T_t f(t, .)|^2 dt \right)^{1/2} \right\|_p \leq C \left\| \left(\int_I |f(t, .)|^2 dt \right)^{1/2} \right\|_p.$$

Link Riesz - R-boundedness

Theorem

Given a $p \in (1, \infty)$ and suppose that the Riesz transform $\Gamma L^{-1/2}$ is bounded on $L^{p}(M)$. Then the set $\{\sqrt{t} \Gamma e^{-tL}, t > 0\}$ is *R*-bounded on $L^{p}(M)$.

Let $T_k := \sqrt{t_k} \Gamma e^{-t_k L}$ for $t_k > 0$ and $f_k \in L^p(M)$ for k = 1, ..., n. We have

$$\mathbb{E} \left\| \sum_{k=1}^{n} \tau_{k} T_{k} f_{k} \right\|_{p} = \mathbb{E} \left\| \Gamma L^{-1/2} \sum_{k=1}^{n} \tau_{k} (t_{k} L)^{1/2} e^{-t_{k} L} f_{k} \right\|_{p}$$

$$\leq C \mathbb{E} \left\| \sum_{k=1}^{n} \tau_{k} (t_{k} L)^{1/2} e^{-t_{k} L} f_{k} \right\|_{p}.$$

The R-boundedness of $\{(tL)^{1/2}e^{-tL}, t > 0\}$ completes the proof.

Link LPS - R-boundedness

Theorem (C.-Ouhabaz 2020)

Let $L = \Delta + V$ be a Schrödinger operator with $0 \le V \in L^1_{loc}$ and $\Gamma = \nabla$ or $\Gamma = V^{1/2}$. The following properties are equivalent

• There exists C > 0 such that for all $f \in L^p$,

$$\left\|\left(\int_0^\infty |\Gamma e^{-tL}f|^2 dt\right)^{1/2}\right\|_p \le C \|f\|_p,$$

2 The operator family $\{\sqrt{t}\Gamma e^{-tL}, t \ge 0\}$ is R-bounded on L^p ,

- The set $\{\sqrt{t}\nabla e^{-tL}, t \ge 0\}$ and $\{\sqrt{t}V^{1/2}e^{-tL}, t \ge 0\}$ are always R-bounded on L^p for $p \in (1, 2]$.
- (2) \Rightarrow (1): we prove a more general result in the next section.

$(1) \Rightarrow (2)$: idea of proof

Set $I := \mathbb{E} \left| \sum_{k} \tau_k \sqrt{t_k} \Gamma e^{-t_k L} f_k \right|^2$. Using the independance of the Rademacher variables we obtain

$$= -\int_{0}^{\infty} \frac{d}{dt} \mathbb{E} |\Gamma e^{-tL} \sum_{k} \tau_{k} \sqrt{t_{k}} e^{-t_{k}L} f_{k}|^{2} dt$$

$$= 2\int_{0}^{\infty} \mathbb{E} \left[(\Gamma e^{-tL} \sum_{k} \tau_{k} \sqrt{t_{k}} e^{-t_{k}L} f_{k}) \cdot (\Gamma e^{-tL} \sum_{k} \tau_{k} \sqrt{t_{k}} L e^{-t_{k}L} f_{k}) \right] dt$$

$$= 2\int_{0}^{\infty} \mathbb{E} \sum_{k} \Gamma e^{-tL} \tau_{k} \sqrt{t_{k}} e^{-t_{k}L} f_{k} \cdot \Gamma e^{-tL} \tau_{k} \sqrt{t_{k}} L e^{-t_{k}L} f_{k} dt$$

$$= 2\int_{0}^{\infty} \mathbb{E} \sum_{k} \Gamma e^{-tL} \tau_{k} e^{-t_{k}L} f_{k} \cdot \Gamma e^{-tL} \tau_{k} (t_{k}L) e^{-t_{k}L} f_{k} dt$$

$$= 2\int_{0}^{\infty} \mathbb{E} \left[(\Gamma e^{-tL} \sum_{k} \tau_{k} e^{-t_{k}L} f_{k}) \cdot (\Gamma e^{-tL} \sum_{k} \tau_{k} (t_{k}L) e^{-t_{k}L} f_{k}) \right] dt.$$

