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Abstract

We propose a projection-based model order reduction procedure for a general class of parametric quasi-static
problems in nonlinear mechanics with internal variables. The methodology is integrated in the industrial finite
element code code aster. Model order reduction aims to lower the computational cost of engineering studies
that involve the simulation to a costly high-fidelity differential model for many different parameters, which
correspond, for example to material properties or initial and boundary conditions. We develop an adaptive
algorithm based on a POD-Greedy strategy, and we develop an hyper-reduction strategy based on an element-
wise empirical quadrature in order to speed up the assembly costs of the reduced-order model by building an
appropriate reduced mesh. We introduce a cost-efficient error indicator which relies on the reconstruction of
the stress field by a Gappy-POD strategy. We present numerical results for a three-dimensional elastoplastic
system in order to illustrate and validate the methodology.

1 Introduction

1.1 Context

Numerical simulations have been used for a long time within engineering studies, often in the perspective of
evaluating the same study for slightly different configurations. These variations may include changes in the input
signals, in the actual model parameters, or even in the geometry (many-query problem for parametric studies). For
problems modeled by partial differential equations (PDEs), extensive explorations of the parameter domain based
on standard finite element (FE) solvers are prohibitively expensive. Model order reduction (MOR1,2,3) consists in
a broad spectrum of algorithms that aim to drastically reduce the marginal cost associated with one computation,
by taking into account prior knowledge from previous high-fidelity simulations. Parametric model order reduction
(pMOR) refers to a class of techniques that aim at constructing a low-dimensional surrogate (or reduced-order)
model (ROM) to approximate the solution field over a range of parameters, by taking into account prior knowledge
from previous high-fidelity (HF) simulations.

Our aim is to devise an intrusive pMOR procedure for large-scale problems in non- linear structural mechanics
that is consistent with an industrial code used in practice by engineers for HF simulations. Intrusive pMOR
techniques rely on the projection of the differential operator onto suitable empirical reduced spaces, and thus
require the access to local assembly routines of the underlying HF code. Intrusive techniques need to be elaborated
in compliance with the operators and data structures used in the HF industrial code: the key challenge is to benefit
from the robustness of the pre-existing industrial code — which allows to run real-world simulations for three-
dimensional complex geometries and non-trivial mechanical behaviors — without having to modify the overall
architecture (i.e., data structures and local assembly routines) of the HF code. In this work, we focus on the
open-source software code aster4: code aster is a well established, qualified and broadly-used industrial grade finite
element solver for structural mechanics studies that is mainly developed within Electricité De France (EDF)’s
R&D.

In this contribution, we focus on a general class of parametric mechanical problems with internal variables in a
nonlinear quasi-static framework, where we consider small-displacement small-strain mechanical problems.
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1.2 Objective of the paper and relation to previous works

The main contribution of this work is the formulation and implementation of an hyper-reduced model for nonlinear
quasi-static mechanical problems based on the industrial finite element code code aster4. We develop an adaptive
algorithm, whose design is rooted in the offline-online paradigm. The algorithm can be divided in two steps : an
offline (or training) step, where a set of basis function is built from a database of several HF solutions in order
to approximate the solution manifold, and an online step, during which the approximate solution is sought for a
new set of parameter values. The algorithm we hereby present is founded on a Proper Orthogonal Decomposition
(POD)-Greedy strategy, which was introduced in Reference 5 and analyzed in Reference 6. Similarly to the weak-
Greedy algorithm for stationary problems7,8, the POD-Greedy procedure iteratively explores the parameter domain
to identify poorly-approximated configurations through the vehicle of an a posteriori error indicator, and relies on
the Proper Orthogonal Decomposition (POD9,10,11) to compress the temporal trajectory. In this work, we rely on
a time-averaged error indicator in a similar way to what has been done in Reference 12, inspired by Reference 13.

Our solution strategy relies on a Galerkin projection method. Since the operator is nonlinear, the computa-
tional complexity of the operator assembly (jacobian and residuals) scales with the size of the HF model. In order
to circumvent this obstacle, we develop an hyper-reduction strategy based on empirical quadrature (EQ) : our
approach relies on the construction of a reduced mesh to speed up online assembly costs of the ROM. We refer
here to a reduced mesh to describe a mesh designed by considering a subset of the cells of the HF mesh. The
EQ procedure has been first proposed in References 14,15 and used in several previous work16,12. This approach
relies on the reweighting of either the quadrature points of the mesh17, or the elemental contributions18,12, in
order to approximate the residuals. Several other techniques have been introduced in the literature in order to
dodge the bottleneck induced by the projection step for nonlinear non-affine problems. Other reweighting methods
have been introduced such as the Empirical Cubature Method19, which inspired implementation within indus-
trial context20,21. Hyper-reduction approaches also include the family of algorithms derived from the Empirical
Interpolation Method22, which encompass its discrete variant23, or techniques which belong to the Gappy-POD
application, such as the A priori Hyper-Reduction24, or the Gauss Newton with approximated tensors25.

During the past decade, advances in MOR have led to the application of online-efficient projection-based ROMs
to a broad range of problems in mechanics. In more details, several authors have considered the application
of projection-based MOR techniques to large-scale three-dimensional problems in nonlinear mechanics including
contact26 27 , thermo-mechanics28 , and elasto-viscoplasticity20 21.

Our work is a continuation of the research effort carried out at EDF R&D to deploy effective ROMs for
nonlinear problems in structural mechanics. In this respect, we mention earlier works on nonlinear parabolic
thermo-mechanical problems29 , on vibro-acoustics problems30, and also on welding31 ; in particular, the work in
Reference 31 represents one of the first efforts to devise hyper-reduced ROMs in code aster. As discussed in section
2, the code aster framework involves dualization of the boundary conditions and relies on a mesh hierarchy that
comprises a three-dimensional mesh — for volumetric terms — and a two-dimensional mesh – for surface terms.
Compared to the aforementioned works, we here resort to a different hyper-reduction strategy based on empirical
quadrature procedure both for volume and surface terms which is a less intrusive method in its implementation.
Furthermore, we rely on a POD-Greedy adaptive sampling strategy based on the definition of an a posteriori error
indicator that supports kinematic conditions.

1.3 Layout of the paper

The outline of the paper is as follows. In section 2, we present the mathematical formulation of the class of
mechanical problems considered in this work (cf. Eq.(6)). In section 3, we display our methodology for building
the ROM : we first address the solution reproduction problem, and then we extend our approach to the parametric
case. Then in section 4, we present the physical model problem and assess the methodology validity. In section
5, we present numerical investigations for the model problem and, in section 6, we draw conclusions and outline
subjects of ongoing research.

2 Formulation

2.1 Formulation of the nonlinear quasistatic problem

We focus on nonlinear small-displacement small-strain mechanical problems with internal variables. We consider
the spatial variable x in the Lipschitz domain Ω ⊂ Rd (d = 2 or 3), and the time variable t ∈ [0, tf ]. We introduce
a vector of parameters µ which belongs to the compact P ⊂ RP , where P is the number of parameters. As already
mentioned, the vector µ can contain physical parameters (coefficients of the constitutive equations), or geometrical
parameters of the problem. We denote by u the primal variable of the mechanical problem (displacement), and
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we denote by X the Hilbert space to which the field u belongs. The constitutive equations are assumed to be
nonlinear. The system depends implicitly on the displacements history by one implicit differential equation (which
includes nonlinear behaviours such as elastoplasticity or viscoplasticity). In this framework, the description of the
mechanical state boils down to the knowledge of the displacement field (uµ), the stress field (the Cauchy tensor σµ)
and the internal variables (γµ). In this work, we address only quasi-static formulations, which means that we omit
the inertial term from the equilibrium equations. Time evolution is described by the system of ordinary differential
equations in each point in Ω:

−∇ · σµ = fv
σµ = Fσµ (∇suµ, γµ)
γ̇µ = Fγµ (σµ, γµ)

+ Boundary Conditions (BCs) (1)

where the nonlinear operator Fσµ stands for the constitutive equation that maps the state of stresses in the material

from the knowledge of deformations (∇s is the symmetric part of the gradient, ∇s· = 1
2 (∇ · +∇T ·)) and internal

variables, while the nonlinear operator Fγµ denotes an equation of evolution of internal variables within the material.
The first equation in the system below describes the equilibrium of our system. The boundary conditions that we
consider in this contribution will be detailed later. In this paper, we consider situations where the material is not
initially preloaded. At the initial time, all fields are assumed to be zero.

