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Abstract We present an offline/online computational procedure for comput-
ing the dual norm of parameterized linear functionals. The approach is moti-
vated by the need to efficiently compute residual dual norms, which are used
in model reduction to estimate the error of a given reduced solution. The key
elements of the approach are (i) an empirical test space for the manifold of
Riesz elements associated with the parameterized functional, and (ii) an em-
pirical quadrature procedure to efficiently deal with parametrically non-affine
terms. We present a number of theoretical and numerical results to identify
the different sources of error and to motivate the proposed technique, and we
compare the approach with other state-of-the-art techniques. Finally, we in-
vestigate the effectiveness of our approach to reduce both offline and online
costs associated with the computation of the time-averaged residual indicator
proposed in [Fick, Maday, Patera, Taddei, Journal of Computational Physics,
2018].
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1 Introduction

A posteriori error estimators are designed to assess the accuracy of a given
numerical solution in a proper metric of interest. In the context of Model
Order Reduction (MOR, [29,23]), a posteriori error estimators are employed
during the offline stage to drive the construction of the Reduced Order Model
(ROM), and also during the online stage to certify the accuracy of the estimate.
The vast majority of error estimators employed in MOR procedures relies
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on the evaluation of the dual norm of the residual: for nonlinear and non-
parametrically affine problems, this task might be particularly demanding both
in terms of memory requirements and of computational cost. Motivated by
these considerations, the objective of this paper is to develop and analyze an
offline/online computational strategy for the computation of the dual norm of
parameterized functionals.

Given the parameter space P ⊂ RP and the domain Ω ⊂ Rd, we introduce
the Hilbert space X defined over Ω endowed with the inner product (·, ·)X
and the induced norm ‖ · ‖X :=

√
(·, ·)X . We denote by X ′ the dual space of

X , and we define the Riesz operator RX : X ′ → X such that (RXL, v)X =
L(v) for all v ∈ X and L ∈ X ′. Exploiting these definitions, our goal is to
reduce the marginal (i.e., in the limit of many queries) cost associated with
the computation of the dual norm of the parameterized functional Lµ,

‖Lµ‖X ′ := sup
v∈X

Lµ(v)

‖v‖X
= ‖RXLµ‖X , (1)

for µ ∈ P. We are interested in functionals of the form

Lµ(v) =

∫
Ω

η(x; v, µ) dx, η(x; v, µ) = Υµ(x) · F (x; v), (2)

where Υ : Ω×P → RD is a given function of spatial coordinate and parameter,
and F is a linear function of v and possibly its derivatives. Throughout the
work, we shall consider H1

0 (Ω) ⊂ X ⊂ H1(Ω), and F (x; v) = [v(x),∇v(x)].
However, our discussion can be extended to other classes of functionals and
other choices of the ambient space X .

If Lµ is parametrically-affine, i.e. Lµ(v) =
∑M
m=1 Θm(µ)Lm(v) with M =

O(1), then computations of ‖Lµ‖X ′ can be performed efficiently exploiting the
linearity of the Riesz operator; on the other hand, if Lµ is not parametrically-
affine, hyper-reduction techniques should be employed. Over the past decade,
many authors have proposed hyper-reduction procedures for the efficient evalu-
ation of parameterized integrals: these techniques can be classified as Approximation-
Then-Integration (ATI) approaches or Empirical Quadrature (EQ) approaches.
ATI approaches (i) construct a suitable reduced basis and an associated in-
terpolation/approximation system for Υµ in (2), and then (ii) precompute
all required integrals during an offline stage. Conversely, EQ procedures —
also known as Reduced-Order Quadrature procedures ([2]) — directly approx-
imate the integrals in (2) by developing a specialized low-dimensional empirical
quadrature rule. Representative ATI approaches for model reduction applica-
tions are Gappy-POD, which was first proposed in [18] for image reconstruc-
tion and then adapted to MOR in [11,12,3], and the Empirical Interpolation
Method (EIM, [5,21]) and related approaches ([17,27,14,31,15]). On the other
hand, EQ approaches have been proposed in [1,2,19,28].

As explained in [28], although ATI approaches are quite effective in prac-
tice, the objective of function approximation and integration are arguably
quite different and it is thus difficult to relate the error in integrand approxi-
mation to the error in dual norm prediction. As a result, rather conservative
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selections of the approximation tolerance are required in practice to ensure
that the dual norm estimate is sufficiently accurate. On the other hand, since
the test space in (1) is infinite-dimensional, EQ approaches cannot be applied
as is, unless the Riesz element ξµ := RX Lµ is known explicitly.