$(1) \Rightarrow (2)$: idea of proof

Cauchy-Schwarz inequality gives

$$\begin{split} & \mathcal{I} \leq 2 \int_0^\infty \left(\mathbb{E} |\Gamma e^{-tL} \sum_k \tau_k e^{-t_k L} f_k|^2 \cdot \mathbb{E} |\Gamma e^{-tL} \sum_k \tau_k (t_k L) e^{-t_k L} f_k|^2 \right)^{1/2} dt \\ & \leq \int_0^\infty \mathbb{E} |\Gamma e^{-tL} \sum_k \tau_k e^{-t_k L} f_k|^2 dt + \int_0^\infty \mathbb{E} |\Gamma e^{-tL} \sum_k \tau_k (t_k L) e^{-t_k L} f_k|^2 dt \\ & \leq \mathbb{E} \left[\left(\mathcal{H}^{\Gamma} (\sum_k \tau_k e^{-t_k L} f_k) \right)^2 \right] + \mathbb{E} \left[\left(\mathcal{H}^{\Gamma} (\sum_k \tau_k (t_k L) e^{-t_k L} f_k) \right)^2 \right]. \end{split}$$

Therefore, by Khintchine inequality,

$$c_{p}\sqrt{I} \leq \left| \mathbb{E}\left[\left(H^{\Gamma}(\sum_{k} \tau_{k} e^{-t_{k}L} f_{k}) \right)^{p} \right] \right|^{1/p} + \left| \mathbb{E}\left[\left(H^{\Gamma}(\sum_{k} \tau_{k}(t_{k}L) e^{-t_{k}L} f_{k}) \right)^{p} \right] \right|^{1/p}$$

$(1) \Rightarrow (2)$: idea of proof

The boundedness of H^{Γ} implies

$$\begin{aligned} \left\|\sqrt{I}\right\|_{p} &\leq C\left(\left\|\mathbb{E}\left\|\sum_{k}\tau_{k}e^{-t_{k}L}f_{k}\right\|_{p}^{p}\right\|^{1/p} + \left\|\mathbb{E}\left\|\sum_{k}\tau_{k}(t_{k}L)e^{-t_{k}L}f_{k}\right\|_{p}^{p}\right\|^{1/p}\right) \\ &\leq C'\left(\mathbb{E}\left\|\sum_{k}\tau_{k}e^{-t_{k}L}f_{k}\right\|_{p} + \mathbb{E}\left\|\sum_{k}\tau_{k}(t_{k}L)e^{-t_{k}L}f_{k}\right\|_{p}\right).\end{aligned}$$

Then (2) comes from the R-boundedness of the sets $\{e^{-tL}, t \ge 0\}$ and $\{tLe^{-tL}, t \ge 0\}$.

Link LPS - Riesz

(a)- The Riesz transform
$$\Gamma L^{-1/2}$$
 is bounded on L^p ,
(b)- $\{\sqrt{t} \Gamma e^{-tL}, t \ge 0\}$ is *R*-bounded on L^p ,
(c)- the LPS functional H^{Γ} is bounded on L^p ,
(d)- $\{\sqrt{t} \Gamma e^{-tL}, t \ge 0\}$ is uniformly bounded on L^p .

<u>Remark</u> : Under some assumptions, $(c) \Rightarrow (a)$, $(d) \Rightarrow (a)$.

H^{∞} functionnal calculus

For $\omega > 0$, set

$$\Sigma(\omega) = \{z \neq 0, |arg(z)| < \omega\}.$$

Let $H^{\infty}(\Sigma(\omega))$ be the set of bounded holomorphic functions on $\Sigma(\omega)$.

$$H^\infty_0(\Sigma(\omega))=\{f\in H^\infty(\Sigma(\omega)): \exists \gamma,C>0 \ orall z\in \Sigma(\omega), |F(z)|\leq Crac{|z|^\gamma}{1+|z|^{2\gamma}}\}.$$