In this work, we restrict ourselves to one-time steps time integrators, implying that the knowledge of the
mechanical state is derived from the state previously computed and ’ignores’ any information from earlier states
beyond that provided by the internal variables.. We introduce the time grid 0 = t(0) ≤ ...,≤ t(K) = tf , and we
discretize the problem as stated below:

u(k)
µ = u(k−1)

µ + ∆u(k)
µ and t(k) = t(k−1) + ∆t(k), ∀k ∈ {1, . . . ,K}

We use a backward Euler discretization scheme for the evolution equation such that the quasi-static discretization
of the system boils down to:

−∇ · σ(k)
µ = f

(k)
v on Ω

γ
(k)
µ = γ

(k−1)
µ + ∆t(k)Fγµ

(
σ

(k)
µ , γ

(k)
µ

)
on Ω

σ
(k)
µ = Fσµ

(
∇su(k)

µ , γ
(k)
µ

)
on Ω

+ BCs

(2)

Theoretically, stresses can be considered as internal variables. We choose for convenience to restate the problem
by displaying only the stress variable in our formulation, as follows:

−∇ · σ(k)
µ = f

(k)
v on Ω

σ
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ

)
on Ω

+ BCs

(3)

where Fµ (., .) is an appropriate nonlinear operator. In this framework, internal variables are seen as an inner part
of the operator Fµ. We emphasize that our methodology is appropriate for problems of the form (2), although we
further define it for problems of the form (3).

In our study, we consider both non-homogeneous Neumann conditions and homogeneous Dirichlet conditions
for suitable linear combinations of the state variables. We assume that the displacement field belongs to the kernel
of this form. This choice enables us to model arbitrary linear relations on the displacement field. Other than
homogeneous Dirichlet conditions, it supports for instance uniform translation of unknown amplitude of a subpart,
or any other arbitrary linear relation between the displacement degrees of freedoms (DOFs) of Ω accounting for
kinematic links between subparts of the system. Such boundary conditions are expressed as:{

σ
(k)
µ · n = f

(k)
s on Γn

c(u
(k)
µ ) = 0 on Ω

(4)

where n is the outward normal to the boundary Γn, and f
(k)
v (resp.f

(k)
s ) is the volumic (resp. surfacic) force applied

to the system, and c the previously mentionned linear form. The variational form of the equilibrium equation given
by Eq.(1) reduces to the following residual expression:

Rσµ
(
σ(k)
µ , v

)
=

∫
Ω

σ(k)
µ : ε(v) dx−

∫
Ω

fvv dx−
∫

Γn

fsv ds, ∀v ∈ X (5)
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Finally, the variational problem investigated in this contribution can be summarized as follows:

∀k ∈ {1, ...,K}, Find u(k)
µ ∈ Xbc s.t. ,


Rµ
(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ , v

)
= 0 , ∀v ∈ Xbc

σ
(k)
µ = F (k)

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ

)
on Ω

σ
(k)
µ · n = f

(k)
s on Γn

(6)

where Xbc :− {v ∈ X : c (v) = 0, on Ω}. We also denote :

Rµ
(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
= Rσµ

(
F (k)
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ

)
, v
)
. (7)

2.2 Finite element discretization

2.2.1 Notation

Given the domain Ω ⊂ Rd, we consider a HF mesh T hf = {Di}Ne

i=1 where D1, . . . , DNe are the elements of the mesh,
and Ne denotes the number of elements in the mesh. The hf subscript or superscript stands for HF discretization.
We allow ourselves to consider meshes with different types of elements in the same mesh. In particular, in the
case studied in this work, we consider meshes that include both three-dimensional (volumic) elements and two-
dimensional (surfacic) elements; the integer Ne denotes the total number of volumic and surfacic elements. We refer
to meshes with volumic and surfacic element as two-level meshes. Besides, we introduce the continuous Lagrangian
finite element (FE) basis {ϕi}Nno

i=1 associated with the mesh T hf , whose number of nodes is Nno. The FE space for
the primal unknown is thus defined as follows:

X hf := span {ϕiej , i ∈ {1, ...,Nno}, j ∈ {1, ..., d}} (8)

where e1, ..., ed are the vectors of the canonical basis. We further define the nodes {xhf,no
i }Nno

i=1 , the quadrature

points {xhf,qd
i }Nqd

i=1 associated to the HF-mesh and to the FE discretization and the application T hf,no (resp. T hf,qd

for the quadrature points) which links the global indexing of the DOFs (resp. unknowns at quadrature points) of
the HF-mesh to the local indexing of a specified element. The iloc-th DOF in the q-th element local indexing is
associated to the iglob DOF in the global indexing:

T hf,no (iloc, q) = iglob, iloc = 1, . . . , nqlp and q = 1, . . . , Ne

where nqlp is the number of DOFs in the q-th element of the mesh. To further clarify the notation, we denote by

u ∈ RN the FE discrete vector of displacements and σ ∈ RNg the stress counterpart, where N = dNno is the

dimension of the space X hf and Ng = d(d+1)
2 Nqd.

If the mesh contains a single type of element, T hf,no is the connectivity matrix. In the perspective of a hyper-
reduced formulation, we introduce two elemental restriction operators: the nodal elemental restriction operators
{Eno

q }
Ne
q=1 which restrict fields defined at nodes to the q-th element of the mesh (e.g. for displacements) and the

quadrature restriction operators {Eqd
q }

Ne
q=1 which deals with fields defined at quadrature nodes (e.g. for stresses

and internal variables):(
Eno
q u
)
iloc

= (u)Thf,no(iloc,q)
and

(
Eqd
q′ σ

)
jloc

= (σ)Thf,qd(jloc,q′)

If the restriction refers to a subpart of the mesh, a superscript on the restriction operator is added (for instance,
Eno,Γn
q for the nodes of the boundary elements).

2.2.2 Formulation

We denote by {uhf,(k)
µ }Kk=1 the FE approximation of the displacement (primal variable) given by the HF-model

at all times, whereas {σhf,(k)
µ }Kk=1 stand for the stress tensor fields. We state the finite element discretization of

Eq.(6):

∀k ∈ {1, ...,K}, Find uhf,(k)
µ ∈ X hf

bc s.t. ,

 Rhf
µ

(
u

hf,(k)
µ , u

hf,(k−1)
µ , σ

hf,(k−1)
µ ,v

)
= 0 ∀v ∈ X hf

bc

σ
hf,(k)
µ = Fhf

µ

(
u

hf,(k)
µ ,u

hf,(k−1)
µ , σ

hf,(k−1)
µ

) (9)
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where X hf
bc :−

{
v ∈ X hf : Bv = 0

}
depicts the test space for displacements, and B ∈ RNd×N is the kinematic

relationship matrix. Nd stands for the number of linear relations between degrees of freedom that we intend to
enforce. Such a formulation on the boundary conditions implies that the kinematic linear application depends
neither on time nor on the parameter. The operators Rhf

µ and Fhf
µ stands for the discrete counterparts of the

continuous operators Rµ and Fµ introduced in Eq.(6). Besides, we recall that the displacements are unknowns
determined at the nodes of the mesh whereas the discrete stresses are vectors defined at the quadrature points. In
practice, the finite element compute the HF-residuals as sums of elementary contributions:

∀v ∈ X hf , Rhf
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
=

Ne∑
q=1

Rhf
µ,q

(
Eno
q u(k)

µ , Eno
q u(k−1)

µ , Eqd
q σ

(k−1)
µ , Eno

q v
)

(10)

Since a surfacic force is applied on the boundary (see Eq.(4)), two geometric dimensions are involved in our
model problem: the domain Ω and the boundary Γ = ∂Ω. As discussed in the introduction, we here deal with the
previously mentioned scenario of a two-level mesh. Within this framework, given (5), the sum expressed in Eq.(10)
is divided into two contributions, one for each geometric dimension:

∀v ∈ X hf , Rhf
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
=

NΩ
e∑

q=1

Rhf
µ,Ωq

(
Eno,Ω
q u(k)

µ , Eno,Ω
q u(k−1)

µ , Eqd,Ω
q σ(k−1)

µ , Eno,Ω
q v

)

+

NΓn
e∑

q′=1

Rhf
µ,Γn,q′

(
Eno,Γn
q′ u(k)

µ , Eno,Γn
q′ u(k−1)

µ , Eqd,Γn
q′ σ(k−1)

µ , Eno,Γn
q′ v

)
where we distinguish the residual operators for the integrals over the q-th element the domain Ω (Rhf

Ωq
) and the

q′-th element of the boundary domain Γn (Rhf
Γn,q′

).

2.2.3 Dualization of boundary conditions

So as to comply with the theoretical framework required by the formulations used in our HF setting, the Dirichlet
boundary conditions are treated by a dualization of the boundary conditions, namely by introducing Lagrange
multipliers. In this setting, the vector solution of the problem at the k-th timestep consists of the displacements

and the associated Lagrange multipliers (u
(k)
µ ,λ

(k)
µ ) ∈ RN ×RNd . The finite element problem assembly amount to

the discrete nonlinear system:

∀k ∈ {1, . . . ,K},

{
Rhf
µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ

)
+ BT · λ(k)

µ = 0

B · u(k)
µ = 0

(11)

We resort to the Newton-Raphson algorithm to solve (11). Note that the Jacobian of (11) reads as a saddle
point system. Dualization of Dirichlet boundary conditions provides a natural framework to enforce Dirichlet-type
conditions in the interior of the domain and/or in points that do not coincide with the nodes of the mesh. We
provide further details on the solution algorithm in Appendix A.

