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Abstract

We propose a projection-based monolithic model order reduction (MOR) proce-
dure for a class of problems in nonlinear mechanics with internal variables. The
work is is motivated by applications to thermo-hydro-mechanical (THM) systems for
radioactive waste disposal. THM equations model the behaviour of temperature, pore
water pressure and solid displacement in the neighborhood of geological reposito-
ries, which contain radioactivewaste and are responsible for a significant thermal flux
towards the Earth’s surface. We develop an adaptive sampling strategy based on the
POD-Greedy method, and we develop an element-wise empirical quadrature hyper-
reduction procedure to reduce assembling costs. We present numerical results for a
two-dimensional THM system to illustrate and validate the proposed methodology.
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1 INTRODUCTION

1.1 Model reduction for a class of models in nonlinear mechanics
The disposal and storage of high-level radioactive waste materials in geological means requires a careful assessment of the long-
term effects on neighboring areas. The system behaviour is well-described by time-dependent large-scales coupled systems of
partial differential equations (PDEs), which take into account the thermal, hydraulic and mechanical response of the geological
medium. Numerical simulation of these systems is challenging due to several difficulties: first, finite element (FE) models of
the problem are highly-nonlinear, time-dependent and high-dimensional; second, due to the uncertainty in model parameters,
we need to solve the model for many different system configurations (many-query problem). In this work, we shall devise a
model-order reduction (MOR) strategy to speed up parametric studies for radioactive waste disposal applications.
In this contribution we study a general class of nonlinear problems in structural mechanics with internal variables.We consider

the spatial variable x in the Lipschitz domain Ω ⊂ ℝd with d = 2, 3, and the time variable t in the time internal (0, Tf ), where
Tf is the final time. We further define the vector of parameters � in the compact parameter region  ⊂ ℝP . We introduce the
state (or primary) variables U and internal (or dependent) variables W ; we denote by  and  suitable Hilbert spaces in Ω
for U andW , and we define the space of continuous functions from (0, Tf ) to  and , C(0, Tf ;) and C(0, Tf ;). Then, we
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introduce the parameterised problem of interest: given � ∈  , find (U�,W �) ∈ C(0, Tf ;) × C(0, Tf ;) such that

⎧

⎪

⎨

⎪

⎩

�(U�, )tU�,W �) = 0 inΩ × (0, Tf )

Ẇ � = �(U�,W �), inΩ × (0, Tf )
(1)

with suitable initial and boundary conditions. Here, � is a nonlinear second-order in space, first-order in time differential
operator that is associated with the equilibrium equations, while � is a set of ordinary differential equations (ODEs) that is
associated with the constitutive laws.
Our methodology is motivated by the application to thermo-hydro-mechanical (THM) systems of the form (1), which are

widely used to model the system’s response for radioactive waste disposal applications. Radioactive material is placed in an
array of horizontal boreholes (dubbed alveoli) deep underground: due to the large temperature of the alveoli, a thermal flux is
generated; the thermal flux then drives the mechanical and hydraulic response of the medium over the course of several years.
We refer to section 4 for a detailed discussion of the considered THM model and boundary conditions.

1.2 Objective of the work and relationship to previous works
We propose a projection-based monolithic model order reduction (MOR1,2,3) technique for problems of the form (1), with
particular emphasis on THM systems. The approach is characterised by an offline/online splitting to reduce themarginal cost, and
relies on Galerkin projection to devise a reduced-order model (ROM) for the solution coefficients. We rely on hyper-reduction to
speed up the assembly of the ROM during the online stage, and we rely on adaptive sampling to reduce the offline training costs.
The contribution of this work is the development of a POD-Greedy technique for coupled problems with internal variables.

First, we present a time-average a posteriori error indicator and compare it with a more standard discrete L2(0, Tf ; ′) dual
residual in terms of computational and memory costs and effectivity. This is crucial for the efficiency of the adaptive method.
Second, we apply a greedy sampling (based on the proposed error indicator) to effectively explore the parameter domain. Third,
we introduce in this framework a hyper-reduction technique based on an element-wise empirical quadrature (EQ) procedure.
EQ procedures also dubbed mesh sampling and weighting have been first proposed in Refs.4,5,6 and further developed in

several other works including Ref.7: the key feature of EQ is to recast the problem of hyper-reduction as a sparse representation
problem and then resort to state-of-the-art techniques in machine learning and signal processing to estimate the solution to the
resulting optimisation problem. Here, we rely on the approach employed in Ref.8, which combines the methods in Refs.4,5 and
relies on non-negative least-squares to estimate the solution to the sparse representation problem.
As discussed in section 3, the presence of internal variables requires several changes to the EQ approach in Ref.8. Our approach

relies on a different treatment of primary and internal variables compared to the works in Ref.9,10, as explained in section 3.2.
In addition, in the present work we aim at solving coupled systems that model the interaction between mechanic, thermal and
hydraulic response, as described in section 4. In section 3 we clarify to what extent the management of internal variables requires
a careful adaptation of the MOR technique illustrated in Ref.8 and we briefly compare our treatment of internal variables with
Refs.9,10.
We emphasise that several other hyper-reduction techniques have been proposed in the literature including the empirical

interpolation method (EIM11) and its discrete variant12, the approach in Ref.13, and Gappy-POD14,15. We also refer to Refs.16,17
for further empirical (or reduced) quadrature procedures for problems in nonlinear mechanics. A thorough comparison of state-
of-the-art hyper-reduction techniques is beyond the scope of this work.
The POD-Greedy algorithm was introduced in Ref.18 and analysed in Ref.19: the approach combines proper orthogonal

decomposition (POD20,21,22) to compress temporal trajectories with a greedy search driven by an error indicator to explore
the parameter domain. In this work, similarly to Ref.23, we rely on a time-averaged error indicator to drive the greedy search;
furthermore, we test two different compression strategies to update the POD basis at each greedy iteration.
We further observe that the development of online-efficient adaptive ROMs for problems of the form (1) is extremely limited

in the literature. Relevant examples include the works in Refs.13,24,25, which, however, do not consider adaptive sampling. As
regards the application of MOR to THM systems, we recall the recent contribution by Larion et al.26: note, however, that the
work in Ref.26 deals with a linearised THM model without internal variables.
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1.3 Outline
The outline of this paper is the following. In section 2 we briefly present the mathematical model and the numerical discretisation
for the general class of nonlinear problems in structural mechanics defined in (1). In section 3, we present the MOR technique: to
simplify the presentation, we first discuss the solution reproduction problem and then we extend the approach to the parametric
case. Section 4 contains details of the THM mathematical model considered in the numerical section. In section 5, we present
extensive numerical investigations for a two-dimensional THM system. In section 6, we draw some conclusions and we outline
a number of subjects of ongoing research.