Let $F \in H_0^\infty(\Sigma(\omega))$. For an appropriate contour γ one defines

$$F(L)=\frac{1}{2i\pi}\int_{\gamma}f(z)(zI-L)^{-1}dz.$$

One says that L has an bounded holomorphic functional calculus with angle ω if for some constant C_{ω} and for all $F \in H_0^{\infty}(\Sigma(\omega))$,

$$\|F(L)\|_{\mathcal{L}(L^p)} \le C_{\omega} \sup_{z \in \Sigma(\omega)} |F(z)|. \tag{CF}$$

Square functions estimates

In this case, F(L) is well-defined for all $F \in H^{\infty}(\Sigma(\omega))$ and satisfies (CF). -L is the generator of a sub-Markovian semigroup, then L has a bounded holomorphic functional calculus on $L^{p}(M)$ for all $p \in (1, +\infty)$. \rightarrow Most recent result¹ : $\omega_{p} = \arcsin |\frac{2}{p} - 1| + \epsilon$.

Square functions estimates²

Let L be a Schrödinger operator. Let $p \in (1, +\infty)$. If $\phi \in H_0(\Sigma(\omega_p))$ then

$$\|f\|_{p} \simeq \left\| \left(\int_{0}^{\infty} |\phi(tL)f|^{2} \frac{dt}{t} \right)^{1/2} \right\|_{p}$$

¹Carbonaro-Dragičević

²Cowling-Doust-McIntosh-Yagi

Theorem

Theorem (C.-Ouhabaz, 2020)

Let $L = \Delta + V$ be a Schrödinger operator with $V \ge 0$. Let $\Gamma = \nabla$ or $\Gamma = V^{1/2}$. Let $F \in H^{\infty}(\Sigma(\omega_p))$. Assume there exists $\epsilon > 0$ and $\delta > 1/2$ such that $|F(z)| \le \frac{C}{|z|^{\delta}}$ when $|z| \to +\infty$ and $|F'(z)| \le C|z|^{\epsilon-1}$ when $z \to 0$.

If $\{\sqrt{t}\Gamma e^{-tL}, t \ge 0\}$ is R-bounded on $L^p(M)$, then there exists C > 0 such that for all $f \in L^p(M)$,

$$\left\|\left(\int_0^\infty |\Gamma F(tL)f|^2 dt\right)^{1/2}\right\|_p \leq C \,\|f\|_p.$$

<u>Remark</u> : Always true for $p \in (1, 2]$.

• Set $I(x) = \left(\int_0^\infty |\Gamma F(tL)f(x)|^2 dt\right)^{1/2}$. An integration by parts gives

$$I^{2} = \lim_{t \to +\infty} t |\Gamma F(tL)f|^{2} - 2 \int_{0}^{\infty} t \Gamma L F'(tL)f \cdot \Gamma F(tL)fdt$$
$$= -2 \int_{0}^{\infty} t \Gamma L F'(tL)f \cdot \Gamma F(tL)fdt$$
$$= 2 \left(\int_{0}^{\infty} |\Gamma t L F'(tL)f|^{2}dt \right)^{1/2} I.$$

Then it is sufficient to bound $\| \left(\int_0^\infty |\Gamma G(tL)f|^2 dt \right)^{1/2} \|_p$ where G(z) = zF'(z). Note that $G(z) \le |z|^{\epsilon}$ when $z \to 0$.

3 Multiply by $(I + tL)^{\delta'}(I + tL)^{-\delta'}$, with $\delta > \delta' > 1/2$, to obtain

$$\begin{split} \left(\int_0^\infty |\Gamma G(tL)f|^2 dt\right)^{1/2} \\ &= \left(\int_0^\infty |\sqrt{t}\Gamma(1+tL)^{-\delta'}(1+tL)^{\delta'}G(tL)f|^2 \frac{dt}{t}\right)^{1/2} \end{split}$$