3 Methodology

We seek the reduced-order solution as a linear combination of modes:

û(k)
µ =

Nu∑
n=1

(
α̂(k)
u,µ

)
n
ζu,n = Zuα̂

(k)
u,µ (12)

where α̂
(k)
u,µ ∈ RNu are referred to as generalized coordinates and ZNu = span {ζu,n} is the primal reduced space.

The Galerkin ROM is obtained by projecting the discrete residual operator (onto the Eq.(9)) onto the primal
reduced basis. We first consider the situation without Lagrange multipliers for the boundary conditions:

ZTuRhf
µ

(
û(k)
µ , û(k−1)

µ , σ̂(k−1)
µ

)
= 0 (13)

Since the operator is nonlinear, successive assemblies are required at each iteration of Newton, leading to a
bottleneck in terms of computational costs. As stated in section 1.2, we develop an hyper-reduction strategy
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based on an element-wise empirical quadrature in order to tackle this issue. Thus, the knowledge of the empirical
quadrature provides a reduced mesh T red. Assembling the ROM on this mesh speeds up CPU time for the online
step. Towards this end, we define the indices associated with the ’sampled’ elements. For example, for a two-level
discretizations (formulation in Eq.(14)), we have two subsets IΩ

eq ⊂ {1, ..., NΩ
e } and IΓn

eq ⊂ {1, ..., NΓn
e } such that:

∀v ∈ X hf , Req
µ

(
u(k), u(k−1), σ(k−1),v

)
= Req

µ,Ω

(
u(k), u(k−1), σ(k−1), v

)
+Req

µ,Γ

(
u(k), u(k−1), σ(k−1), v

)
=

∑
q∈IΩ

eq

ρeq,Ω
q Rhf

µ,Ωq

(
Eno,Ω
q u(k), Eno,Ω

q u(k−1), Eqd,Ω
q σ(k−1), Eno,Ω

q v
)

+
∑

q′∈IΓn
eq

ρeq,Γn

q′ Rhf
µ,Γn,q′

(
Eno,Γn
q′ u(k), Eno,Γn

q′ u(k−1), Eqd,Γn
q′ σ(k−1), Eno,Γn

q′ v
)

(14)

where ρeq,∗ = [ρeq,∗
1 , ..., ρeq,∗

N∗e
] ∈ RN∗e are sparse vectors of positive weights referred as empirical quadrature rules,

where ρeq,∗
q = 0 if q ∈ I∗eq for ∗ ∈ {Ω, Γn}. It is sufficient to have access to these sets of indices to produce a

reduced mesh by considering only the cells with non-zero weights.
Furthermore, the analysis of the mechanical state of the system implies the knowledge of the stresses within

the material. To this end, we decompose similarly the stress on an related reduced space ZNσ . This stress basis
will namely be used to define an a posteriori error indicator.

3.1 Solution reproduction problem

At first, we omit the parametric variability. In this section, we provide the strategy for constructing a reduced basis
and reduced mesh thanks to an empirical quadrature. Our objective here is to reproduce the result obtained in a
HF simulation through our reduced problem. The solution reproduction problem is of limited interest; nonetheless,
it remains the necessary initial step towards the implementation of an efficient ROM for the parametric problem.
The treatment of this sub-problem allows both the design of blocks of algorithms that can be easily reused in the
parametric framework, and the provision of validation tests for the latter. This approach is divided into two steps:
an offline phase where we build reduced bases (displacement and stress), and a reduced mesh, then an online phase,
which consists in computing the generalized coefficients for both the displacement and the stress. The computation
of the coefficients for the stress involves an additional processing with a Gappy-POD procedure (section 3.1.3). At
this point in our study, that is to say without taking into account the design of an error indicator, our reduced
model is made up of two reduced bases, one empirical quadrature rule (if not two in the case of a two-level mesh)
and a reduced mesh.

Algorithm 1 Solution Reproduction Problem

Online step
Compute the HF-snapshots . Call of code aster
Construction of the reduced order basis (ZNu and ZNσ ) . Section 3.1.1
Empirical Quadrature procedure ρeq . Section 3.1.2
Offline step

Compute the primal generalized coordinates
{
α̂

(k)
u,µ

}K
k=1

. Equation (13)

Compute the dual generalized coordinates using Gappy-POD
{
α̂

(k)
σ,µ

}K
k=1

. Section 3.1.3

3.1.1 Data compression using Proper Orthogonal Decomposition

We resort to the method of snapshots35 to generate both reduced order bases (ROB). We discuss the methodology
for the case of the displacement variable; in the case of the stress variable is treated in a similar way. We define the

Gramian matrix C ∈ RK×K associated to a given scalar product (Cu)i,j = (u
hf,(i)
µ , u

hf,(j)
µ ) = (u

hf,(j)
µ )TXuu

hf,(i)
µ .

Then, we solve the eigenvalue problem:

Cuϕn = λnϕn, λ1 ≥ ... ≥ λK ≥ 0 (15)

to obtain the eigenpairs (λn, ϕn) for n = 1 · · ·Nu. The number of selected POD modes is chosen according to the
following energy criterion:
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Nu = min

{
Q ∈ N,

Q∑
q=1

λq ≥
(
1− ε2

POD,u

) K∑
q=1

λq

}
(16)

where εPOD,u is a user-defined tolerance. It is then now possible to define the POD modes, which will provide the
reduced basis for the displacements:

ζu,n =
1√
λn

K∑
k=1

(ϕn)k uk (17)

In conclusion, given the snapshots {uhf,(k)
µ }Kk=1, a scalar product (., .) and the tolerance εPOD,u, the POD procedure

returns the reduced order basis:

Zu = POD

{{
uhf,(k)
µ

}K
k=1

, (., .), εPOD,u

}
(18)

We need to decide on two scalar products in order to carry out the method: one for the displacement field and
one for the stress field. For the displacements, a consistent choice would be to consider the H1 norm. One of the
limitations in using the industrial code is that we cannot easily retrieve such a matrix. To overcome this issue, we
opted for a compression in the sense of an energy norm. More specifically, we consider the energy norm associated
with a simpler mechanical case, that of linear elasticity. In so doing, the formulation of the mechanical problem
Eq.(3) (if we omit the time dependence) becomes :

−∇ · σµ = fv on Ω
σµ · n = fs on Γn

uµ = 0 on Γd
σµ = E

1+ν∇suµ + E
(1+ν)(1−2ν) (∇ · uµ)1

(19)

where E is the Young’s modulus and ν is the Poisson coefficient. From a variational point of view, this amounts
to considering a case where we are seeking a displacement field u ∈ X hf

bc such that :

aµ (u, v) = F (v) with


aµ (u, v) =

∫
Ω

E

1 + ν
∇su : ∇sv +

E

(1 + ν) (1− 2ν)
(∇ · u) (∇ · v) dx

F (v) =

∫
Ω

fvv +

∫
Γn

fsv

(20)

The aµ : X → R is a symmetric, coercive and continuous bilinear form. As a consequence of Korn and Poincaré’s

inequalities, it defines an equivalent norm of H1: ∀w ∈ X , ‖w‖aµ =
√
aµ (u, v). However, this energy norm is

parametric. To circumvent this issue, we chose to consider the energy norm for the centroid of the parameters
µ ∈ P: Xu = Kµ, where Kµ is the stiffness matrix obtained for an elastic problem and the vector of parameters µ
(or at the components of the vector corresponding to the elastic behaviour). As for the stress field, we consider as
the scalar product matrix the diagonal matrix of the HF quadrature weights: Xσ = diag(ρhf

1 , · · · , ρhf
Ng ).

Remark 1 We have chosen not to compress simultaneously the displacements and the constraints. This decision
is motivated by the different roles of both variables in our problem. The problem formulation only involves the
displacement field. Therefore, a global compression would require a reorthonormalization of the displacement modes.
There is no guarantee of a bijection between these new modes and the global modes. The use of two independent
bases for displacement and stress fields helps circumvent this issue.

3.1.2 Hyper-reduction via empirical quadrature procedures

In this section, we aim at finding Req
µ,Ω and Req

µ,Γ according to the separation of the residual described in Eq.(14).
This is done by two distinct calls to the hyper-reduction process described hereafter, one for each level of the mesh.
For a given level, the objective of the procedure is to provide an empirical residual defined from the empirical
quadrature rule ρeq as given below:

Rσ,eq
(
σ(k), v

)
=
∑
q∈Ieq

ρeq
q Rσ,hf

q

(
Eqd
q σ

(k), Eno
q v
)
, ∀v ∈ X hf

bc (21)
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where {σ(k)}Kk=1 are the HF snapshots of the problem and Rσ is defined in Eq.(7). In the online phase, the solution
is sought on the primal reduced space ZNu . Therefore, it is sufficient to have a good approximation of the residual
on the space spanned by the reduced order basis vector span{ζu,n} ⊂ X hf .