2 FORMULATION

2.1 Notation
In this section, we omit dependence on the parameter. Given Ω ⊂ ℝd , we define the triangulation {Dk}

Ne
k=1, where Ne denotes

the total number of elements, the nodes {xhfj }

j=1 and the connectivity matrix T ∈ ℕNe,nlp such that Tk,i ∈ {1,… , } is the

index of the i-th node of the k-th element of the mesh and nlp is the number of degrees of freedom in each element. We remark
that throughout the paper the acronym HF stands for high-fidelity discretisation.
Then, we introduce the continuous Lagrangian FE basis {'i}i=1 associated with the triangulation {Dk}

Ne
k=1, such that'i(x

hf
j ) =

�i,j , and we introduce the FE space for the state variables:

hf ∶= span
{

'iej ∶ i = 1,… , , j = 1,… , Deq

}

, (2)

where e1,… , eDeq
are the elements of the canonical basis andDeq is the number of state variables. We define the state variables

for the specific problem of interest in in section 4.1.
We denote by ‖ ⋅‖ =

√

(⋅, ⋅) the norm of hf ; furthermore, given u ∈ hf , we denote by u ∈ ℝ ,Deq the corresponding vector
(or matrix) of coefficients such that (u)j,l =

(

u(xhfj )
)

l
for j = 1,… , and l = 1,… , Deq; notation u(∶,l) refers to the lth

column of the matrix u.
In view of the MOR formulation, we introduce the elemental restriction operators Ek ∶ ℝ → ℝnlp such that

(

Eku
)

i,l =
(

u(xhfTk,i)
)

l
, i = 1,… , nlp, l = 1,… , Deq, k = 1,… , Ne. (3a)

Furthermore, we introduce the quadrature points {xhf ,qq,k }q,k ⊂ Ω, such that xhf ,qq,k is the q-th quadrature point of the k-th element
of the mesh, with q = 1,… , nq, and the operators E

qd
k ∶ ℝ → ℝnq and Eqd,∇k ∶ ℝ → ℝnq,d such that

(

Eqdk u
)

q,l
=

(

u(xhf ,qq,k )
)

l
,

(

Eqd,∇k u
)

q,l,j
=

(

)
)xj

u(xhf ,qq,k )
)

l

(3b)

where q = 1,… , nq, l = 1,… , Deq, k = 1,… , Ne and j = 1,… , d. To shorten notation, in the following, we further define
Eqd,⋆k ∶ ℝ → ℝnq,d+1 such that

(

Eqd,⋆k u
)

q,l,1
=
(

Eqdk u
)

q,l
,

(

Eqd,⋆k u
)

q,l,2…,d+1
=
(

Eqd,∇k u
)

q,l,⋅
. (3c)

Remark 1. For the THM problem considered in this work, the state U contains the displacement u, the water pressure p and the
temperature T (Deq = 2 + d); as discussed in Ref.27, to avoid instabilities, it is important to use polynomials of degree � for
displacement and �−1 for pressure and temperature: as a result, we should introduce separate restriction operators and separate
FE spaces for the different components of the state. In the main body of the paper we choose to not explicitly address this issue
to simplify notation: we remark that the extension to �-(� − 1) discretisations is computationally tedious but methodologically
straightforward.

2.2 Finite element discretisation of (1)
We introduce the time grid 0 = t(0) < t(1) < … < t(Jmax) = Tf such that t(j) = jΔt. We denote by {U (j)

hf }
Jmax
j=1 ⊂ hf the FE

approximation of the state variables at all times, that is, the lth column of U (j)
hf is the approximation of the lth state variable at

time t(j). On the other hand, we denote by W(j)
hf ∈ ℝnq,Ne,Dint the tensor associated with the evaluation of the internal variables
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at time t(j) in the quadrature points:
(

W(j)
hf

)

q,k,l
=

(

W (j)
hf (x

hf ,q
q,k )

)

l
, q = 1,… , nq, k = 1,… , Ne, l = 1,… , Dint .

Given l ∈ {1,… , Deq}, we further denote by Ildir ⊂ {1,… , Nhf} the indices associated with Dirichlet boundary conditions (if
any) of the lth state component, and we denote by g(j)

dir,l
∈ ℝ|Ildir | the vector that contains the value of the lth state component

at each Dirichlet node at time t(j).
We state the FE discretisation of (1) as follows: for j = 1, 2,…, find (U (j)

hf ,W
(j)
hf ) such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

hf
(

U(j)hf , U
(j−1)
hf , W(j)

hf , W
(j−1)
hf , V

)

= 0, ∀V ∈ hf ,0;

U(j)hf (I
l
dir ,l) = g(j)

dir,l
, l = 1,… , Deq;

(

W(j)
hf

)

q,k,l
= hf

l

(

(

Eqd,⋆k U(j)hf
)

q,⋅
,
(

Eqd,⋆k U(j−1)hf

)

q,⋅
,
(

W(j−1)
hf

)

q,k,⋅

)

,

q = 1,… , nq, k = 1,… , Ne,l = 1,… , Dint .

(4)

where hf ,0 ∶= {V ∈ hf ∶ V(Ildir ,l) = 0,l = 1,… , Deq} is the test space for all state equations. Note that hf and hf are
the discrete counterparts of the operators  and  in (1). Note also that the constitutive laws are stated in the quadrature points
of the mesh and the internal fields should be computed in the quadrature points of the mesh. Dirichlet boundary conditions are
imposed via a lifting; Neumann boundary conditions are introduced in the weak formulation associated to the first equation in
system (4) via the Green’s formula. We refer to section 4 for the particular form of problem (4) associated to THM systems.
The underlying problem is second-order in space and first-order in time. At each time step, following Ref.27, we solve (4) for

U (j)
hf using a Newton method with line search; the method requires the computation of the Jacobian and the solution to a coupled

linear system of size ⋅Deq.
In view of the introduction of the MOR methodology, in particular the hyper-reduction procedure, we write the residualhf

as the sum of local contributions.
hf (U(j), U(j−1), W(j), W(j−1), V

)

=

Ne
∑

k=1
rhfk

(

EkU(j), EkU(j−1),
(

W(j))

⋅,k,⋅ ,
(

W(j−1))

⋅,k,⋅ , EkV
(j)
) (5)

As explained in section 3, this decomposition provides the foundation of our hyper-reduction procedure.

3 METHODOLOGY

We propose a time-marching Galerkin ROM based on linear approximations. More precisely, we consider approximations of
the form

Û
(j)
� = Z �̂(j)� =

N
∑

n=1

(

�̂(j)�
)

n
�
n
, j = 1,… , Jmax, (6)

where {�̂(j)� }
Jmax
j=1 ⊂ ℝN are referred to as solution coefficients and are computed by solving a suitable ROM, while Z ∶ ℝN →

hf is the reduced-order basis (ROB) and  ∶= span{�
n
}Nn=1 is the reduced space. In presence of non-homogeneous Dirichlet

conditions, it is convenient to consider affine approximations of the form Û
(j)
� = Hg(j) + Z �̂(j)� , where H is a suitable lifting

operator (see, e.g., Ref.8) and  ⊂ hf ,0: since in this work, we consider homogeneous Dirichlet conditions, we do not address
the treatment of non-homogeneous conditions. We consider a single reduced basis Z for all state variables in {U (j)

hf }
Jmax
j=1 ; we

discuss the choice of the inner product in section 4 (cf. Eq. (33)).
The Galerkin ROM is obtained by projecting (4) onto the reduced space: this leads to a nonlinear system ofN equations at

each time step. To reduce assembly costs, it is important to avoid integration over the whole integration domain. Towards this
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Algorithm 1 Solution reproduction problem: offline/online decomposition
Offline stage:

1: compute {U(j)hf ,μ}j∈Is , Is ⊂ {1,… , Jmax};

2: construct the ROB Z; ⊳ section 3.1.1
3: construct the weights �eq. ⊳ section 3.1.2

Online stage:
4: compute {�̂(j)� }

Jmax
j=1 by solving the ROM (7).

end, we define the indices associated with the “sampled elements” Ieq ⊂ {1,… , Ne} and we define the EQ residual:

eq
�

(

U(j), U(j−1), W(j), W(j−1), V
)

=
∑

k∈Ieq

�eqk rhf�,k
(

EkU(j), EkU(j−1),
(

W(j))

⋅,k,⋅ ,
(

W(j−1))

⋅,k,⋅ , EkV
(j)
) (7a)

where �eq = [�eq1 , ..., �
eq
Ne
]T is a sparse vector of positive weights such that �eqk = 0 if k ∉ Ieq. In conclusion, the Galerkin ROM

reads as follows: for j = 1, 2,…, find (Û
(j)
� , Ŵ

(j)
� ) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

eq
�

(

Û
(j)
� , Û

(j−1)
� , Ŵ

(j)
� , Ŵ

(j−1)
� , V

)

= 0, ∀V ∈ ;
(

Ŵ
(j)
�

)

q,k,l
= hf

�,l

(

(

Eqd,⋆k Û
(j)
�

)

q,⋅
,
(

Eqd,⋆k Û
(j−1)
�

)

q,⋅
,
(

Ŵ
(j−1)
�

)

q,k,⋅

)

,

q = 1,… , nq, k ∈ Ieq,l = 1,… , Dint .