• The R-boundedness of $\{\sqrt{t}\Gamma(I + tL)^{-\delta'}\}$ (equivalent to the R-boundedness of $\sqrt{t}\Gamma e^{-tL}$) gives

$$\left\| \left(\int_0^\infty |\Gamma F(tL)f|^2 dt \right)^{1/2} \right\|_p \le C \left\| \left(\int_0^\infty |G(tL)(I+tL)^{\delta'}f|^2 \frac{dt}{t} \right)^{1/2} \right\|_p$$
$$= C \left\| \left(\int_0^\infty |\phi(tL)f|^2 \frac{dt}{t} \right)^{1/2} \right\|_p$$

with $\phi(z) = zF'(z)(1+z)^{\delta'}$.

$$\phi(z) = z F'(z) (1+z)^{\delta'}$$

• The choice
$$\delta' < \delta$$
 gives that $\phi \in H_0^{\infty}(\Sigma(\omega'_p))$ for $\omega'_p \in (\arcsin |\frac{2}{p} - 1|, \omega_p)$:

• Cauchy's integral formula for f' implies $|\phi(z)| \leq \frac{c}{|z|^{\delta - \delta'}}$ when $|z| \to +\infty$,

• The assumption $|F'(z)| \leq C|z|^{\epsilon-1}$ implies $|\phi(z)| \leq |z|^{\epsilon}$ when $z \to 0$. Then

$$\left\| \left(\int_0^\infty |\phi(tL)f|^2 \frac{dt}{t} \right)^{1/2} \right\|_p \le \|f\|_p$$

and the theorem follows.

Generalized LPS functions

Using the R-boundedness of holomorphic functional calculus and Khintchine-Kahane inequality we obtain the more general result.

Theorem (C.-Ouhabaz, 2020)

Let $m_1, ..., m_n \in H^{\infty}(\Sigma(\omega_p))$.

Under the same assumptions on F, there exists C > 0 (independent of m_k) such that for all $f_1, ..., f_n \in L^p(M)$,

$$\left\| \left(\int_0^\infty \sum_{k=1}^n |\Gamma m_k(L) F(tL) f_k|^2 dt \right)^{1/2} \right\|_p \le C \sup_k \|m_k\|_\infty \left\| \left(\sum_{k=1}^n |f_k|^2 \right)^{1/2} \right\|_p.$$

A result for spectral multipliers

Here we assume (D) and (G). Then,

$$\forall x \in M, \forall \lambda, r > 0, \ \mu(B(x, \lambda r)) \leq C \lambda^N \mu(B(x, r)).$$

Theorem (C.-Ouhabaz, 2020)

Let $m_k : [0, +\infty) \to \mathbb{C}$ with support contained in $[\frac{1}{2}, 2]$ for every k. If $\{\sqrt{t}\Gamma e^{-tL}, t \ge 0\}$ is R-bounded then for some C > 0 independent of n,

$$\left\| \left(\int_0^\infty \sum_{k=1}^n |\Gamma m_k(tL) f_k|^2 dt \right)^{1/2} \right\|_p \le C \sup_k \|m_k\|_{W^{\delta,2}} \left\| \left(\sum_{k=1}^n |f_k|^2 \right)^{1/2} \right\|_p.$$

- δ depends on N,
- This relies on the same proof and on results by Deléaval-Kriegler.

Outline

- 2 LPS functions and R-boundedness
- Other LPS functionals
 - 4 Lower bounds
- 5 Applications and examples

Other Riesz transforms

One can define a local Riesz transform and a Riesz transform "at infinity"¹.

$$R_{loc}^{\Gamma} = \Gamma(L+I)^{-1/2}, \qquad R_{\infty}^{\Gamma} = \Gamma e^{-L} L^{-1/2}.$$

Note that

$$\Gamma L^{-1/2}$$
 is bounded on $L^p \iff R_{loc}^{\Gamma}$ and R_{∞}^{Γ} are bounded on L^p .
Proof:

$$\begin{split} \|\Gamma L^{-1/2} f\|_{p} &\leq \|\Gamma L^{-1/2} e^{-L} f\|_{p} + \|\Gamma (L+I)^{-1/2} L^{-1/2} (L+I)^{1/2} (I-e^{-L}) f\|_{p} \\ &\leq C \left[\|f\|_{p} + \|L^{-1/2} (L+I)^{1/2} (I-e^{-L}) f\|_{p} \right] \\ &\leq C \|f\|_{p}. \end{split}$$