Given a tolerance δ > 0, the empirical quadrature rule ρeq should satisfy the following conditions:

1. the number of nonzero entries in ρeq should be as small as possible,

2. the entries of ρeq should be non-negative,

3. (constant-function constraints) the measure of the domain should be conserved:∣∣∣∣∣
Ne∑
q=1

ρeq
q |Kq| − |Ω|

∣∣∣∣∣ < δ |Ω|

4. (manifold accuracy constraints) the empirical and HF residuals should be close, meaning that for every primal
mode ζu,n and HF snapshot

(
u(k),σ(k)

)
, we have:

∣∣∣∣∣∣
∑
q∈Ieq

ρeq
q Rσ,hf

q

(
Eqd
q σ

(k), Eno
q ζu,n

)
−Rσ,hf

(
σ(k), ζu,n

)∣∣∣∣∣∣ ≤ δ
∣∣∣Rσ,hf

(
σ(k), ζu,n

)∣∣∣ (22)

All these constraints enable us to recast the empirical quadrature problem as a `0 pseudo-norm minimisation
problem, known as the sparse representation problem:

min
ρ∈Ne

‖ρ‖`0 s.t.

{
‖Gρ− y‖∗ ≤ δ ‖y‖∗

ρ ≥ 0
(23)

for a suitable choice of G,y, δ and ‖.‖∗.
The problem is an NP-hard optimization problem (as indicated in Reference 14 citing Reference 36) and is

therefore not directly solvable in practice. Nonetheless, several alternative methods have been devised in the
literature, which rely on relaxation methods inspired by signal processing in order to approximate the quadrature
rule in polynomial time.

For instance, Reference 17 proposed an approximation which relies on the `1 relaxation of the problem where
‖.‖∗ = ‖.‖`∞ . The relaxed problem can thus be reformulated as a linear programming problem, and solved by
resorting to appropriate solvers. Non-negative least squares problems comprise another class of approximation for
the sparse representation problem:

ρeq = argmin
ρ∈RNe+

‖Gρ− y‖2 (24)

As mentioned in section 1, hyper-reductions methods founded on non-orthogonal matching pursuit algorithms37 38

have been developped to this end. Those approaches rely on numerical methods for sparse inexact non-negative
least-squares initially developped in signal processing. Similarly, Reference 14 suggested a methodology called
Energy-Conserving Sampling and Weighting method (ECSW) that was built on Lawson and Hanson’s algorithm39.
This procedure is an active-set method for solving a non-negative least-square problem. The algorithm is modified
thanks to an additional stopping criterion, which helps to enforce the sparsity of the solution. Indeed, a criterion
on the residuals obtained in the course of the optimization iterations enables to stop the iterations prematurely:

‖Gρ− y‖2 ≤ δ ‖y‖2 (25)

In our work, this inexact least-squares method has been implemented by modifying the routine in the Python
module40 scipy.optimize.nnls.

Remark 2 We comment on the practical implementation of our approach in this setting in comparison with
previous work on hyper-reduction processes in the scope of mechanical problems with internal variables. Indeed,
from the expressions given in Eqs (2) and (5), we may notice that the residual is an operator that explicitly depends
on the mechanical state at the current and previous time step. Therefore, this mechanical state includes the internal
variables. In previous works41,14,12, the exact residual operators used for finite element calculations were called by
the hyperreduction process. Therefore, it is required to have explicit information about the internal variables. Several
strategies are then available to address this issue explicitly. Reference 14 proposes a storage of the internal variables
in addition to the knowledge of the displacement fields to estimate the problem. Another technique proposed in
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Reference 12 is to call the reduced solver with an exact quadrature rule to gather estimates of the internal variables.
Our strategy is slightly different, owing to the inherent restrictions of applying the methodology to an industrial
setting and trying to be as non-intrusive as possible. In order to comply with the underlying technical restriction of
the industrial code in use, we propose a slightly different strategy. We have opted to reconstruct the integrals of the
variational formulation expressed in Eq.(6) outside the HF code and to use these recalculated elementary integrals
for the hyper-reduction operation. This entails keeping the calculations performed outside the fidelity code to a bare
minimum so that the data used for the learning process is as close as possible to the calculations performed in the
assembly in HF practice. Therefore, we extract from the HF code the stress fields at the integration points, the HF
gradients of the displacement modes at the integration points (call to the industrial code) and the HF quadrature
rule on all the integration points of the mesh. The knowledge of these fields then enables us to reconstruct the said
integrals and to carry out the hyper-reduction processes. We may notice that this approach is founded upon the
variational formulation, and thus does not demand the knowledge of the internal variables because the information
is contained within the stress field itself. However, this procedure involves a slightly higher memory storage cost
and an additional call to the HF code for each calculation of the displacement reduced basis (to derive the gradients
of the modes at the quadrature points). Nevertheless, this cost remains negligible with respect to a call to the HF
code for a complete calculation. Note that the implementation strategy used here is restricted to problems of the
form (6).

3.1.3 Reconstruction of the stress by Gappy-POD

At the end of a call to the reduced solver, we obtain the reduced solutions in displacement and the related stress
(by integration of the constitutive law) at the sampled elements by the empirical quadrature. Nevertheless, these
stress vectors do not belong, without loss of generality, to the reduced space designed for the stresses. Indeed,
these constraints are derived from the integration of the constitutive law in the HF code from the knowledge of the
reduced solution in displacement. When using reduced meshes, the information about the stress is restricted to the
quadrature points of the sampled elements. Yet, the description of the mechanical state requires the knowledge of
the stress field on the HF mesh. It is thus essential to reconstruct the field on the entire mesh. Furthermore, even
without any hyper-reduction procedure, the stresses obtained have no reason to belong to the earlier produced
reduced basis, even though no reduced mesh is used. This arises from generating both reduces bases independently.
In order to overcome both challenges, we apply a Gappy-POD algorithm42 to determine the generalized coordinates.

3.1.4 Influence of Lagrange multipliers

As previously mentionned, we address arbitrary, homogeneous (right-hand side is 0) kinematic links between the

dofs in Ω in this work, written as Bu
(k)
µ = 0. As will be shown, specifying kinematic links as inputs to the online

solver is then no longer necessary, nor is the implementation of any specific treatments for them during online
resolution. In this strategy, kinematic links are already taken into account by the reduced basis, which greatly
simplifies coding of the online resolution. It is worth noting that such a choice can reduce drastically the number
of unknowns and therefore the computational cost. Indeed, we have:

ZTuRhf
µ

(
û

(k)
µ , û

(k−1)
µ , σ̂

(k−1)
µ

)
+ ZTuBT λ̂

(k)
µ = ZTuRhf

µ

(
û

(k)
µ , û

(k−1)
µ , σ̂

(k−1)
µ

)
+ [BZu]

T
λ̂

(k)
µ

= ZTuRhf
µ

(
û

(k)
µ , û

(k−1)
µ , σ̂

(k−1)
µ

)
= 0

(26)

where we have omitted the stress field so as not to make the equations more cumbersome. By construction, for a
given n, ζu,n is a linear combination of the snapshots and therefore verify Bζu,n = 0. Such a setting reduces the
number of unknowns, as the Lagrange multipliers can be ignored. They do not need to appear in the resolution of
the nonlinear system, to be stored or to be taken into account in a data compression operation.

3.2 Adaptive algorithm based on POD-Greedy procedure

As mentioned previously, we develop an adaptive sampling based on a POD-Greedy strategy. Moreover, we
introduce an error indicator correlated to the approximation error, whose evaluation is cost-efficient in terms of
computational time. The extension of the above problem to a parametric system raises two challenges: first, the
adaptation of the data compression and the empirical quadrature techniques to the iterative process; second, the
construction of an error indicator for our model problem. Indeed, we must be able to have some information about
the reliability of our mechanical state estimation for a given parameter.

Remark 3 In the description of the algorithm, we do not state explicitly the stopping criteria for the algorithm.
Several options are possible: a tolerance on the minimum value of the residual can be given, or a maximum number

9



Algorithm 2 POD-Greedy algorithm

Require: Θtrain = {µi}ntrain
i , εPOD,u, εPOD,σ

1: ZNu = ZNσ = ∅, µ∗ = µ, Θ∗ = {µ∗}.
2: while Stop Criterium do

3: Compute {uhf,(k)
µ∗ }Kk=1, {σhf,(k)

µ∗ }Kk=1 . Call of code aster
4: Compute primal ROB Zu . Section 3.2.1

5: Compute ρeq knowing {ζu,n}Nun=1 and {σhf,(k)
µ }k∈{1,..,K},µ∈Θ∗ . Section 3.1.2

6: Compute the reduced mesh T red

7: Compute dual ROB Zσ . Section 3.2.1
8: Construction of ΣN for the error indicator
9: for µ ∈ Θtrain do

10: Solve the ROM for µ and compute ∆avg
N,µ . Section 3.2.2

11: end for
12: ∆av,max

N = max
µ∈Θtrain

∆avg
N,µ

13: µ∗ = arg max
µ∈Θtrain

∆avg
N,µ

14: Θ∗ = Θ∗ ∪ {µ∗}
15: end while

of iterations can be imposed by the user. An alternative scenario is to check whether the approximation error for the
new parameter to be explored for the current reduced order basis is below a given threshold. If so, such a criterion
illustrates that we have thus already exploited the redundancy of information and the algorithm can stop.