(7b)

Note that the internal variables need to be computed only in the sampled elements. Furthermore, computation of (7b) only
requires the storage of the ROB in the sampled elements, {Ek�n ∶ n = 1,… , N, k ∈ Ieq}: provided that |Ieq|≪ Ne, this leads
to significant savings in terms of online assembly costs and also in terms of online memory costs.
In the remainder of this section, we shall discuss the construction of the ROBZ (data compression), the empirical quadrature

rule �eq (hyper-reduction) and also the error indicator. To simplify the presentation, in section 3.1 we focus on the solution
reproduction problem, while in section 3.2 we discuss the extension to the parametric problem.

3.1 Solution reproduction problem
The solution reproduction problem refers to the task of reproducing the results obtained for a fixed value of the parameter �.
Algorithm 1 summarises the procedure: during the offline stage, we compute the HF solution to (6) for a given parameter and
we store snapshots of the state variables at select time steps Is ⊂ {1,… , Jmax}; then, we use this piece of information to build
a ROM for the state; then, during the online stage, we query the ROM for the same value of the parameter considered in the
offline stage.
The solution reproduction problem is of little practical interest; however, it represents the first step towards the implementation

of an effective ROM for the parametric problem. Note that during the offline stage we store the state variables in a subset of
the time steps and we do not store internal variables: this choice is motivated by the fact that for practical problems memory
constraints might prevent the storage of all snapshots; in addition, internal variablesmight not be computed explicitly by available
HF codes.

3.1.1 Data compression
We resort to POD based on the method of snapshots (cf. Ref.28) to generate the ROB Z. Given the snapshots {U (j)

hf ,μ}j∈Is =
{U (k)}Kk=1, K = |Is|, we define the Gramian matrix C ∈ ℝK,K such that Ck,k′ = (Uk, Uk′); then, we define the POD eigenpairs

C�̃n = �n�̃n, �1 ≥ �2 ≥… �K ≥ 0;
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finally, we define the POD modes

�
n
∶=

K
∑

k=1

(

�̃n
)

k
Uk, n = 1,… , N.

The reduced space sizeN can be chosen according to the energy criterion:

N ∶= min
{

M ∶
M
∑

n=1
�n ≥ (1 − tol2POD)

K
∑

i=1
�i

}

, (8)

for some user-defined tolerance tolPOD > 0. Note that the PODmodes depend on the choice of the inner product (⋅, ⋅): we discuss
the choice of (⋅, ⋅) for the THM problem considered in this paper in section 4.

3.1.2 Hyper-reduction
We denote by R̂hf� (⋅) and R̂

eq
� (⋅) the algebraic reduced residuals associated with the HF and empirical quadrature rules, such that

⎧

⎪

⎨

⎪

⎩

(

R̂hf�
(

�; �,W′)
)

n
∶= hf

�

(

Z�, Z �, W⋆
� , W

′, �
n

)

, n = 1,… , N,
(

R̂eq�
(

�; �,W′)
)

n
∶= eq

�

(

Z�, Z �, W⋆
� , W

′, �
n

)

, n = 1,… , N,

where �, � ∈ ℝN , W′ ∈ ℝnq,Ne,Dint , and W⋆
� = W⋆

�

(

�, �;W′) is obtained by substituting in (4)3. We further introduce the
Jacobians Jhf� (⋅), J

eq
� (⋅) such that

(

Jhf� (�; �,W
′)
)

n,n′
∶= )

)�n′

(

R̂hf�
(

�; �,W′)
)

n
,

(

Jeq� (�; �,W
′)
)

n,n′
∶= )

)�n′

(

R̂eq�
(

�; �,W′)
)

n
,

for n, n′ = 1,… , N . We observe that the computation of the Jacobian involves the derivatives with respect to the constitutive
laws in hf ; we further observe that the residuals R̂hf� (⋅) and R̂

eq
� (⋅) satisfy

R̂hf�
(

�; �,W′) = G
(

�; �,W′) �hf , R̂eq�
(

�; �,W′) = G
(

�; �,W′) �eq, (9)

where G ∈ ℝN,Ne can be explicitly derived using the same approach as in Ref.8 and �hf = [1,… , 1]T .
As in Ref.6, we reformulate the problem of finding the sparse weights �eq ∈ ℝNe as the problem of finding a vector �eq such

that:

1. the number of nonzero entries in �eq, which we denote by ‖�eq‖0, is as small as possible;

2. the entries of �eq are non-negative;

3. (constant-function constraint) the constant function is integrated accurately: ||
|

Ne
∑

k=1
�eqk |Dk| − |Ω|||

|

≪ 1;

4. (manifold accuracy constraint) the empirical and hf residuals are close at operating conditions:
‖

‖

‖

(

Jhf� (�
(j)
train,�

(j)
train;W

(j−1)
train )

)−1 (
R̂hf�

(

�(j)train,�
(j)
train;W

(j−1)
train

)

− R̂eq�
(

�(j)train,�
(j)
train;W

(j−1)
train

))

‖

‖

‖2
≪ 1, (10)

for j ∈ Is and for suitable choices of {�(j)train}j and {W
(j)
train}j that are discussed at the end of the section.

We observe that a similar problem was already introduced in Refs.4,9. Compared to these works, we here add the constant-
function constraint that is found to improve the accuracy of the weights when the integrals are close to zero due to the cancellation
of the function to be integrated in different parts of the domain (cf. Ref.6).
Exploiting (9), we can restate the previous requirements as a sparse representation problem:

f ind�eq ∈ arg min
�∈ℝNe

‖�‖0 s.t.

{

� ≥ 0
‖C� − b‖∗ ≤ �,

(11)

for a suitable choices of the matrix C, the vector b, the norm ‖ ⋅ ‖∗, and the tolerance �. Since the optimization problem (11)
is NP-hard, several authors have proposed computational methods to find approximate solutions to (11) in polynomial time. To
provide concrete references, Ref.6 considers a l1 relaxation of (11) with ‖⋅‖⋆ = ‖⋅‖l∞ , and resorts to linear programming to find
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an approximate solution; here, following Farhat et al.4, we approximate the solution to (11) by solving the inexact non-negative
least squares (NNLS) problem

min
�∈ℝNe

‖C� − b||2 s.t.� ≥ 0. (12)

A thorough comparison between the reduced quadrature approaches in Ref.4 and Ref.6 is beyond the scope of this paper; we refer
to Ref.29 for a detailed analysis of the performance of NNLS and a comparison with LP for a stochastic sparse representation
problem with Gaussian disturbances.
In this work, we rely on the Matlab function lsqnonneg that implements the Greedy algorithm proposed in Ref.30 and takes

as input the matrix C, the vector b, and a tolerance toleq:

�eq = lsqnonneg(C,b, toleq).