¹Chen

Other LPS functionals

The boundedness of these functionals implies the boundedness the following LPS functions.

$$H_{loc}^{\Gamma}(f)(x) = \left(\int_{0}^{1} |\Gamma e^{-tL} f(x)|^{2} dt\right)^{1/2},$$
$$H_{(\infty)}^{\Gamma}(f)(x) = \left(\int_{1}^{\infty} |\Gamma e^{-tL} f(x)|^{2} dt\right)^{1/2}.$$

Theorem

- If R^{loc} is bounded on L^p , then H_{loc}^{Γ} is bounded on L^p ,
- 3 If R^{∞} is bounded on L^{p} , then $H_{(\infty)}^{\Gamma}$ is bounded on L^{p} ,

 H_{Γ} is bounded on $L^{p} \iff H_{loc}^{\Gamma}$ and $H_{(\infty)}^{\Gamma}$ are bounded on L^{p} . All these functionals are always bounded on L^{p} for $p \in (1, 2]$.

Other LPS functionals

Proposition

Let $p \in (2, +\infty)$,

- If the set $\{\sqrt{t}\Gamma e^{-tL}, t \in (0, 1]\}$ is R-bounded on L^p , then H_{loc}^{Γ} is bounded on L^p .
- ② If the set { $\sqrt{t-1}\Gamma e^{-tL}$, $t \ge 1$ } is R-bounded on L^p , then $H_{(\infty)}^{\Gamma}$ is bounded on L^p .

Theorem (Bakry)

Let *M* be a complete Riemannian manifold with Ricci curvature bounded from below, then $\nabla(\Delta + I)^{-1/2}$ is bounded on L^p for all $p \in (1, +\infty)$.

Corollary

On these manifolds, the local LPS functional H_{loc} for $L = \Delta$ is bounded on L^p for all $p \in (1, +\infty)$.

Outline

Introduction

- 2 LPS functions and R-boundedness
- 3 Other LPS functionals

4 Lower bounds

5 Applications and examples

Lowers bounds - a useful example

The boundedness of these generalized functionals implies lower bounds on the dual space.

Example: $Q(f) = |e^{-L}f| + H_{loc}(f)$.

Theorem (C.-Ouhabaz 2020)

Let $p \in (1, \infty)$ and suppose that H_{loc} is bounded on $L^{p}(M)$. Then there exists a constant C > 0 such that for all g in the dual space $L^{q}(M)$.

 $C\|g\|_q \leq \|Q(g)\|_q$

Let $f \in L^p(M) \cap L^2(M)$ and $g \in L^q(M) \cap L^2(M)$. We have

$$\int_{0}^{1} \int_{M} \nabla e^{-tL} f \cdot \nabla e^{-tL} g + \sqrt{V} e^{-tL} f \cdot \sqrt{V} e^{-tL} g \, dx \, dt$$

= $\int_{0}^{1} \int_{M} (L e^{-2tL} f) g \, dx \, dt$
= $-\frac{1}{2} \int_{M} \int_{0}^{1} \frac{d}{dt} (e^{-2tL} f) g \, dx \, dt$
= $\frac{1}{2} \int_{M} fg \, dx - \frac{1}{2} \int_{M} (e^{-L} f) (e^{-L} g) \, dx.$

Therefore,

$$\begin{aligned} \left| \int_{M} fg \, dx \right| &\leq \int_{M} |e^{-L}f| |e^{-L}g| \, dx + 2 \int_{M} H_{loc}(f) H_{loc}(g) \, dx \\ &\leq 2 \int_{M} (|e^{-L}f| + H_{loc}(f)) (|e^{-L}g| + H_{loc}(g)) dx \\ &\leq 2 \|Q(f)\|_{p} \|Q(g)\|_{q} \\ &\leq C \|f\|_{p} \|Q(g)\|_{q}. \end{aligned}$$

The latter inequality extends by density to all $f \in L^{p}(M)$ and the proposition follows.