We here propose an offline/online procedure that relies on two key ingre-
dients: empirical test spaces, and empirical quadrature. We resort to Proper
Orthogonal Decomposition (POD, [6,32,35]) to generate a Jes-dimensional re-
duced space XJes that approximates the manifold of Riesz elements associated
with L, ML = {RXLµ : µ ∈ P}. Then, we approximate the dual norm
‖Lµ‖X ′ using ‖Lµ‖X ′

Jes
. Estimation of ‖Lµ‖X ′

Jes
involves the approximation

of Jes integrals: we might thus rely on empirical quadrature procedures to
estimate the latter dual norm.

The contributions of the present work are threefold: (i) an actionable pro-
cedure for the construction of empirical test spaces; (ii) the reinterpretation of
the EQ problem as a sparse representation problem and the application of EQ
to dual norm estimation; and (iii) a thorough numerical and also theoretical
investigation of the performance of several ATI and EQ+ES hyper-reduction
techniques for dual norm prediction.

(i) Empirical test spaces are closely related to `2-embeddings, which have been
recently proposed for MOR applications by Balabanov and Nouy in [4]. In
section 2.2, we formally link empirical test spaces for dual norm calcula-
tions to `2-embeddings, and we discuss the differences in their practical
constructions. Furthermore, in section 2.5, we present an a priori error
bound that motivates our construction.

(ii) The problem of sparse representation — or equivalently best subset selec-
tion — has been widely studied in the optimization, statistics and signal
processing literature, and several solution strategies are available, includ-
ing `1 relaxation [16], Greedy algorithms [34], and more recently mixed
integer optimization procedures [7]. In this work, we show that the prob-
lem of EQ can be recast as a sparse representation problem, and we con-
sider three different approaches based on `1 minimization (here referred to
as `1-EQ), on the EIM greedy algorithm (EIM-EQ), and on Mixed Inte-
ger Optimization (MIO-EQ), respectively. We remark that `1-EQ has been
first proposed in [28] for empirical quadrature, while EIM-EQ has been
first proposed in [2]; on the other hand, MIO-EQ is new in this context.
In order to reduce the cost associated with the construction of the quadra-
ture rule, we further propose a divide-and-conquer strategy to reduce the
dimension of the optimization problem to be solved offline.

(iii) To our knowledge, a detailed comparison of ATI approaches and EQ ap-
proaches for hyper-reduction is currently missing in the literature. In sec-
tions 3 and 4 we present numerical and also theoretical results that offer
insights about the potential benefits and drawbacks of ATI and EQ tech-
niques, in the context of dual norm prediction.

The paper is organized as follows. In section 2, we present the compu-
tational procedure, and we prove an a priori error bound that relates the
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prediction error in dual norm estimation to the quadrature error and to the
discretization error associated with the introduction of the empirical test space.
In section 3, we review ATI approaches for dual norm calculations and we of-
fer several remarks concerning the benefits and the drawbacks of the proposed
strategies. Furthermore, in section 4, we present numerical results to compare
the performance of our EQ+ES method for the three EQ procedures consid-
ered with a representative ATI approach; in particular, we apply the proposed
technique to the computation of the dual time-averaged residual presented in
[20], associated with the Reduced Basis approximation of the solution to a 2D
unsteady incompressible Navier-Stokes problem. Finally, in section 5, we sum-
marize the key contributions and identify several future research directions.

2 Methodology

2.1 Formulation

In view of the presentation of the methodology, we introduce the high-fidelity
(truth) space Xhf = span{ϕi}Ni=1 ⊂ X and the high-fidelity quadrature rule

Qhf(v) :=

Nq∑
i=1

ρhf
i v(xhf

i ).

We endow Xhf with the inner product (w, v)Xhf
= Qhf(λ(·;w, v)) for a suit-

able choice1 of λ, and we approximate the functional in (2) as Lµ,hf(v) :=
Qhf(η(·; v, µ)). In the remainder, we shall assume that ‖Lµ,hf‖X ′

hf
≈ ‖Lµ‖X ′

for all µ ∈ P. Since our approach builds upon the high-fidelity discretization,
in the following we exclusively deal with high-fidelity quantities: to simplify
notation, we omit the subscript (·)hf .

Given v ∈ X , we denote by v ∈ RN the corresponding vector of coefficients,
v(x) =

∑N
i=1 vi ϕi(x); similarly, given L ∈ X ′, we define L ∈ RN such that

(L)i = L(ϕi). By straightforward calculations, we find the following expression
for the dual norm:

L(µ) := ‖Lµ‖X ′ = sup
v∈X

Qhf(η(·; v, µ))

‖v‖X
=
√
LT
µ X−1Lµ, (3)

where Xi,j = (ϕj , ϕi)X . Evaluation of L in (3) for a given µ ∈ P requires the
solution to a linear system of size N , which costs Criesz = O(N s) for some
s ∈ [1, 2).