The same algorithm to find the sparse weights �eq given the matrices C,b has been first considered in Ref.4: for large-scale
problems, a parallelised extension of the algorithm was introduced and successfully applied to hyper-reduction in Ref.31.

Remark 2. The presence of internal variables complexifies the application of EQ procedures. Indeed, the problem formulation
in Equation (4) (and Equation (31) for the specific problem of interest) shows the dependence of the residual on state and internal
variables both at the current time and at the previous time step. Therefore, in order to compute the entries ofC,b associated with
(10), we should prescribe the triplets

{(

�(j)train,�
(j−1)
train ,W

(j−1)
train

)}

j∈Is
: knowledge of the primary and internal variables at time j

and j − 1 for j ∈ Is is thus necessary to construct residuals at each time step.
A first option, which was considered in Ref.9, is to store state and internal variables {U (j)

hf , U
(j−1)
hf ,W (j−1)

hf } at all select time
steps j ∈ Is. This choice might lead to very large offline memory costs — which scale with

(

nqNeDint + 2Deq
)

|Is| — and
it might require modifications to the HF solver, but it does not require the solution to the ROM with HF quadrature.
An alternative approach, which is considered in this work, is to use HF data to build the ROB for the state variables, solve the

ROM (7) with HF quadrature to obtain {�̂(j)hf ,μ, Ŵ
(j)
hf ,μ}j , and then set �(j)train = �̂(j)hf ,μ and W(j)

train = Ŵ
(j)
hf ,μ. This choice contributes

to reduce offline memory costs and might also avoid modifications to the HF solver; however, it increases offline computational
costs. In the numerical results (cf. Table 5), we report computational costs of ROM solves based on HF and empirical quadrature.
We emphasize that the other pieces of our approach — Galerkin projection, POD-Greedy algorithm, time-averaged residual

indicator — can cope with both strategies. The decision should thus be based on the particular software architecture considered
and on the design constraints.

3.2 Parametric problem
In order to extend our methodology to parametric problems, we should address two challenges. First, we should explore the
parameter domain  in an efficient way; second, we should devise a compression strategy to combine information from different
parameters.
In this work we propose an adaptive strategy based on an inexpensive error indicator described in section 3.2.2. Our point of

departure is the POD-Greedy algorithm proposed in Ref.18. Algorithm 2 summarises the procedure: the procedure takes as input
a discretisation of  , Ξtrain, a tolerance tolloop for the outer greedy loop, a tolerance tolpod for the data compression step, and the
maximum number of greedy iterations Ncount,max — we here prescribe the termination condition based on the error indicator;
we refer to the pMOR literature for other termination conditions.
We observe that the algorithm depends on several building blocks. The FE solver

[

{U(j)hf ,μ}j∈Is
]

= FE-solve(�)

takes as input the vector of parameters and returns the snapshot set associated with the sampling times Is ⊂ {1,… , Jmax}
(without saving internal variables, as pointed out in Remark 2). The data compression routine

[

Z′, �′
]

= data-compression
(

Z, �, {U(j)hf ,μ⋆}j∈Is , (⋅, ⋅), tolpod
)

takes as input the current ROB and the POD eigenvalues � = [�1,… , �N ]T , and returns the updated ROB Z′ and the updated
eigenvalues �′; finally, we observe that construction of the ROM comprises both the construction of the Galerkin ROM and of
the error indicator. In the remainder of this section, we discuss each element of the procedure.
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Algorithm 2 POD-Greedy algorithm
Require: Ξtrain = {�(k)}

ntrain
k=1 , tolloop, tolpod,Ncount,max.

1:  = ∅, � = ∅, �⋆ = �(1).
2: for ncount = 1,… , Ncount,max do
3:

[

{U(j)hf ,μ⋆}j∈Is
]

= FE-solve(�⋆);

4:
[

Z, �
]

= data-compression(Z, �, {U(j)hf ,μ⋆}j∈Is , (⋅, ⋅), tolpod); ⊳ section 3.2.1.
5: Construct the ROM with error indicator. ⊳ section 3.2.3.
6: for j = 1 ∶ ntrain do
7: Solve the ROM (7) for � = �(k) and compute Δ�.
8: end for
9: �⋆ = argmax�∈Ξtrain Δ� ⊳ Greedy search
10: if Δ�⋆ < tolloop then, ⊳ Termination condition
11: break,
12: end if.
13: end for

return ROB Z and ROM: � ∈  → {�̂�
(j)}Jmaxj=1 .

3.2.1 Data compression
We consider two different data compression strategies: a hierarchical POD (H-POD) and a hierarchical approximate POD
(HAPOD). Both techniques have been considered in several previous works: we refer to Ref.32, section 3.5 for H-POD and to Ref.33
for HAPOD; HAPOD is also related to incremental singular value decomposition in linear algebra34. Here, we review the two
approaches for completeness. We denote by Π ∶ hf →  the orthogonal projection operator on  ⊂ hf ; furthermore, we
introduce notation

[

Z, �
]

= POD
(

{U (k)}Kk=1, (⋅, ⋅), tolpod
)

to refer to the application of POD to the snapshot set {U (k)}Kk=1, with inner product (⋅, ⋅), and tolerance tolpod (cf. (8)), with
Z = [�

1
,… , �

N
], ‖�

n
‖ = 1, � = [�1,… , �N ]T , and �1 ≥ �2… ≥ �N .

Given Z and the snapshots {U (j)
hf ,μ⋆}j H-POD considers the update:

Z′ =
[

Z,Znew] , Znew = POD
(

{Π⟂U
(j)
hf ,μ⋆}j , (⋅, ⋅), tolpod

)

. (13a)

Note that the approach does not require to input the POD eigenvalues � from the previous iterations. We observe that the
approach leads to a sequence of nested spaces — that is, the updated ROB contains the ROB of the previous iteration — and it
returns an orthonormal basis of the reduced space. In our experience, the choice of the tolerance tolpod is extremely challenging:
since (8) depends on the relative energy content of the snapshot set, the update (13a) with fixed tolerance tolpod might lead to
an excessively large (resp., small) number of modes when maxj ‖U

(j)
hf ,μ⋆ −ΠU

(j)
hf ,μ⋆‖ is small (resp., large). For this reason, we

propose to choose the number of new modesNnew using the criterion:

Nnew ∶= min

⎧

⎪

⎨

⎪

⎩

M ∶ max
j∈Is

‖Π(⊕new
M )⟂U

(j)
hf ,μ⋆‖

‖U (j)
hf ,μ⋆‖

≤ tolpod, new
M = span{�new

m
}Mm=1

⎫

⎪

⎬

⎪

⎭

. (13b)

Note that this choice enforces that the in-sample relative projection error is below a certain threshold for all snapshots computed
during the greedy iterations.
HAPOD considers the update

[Z′,�′] = POD
(

{U (j)
hf ,μ⋆}j ∪ {�n�n}

N
n=1, (⋅, ⋅), tolpod

)

. (14)

Note that the approach (14) does not in general lead to hierarchical (nested) spaces. As discussed in Ref.33, section 3.3, which refers
to (14) as to distributed HAPOD, it is possible to relate the performance of the reduced space obtained using HAPOD to the
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Algorithm 3 Online solution and residual computations

1: Initial state and internal variables; set R̂avg� = 0.
2: for j = 1,… , Jmax do
3: Compute �̂(j)� by solving (7b).