Outline

Introduction

- 2 LPS functions and R-boundedness
- 3 Other LPS functionals
- 4 Lower bounds

5 Applications and examples

- to the Riesz transform $abla \Delta^{-1/2}$
- to divergence form operators on domains

Application 1: Δ on $\mathbb{R}^n \# \mathbb{R}^n$

Let $M_n = \mathbb{R}^n \# \mathbb{R}^n$ be the connected sum of two copies of $\mathbb{R}^n \setminus B(0,1)$ glued among the unit spheres. On M_n ,

- The Riesz transform is bounded on L^p for $p \in (1, n)$ and this is sharp¹,
- M_n has Ricci curvature bounded from below.

Consequently,

- The LPS function associated with ∆ is bounded on L^p for all p ∈ (1, n),
- The local Riesz transform and LPS function are bounded on L^p for all $p \in (1, +\infty)$,
- Solution The Riesz transform at infinity is unbounded for p > n.

¹Coulhon-Duong, Carron-Coulhon-Hassell

Application 1: Δ on $\mathbb{R}^n \# \mathbb{R}^n$

- The heat kernel on M_n satisfies (G),
- The balls on M_n have polynomial growth,
- *M_n* satisfies a global Sobolev inequality.

$$\Rightarrow p_t(x,y) > C \frac{exp(-c\frac{\rho(x,y)^2}{t})}{\mu(B(x,t^{1/2}))},$$

 \Rightarrow *H* is unbounded on *L^p* for *p* > *n*. As *H*_{loc} is bounded, *H*_(∞) is necessarily unbounded.

Application 2: Elliptic operators on domains

All our results remain valid for elliptic operators with real bounded measurable coefficients a_{kl} . Let Ω be an open subset of \mathbb{R}^N and $L = -div(A(x)\nabla \cdot)$ be a self-adjoint elliptic operator with Dirichlet conditions on Ω .

Theorem (C.-Ouhabaz 2020)

Let $L = - \operatorname{div}(A(x)
abla \cdot)$ be as previously. For $q \in [2, +\infty)$,

$$C \|f\|_{q} \leq \|e^{-L}f\|_{q} + \left\| \left(\int_{0}^{1} |\nabla e^{-tL}f|^{2} dt \right)^{1/2} \right\|_{q}$$

and

$$C\|f\|_q \leq \left\| \left(\int_0^\infty |\nabla e^{-tL} f|^2 dt \right)^{1/2} \right\|$$

No assumption of regularity on A or Ω !

Application 2: Elliptic operators on domains

Theorem (C.-Ouhabaz 2020)

Let $L = -div(A(x)\nabla \cdot)$ be a self-adjoint elliptic operator with real bounded measurable coefficients a_{kl} . Then for all $q \in (1, \infty)$

$$C \|f\|_{L^q(\mathbb{R}^N)} \leq \left\| \left(\int_0^\infty |\nabla e^{-tL} f|^2 dt \right)^{1/2} \right\|_{L^q(\mathbb{R}^N)}$$

and

$$C \|f\|_{L^{q}(\mathbb{R}^{N})} \leq \|e^{-L}f\|_{L^{q}(\mathbb{R}^{N})} + \left\|\left(\int_{0}^{1} |\nabla e^{-tL}f|^{2} dt\right)^{1/2}\right\|_{L^{q}(\mathbb{R}^{N})}.$$

We consider the case $q \in (1,2]$ only. There exists a Calderòn-Zygmund operator U such that $L^{1/2}f = U\nabla f^1$. Therefore, square functions estimates for L give

$$\begin{split} \|f\|_q &\leq C \left\| \left(\int_0^\infty |L^{1/2} e^{-tL} f|^2 dt \right)^{1/2} \right\|_q \\ &= C \left\| \left(\int_0^\infty |U \nabla e^{-tL} f|^2 dt \right)^{1/2} \right\|_q \\ &\leq C \left\| \left(\int_0^\infty |\nabla e^{-tL} f|^2 dt \right)^{1/2} \right\|_q \leq C \|f\|_q. \end{split}$$

¹Auscher-Tchamitchian

Merci pour votre attention !