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Setting at equilibrium

x ∈ Rd
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A stably stratified
shear flow is an
equilibrium for the
Euler equations.
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Setting

We study the evolution in time of a perturbation of the
equilibrium.

x ∈ Rd
z

0

−H

V + ǫV
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ρ+ ǫρ

Assumption

The stratification is stable, i.e. −∂z(ρ+ ϵρ) ≥ c∗ > 0.
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The equations

The Euler equations linearized around the equilibrium (V , 0, ρ,P)
read



∂tV + V · ∇xV + wV ′ +
1

ρ
∇xP = O(ϵ),

µ(∂tw + V · ∇xw) +
1

ρ
∂zP + g

ρ

ρ
= O(ϵ),

∂tρ+ V · ∇xρ+ wρ′ = O(ϵ),

∇x · V + ∂zw = 0.

Boundary conditions Initial conditions

{
w|z=−1 = w|z=0 = 0,

ρ|z=−1 = ρ|z=0 = 0.

{
V|t=0 = Vin, w|t=0 = win,

ρ|t=0 = ρin.
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Previous results

Goal : Construct regular solutions (in Sobolev spaces) on
[0,T ]× Rd × [−1, 0], with T independent of µ.

Theorem (Desjardins, Lannes, Saut [DLS20])

With no shear flow, if N2 := −g
ρ′

ρ is independent of z and under

additional assumptions, there exists a unique solution to the
stratified Euler equations on [0, 1

ϵ/
√
µ T̃ ].

Theorem (Bianchini, Duchêne [BD24])

With an additional diffusion term, there exists a unique solution
to the stratified Euler equations on [0,T ].
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With an additional diffusion term, there exists a unique solution
to the stratified Euler equations on [0,T ].



Introduction The equations Well-posedness results Conclusion

Main result

Theorem (F. [Fra24])

There exists a unique solution to the stratified Euler equations
on the time interval[

0,
T̃

1 + |V ′|L∞/
√
µ+ ϵ/

√
µ

]
.

+ V ̸= 0

+ No additional assumptions.

+ No diffusion.

- Additional |V ′|L∞/
√
µ

- Additional 1: short time
well-posedness.
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An energy estimate at the linear level

E0 :=
∫
S
ρV 2 +

∫
S
ρ(
√
µw)2 +

∫
S

g

−ρ′
ρ2.


∂tV + V · ∇xV + wV ′ +

1

ρ
∇xP = 0

µ (∂tw + V · ∇xw) +
1

ρ
∂zP +

gρ

ρ
= 0

∂tρ+ V · ∇xρ+ ρ′w = 0

∇x · V + ∂zw = 0

d

dt
E0 ≲

|V ′|L∞√
µ

E0
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Extension to the non-linear case

Define the higher order energies

Es ≈ ∥V ∥2Hs(S) + µ∥w∥2Hs(S) + ∥ρ∥2Hs(S), s ≥ d + 1

2
+ 2.

Prove the pressure estimates

∥(√µ∇xP, ∂zP)∥Hs ≲ Es .

Prove the higher order energy estimates

d

dt
Es(t) ≲

(
1 +

ϵ√
µ
+

|V ′|L∞√
µ

)
Es(t).

Main difficulties:

Characteristic Initial Boundary Value Problem : use of
semi-Lagrangian coordinates.
Loss of derivatives due to the semi-Lagrangian coordinates :
use of Alinhac’s good unknown.
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Conclusion

Recap:

Well-posedness of the stratified Euler equations.

The time interval is independent of µ, under smallness
assumptions.

Open problems:

Remove the smallness assumptions.

Study the hydrostatic stratified Euler equations (µ = 0).

Thank you for your attention !
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