4: Compute
(

Ŵ
(j)
�

)

⋅,k,⋅
for all k ∈ Ieq,r using (7b)2.

5: Assemble R̂(j)� ∈ ℝM such that
(

R̂(j)�
)

m
= eq,r

�

(

Û
(j)
� , Û

(j−1)
� , Ŵ

(j)
� , Ŵ

(j−1)
� ,  

m

)

for m = 1,… ,M .

6: Update R̂avg� = R̂avg� + (t(j) − t(j−1))R̂(j)� .
7: end for

return {�̂(j)� }j and Δ� = ‖R̂avg� ‖2

performance of the POD space associated with the snapshot set {U (j)
hf ,μ⋆,n ∶ n = 1,… , Ncount,max, j ∈ Is}: we refer to the

above-mentioned paper for a thorough discussion.

3.2.2 Time-averaged error indicator
We define the trajectories U = {U (j)}Jmaxj=1 andW = {W (j)}Jmaxj=1 ; given the pair (U,W), we define the time-average residual:

hf
avg,μ

(

U,W, V
)

∶=
Jmax
∑

j=1
(t(j) − t(j−1)) hf

�

(

U (j), U (j−1),W (j),W (j−1), V
)

, ∀ V ∈ hf ,0, (15)

and the error indicator

Δhf� (U,W) = sup
V ∈hf ,0

hf
avg,μ

(

U,W, V
)

‖V ‖
. (16)

The indicator (16) is expensive to evaluate since it relies on hf quadrature and it requires the computation of the supremum over
all elements of hf ,0: following Ref.35, we consider the hyper-reduced error indicator

Δ� (U,W) = sup
V ∈

eq,r
avg,μ

(

U,W, V
)

‖V ‖
, (17)

where  ⊂ hf ,0 is an M-dimensional empirical test space, while eq,r
avg,μ is defined by replacing hf

� in (15) with a suitable
sparse weighted residual of the form (7a), defined over the elements Ieq,r ⊂ {1,… , Ne}.
Given the ROM solution (Û�, Ŵ�), the test space  should guarantee that

sup
V ∈

hf
avg,μ

(

Û�, Ŵ�, V
)

‖V ‖
≈ sup

V ∈hf ,0

hf
avg,μ

(

Û�, Ŵ�, V
)

‖V ‖
, ∀� ∈  , (18)

which implies that  should be an approximation of the space of Riesz elementstest ∶= { ̂�
∶ � ∈ } with

(

 ̂
�
, V

)

= hf
avg,μ

(

Û�, Ŵ�, V
)

, ∀ V ∈ hf ,0. (19)

On the other hand, the empirical quadrature rule should ensure that

eq,r
avg,μ

(

Û�, Ŵ�,  m

)

≈ hf
avg,μ

(

Û�, Ŵ�,  m

)

, ∀� ∈  , m = 1,… ,M, (20)

where  
1
,… ,  

M
is an orthonormal basis of  .

In our implementation, we compute the error indicator during the time iterations — as opposed to after having computed the
whole solution trajectory. Algorithm 3 provides the complete online solution and residual indicator computations. We find that
computation of Δ� requires to compute the internal variables Ŵ� in the elements Ieq ∪ Ieq,r at each time iteration (cf. (7b)), and
it requires to store the trial ROB Z in {Dk ∶ k ∈ Ieq ∪ Ieq,r} and the test basis Y = [ 1,… ,  

M
] in {Dk ∶ k ∈ Ieq,r}.



10 Iollo ET AL.

Algorithm 4 Construction of the ROM
1: for � ∈ Ξ⋆ do
2: Solve the ROM with hf quadrature and compute C� and R

avg,un
� .

3: end for

4: Assemble C =

⎡

⎢

⎢

⎢

⎢

⎣

C�̃(1)

⋮
C�̃(nrom)

cT

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝK⋅N ⋅nrom,Ne and set �eq = lsqnonneg(C,C�hf , toleq).

5: Compute the Riesz representers { ̂
�
}�∈Ξ⋆ using (19).

6: Define the empirical test space  = span{ 
m
}Mm=1 as [{ m

}Mm=1] = POD
(

{ ̂
�
}�∈Ξ⋆ , (⋅, ⋅), tolpod,res

)

.

7: Assemble G =

⎡

⎢

⎢

⎢

⎢

⎣

G�̃(1)

⋮
G�̃(nrom)

cT

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℝM ⋅nrom,Ne and set �eq,r = lsqnonneg(G,G�hf , toleq,r).

Several authors (e.g., Ref.18) have considered the time-discrete L2(0, Tf ; ′
hf ,0) residual indicator

Δhf ,2� (U,W) =

√

√

√

√

√

Jmax
∑

j=1
(t(j) − t(j−1))

(

sup
V ∈hf ,0

hf
�

(

U (j), U (j−1),W (j),W (j−1), V
)

‖V ‖

)2

. (21)

We observe that we could apply the same ideas considered in this section to devise an hyper-reduced counterpart of the residual
indicator (21). However, we find that the test space  and the empirical quadrature rule should be accurate for all parameters
and for all time steps: as a result, the resulting test space  might be significantly higher dimensional and the quadrature rule
might be significantly less sparse, for the desired accuracy. For this reason, in this work, we investigate the effectivity of the
time-averaged error indicator (17).

3.2.3 ROM construction
In order to devise an actionable ROM, we should discuss (i) the choice of the EQ rule �eq, (ii) the choice of the test space 
and of the EQ rule �eq,r in (17). In view of the presentation of the computational procedure, we define the ROM solution with
hf quadrature (Ûhf� , Ŵ

hf
� ); we denote by C� ∈ ℝK⋅N,Ne the EQ matrix associated with the manifold accuracy constraints in (10)

for � ∈  (cf. section 3.1.2); we further define the vector c = [|D1|,… , |DNe
|]T associated with the constant function accuracy

constraint. Given the test reduced basis  
1
,… ,  

M
, we define Gr

� ∈ ℝM,Ne such that
(

Gr
��hf

)

m
= eq,r

avg,μ

(

Ûhf� , Ŵ
hf
� ,  m

)

, ∀ � ∈  , m = 1,… ,M. (22)

We further define the unassembled average residual Ravg,un� ∈ ℝnlp,Ne,Deq : we observe that Ravg,un� might be employed to build the
FE residual and ultimately compute the Riesz representers  ̂

�
in (19), and also, given  , to compute Gr

�.
We focus on the construction of the ROM at the nc-th iteration of the POD Greedy algorithm. We define Ξ⋆ = {�̃(j)}nromj=1 =

{�⋆,(i)}nci=1 ∪ {�̃
(j)}ntrain,eqj=1 , where �⋆,(1),… , �⋆,(nc) are the parameters sampled by the greedy algorithm and �̃(1),… , �̃(ntrain,eq) are

independent identically distributed samples from the uniform distribution over  . Algorithm 4 summarises the computational
procedure as implemented in our code. The test space  is built using POD as in Ref.35, while the EQ weights �

eq,r
are obtained

using the non-negative least-squares method.
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SI unit description

u m solid displacement
pw Pa water pressure
T K temperature

TABLE 1 primary variables

SI unit label

�w kg ⋅m−3 water density
' % Eulerian porosity
ℎw J ⋅ Kg−1 mass enthalpy of water
 Pa non-convected heat
Mw kg ⋅m−2 ⋅ s−1 mass flux
mw kg ⋅m−3 mass input

TABLE 2 dependent variables

SI unit value

t̄ s 3.15 ⋅ 107

H̄ m 77.3
�0 Pa 11.3 ⋅ 106

�0 kg ⋅m−3 2450
Tref K 297.5
ΔT K 30

TABLE 3 characteristic constants

4 THMMODEL PROBLEM

In this section we illustrate the non-dimensional mathematical formulation and the numerical discretisation of the THM system
considered in this work. We assume that the solid undergoes small displacements and that soil is fully-saturated in water. We
resort to a Lagrangian formulation for the solid, and to an Eulerian formulation for the fluid.