Data Compression
(Incremental)

code_aster

Hyper-reduction
(Enriched)

Reduced Solver

�∗

{uhf ,(k)�∗ }Kk=1
Snapshots

using the HF-solver

Zu,proj, puis Zu =
[
Zu,Zu,proj

]

Loop over parameters (Online)

(Offline)

Δavg,maxN = max
�∈Θtrain

ΔavgN,�

�∗ = arg max
�∈Θtrain

ΔavgN,�

Stopping criterium

Figure 1: Adaptive algorithm based on POD-Greedy procedure

3.2.1 Data compression

Since we chose to adopt a hierarchical basis, we decided to implement an incremental POD, by applying the POD
procedure on the projection of new snapshots on the orthogonal space to the existing basis. Suppose that we have

a reduced order basis Zu and new HF snapshots {uhf,(k)
µ }Kk=1. The new basis is obtained by concatenation:

Zu = [Zu,Zproj] , where Zproj = POD

{{
ΠZ⊥u ,(.,.)u

hf,(k)
µ

}K
k=1

, (., .), εPOD,u

}
(27)

where ΠZ⊥u ,(.,.) : X hf → Zu is the orthogonal projection operator onto Zu ⊂ X hf using the (., .) scalar product.
This approach is referred as H-POD in the literature. We refer to Reference 5 for more details. In terms of

memory storage cost, this method does not require to store the eigenvalues between two consecutive iterations.
Previous works12 have highlighted the challenge of finding an optimal tolerance for the data compression. Indeed,
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the compression operator aims to properly describe the snapshots that are supplied to it. Nevertheless, from a
numerical standpoint, the vector projection can never be exactly zero. The issue is that the number of selected POD
modes is usually chosen based on an energy criterion (cf. Eq.(16)). If we apply POD to the projected snapshots, this
criterion might be unreliable due to the fact that the energy content of the projected snapshots might be extremely
modest if compared to the energy content of the original snapshot set. This observation explains the importance
of introducing a criterion based on the relative projection error. We rely on the regularization approaches given in
Reference 12. The number of modes is chosen according to the following criterion:

Nnew = min

M : max
k∈{1,...,K}

∥∥∥∥Π
(ZNu⊕Znew

u,M)
⊥
,(.,.)

u
hf,(k)
µ

∥∥∥∥∥∥∥uhf,(k)
µ

∥∥∥ ≤ εPOD,u, Znew
u,M = span

{
ζnew
u,m

}M
m=1

 (28)

Only the basis vectors that effectively reduce the projection error are added to the reduced basis. The others
are treated as noise and are dropped. On top of that, for numerical efficiency purposes, we have chosen a criterion
prior to the computation of the extra modes. No further POD computation is performed when: :

max
k∈{1,...,K}

∥∥∥Π(ZNu )⊥,(.,.)u
hf,(k)(µ)

∥∥∥∥∥∥uhf,(k)
µ

∥∥∥ ≤ εPOD,u (29)

Based on the very same principle, we assume in this situation that the new snapshots belong to the previously
generated reduced space, and there is no update of the basis. This preliminary verification avoids unnecessary
offline CPU costs.

3.2.2 Error indicator

We introduce an error indicator to assess the quality of our approximation without having to compute approximation
errors, that is to say without having to compute further HF snapshots. We choose to consider a time-averaged
error indicator defined as the averaged of the dual norm at each timestep:

∆avg
N,µ =

√√√√ 1

K

K∑
k=1

(
∆

(k)
N,µ

)2

, with ∆
(k)
N,µ = sup

v∈Xhf
bc

Rhf
µ

(
û

(k)
µ , û

(k−1)
µ , σ̂

(k−1)
µ , v

)
‖v‖

(30)

We expect that the error indicator is correlated to the approximation error in displacement prediction (and
ideally stress prediction). If so, the error indicator can be used to drive the greedy strategy. We can derive an
efficient online/offline strategy which relies on the fact that the stress prediction belongs on a given reduced space

σ̂
(k)
µ ∈ span{ζσ,n} and that the reduced residual can be expressed thanks to it.

In the following formulation, we assume that the external loadings do not depend on the time variable. This
choice is made for the sake of simplicity, and we can refer to Appendix C for the more general formulation. We
introduce the Riesz elements ψσn ∈ X hf

bc associated to the given linear forms:

(ψσn, v) = Ln(v), ∀v ∈ X hf
bc with

{
Ln(v) =

∫
Ω
ζσ,n : ε(v) dx, 1 ≤ n ≤ Nσ

LNσ+1 =
∫

Ω
fv · v dx+

∫
Γn
fs · v ds

(31)

By means of the decomposition of the stress solution on the reduced basis (σ̂
(k)
µ = Zσα̂

(k)
σ,µ) and the expression of

the residual in variational form given by Eq.6, we can recast the dual norm calculation as:

∆
(k)
N,µ = sup

v∈Xbc

[
Nσ∑
n=1

(
α̂(k)
σ,µ

)
n

Ln(v)

‖v‖
− LNσ+1(v)

‖v‖

]
= sup
v∈Xbc

(
Nσ∑
n=1

(
α̂

(k)
σ,µ

)
n
ψσn − ψσNσ+1, v

)
‖v‖

(32)

The dual norm is equal to the norm of its Riesz element, which gives a compact expression for the error indicator:

(
∆

(k)
N,µ

)2

=

∥∥∥∥∥
Nσ∑
n=1

(
α̂(k)
σ,µ

)
n
ψσn − ψσNσ+1

∥∥∥∥∥
2

=

[
α̂

(k)
σ,µ

−1

]T
ΣN

[
α̂

(k)
σ,µ

−1

]
=
(
α̃(k)
σ,µ

)T
ΣN α̃

(k)
σ,µ (33)

where ΣN ∈ RNσ+1,Nσ+1 is the Gramian matrix of the Riesz elements previously introduced, i.e (ΣN )n,m =

(ψσn, ψ
σ
m), and α̃

(k)
σ,µ is the concatenation of the generalized coordinates for the stress with [−1].
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We shall now discuss the effective calculation of the Riesz elements in the context of the industrial code. In a
general manner, these vectors can be determined by solving Nσ+1 linear systems defined by Eq.(31) and will hence
fulfil the boundary conditions associated with the system: Bψσn = 0. In our framework, it is not straightforward
to formulate a problem in variational form by hand or to extract all information to solve Eq.(31) algebraically
outside the FE solver. Nevertheless, functionalities exist to extract Riesz elements of the given linear forms but
on a larger space X hf , i.e. for vectors that do not satisfy the boundary conditions of the problem. Indeed, such
features are often implemented in industrial codes so that engineers can have access to internal forces vectors or
support reaction forces. Such vectors are defined as:

∀v ∈ RN ,


(Fn, v)`2 =

∫
Ω
ζσ,n : ε(v) dx, ∀n ∈ {1, ..., Nσ}

(FNσ+1, v)`2 =
∫

Ω
fv · v dx+

∫
Γn
fs · v ds

(34)

As a reminder, the Riesz elements should belong to the same space as the displacement space. For the sake
of consistency, the scalar product used to define them is the scalar product associated to the energy norm for µ
(section 3.1.1). It is clear from Eq.(31) that ψσn is solution to a quadratic optimization problem associated with
cost function v 7→ 1

2vTKµv − vTFn under the equality constraint Bv = 0. The KKT optimality conditions read:{
Kµψ

σ
n + BTλ = Fn,

Bψσn = 0
(35)

Actually, Eq.(35) defines an easy problem to provide as an input to a FEM solver: it is a linear elastic case for the
parameter centroid, with the very same boundary conditions as the HF problem, and an explicit field of nodal forces
as an external load (previously computed by Eq.(34)) It is therefore sufficient to use the HF solver for Nσ+1 linear
problems. Finally, the parameter-independent matrix that appears in the error indicator definition is computed as
follows:

(ΣN )n,m = (ψσn, ψ
σ
m)aµ = ψσn · (Kµ ·ψσm) = (ψσn)

T
Kµ ·ψσm, ∀n,m ∈ {1, · · · , Nσ + 1} (36)

Remark 4 For a given HF FE solver, this strategy is a non-intrusive way to compute the error indicator, since
there is no need to retrieve B or Kµ matrices from the finite element solver.

4 Model problem: elastoplastic analysis of a plate with a hole

We validate the approach through the vehicle of an elasto-plastic three-dimensional holed plate. We investigate
the problem of a plate with a hole submitted to a traction loading. In this section, we first present the physical
formulation of the material constitutive law, then the resolution algorithm used in our work, and finally the details
of the configuration used in our numerical example. For the sake of simplicity, we remove the parametric dependence
in the notation, which means that the µ subscript is removed in this section.