To reduce the costs, we propose to substitute X in (3) with the Jes-
dimensional empirical test space XJes = span{φj}Jesj=1 where (φj , φi)X = δi,j ,

and the high-fidelity quadrature rule Qhf with the Qeq-dimensional quadrature
rule

Qeq(v) =

Qeq∑
q=1

ρeq
q v(xeq

q ), for some {ρeq
q , x

eq
q }

Qeq

q=1 ⊂ R×Ω.

1 In all our examples, we consider λ(·;w, v) = ∇w · ∇v + u v.
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Exploiting the fact that {φj}j is an orthonormal basis of XJes , we obtain the
EQ+ES estimate of L(µ):

LJes,Qeq
(µ) = sup

v∈XJes

Qeq(η(·; v, µ))

‖v‖X
=

√√√√ Jes∑
j=1

(Qeq(η(·;φj , µ))
2

= ‖H(µ)ρeq‖2,

(4a)

where

(H(µ))q,j = η(xeq
q ;φj , µ) =

D∑
i=1

(
Υµ(xeq

q )
)
i

(
F (xeq

q ; v)
)
i
. (4b)

It is straightforward to verify that, if η is of the form (2), computation of the
matrix H(µ) scales with O(DJesQeq): provided that Jes, Qeq � N , evaluation
of (4) is thus significantly less expensive than the evaluation of (3).

Below, we discuss how to practically build the space XJes (section 2.2),
and the quadrature rule Qeq(·) (section 2.3). Then, in section 2.4, we briefly
summarize the overall procedure and we comment on offline and online costs.
Finally, in section 2.5, we present an a priori error bound that shows that
the prediction error is the sum of two contributions: a quadrature error, and
a discretization error associated with the empirical test space.

Remark 1 EQ estimate of L(µ). The EQ estimate of L(µ),

LQeq
(µ) = sup

v∈X

Qeq(η(·; v, µ))

‖v‖X
,

is not in general related to L(µ) for Qeq < Nq. For this reason, EQ approaches
cannot be applied as is to estimate L(µ).

2.2 Empirical test space

Recalling the Riesz representation theorem, we find that L(µ)2 = Lµ (ξµ) , for
all µ ∈ P, ξµ = RX Lµ; therefore, if XJes accurately approximates the elements
of the manifold ML = {ξµ : µ ∈ P}, we expect that

L(µ) = sup
v∈ML

Lµ(v)

‖v‖X
≈ sup

v∈XJes

Lµ(v)

‖v‖X
=: ‖Lµ‖X ′

Jes
. (5)

We provide a rigorous justification of this approximation in section 2.5.
We construct the approximation space XJes using POD. First, we generate

the training set Ξtrain,es = {µ`}n
es
train

`=1 ⊂ P, where µ1, . . . , µn
es
train

iid∼ Uniform(P);
then we compute ξ` = ξµ` for ` = 1, . . . , nes

train; finally, we use the snapshots

{ξ`}n
es
train

`=1 to compute the POD space XJes (see [32]) based on the X -inner
product.
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Remark 2 Choice of nes
train and Jes. In order to validate the choice of nes

train

and Jes, we might introduce nes
test additional samples µ̃1, . . . , µ̃n

es
test ∼ Uniform(P),

and compute the error indicators2

E
(∞)
Jes,nes

train,n
es
test

= max
k=1,...,nes

test

‖ΠX⊥
Jes
ξµ̃k‖X , (6)

and

E
(2)
Jes,nes

train,n
es
test

=
1

nes
test

nes
test∑
k=1

‖ΠX⊥
Jes
ξµ̃k‖2X , (7)

where X⊥Jes denotes the orthogonal complement of XJes , and ΠX⊥
Jes

: X → X⊥Jes
is the orthogonal projection operator. E

(∞)
Jes,nes

train,n
es
test

provides an estimate of

the discretization error that enters in the a priori error bound in Proposition

2, while E
(2)
Jes,nes

train,n
es
test

can be compared with the in-sample error E
(2)
Jes,nes

train
=

1
nes
train

∑nes
train

`=1 ‖ΠX⊥
Jes
ξµ`‖2X to assess the representativity of the training set

Ξtrain,es.

Connection with `2-embeddings

Exploiting notation introduced in section 2.1, and recalling that {φj}j is an
orthonormal basis of XJes , we can rewrite (5) as follows:

‖Lµ‖X ′
Jes

= ‖XTJesLµ‖2, (8)

where XJes = [φ1, . . . ,φJes ]. In [4] (see [4, section 3.1]), the authors propose
to estimate L(µ) as

LΘ(µ) = ‖ΘX−1Lµ‖2, (9)

where Θ ∈ RJes×N is called X → `2 embedding. By comparing (8) with (9), we
deduce that the approach proposed here corresponds to that in [4], provided
that Θ = XTJesX.