4.1 Preliminary definitions
We first introduce the state variables and the internal variables. The state variables are denoted as U� in the continuous for-
mulation in Equation (1), and their FE approximation as Uhf� in the high-fidelity discretisation in Equation (4). For the specific
problem of interest, U = [uT, pw, T ]T: the state variables represent solid displacement, water pressure and temperature and
are reported in Table 1; the internal variables W = [�w, ', ℎw, Q,MT

w, mw]
T represent dependent physical quantities and are

illustrated in Table 2, together with the corresponding SI units.
We denote the Cauchy stress tensor by �[Pa], and we define the volumetric deformation �V = tr(�)where � is the strain tensor:

� = ∇su =
1
2

(

∇u + ∇uT
)

. We also provide in Table 3 the characteristic parameters that we use for the non-dimensionalisation.

4.1.1 Geometry configuration
The computational domain is shown in Figure 1(a). The geological repositories, modelled as boundary conditions, are depicted
in red at the bottom of the domain, in the case of two activated alveoli. In the vertical (x2) direction, the domain is split into
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UA

UT

USC

x1

x2

ΓN

(a) (b)

FIGURE 1 geometric configuration: (a) the non-dimensional domain (b) the mesh. The size of each alveoulus is equal to
lQ = 3.09 [m], while the distance between consecutive alveoli is equal to l = 6.18 [m].

three layers: a clay layer denoted as UA ("unité argilleuse"), a transition layer UT ("unité de transition") and a silt-carbonate
layer USC ("unité silto-carbonatée").
In Figure 1(b) the finite element grid is shown. The number of degrees of freedom for the first state component (solid displace-
ment) is  u = 40430, while for water pressure and temperature is  p =  t = 9045. The grid is refined in the proximity of
the alveoli to better capture the relevant features of the solution. We consider a p = 3 FE discretisation for the displacement
component, and a p = 2 FE discretisation for both pressure and temperature.

4.2 Mathematical problem
We first state the equilibrium equations – the superscripts (⋅)m, (⋅)n,(⋅)t refer to quantities associated with the mechanical,
hydraulic and thermal behaviours, respectively. Then, we present the constitutive laws that are considered and finally we present
the boundary conditions. To clarify the presentation, we report in Table 4 the parameters that enter in the constitutive laws.
We denote by Fm = −

g

e2 (where  =

�0
�0H̄

) the mechanical force with g defined in Table 4 and we specify that n (resp. t) is
the unitary outward normal (resp. tangential) vector in the domain depicted in Figure 1(a); then we introduce the equilibrium of
mechanical forces:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−∇ ⋅ � = �Fm inΩ,

� n = g
m,N

on ΓN,

u ⋅ n = 0 on )Ω ⧵ ΓN,

(� n) ⋅ t = 0 on )Ω ⧵ ΓN,

(23a)

where ΓN is depicted in Figure 1(a). The Neumann datum g
m,N

is given by g
m,N

= −e2. The stress tensor is linked to the primary
and internal variables by the linear law

� = 2�∇su +
(

�∇ ⋅ u − (2� + 3�)�sT − bpw
)

1, (23b)

where the Lamé constants �′, � satisfy

�′ = E
2(1 + �)

,

� = E�
(1 + �)(1 − 2�)

,

and E and � are introduced in Table 4.
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We state the mass conservation of water as follows
⎧

⎪

⎨

⎪

⎩

)t mw + ∇ ⋅Mw = 0 inΩ

Mw ⋅ n = 0 on )Ω
(24a)

where the muss fluxMw is given by the Darcy law

Mw = −
(

∇pw − �wFm
)

, (24b)

and

 = �w
�w �0 t̄

�0�w,0 H̄2
exp

(

− 1808.5
Tref + ΔT T

)

. (24c)

Finally we consider the energy balance:
⎧

⎪

⎨

⎪

⎩

ℎw)t mw + )t + ∇ ⋅
(

ℎwMw + q
)

−Mw ⋅ Fm = Θ inΩ
(

ℎwMw + q
)

⋅ n = gt,N on )Ω
(25a)

where  is the non-convective heat, q is the thermal flux and is given by the Fick law

q = −Λ∇T , (25b)

with Λ = diag(λ1, λ2). If we denote by Γal ⊂ )Ω the region associated with the alveoli, gt,N is equal to

gt,N =
Ptnc t̄
lQH̄2�0

exp
(

− t∕�
)

1Γal = Cal exp
(

− t∕�
)

1Γal , (26)

where nc [%] is the density of the radioactive waste stock in each alveolus (equal to 45 anisters), Pt = 31.4 [W] is the unitary
termic power at the initial time, lQ = 3.09 [m] is the size of each alveolus, �0, H̄ , t̄ are introduced in Table 3 and � =

t̄
log(0.112)

[s]
is a characteristic decay time.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

d�w
�w

=
dpw
Kw

− 3�wdT

d'
b − '

= d�V − 3�sdT +
dpw
Ks

,

dℎw = Cpw dT + (�pℎ − 3�wT )
dpw
�w

,

� =
(

�� + 3�sK0 T
)

d�V −
(

�p + 3�w,mT
)

dpw + C0� dT ,

mw = �w(1 + �V)' − �0w'
0

(27a)

(27b)

(27c)

(27d)

(27e)

Here, we have �pℎ = 1 − 3�wTref , �
�
 = 3�sK0Tref , �

p
 = 3�w,mTref .

The parameters in (27a)-(27e) are defined in Table 4.

4.2.1 Initial conditions
To set the initial conditions, we consider the case of deactivated repositories: therefore, we set thermal flux equal to zero and
we set a constant temperature T0 = Tref in Ω, where the reference temperature is defined in Table 3. We aim at finding the
initial values of the primary variables u and pw that correspond to the equilibium solutions of a preliminary problem: here, the
Neumann boundary condition for the energy equation is zero, that is, gt,N = 0, and temperature is costant and equal to the
reference value Tref (in Table 3).
We then seek u0, pw,0 such that the initial solution vector U 0 = [u

T
0 , pw, T0]

T satisfies the equilibrium equations (23a), (24a) and
(25a) with thermal flux gt,N equal to 0 on the domain boundary )Ω. Towards this end, we first observe that (27a) reduces to

d�w
�w

=
dpw
Kw

(28)
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SI unit description reference value formula

g m ⋅ s−2 gravity acceleration 9.81

E Pa Young’s modulus
11.4 ⋅ 109 UA
12.3 ⋅ 109 UT
20 ⋅ 109 USC

� % Poisson’s ratio 0.3
� Pa Lamé parameter, E

2(1+�)
� Pa Lamé parameter E�

(1+�)(1−2�)
b % Biot coefficient 0.6

�s K−1 solid thermal expansion coefficient 1.28 ⋅ 10−5

�0 K−1 expansion coefficient 1.28 ⋅ 10−5

�w m2 intrinsic permeability of porous medium 10−21

�w MPa ⋅ s dynamic viscosity �w = �w,0 exp(
1808.5
T
)

�w,0 MPa ⋅ s dynamic viscosity coefficient 2.1 ⋅ 10−12

Ks Pa bulk modulus of the solid
Kw Pa bulk modulus of water 2 ⋅ 109 Ks =

E
3(1−2�)