4.1 Elasto-plasticity using a Von Mises Criterion

4.1.1 Continuous equations

We consider a small-displacement small-strain mechanical problem. We assume that the total deformation is the
sum of a plastic part (εp) and an elastic part (εel):

ε = εel + εp

where the plastic deformation comprises the irreversible part of the behavior. The elastic behavior depends on two
parameters, the Young’s modulus E and the Poisson coefficient ν. The elastic constitutive equation is :

σ = Fσ (∇su, εp) =
Eν

(1 + ν) (1− 2ν)
Tr (∇su− εp)1+

E

1 + ν
(e− ep) (37)

where the deviator of the strain and stress tensors are introduced:

e = dev (∇su) , ep = dev(εp), s = dev(σ), where dev(τ) = τ − 1

3
Tr(τ)1 (38)

We consider a Von Mises criterion for an isotropic hardening. In our analysis, the internal variables that appear
in the model are the plastic strain (εp) and the cumulative plastic strain (p). In the framework of the formulations
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presented in the previous section, this decision implies that the evolution equations on the internal variables are
expressed using the following system:

(ε̇p, ṗ) = Fγ (σ, εp, p) ⇔


σeq =

√
3
2s : s

σeq −R(p) ≤ 0 [Von Mises criterion]

p(t) =
√

3
2

∫ t
0
‖ε̇p (τ)‖ dτ

ε̇p = ṗ 3
2σeq s ṗ ≥ 0 ṗ [σeq −R(p)] = 0 [Normality rule]

(39)

where σeq is an Von Mises equivalent stress and R(p) denotes the elastic limit, and evolves as a function of the cu-
mulative plastic strain p. For more insight into the time-discretized formulation, and in the spirit of reproducibility
of this research, the reader may find all the details of the numerical procedure in Appendix D.

4.2 Physical problem and algorithm

The work hardening curve is chosen to follow a power law (referred as VMIS ISOT PUIS in the code aster database),
which implies that the elastic limit evolves on the accumulated plastic strain as follows:

R(p) = σy + σy

(
E

apuiσy
p

) 1
npui

where n, apui are strain hardening coefficients and σy is the initial elastic limit. This algorithm provides us with
stable responses on a range of parameters. The resolution procedure used in this work is a elastic predictor-return
mapping (plastic corrector)43. In case of a plastic evolution, the nonlinear equation that ensures the fulfillment
of the criterion is solved using the secant method. All the physical parameters of the problem are summarized in
Table 1.

E ν σy npui apui

MPa no dim. MPa no dim. no dim.

Table 1: Summary of the physical parameters

4.3 Geometric configuration and physical parameters

We shall study the problem of a three-dimensional plate with a circular hole in its centre and subjected to a tension
force. Such a typical example is widely studied in the mechanics literature and is therefore a classical test case for
the investigation of algorithms in nonlinear mechanics, namely in elastoplasticity.

y

x∙z
r

lx

ly

p

Γled

Γbed

Figure 2: Geometric configuration and loading

The geometrical domain is narrowed for reasons of symmetry (geometry given on Figure (2)). We consider that
the tension force is only applied on the upper boundary of the plate. We assume that the vertical displacement is
homogeneous on the upper boundary, where symmetric boundaries are also applied:
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{
−∇ · σ = fv on Ω
σ · ey = −p on Γup

n
, such that


uy = 0 on Γbe

d

ux = 0 on Γle
d

uz = 0 on Γba
d

uz(x1) = uz(x2), ∀(x1, x2) ∈ Γup
n × Γup

n

(40)

where the associated boundaries are defined as:
Γbe
d = {y = 0, ∀(x, z) ∈ [r, `x]× [0, `z]}

Γle
d = {y = 0, ∀(y, z) ∈ [r, `y]× [0, `z]}

Γba
d =

{
y = 0, ∀(x, y) ∈ [r, `x]× [0, `z] \ {(x, y), s.t. x2 + y2 < r}

}
Γup
n = {(x, `y, z), ∀x [0, `x] ,∀z ∈ [0, `z]}

5 Numerical results

We measure the performance through the previsouly defined energy norm on the FE vectors. We introduce the
time-averaged projections errors and approximation errors on the displacement for any µ ∈ P:

Eproj,avg
u,µ =

√
K∑
k=1

∥∥∥ΠZ⊥Nu
uhf,(k)

∥∥∥2

√
K∑
k=1

∥∥uhf,(k)
∥∥2

and Eapp,avg
u,µ =

√
K∑
k=1

∥∥uhf,(k) − û(k)
∥∥2

√
K∑
k=1

∥∥uhf,(k)
∥∥2

(41)

For the numerical tests, we treat a strain hardening parameter apui and the Poisson’s ratio ν as varying
parameters (see Table 1). We define the parameter compact as a Cartesian product of parameter intervals P =
Pν × Papui

= [0.21, 0.3]× [0.1, 1000]. At last, we introduce the discrete version of this compact Θtrain = Θtrain,ν ×
Θtrain,apui

, which thus constitutes the training set we shall examine. In order to assess the method, we have carried
out numerical tests in several steps. Each step allows to validate specific features of the methodology we have
designed. As described in the methodology section, the first step of the validation is the processing of a solution
reproduction problem (section 3.1), which illustrates the interest of data compression and the construction of a
reduced mesh in terms of CPU cost, while maintaining a quality in the approximation of the solution. Afterwards,
we shall discuss two parametric cases: afirst, we consider a case with a scalar parameter; second, we consider the
case of a two-dimensional parameter.

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
1 1 20

(a) Solution Reproduction
Problem

(section 5.1)

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
20 1 10

(b) Parametric Problem µ = ν
(section 5.2.1)

|Θtrain,ν |
∣∣Θtrain,apui

∣∣ K
20 20 10

(c) Parametric Problem µ = (ν, apui)
(section 5.2.2)

Figure 3: Summary of the size of the training sets and the number of timesteps (K) used for the different test
cases

The choice of the parameter subset size and the number of time steps are indicated in Figure 3. We briefly
outline here the motivation for these different decisions. As far as the temporal discretization is concerned, the
calculation converges after ten time steps for all test cases considered. For a more complete visualization and
analysis of the results for the solution reproduction problem, we have decided to use a grid twice as fine as in the
parametric case. As for the parameter grid, we have opted to start from a 2d Cartesian grid of parameters. Our
case is such that the greedy algorithm converges in less than ten iterations (see the following section). Therefore,
we have chosen to consider about twenty parameters in each direction of the grid.

We consider a three-dimensional quadratic tetrahedral mesh for our numerical investigations. We provide the
mesh information in the Table 2.

5.1 Solution reproduction problem

We first present numerical results for a fixed configuration of parameters, namely for the centroid µ ∈ P to validate
our ROM strategy.
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Ne N no N qd N Ng
11 981 18 446 59 905 55 338 359 430

Table 2: Mesh information: number of three-dimensional cells ( Ne), number of nodes (N no), number of
three-dimensional quadrature points (N qd), size of the discretized displacement (N ) and stress vectors (Ng )

Figure 4 represents the eigenvalues obtained for the displacements and the stresses. We notice that the decays
of the eigenvalues have a similar profile, although the decay of the eigenvalues is slightly faster for the displacement
field than for the stress field. The plot of the projection errors as a function of the number of modes used to build
the reduced space highlights this capacity to better estimate the displacement trajectory for a smaller number
of modes. This suggests that in order to get projection errors in displacements and stresses at a given order of
magnitude, it is mandatory to have more stress modes than displacement modes.
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Figure 4: Solution reproduction problem: (a) behavior of the POD eigenvalues for displacement (u) and stress
(σ) for several values of N(N = Nu for u and N = Nσ for σ; b) behavior of the average projection errors) (cf.

Eq.(41))

Figure (5) displays a good correlation between the the error indicator used and the approximation error on the
solution fields. We point out that, in every case reported here, we have chosen to deal with all the available stress
modes. Indeed, for extremly underresolved reduced spaces, the error indicator is found to be inaccurate. Since
the construction of our error indicator relies on an approximation of the dual norm using the decomposition of the
stress field on the space of stress modes, the correlation between the error indicator and the approximation errors
may be slightly degraded for too coarse approximation spaces. This choice of treating all the stress modes does
not raise overfitting problems during the Gappy-POD since we have a number of modes lower than the number
of elements selected during the hyper-reduction procedure, in our quite simple case. From a practical standpoint,
this choice allows us not to have to play with the ratio between the two compression tolerances (εu and εσ) for the
construction of the reduced problem.

We have built reduced models for various numbers of modes (compression of the solution space) and various
hyper-reduction parameters (size of the reduced mesh). The aim of investigating this grid of hyperparameters of
the reduced model is multifaceted. First, it enables to investigate a wide range of approximation errors. Indeed,
the quality of the approximated solution depends on the approximation quality of the integrals involved in the
problem (δ) but also on the approximation quality of the trajectory (Nu). This variation allows us to highlight
the correlation between the approximation error on the displacement field and the error indicator that we have
presented (Figure 5, and Colormaps 8a and 8b). Moreover, for a fixed number of modes, the projection error
constitutes a theoretical lower bound that we wish to be able to reach by solving the reduced problem. However,
the hyper-reduction process introduces a new approximation. In Figure 6, we illustrate that the approximation
error tends towards the projection error for small δ values, while a less restrictive parameter degrades the solution
(δ = 10−1 for example). The slight differences between approximation and projection errors between the last two
δ values comes from the fact that we hit the tolerance of the iterative Newton algorithm used in the HF solver
(which is chosen as the same as in the reduced solver).