The key difference between the two approaches is in the practical con-
struction of Θ. In [4], the authors consider Θ = ΩQ where Q ∈ RN×N is the
upper-triangular matrix associated with the Cholesky factorization of X, while
Ω ∈ RJes×N is the realization of a random matrix — distributed according
to the rescaled Gaussian distribution, the rescaled Rademacher distribution,
or the partial subsampled randomized Hadamard transform (P-SRHT). For
these three choices of the sampling distribution, the authors prove a priori
error bounds in probability, which provide estimates for the minimum value
of Jes required to achieve a target accuracy.

Recalling the optimality of POD (see, e.g., [35]), for sufficiently large values
of nes

train, we expect that our approach leads to smaller test spaces — and thus

2 We observe that E
(∞)
Jes,n

es
train,n

es
test

is equivalent to the error indicator proposed in [10].
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more efficient online calculations for any target accuracy. On the other hand,
the construction of Θ in [4] requires significantly less offline resources than the
construction of XJes . For this reason, the choice between the two approaches
is extremely problem- and architecture-dependent.

2.3 Empirical quadrature

We shall now address the problem of determining the quadrature rule

Qeq(v) =

Qeq∑
q=1

ρeq
q v(xeq

q )

in (4). Towards this end, we assume that {xeq
q }q ⊂ {xhf

i }i; then, we define the

quadrature rule operator Q : C(Ω)× RNq → R such that

Q(v,ρ) =

Nq∑
i=1

ρi v(xhf
i ).

Exploiting the latter definition, we formulate the problem of finding {ρeq
q , x

eq
q }q

as the problem of finding ρ? ∈ RNq such that

1. the number of nonzero entries in ρ? is as small as possible;
2. the corresponding quadrature rule Q?(·) := Q(·,ρ?) satisfies∣∣Q?(η(·;φj , µ)) − Qhf(η(·;φj , µ))

∣∣ ≤ δ, j = 1, . . . , Jes, (10)

for all µ in the training set Ξtrain,eq = {µ`}n
eq
train

`=1 , and∣∣Q?(1) − Qhf(1)
∣∣ ≤ δ. (11)

Given a (approximate) solution ρ?, we then extract the strictly non-null quadra-

ture weights {ρeq
q , x

eq
q }

Qeq

q=1 = {{ρ?i , xhf
i }i : i ∈ {k : ρ?k 6= 0}}.

The first requirement corresponds to minimizing the number of non-null
weights Qeq: recalling (4), minimizing Qeq is equivalent to minimizing the on-
line costs for a given choice of the empirical test space. Condition (10) controls
the accuracy of the dual norm estimate, as discussed in the error analysis. On
the other hand, as explained in [38], condition (11) is empirically found to
improve the accuracy of the EQ procedure when the integral is close to zero
due to the cancellation of the integrand in different parts of the domain. Fi-
nally, we remark that in [28,38] the authors propose to add the non-negativity
constraint

ρ?i ≥ 0, i = 1, . . . ,Nq. (12)

As discussed later in this section, the non-negativity constraint reduces by half
the size of the problem that is practically solved during the offline stage for two
of the EQ methods (`1-EQ and MIO-EQ) employed in this work; furthermore,
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we observe that the non-negativity of the weights is used in [37] to prove a
stability result for a Galerkin ROM. We here consider both the case of non-
negative weights and the case of real-valued weights. We anticipate that for
the latter case we are able to prove a theoretical result that motivates the
approach.

These desiderata can be translated in the following minimization state-
ment:

min
ρ∈RNq

‖ρ‖0, s.t. ‖Gρ− yhf‖∞ ≤ δ (13a)

where ‖ · ‖∞ denotes the ∞ norm, ‖v‖∞ = maxk |vk|, ‖ · ‖0 denotes the `0

“norm”3 ‖ρ‖0 = #{ρi 6= 0 : i = 1, . . . ,Nq}, and G ∈ RK×Nq and yhf ∈ RK ,
K = neq

trainJes + 1, are defined as

G =


η(xhf

1 ;φ1, µ
1), . . . η(xhf

Nq
;φ1, µ

1)
...

η(xhf
1 ;φJes , µ

neq
train), . . . η(xhf

Nq
;φJes , µ

neq
train)

1 . . . 1

 , (13b)

yhf =
[
Qhf

(
η(·;φ1, µ

1)
)
, . . . , Qhf

(
η(·;φJes , µn

eq
train)

)
,Qhf (1)

]
(13c)

Alternatively, if we choose to include the non-negativity constraint, we obtain

min
ρ∈RNq

‖ρ‖0, s.t.