Cpw J ⋅ kg−1 ⋅ K−1 heat capacity at constant pressure 4180

K0 Pa drained bulk modulus K0 = (1 − b)Ks
�w K−1 thermal expansion coefficient of water �w = 9.52 ⋅ 10−5 log(T − 273) − 2.19 ⋅ 10−4

�w,m dilation coefficient

Cs� J kg−1 ⋅ K specific heat at constant stress
537 UA
603 UT
640 USC

�0 Kg ⋅m−3 porous medium initial density
2450 UA
2450 UT
2500 USC

�0w Kg ⋅m−3 initial water density 103

'0 % initial Eulerian porosity
0.25 UA
0.21 UT
0.19 USC

ℎ0w m2 ⋅ s−2 initial water enthalpy ℎ0w =
p0w−patm
�0w

�s Kg ⋅m−3 density ratio �s =
�0−�0w'

0

1−'0

C0� Pa ⋅ K−1 specific heat at constant deformation C0� = (1 − ')�sC
s
� + '�wC

p
w − 9TK0�2s

Λ thermic conductivity tensor Λ = diag(λ1, λ2)

�1 Wm−1K−1 thermic conductivity component
1.5 UA
1.5 UT
1.3 USC

�2 Wm−1K−1 thermic conductivity component
1 UA
1 UT
1.3 USC

Θ Pa ⋅ s−1 volumetric heat sources

TABLE 4 parameters of the constitutive laws. Layers UA, UT, USC are depicted in Figure 1 (a).

that brings to pw = �−∞ exp
(

1
Kw
(pw − p−∞)

)

. If we assume that �w = �−∞ = �w,0, we find pw = p−∞; furthermore, by
susbstituting these assumptions into the hydraulic equilibrium equation we find

pw,0(x, y) = pw,top + �w,0g(1 − y) (29)
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where pw,top is a datum for water pressure that is defined at the top boundary of the domain (0, 1) × {1}. Finally, we search for
u0 as the solution to the equilibrium equation of mechanical forces:

∫
Ω

2�∇s u0 ∶ ∇s v + �(∇ ⋅ u0)(∇ ⋅ v) − bpw,0∇ ⋅ v − �0Fm ⋅ v dx = ∫
ΓN

g
m,N

⋅ v dx, (30)

for all v ∈ u
hf , such that v ⋅ n|)Ω⧵ΓN = 0.

4.3 Finite element formulation
We resort to an implicit Euler time discretisation scheme, with Jmax = 100 uniform time steps; the superscript (⋅)+ refers to the
new solution (at the current time step j, for j = 1, ..., Jmax), while (⋅)− refers to the solution at the previous time steps:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫
Ω

2�∇s u+ ∶ ∇s v +
(

�∇ ⋅ u+ − (2� + 3�) �sT + − bp+w
)

∇ ⋅ v −
(

�0 + m+w
)

Fm ⋅ v dx

= ∫
ΓN

g+
m,N

⋅ v dx;

∫
Ω

1
Δt
(m+w − m

−
w) + + (∇p+w − �

+
wFm) ⋅ ∇ dx = 0;

∫
Ω

(

(

ℎw
Δt
(m+w − m

−
w) +

1
Δt
(+ −−) + + (∇p+w − �

+
wFm) ⋅ Fm

)

� −
(

−ℎ−w (∇p
+
w − �

+
wFm) + q

)

⋅ ∇�

= ∫
Ω

Θ+ � dx − ∫
)Ω

g+t,N � dx;

(31)

for all v ∈ u
hf such that v ⋅ n|)Ω⧵ΓN = 0,  ∈ p

hf , � ∈  t
hf , where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�+w = �−w exp
(p+w − p

−
w

Kw
− 3�w(T + − T −)

)

;

'+ = b − (b − '−) exp
(

−(�+V − �
−
V) + 3�0(T

+ − T −) − 1
Ks

(p+w − p
−
w)
)

;

ℎ+w = ℎ
−
w + Cpw (T

+ − T −) +
�pℎ − 3�wT

+

�+w

(

p+w − p
−
w
)

;

+ = − +
(

�� + 3�sK0
1
2
(T + + T −)

)

(

�+V − �
−
V
)

−
(

�p + 3�
+
w,m

1
2
(T + + T −)

)

(

p+w − p−w
)

+C0,+� (T + − T −);

m+w = �
+
w(1 + �

+
V)'

+ − �0w '
0.

(32)

We remark that integrals in system (31)-(32) depend on internal variables at the current times t(j) and at the previous times
t(j−1), for j = 1, ..., Jmax: this model problem thus fits in the general problem introduced in Eq. (4).

4.4 Choice of the norm
We equip the FE space hf with the weighted inner product

(U,U ′) = 1
�u

2
∑

d=1
(ud , u

′
d)H1(Ω) +

1
�p
(p, p′)H1(Ω) +

1
�t
(T , T ′)H1(Ω), (33)

where the coefficients �u, �p, �t are the largest eigenvalues of the Gramian matrices Cu, Cp, Ct associated to displacement,
pressure and temperature, respectively. Similarly to Ref.35, the inner product (33) is motivated by the need for properly taking
into account the contributions of displacement, pressure and temperature, which are characterised by different magnitudes and
different units.
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4.5 Parametrization
We consider a vector of four parameters: the Young’s modulus E and the Poisson’s ratio � in the region UA, the thermic factor
� and the constant Cal in (26). For all parameters, we define the parameter domain  by considering variations of ±15% with
respect to the nominal value reported in Table 4.

5 NUMERICAL RESULTS

We measure performance through the discrete L2(0, Tf ;hf ) relative error

E� ∶=

√

√

√

√

Jmax
∑

j=1

(

t(j) − t(j−1)
)

‖

‖

‖

U (j)
hf ,μ − Û

(j)
�
‖

‖

‖

2

√

√

√

√

Jmax
∑

j=1

(

t(j) − t(j−1)
)

‖U (j)
hf ,μ‖

2

(34)

for any � ∈  . Similarly, we denote by Eu
�, E

p
� and E t

� the discrete relative L
2(0, Tf ;hf ) errors associated with the estimate of

displacement, pressure and temperature, respectively.

5.1 Solution reproduction problem
We first present numerical results for a fixed configuration of parameters �̄ ∈  to validate the ROM described in section 3. We
consider �̄ equal to the centroid of  . We perform data compression based on the whole set of snapshots, i.e. |Is| = Jmax = 100.

5.1.1 Data compression: POD
In Figure 2 we compare performance of the global POD based on the weighted inner product (⋅, ⋅) with the performance of the
component-wise POD. More precisely, we define Z such that

[Z,�] = POD
(

{U (j)
hf ,μ̄}j∈Is , (⋅, ⋅), tolpod

)

, (35)

and we then extract reduced basis associated to the single state variables of interest, that is, we extract the displacement, pressure
and temperature components Zu, Zp, Z t .
Then, we denote the "optimal" (in a discrete L2 sense) spaces

[Zu,opt ,�u,opt] = POD
(

{u(j)hf ,μ̄}j∈Is , (⋅, ⋅)H1 , tolpod
)

; (36)

[Zp,opt ,�p,opt] = POD
(

{p(j)hf ,μ̄}j∈Is , (⋅, ⋅)H1 , tolpod
)

; (37)

[ZT ,opt ,�T ,opt] = POD
(

{T (j)hf ,μ̄}j∈Is , (⋅, ⋅)H1 , tolpod
)

, (38)

that are found through Deq − 1 PODs over displacement, pressure and temperature.
In Figure 2 (a) we show the behaviour of the POD eigenvalues in (35); in Figure 2(b), (c), (d) we compare the relative projection

errors associated withZu andZu,opt ,Zp,Zp,opt andZ t andZ t,opt . We observe that the projection errors are nearly the same for
all the three state variables: this obervation suggests to consider a single reduced space to approximate the solution field.