Much more, we observe that the empirical quadrature procedure is able to significantly reduce the size of the
mesh used for online calculations. We keep at most a few percent of the number of elements in the HF mesh. We
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thus drastically reduce the computational cost compared to a HF problem. Indeed, the cost of a reduced problem
represents only a few percent of the cost of the HF calculation. The computational cost reduction, correlated
to the number of selected elements (Colormap 8c), depends both on the number of selected modes and on the
hyper-reduction parameter that we choose.

Remark 5 It should be noticed in the following case that the ratio between the computational cost of the reduced
problem and the percentage of selected elements are not strictly correlated, even if the two quantities follow the same
tendency. Indeed, from an algorithmic point of view, the reduction of the mesh is not the only operation involved
between a HF computation and a reduced computation, since the projection on the modes and the hyper-reduction
entail a modification of the size of the system, but also of the conditioning of the latter (this can lead to more
Newton iterations for a reduced computation for example). Furthermore, the implementation has been done in an
industrial code where fixed costs related to verification and memory allocation processes are necessary whatever the
computation. Nevertheless, in Figure 8, we provide a numerical validation that the percentage of selected elements
gives us a good hint on the gain in terms of computational cost.

We have observed that the approximation error on the stresses follows the same pattern as the approxima-
tion error on the displacements on the hyperparameter grid (Nu × δ). This comment brings us to report only
approximation errors on displacements in this contribution.
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Figure 8: Solution reproduction problem: colormaps of: (a) approximation errors, (b) error indicators , (c)
percentage of selected elements, (d) percentage of CPU time for different size of reduced order basis and

hyper-reduction parameters

5.2 Parametric problem

5.2.1 Parametric problem µ = ν

In this section, we consider the variation of a single parameter (ν), for a training set of |Θtrain,ν | = 20 values of this
parameter. The numerical results presented here and in the last sub-section were performed for a smaller number
of time steps for the sake of efficiency (see parameters in Table 3).
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We were able to test the greedy approach on this single parameter nonlinear case where we fixed a given
number of iterations (NGr = 5). For the studied example, the algorithm has reached its convergence for the
following number of iteration. All the examples reported here have been carried out for the tolerance εu = 10−5,
which ensures a good approximation error on the explored parameters. The evolution of the maximum of the error
indicator (Figure 9) for several hyper-reduction parameters shows a convergence after a few iterations. The plateau
reached by the error indicator differs with the accuracy of the approximation of the integrals of the problem.
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Figure 9: Maximum of the time-averaged error indicator over the training set depending on the Greedy iteration
for the parametric problem µ = ν

We report the computational costs associated with the reduced solver by giving the speedup= HFcost
ROMcost , where

the HF cost is the computational time of solving the HF problem whereas rom cost is the online cost of evaluating
the problem. In Figure 10, we notice that the gain in computation time decreases with each iteration as the
percentage of selected elements increases with the number of HF problems to be estimated and the number of
modes to be included in the reduced basis. Nevertheless, for this single-parameter problem, the speedups obtained
are always higher than 10 or even 15, which implies a drastic decrease of the computation time for the model
evaluation. Moreover, the parametric manifold is in our case very well approximated after a small number of
iterations. The plateau observed in Figure 9 is reached after a few iterations and shows that for the given tolerance
of hyperreduction and the desired precision in the compression of the base, there is no more gain in exploring a
new parameter.

We notice on the reduced meshes obtained at the end of the numerical procedure (Figure 11) that the selected
elements are mainly located around the hole, which matches the region where the material enters a nonlinear regime
(plastic regime). As we would expect, few elements are selected in the areas where the behavior is purely elastic
(linear).

5.2.2 Multi-parametric problem µ = (ν, apui)

Finally, we provide a numerical example for two parameters. We address a training set of size |Θtrain| = 400.
We report here the results for tolerances εu = 10−5 and δ = 10−7. The choice of the hyper-reduction parameter
is chosen here of the same order of magnitude as the Newton tolerance for HF computation. In Figure 12, we
present the evolution of the error indicator we compute over the greedy iterations. By comparing, for instance,
the colormap at the second iteration and at the third iteration, we notice that the sampling of a parameter leads
to a decrease of the indicator value in the neighborhood of the given parameter. Moreover, we were interested in
the correlation of the error indicator with the error indicator especially with out-of-sample parameters. To this
end, we defined a sub-grid of 25 points, (5×5 Cartesian grid of the parameters), on which the HF calculations
were performed in order to dispose of the projection error. In Figure 13, we show the profiles obtained for the
error indicators and for the approximation errors on the parameters chosen for the test. It appears that the error
indicator seems to follow the behaviour of the approximation error.

We point out that we only provide results on the first iterations because we have limited ourselves to a small
number of iterations as the problem is sufficiently well approximated in a short time. It would therefore not be
relevant to compare relative errors where the variation between the parameters becomes insignificant.
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Figure 11: Parametric problem µ = ν: hyper-reduced ROM and selected elements at the end of the POD-Greedy
procedure (εu = 10−5) for two different values of δ

6 Conclusion

In this work, we developed and numerically validated a model order reduction procedure for a generic class of
nonlinear mechanical problems with internal variables. We successfully implemented the method directly with an
HF industrial code and validated it on an elastoplastic material. We proposed a time-averaged error indicator
to drive the offline Greedy sampling, which is cost-efficient and has been shown numerically correlated to the
approximation errors, and we developped an element-wise empirical quadrature procedure to reduce online costs.
The whole procedure delivered impressive computational cost improvements cost improvements in the order of
O(20− 25) with relative prediction errors in the order of 10−3.

We aim to extend our methodology in several directions. First, we try to extend this approach to more complex
problems with more marked differences depending on the physical parameters used. Indeed, the algorithm presented
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Figure 12: Parametric problem µ = (ν, apui): colormaps of the time-averaged error indicators and selected
parameters (points squared in black) for every Greedy iterations

here allows to approach the parametric variety after only a few iterations. We therefore seek to test the approach on
more complex problems to assess the relevance of our approach for other nonlinear quasi-static mechanical problems
and we wish highlight the interest of this adaptive approach compared to naive approach (cartesian grid) provided
that we have a more complex physical problem to address. We also wish to explore more sophisticated sampling
strategies to reduce offline costs. Moreover, we are looking to extend this approach to real-world challenging
industrial problems, such as with three-dimensional and one-dimensional mechanical couplings, namely in the case
of engineering studies involving prestressed concrete.
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A Newton solver

In this appendix, we provide details on the numerical procedure used for solving nonlinear systems with dualisation
of boundary conditions in the code aster framework. For this purpose, we first discuss the procedure used when
the kinematic conditions are handled by Dirichlet elimination, before introducing the dualization of the boundary
conditions and the stopping criteria considered.

A.1 No dualisation of the boundary conditions

We focus on looking for the k-th timestep solution . The resolution is performed by a Newton-Raphson type
algorithm, which is an incremental algorithm. The iterative process is driven by the search for a solution at each
iteration according to the knowledge at the previous iteration:

u
(k)
θ+1 = u

(k)
θ + ∆u

(k)
θ

The iterate is computed from the solution of the linear system, expressed with the Jacobian matrix (also called

tangent matrix in mechanics) evaluated in u
(k)
θ :

Rhf
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)
A.2 Dualization of the boundary conditions

For the dualisation of constraints, we must investigate a new increment in displacement and in terms of Lagrange
multipliers: {
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(42)

The task is hence to solve the following nonlinear system:{
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)
+ BTλ
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d

(43)

Using a linearization analogous to the equation, and exploit the linearity of the operator associated with the
kinematic conditions, the assembled discretized system (for one θ iteration) is decomposed as:{
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which leads to the following saddle-point problem:[
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A.3 Stopping criterium

Under the philosophy of the formulations in code aster, the internal contributions (work of internal forces) and
external contributions (forces applied to the system) are evaluated separately in the assembled residue:

Rhf
(
u(k)

)
= Fint,(k)

(
u(k)

)
− Fext,(k) (46)

Different criteria are available in code aster. The reader may refer to the code documentation for more details.
Our choice is a relative criterion defined as follows:∥∥∥Rhf

(
u

(k)
θ

)
+ BTλ

(k)
θ

∥∥∥
∞∥∥∥BTλ

(k)
θ − Fext,(k)

∥∥∥
∞

≤ εnewt (47)

The vector BTλ
(k)
θ can be interpreted physically as the opposite of the support reactions at the nodes where the

conditions are dualised. The convergence criterion can be seen as a process of normalizing the residual calculated
at a given iteration with respect to the forces exerted on the system at that iteration (external forces and support
reactions).