{
‖Gρ− yhf‖∞ ≤ δ

ρ ≥ 0
(14)

Problems (13) and (14) can be interpreted as sparse representation prob-
lems where the input data — the high-fidelity integrals yhf — are noise-free.
We emphasize that there are important differences between the two problems
considered here and the sparse representation problems typically considered
in the statistics literature, particularly in compressed sensing (CS, [16]). CS
relies on the assumption that the original signal is sparse, and that the co-
herence among different columns of G is small (see, e.g., [9] for a thorough
discussion). In our setting, these conditions are not expected to hold due to
the smoothness in space of the elements of the manifold and to the determin-
istic nature of the problem. As a result, techniques developed and analyzed in
the CS literature might be highly suboptimal in our context. After the semi-
nal work by Bertsimas et al. [7], Hastie et al. [22] presented detailed empirical
comparisons for several state-of-the-art approaches for datasets characterized
by a wide spectrum of Signal-to-Noise Ratios.

As stated in the introduction, we here resort to three EQ approaches to ap-
proximate (13) and (14). While `1-EQ and EIM-EQ have been first presented
in [28] and [2], MIO-EQ is new in this context. In the next three sections, we
briefly illustrate the three EQ techniques.

3 ‖ · ‖0 is not a norm since it does not satisfy the homogeneity property; nevertheless, it
is called norm in the vast majority of the statistics and optimization literature.
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Remark 3 Dependence on the basis {φj}j. Conditions (10) depend on the

choice of the basis of XJes . In particular, given φ̃ =
∑Jes
j=1 ajφj , if we define

ηj,` = η(·;φj , µ`), we obtain

∣∣Q(η(·; φ̃, µ`);ρ?
)
− Qhf

(
η(·; φ̃, µ`)

) ∣∣ =
∣∣ Jes∑
j=1

(
Q
(
ηj,`;ρ?

)
− Qhf

(
ηj,`
))
aj
∣∣

≤ δ‖a‖1 ≤ δ‖1‖2‖a‖2 = δ
√
Jes‖φ̃‖X

Note that in the first inequality we used (10), while in the second inequality
we used Cauchy-Schwarz inequality.

2.3.1 `1 relaxation (`1-EQ)

Following [28], we consider the convex relaxation of (14):

min
ρ∈RNq

‖ρ‖1, s.t.

{
‖Gρ− yhf‖∞ ≤ δ
ρ ≥ 0

which can be restated as a linear programming problem:

min
ρ∈RNq

1Tρ, s.t.

{
Aρ ≤ b
ρ ≥ 0

(15a)

where

A =

[
G
−G

]
, b =

[
yhf + δ
−yhf + δ

]
(15b)

Proceeding in a similar way, we obtain the `1-convexification of (13):

min
ρ∈RNq

‖ρ‖1, s.t. Aρ ≤ b. (16)

If (ρ1,?,ρ2,?) is the solution to the linear programming problem

min
ρ1,ρ2∈RNq

1T
(
ρ1 + ρ2

)
, s.t.

{
A
(
ρ1 − ρ2

)
≤ b

ρ1,ρ2 ≥ 0,
(17)

then, ρ? = ρ1,? − ρ2,? solves (16): as a result, (17) can be employed to
find solutions to (16). To prove the latter statement, we first observe that
if (ρ1,?,ρ2,?) solves (17), then ρ1,?

i ρ2,?
i = 0 for i = 1, . . . ,Nq; therefore, the

vector ρ? = ρ1,? − ρ2,? satisfies the constraints in (16), and

(ρ?)
+

:= max{ρ?,0} = ρ1,?, (ρ?)
−

:= −min{ρ?,0} = ρ2,?,

‖ρ?‖1 = 1T
(
ρ1,? + ρ2,?

)
.

If ρ ∈ RNq satisfies the constraints in (16), we find that (ρ+ = max{ρ,0},ρ− =
−min{ρ,0}) satisfies the constraints in (17) and

‖ρ‖1 = 1T
(
ρ+ + ρ−

)
≥ 1T

(
ρ1,? + ρ2,?

)
= ‖ρ?‖1,
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which is the thesis.

Problems (15) and (17) can be solved using the dual simplex method.
We observe that these problems require the storage of a dense matrix of size
2K×Nq and 2K× 2Nq, respectively: even in 2D, this might be extremely de-
manding. Note that the linear programming problem (17) has twice as many
unknowns as (15). In section 2.3.4, we illustrate a divide-and-conquer ap-
proach, which does not require the assembling of the matrix G.

2.3.2 Quadrature rule using EIM (EIM-EQ)

A second approach ([2]) consists in exploiting the EIM Greedy algorithm.

Given Ξtrain,eq = {µ`}n
eq
train

`=1 and {φj}Jesj=1, we define η`,j := η(·;φj , µ`) for
` = 1, . . . , neq

train and j = 1, . . . , Jes. Then, (i) we resort to a compression

strategy to build an approximation space ZQeq = span{ζq}
Qeq

q=1 for {η`,j}`,j ,
(ii) we use the EIM Greedy algorithm to identify a set of quadrature points

{xeq
q } based on {ζq}

Qeq

q=1, and (iii) we construct the quadrature weights.