5.1.2 Hyper-reduction
In Figure 3(a) we show the performance of the Galerkin ROM with and without hyper-reduction. We distinguish between the
high-fidelity quadrature rule, abbreviated as HFQ, and the empirical quadrature rule for several tolerances toleq. We also add as
a reference, the relative projection error. Figure 3(b) shows the percentage of selected elements Q

Ne
×100% for the same choices

of the tolerance toleq. We observe that the empirical quadrature procedure is able to significantly reduce the size of the mesh
used for online calculations without compromising accuracy. The plateau for N ≳ 14 is due to the tolerance of the Newton
iterative solver.
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FIGURE 2 solution reproduction problem. (a): exponential decay of POD eigenvalues. (b), (c), (d): projection errors computed
through (35) (in black) and (36)-(38)(in red) for increasing numbers of POD modes.

In Figure 4, we show the selected grid elements for two choices of the EQ tolerance value toleq and forN = 12. We observe
that the sampled elements are distributed over the whole domain with a slight prevalence of elements in the proximity of the
alveoli.
We report in Table 5 the computational costs associated to the solution of system (31)-(32) through the high-fidelity solver and

the ROM with high-fidelity quadrature and empirical quadrature, for the solution reproduction problem. We consider a reduced
space of sizeN = 12; we also set toleq = 10−14. The values in Table 5 are the computational speedup, that is, speedup = HF cost

ROMcost
where HF cost is the computational time of solving the high-fidelity solver and ROMcost is the computational time associated
to the ROM (we specify in different rows if with HFQ or EQ). The speedup associated to the ROMwith high-fidelity quadrature
is almost 2 and is more than 50 times lower than the speedup of the hyper-reduced ROM. For this model problem, the cost
associated with ROM with HFQ is comparable with the cost of the HF solver. As discussed in Remark 2, the choice of solving
a ROM with high-fidelity quadrature significantly increases the offline computation costs.

5.2 Parametric problem
We present results for the parametric case. We denote by Ξtrain ⊂  the training set used to build the ROM and by Ξtest ⊂  the
test set used to assess performance. Both sets consist of independent identically distributed samples of a uniform distribution in
 , with |Ξtrain| = ntrain = 50 and |Ξtest| = ntest = 10. We also set tolPOD = 10−7 in (8) and in (13b) for data compression, and
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FIGURE3 solution reproduction problem. (a): errors associated to projection error (proj), Galerkin with high-fidelity quadrature
(HFQ) and Galerkin with empirical quadrature for several choices of toleq with respect to the ROMdimensionN . (b): percentage
of selected elements for several toleq.

(a) toleq = 10−14 (b) toleq = 10−10

FIGURE 4 solution reproduction problem. Reduced mesh for two choices of the empirical quadrature tolerance.

we set tolPOD,res = 10−5 in (8) for the construction of the empirical test space. We set Is ⊂ {1, ..., Jmax} with |Is| = 20. EQ rules
are depicted usign the tolerance toleq = 10−12 (cf . Algorithm 4).

5.2.1 Error estimation
In Figure 5 we compare the dual residual and several EQ errors for each parameter � in the training set Ξtrain and for different
dimensions of the reduced space that is progressively updated during the execution of the POD-Greedy algorithm. In particular,
we show results in two cases: the hierarchical POD-Greedy (H-POD) and the hierarchical approximate POD-Greedy (denoted as
HA-POD). Figures 5(a) and 5(b) show for both H-POD and HA-POD to what extent the residual-based error indicator defined
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speedup
HF 1
ROM with HFQ 1.87
ROM with EQ 104.60

TABLE 5 solution reproduction problem: relative computational costs of the ROM with high-fidelity quadrature and empirical
quadrature.
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FIGURE 5 parametric problem: correlation between the time-average residual indicator (17) and true relative errors (34).

in (17) is correlated with the relative error (34). We observe that for values of the indicators that are larger than 10−3, correlation
is very high, while for smaller values correlation is much weaker.
To provide a a concrete reference, in Figure 6 we investigate the correlation between the relative error (34) and the time-

discrete L2(0, Tf ; ′
hf ,0) residual indicator defined in (21): we observe that the indicator in (21) is significantly more accurate,

particularly for small values of the error. As stated in section 3, the residual indicator (21) is considerably more expensive in
terms of both memory and computational costs.

5.2.2 POD-Greedy sampling
In Figures 7 and 8 we show the POD-Greedy algorithm convergence history, for both the hierarchical and approximate hierar-
chical PODs. At each iteration of the algorithm, until convergence, the error indicator Δ� is illustrated with respect to training
parameter indices train = {1, ..., |Ξtrain|} . At each iteration the selected parameter �⋆ is marked in red, while the previously
selected parameters are marked in green. We also report the dimension of the updated reduced space and the number of sampled
elements.

5.2.3 Prediction tests
In Figure 9, we assess out-of-sample performance of the proposed method. More precisely, we show the behaviour of the
maximum relative error (34) over the test set max

�∈Ξtest
E� for both H-POD Greedy and HA-POD Greedy. To provide a relevant

benchmark, we compare results with the H-POD Greedy and HA-POD Greedy algorithms based on the exact errors (strong
POD-Greedy). For this particular example, we observe that the proposed method is effective to generate accurate ROMs: in
particular, the Greedy procedures based on the time-averaged error indicator are comparable in terms of performance with the
corresponding strong POD-Greedy algorithms.
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FIGURE 6 parametric problem: correlation between residual indicator (21) and true relative errors 34.

(a) Iteration it = 1;N = 15, Q = 74, Qr = 16 (b) Iteration it = 2;N = 26, Q = 123, Qr = 18

(c) Iteration it = 3;N = 35, Q = 155, Qr = 22 (d) Iteration it = 4;N = 43, Q = 169, Qr = 18

FIGURE 7 parametric problem: POD-Greedy algorithm convergence history in the H-POD case.
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(a) it = 1;N = 15,Q = 74,Qr = 16 (b) it = 2;N = 25,Q = 120, Qr = 19

(c) it = 3;N = 31,Q = 135, Qr = 21 (d) Iteration it = 4;N = 37,Q = 156, Qr = 19

FIGURE 8 parametric problem: POD-Greedy algorithm convergence history in the HA-POD case.
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FIGURE 9 parametric problem:out-of-sample performance of the ROM parametric problem obtained using the POD-Greedy
algorithm. Comparison with strong POD Greedy.
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6 CONCLUSIONS

In this work, we developed and numerically validated a model order reduction procedure for a class of problems in nonlin-
ear mechanics, and we successfully applied it to a two-dimensional parametric THM problem that arises in radioactive waste
management. We proposed a time-averaged error indicator to drive the offline Greedy sampling, and an empirical quadrature
procedure to reduce offline costs.
We aim to extend the approach in several directions. First, we wish to apply our method to other problems of the form (1), to

demonstrate the generality of the approach and its relevance for continuummechanics applications. Second, we wish to combine
our approach with domain decomposition methods36,37,38 to deal with more complex parametrizations and topological changes.
Towards this end, we wish to devise effective localised training methods to reduce offline costs and domain decomposition
strategies to glue together the solution in different components of the domain.
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