B Dictionary construction

B.1 Solution reproduction problem example

B.1.1 Formulation

We resume the example introduced in the section 3.1, i.e. the case of a solution reproduction problem. We describe
more precisely the hyper-reduction process used in our methodology. We keep the same notations as previously
introduced. In such a scenario, we have K HF snapshot (displacements and stresses) and Nu primal modes at our
disposal. We hence have nint = K ×Nu manifold accuracy constraints to fulfill:

(G)lines(n,k), q = Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
and (y)lines(n,k) = Rσ,hf

(
Eqd
q σ

(k), Eno
q ζu,n

)
(48)

where G ∈ Rnint×Ne and y ∈ Rnint and lines : (k,n) ∈ RK×Nu → Rnint a bijection used to have a unique
numerotation of rows (set by the way we build the dictionnary). The last row of the dictionnary is set in order to
fulfill the constant-function constraint :

(G)nint+1, q = |Kq| , and (y)nint+1 = |Ω| (49)

B.1.2 Separation of integrals

As we restrict ourselves to a single-mesh study, we have only volumic forces applied to the system. From a
practical viewpoint, adding directly the residuals can load to numerical instabilities. Indeed, if the probelm is well
represented by a single mode, ζu,n∗, we can have:

Rσ,hf
(
Eqd
q σ

(k), Eno
q ζu,n

)
≈ 0

To tackle this issue, we chose to split the residual in two contributions: one for the internal forces and the other
for the external forces. Such an implementation is consistent with code aster discrete formulation. The residuals
can be expressed thanks to the variationnal form as:

Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
=

∫
Ωq

σ(k) : ∇sζu,n dx−
∫

Ωq

fv · ζu,ndx (50)

We can then define the contributions:{
Rσ,hf,int
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
=

∫
Ωq
σ(k) : ∇sζu,n dx

Rσ,hf,ext
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
=

∫
Ωq
fv · ζu,ndx

(51)

With this formulation, we have nlin = (K + 1)×Nu and G and y are modified accordingly:

(G)lines(n,k,∗), q = Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
and (y)lines(n,k,∗) = Rσ,hf

(
Eqd
q σ

(k), Eno
q ζu,n

)
(52)
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B.1.3 Normalization

A challenge related to the orders of magnitude arises in the optimization problem construction. Indeed, we have
lines related to volume constraints while others are related to internal or external forces. Since the algorithms
convergence criteria used are designed on the residuals (in the sense of optimisation, i.e. ‖Gρ− y‖∗), it is likely
that some constraints are ’overlooked’ because of the differences in order of magnitude. To ensure a good behaviour
of our strategy, we normalize the whole dictionary to have an addimensionalized problem:

(G)lines(n,k,∗), q =
Rσ,hf
q

(
Eqd
q σ

(k), Eno
q ζu,n

)
Rσ,hf

(
Eqd
q σ(k), Eno

q ζu,n

) and (G)nint+1, q =
|Kq|
|Ω|

(53)

Thus, the second member consists only of a unitary vector:

(y)lines(n,k,∗) = 1, and (y)nint+1 = 1 (54)

This approach is well suited to industrial codes that are not necessarily designed to have dimensionless formu-
lations.

C Error indicator

C.1 Time-dependent external forces

We consider a formulation where the external loading can vary during time. In such a situation, we have a different
linear form for each timestep. We can then define:(

ψ
σ,(k)
Nσ+1, v

)
= LNσ+1(v), ∀v ∈ X hf

bc with L(k)
Nσ+1 =

∫
Ω

f (k)
v · v dx+

∫
Γn

f (k)
s · v ds

This leads to the modification of the Gramian matrix for the last column and the last row:
(
Σ

(k)
N

)
n,m

= (ΣN )n,m , ∀n,m ∈ {1, ..., Nσ}(
Σ

(k)
N

)
n,Nσ+1

=
(
ψσn, ψ

σ,(k)
Nσ+1

)
, ∀n ∈ {1, ..., Nσ + 1}

In practice, we can observe that the Nσ ×Nσ upper-left submatrix doesn’t change over time. A cost-efficient
implementation of the Gramian matrix would be only to change the appropriate row over time. Furthermore, we
can also observe that for proportionnal loadings (often used for numerical examples in elasto-plasticity, one can
compute only one Riesz element and multiply by the appropriate constant at each timestep).

C.2 Normalisation of the error indicator

In order not to have values of dual norms that differ depending on the order of magnitude of the loading, we choose
to normalize the residual using the norm of the Riesz elements for the external loadings. Moreover, this choice
seems consistent with the relative convergence criteria used in pratice in code aster (see Appendix A.3). We define

Σ̃N ∈ RNσ+1,Nσ+1:

∀n,m ∈ {1, ..., Nσ},
(
Σ̃

(k)
N

)
n,m

=

(
Σ

(k)
N

)
n,m(

Σ
(k)
N

)
Nσ+1,Nσ+1

=

(
Σ

(k)
N

)
n,m∥∥∥ψσ,(k)

Nσ+1

∥∥∥2

The actual error indicator used in our computations is:

∆av
N,µ =

√√√√ 1

K

K∑
k=1

(
∆

(k)
N,µ

)2

, with
(

∆
(k)
N,µ

)2

=
(
α̃(k)
σ,µ

)T
· Σ̃(k)

N · α̃
(k)
σ,µ (55)
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D Details about the elastoplastic solver

The purpose of this appendix is to supply the stages of the numerical procedure adopted so that the work can
be reproduced. Plasticity comes to the proficiency of a material to undergo irreversible deformations in reaction
to an applied loading. Likewise, elastoplasticity refers to a behaviour where the material has several response
regimes: a plastic behaviour for ’small’ loadings, and a plastic behaviour (permanent deformations) over some
loading amplitude.

D.1 Incremental algorithm

We provide here the choice of the time discretization algorithm used to solve the physical problem detailed in the
section 4. We rely on the discretisation schemes presented by the Eq.(2). The time integration of the mechanical
behavior of the problem is performed from the computation of a deformation increment:

ε(k) = ε(k−1) + ∆ε(k−1) (56)

We recall (see Eq. (38)) that e (resp. s) stands for the deviator of the strain (resp. stress) tensor. The
discretization of the problem boils down to finding

(
∆p(k−1), ∆εp,(k−1)

)
for a given ∆ε(k−1) such that:{

p(k) = p(k−1) + ∆p(k−1)

εp,(k) = εp,(k−1) + ∆εp,(k−1) with,



σ(k) = σ(k−1) +
Eν

(1 + ν) (1− 2ν)
Tr
(

∆ε(k)
)

+
E

1 + ν

(
∆e(k) −∆εp,(k)

)
σeq,(k) − R

(
p(k−1) + ∆p(k−1)

)
≤ 0

∆εp,(k−1) = ∆p(k−1) 3

2σeq,(k)
s(k)

∆p(k) ≥ 0

∆p(k)
[
σeq,(k) −R

(
p(k−1) + ∆p(k−1)

)]
= 0

(57)

We choose to consider an algorithm referred to as incremental in the literature, with a first-order accurate time
discretization. The solution varies depending on whether the evolution is exclusively elastic or elastoplastic. Such
a procedure adopted is referred to as the return mapping algorithm (or radial return)43. It resorts to an elastic
prediction phase, where the stress field is derived under the assumption of a purely elastic material (σelas

n+1). The
function f

(
σelas
n+1, pn

)
is then estimated based on this prediction. If the solution obtained remains in the elastic

region, the next iteration can be launched. Otherwise, a correction is performed by solving the nonlinear equation:

f (σn+1, pn + ∆pn) = 0 (58)

This equation is nonlinear and is solved through a Newton solver (secant method). The set of unknowns is
inferred from the plastic deformation increment ∆pn. Note that this algorithm is even applied for static problems.
In this case, a pseudo-time is introduced. From a physical perspective, it can be understood as a time modeling
the evolution of the irreversibility within the material.
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Algorithm 3 Return mapping algorithm

Computation of the elastic prediction selas
n+1 = sn + 2µ∆en

Stress computation σelas
n+1, σelas,eq

n+1

Computation of the criterium f
(
σelas
n+1, pn

)
if f

(
σelas
n+1, pn

)
≤ 0 then . Elastic Evolution

Computation of the stress and internal variables:

σn+1 = σelas
n+1, εpn+1 = εpn, pn+1 = pn

end if
if f

(
σelas
n+1, pn

)
> 0 then . Elastoplastic

Find ∆pn solution of . Eq.(58)

σelas,eq
n+1 − 3E

2(1 + ν)
∆pn −R (pn + ∆pn) = 0

Computation of plastic deformation increments:

εpn+1 = εpn+ + ∆εpn, pn+1 = pn + ∆pn

Update of stress and internal variable: . Eq.(37)

σn+1 = σn +
Eν

(1 + ν) (1− 2ν)
Tr (∆εn)1+

E

1 + ν
(∆en −∆epn)

end if
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