In [2], the authors resort to a strong-Greedy procedure to determine the
approximation space ZQeq

; in this work, we resort to POD based on the L2(Ω)
inner product. On the other hand, the application of EIM and the subsequent
construction of the quadrature points is detailed in Appendix B. We remark
that this approach does not in general lead to positive weights: as a result,
the resulting quadrature rule should be interpreted as an approximation to
problem (13).

2.3.3 Solution to (14) using MIO (MIO-EQ)

We might also exploit Mixed Integer Optimization (MIO) algorithms to di-
rectly solve (14). With this in mind, we observe that (14) can be restated
as

min
ρ∈RNq ,z∈{0,1}Nq

1T z s.t.

{
Aρ ≤ b
0 ≤ ρ ≤ |Ω|z (18)

where A,b are defined in (15).

Problem (18) corresponds to a linear mixed integer optimization problem;
it is well-known that finding the optimal solution to (18) is in general a NP-
hard problem. However, thanks to recent advances in discrete optimization,
nearly-optimal solutions to the problem can be found within a reasonable time-
frame. We refer to [8,7] for further discussions. We here rely on the Matlab
routine intlinprog to estimate the solution to (18).
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Direct solution to (13) requires the solution to the linear mixed integer
optimization problem4

min
ρ1,ρ2∈RNq ,z1,z2∈{0,1}Nq

1T (z1 + z2) s.t.

A(ρ1 − ρ2) ≤ b
0 ≤ ρ1 ≤ Cz1

0 ≤ ρ2 ≤ Cz2
(19)

where C is chosen to be sufficiently larger than |Ω|. As for `1-EQ, we note
that (19) has twice as many unknowns as (18); it is thus considerably more
difficult to solve.

2.3.4 A divide-and-conquer approach for `1-EQ and MIO-EQ

In order to deal with large-scale problems, we propose a divide-and-conquer
approach for `1-EQ and MIO-EQ. Towards this end, we define the triangu-
lation of Ω, T hf = {Dj}nelem

j=1 where Dj denotes the j-th element of the mesh
and nelem denotes the number of elements in the mesh. Then, we introduce
the partition of T hf as the set of indices J1, . . . ,JNpart ⊂ {1, . . . , nelem} such

that
⋃Npart

`=1 J` = {1, . . . , nelem} and J` ∩ J`′ = ∅ for ` 6= `′. If we assume
that all quadrature points lie in the interior of the mesh elements5, we find

that the global quadrature rule {xhf
i , ρ

hf
i }
Nq

i=1 induces local quadrature rules on
the subdomains Ω` =

⋃
j∈J` Dj ; we denote by {xhf

i,`, ρ
hf
i,`}i=1,...,N (`)

q
the local

quadrature points and weights associated with the `-th subdomain; we further
denote by Qhf,(`)(·) the high-fidelity quadrature rule on Ω`.

Algorithm 1 outlines the divide-and-conquer computational strategy for
(15); similar strategies can be derived for (17), (18), (19). We observe that the
local problems can be solved in parallel, and the full matrix G is not assembled
during the procedure. Furthermore, we remark that for large-scale problems
it might be convenient to consider recursive divide-and-conquer approaches
based on several layers; the extension is completely standard and is here omit-
ted. Finally, we remark that, thanks to the choice of the tolerance in (20), the
admissible set associated with (21) is not empty, as rigorously shown in the
next Proposition.

Proposition 1 The admissible set associated with problem (21) is not empty
for any choice of δ > 0.

Proof Since ρ(`) = ρhf,(`) is admissible for (20), the admissible set associated
with (20) is not empty. Furthermore, any solution ρ?,(`) to (20) is uniformly
bounded: we have indeed ‖ρ?,(`)‖1 ≤ ‖ρhf,(`)‖1 =: C. Then, since the set{

ρ : ‖G(`)ρ− yhf,(`)‖∞ ≤
δ

Npart
, ρ ≥ 0, ‖ρ‖1 ≤ C

}
4 Given the solution (ρ1,ρ2, z1, z2) to (19), it is possible to verify that ρ? = ρ1−ρ2 solves

(13). The proof follows from the fact that ρ1
i ρ

2
i = z1

i z
2
i = 0 for i = 1, . . . ,Nq. We omit the

details.
5 This condition is satisfied by standard Finite Element/Spectral Element discretizations.
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is compact and ρ 7→ ‖ρ‖1 is continuous, the existence of a solution to (20)
follows from the Weierstrass theorem.

Let ρ(`) ∈ RN
(`)
q be a solution to (20) for ` = 1, . . . , Npart, and let I(`) ⊂

{1, . . . ,Nq} be the indices associated with the quadrature points in Ω(`). We

define ρ? ∈ RNq such that ρ?(I(`)) = ρ(`) for ` = 1, . . . , Npart.
Clearly, we have ρ? ≥ 0. Furthermore, we find

‖Gρ? − yhf‖∞ = ‖
Npart∑
`=1

(
G(`)ρ(`) − yhf,(`)

)
‖∞ ≤ Npart

δ

Npart
≤ δ.

This implies that ρ? is an admissible solution to (21).

Algorithm 1 Divide-and-conquer approach for EQ training
Divide

1: Define J1, . . . ,JNpart ⊂ {1, . . . , nelem}

2: Compute the local quadrature rules on Ω1, . . . , ΩNpart by solving

min

ρ∈RN(`)
q

‖ρ‖1, s.t.

{
‖G(`)ρ− yhf,(`)‖∞ ≤ δ

Npart

ρ ≥ 0
(20a)

where

G(`) =



η(xhf
1,`;φ1, µ1), . . . η(xhf

N (`)
q

;φ1, µ1)

...

η(xhf
1,`;φJes , µ

n
eq
train ), . . . η(xhf

N (`)
q

;φJes , , µ
n
eq
train )

1 . . . 1

 , (20b)

and

yhf,(`) =
[
Qhf,(`)

(
η(·;φ1, µ

1)
)
, . . . , Qhf,(`)

(
η(·;φJes , µ

n
eq
train )

)
,Qhf,(`) (1)

]
(20c)

3: Define the set of indices I(`),loc ⊂ {1, . . . ,Nq} associated with the nonzero elements of

the optimal solutions ρ(`) to (20), and set Iloc =
⋃
` I(`),loc.

Conquer

1: Solve

min
ρ∈RNq

‖ρ‖1, s.t.

{
‖Gρ− yhf‖∞ ≤ δ
ρ ≥ 0, ρi = 0 if i /∈ Iloc

(21)

where G,yhf are defined in (14).

2.4 Summary of the EQ+ES offline/online procedure

Algorithm 2 summarizes the offline/online computational procedure. As re-
gards the offline cost of the ES procedure, computation of the Riesz elements
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scales with O(nes
trainCriesz), while the cost of computing the POD space — pro-

vided that nes
train � N — scales with O((nes

train)2N ). Offline memory cost is
O(nes

trainN ): note that the cost of POD can be significantly reduced by resort-
ing to hierarchical ([24]) or stochastic ([4]) approaches. As regards the offline
cost of the EQ procedure, memory cost of the three EQ strategies discussed
above isO(neq

train JesNq): as neq
train JesNq increases, offline memory costs become

prohibitive. For EIM-EQ, memory costs — which are associated with the ap-
plication of POD — can be reduced by resorting to hierarchical or stochastic
strategies (see in particular the approach in [2]); on the other hand, we might
resort to the divide-and-conquer approach discussed in section 2.3.4 to reduce
the costs of `1-EQ and MIO-EQ. We are not able to provide general estimates
for the offline computational costs associated with the algorithms in sections
2.3.1 and 2.3.3: in section 4, we provide results for the model problems consid-
ered. Finally, we observe that storage of {F (xeq

q ;φj)}q,j requires the storage
of Con = DJesQeq floating points; similarly, computation of H(µ) in (4) can be
performed through O(Con) operations.

Algorithm 2 Offline/online procedure for dual norm calculations
Offline stage

1: Sample µ1, . . . , µn
es
train

iid∼ Uniform(P), and compute {ξ` = ξµ`}
nes
train
`=1

2: Compute XJes = span{φj}Jesj=1 using POD.

3: Compute the quadrature rule {ρeq
q , x

eq
q }

Qeq

q=1 using `1-EQ, EIM-EQ or MIO-EQ (cf. sec-

tion 2.3).

4: Store the evaluations of {F (·;φj)}j in {xeq
q }

Qeq

q=1.

Online stage

1: Compute the matrix (H(µ))q,j = η(xeq
q ;φj , µ) in (4).

2: Compute LJes,Qeq (µ) using (4).

2.5 A priori error analysis

Given the quadrature rule {xeq
q , ρ

eq
q }

Qeq

q=1, we define the maximum quadrature
error:

δeq
Qeq

:= max
µ∈P,j=1,...,Jes

∣∣Qeq(η(·;φj , µ)) − Qhf(η(·;φj , µ))
∣∣ (22)

For the `1-EQ and MIO-EQ procedures presented in section 2.3, the max-
imum quadrature error δeq

Qeq
is enforced to be below the target tolerance δ

for all parameters in the training set Ξtrain,eq = {µ`}n
eq
train

`=1 . Note that for
µ ∈ P \ Ξtrain,eq the quadrature error δeq

Qeq
might exceed δ; however, we can

exploit [28, Lemma 2.2] to conclude that limneq
train→∞ δeq

Qeq
≤ δ, provided that



14 Tommaso Taddei

Υ is Lipschitz-continuous in µ. Furthermore, given the reduced space XJes , we
define the discretization error

εdiscr
Jes = max

µ∈P
‖ΠX⊥

Jes
ξµ‖X . (23)

We observe that εdiscr
Jes

can be estimated using the error indicator E
(∞)
Jes,ntrain,ntest

defined in (6).
Proposition 2 shows the a priori error bound for the estimation error∣∣LJes,Qeq(µ)−L(µ)

∣∣. We observe that the overall error depends on the sum of
the quadrature error δeq

Qeq
and of the discretization error εdiscr

Jes
.

Proposition 2 Given the quadrature rule {xeq
q , ρ

eq
q }

Qeq

q=1, and the empirical
test space XJes , the following bound holds for any µ ∈ P:

∣∣LJes,Qeq
(µ)− L(µ)

∣∣ ≤√Jesδ
eq
Qeq

+

(
εdiscr
Jes

)2
L(µ) + LJes(µ)

, (24)

where LJes(µ) := ‖Lµ‖X ′
Jes

.

Proof Recalling the Riesz representer theorem, we have that Lµ(v) = (ξµ, v)X
for all v ∈ X ; as a result,

(LJes(µ))
2

= ‖Lµ‖2X ′
Jes

= sup
v∈XJes

(ξµ, v)2
X

‖v‖2X
= ‖ΠXJes ξµ‖

2
X = (L(µ))

2−‖ΠX⊥
Jes
ξµ‖2X ,

where in the last equality we used the projection theorem. Exploiting the
identity (a− b)(a+ b) = a2 − b2 we find

L(µ)− LJes(µ) =
‖ΠX⊥

Jes
ξµ‖2X

L(µ) + LJes(µ)
. (25)

On the other hand, exploiting inverse triangle inequality and the definition of
δeq
Qeq

, we find

∣∣LJes(µ)− LJes,Qeq
(µ)
∣∣ =

∣∣√∑
j

(Qeq(η(·;φj , µ)))
2 −

√∑
j

(Qhf(η(·;φj , µ)))
2∣∣

≤
√∑

j

(Qeq(η(·;φj , µ) − Qhf(η(·;φj , µ)))
2

≤
√∑

j

(
δeq
Qeq

)2

=
√
Jes δ

eq
Qeq

.

(26)

Thesis follows by observing that
∣∣L(µ) − LJes,Qeq

(µ)
∣∣ ≤ ∣∣LJes(µ) − L(µ)

∣∣ +∣∣LJes(µ)− LJes,Qeq
(µ)
∣∣ and then using (25) and (26). ut
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3 Approximation-then-integration approaches for dual-norm
calculations

We illustrate below how to apply Approximation-Then-Integration (ATI) ap-
proaches to dual norm calculations. The aim of this section is to illustrate
the key differences between the EQ+ES method presented in section 2 and
ATI state-of-the-art techniques, and to provide insights about the potential
benefits and drawbacks of the proposed method.

3.1 Review of ATI-based approaches for dual norm calculations

We briefly recall the standard ATI-based procedure for dual-norm calculations.
We state upfront that our objective is to provide a representative example of
ATI approach that will be compared with the EQ+ES approach proposed
in this paper; a thorough discussion of the available ATI approaches for the
problem at hand is beyond the scope of this work. Given Lµ in (2), an inter-
polation/approximation approach (e.g., Gappy POD, EIM,...) is employed to
obtain a surrogate of Υ ,

ΥM,µ(x) =

M∑
m=1

(ΘM (µ))m ζm(x), (27a)

where ΘM : P → RM is a given function of the parameters, which can be
computed in O(M2) operations; then, the parametrically-affine surrogate of
Lµ is defined as

LM,µ(v) =

M∑
m=1

(ΘM (µ))m Lm(v), (27b)

where Lm(v) =
∫
Ω
ζm(x) · F (x; v) dx for m = 1, . . . ,M . Since the Riesz oper-

ator is linear, we have that

(LM (µ))
2

:= ‖LM,µ‖2X ′ =

M∑
m,m′=1

(ΘM (µ))m (ΘM (µ))m′ Aoff
m,m′ , (28)

where Aoff
m,m′ :=

(
ξm, ξm

′
)
X

and ξm = RXLm, m = 1, . . . ,M .

Identity (28) allows an efficient offline/online computational decomposition
for the estimation of L(µ).

– Offline stage: (performed once)
1. find the surrogate LM,µ in (27b),
2. compute ξm = RXLm for m = 1, . . . ,M , and
3. compute Aoff ∈ RM×M in (28).

– Online stage: (performed for any new µ ∈ P)
1. evaluate ΘM (µ),
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2. return LM (µ) =
√
ΘM (µ)T Aoff ΘM (µ).

We conclude this section by stating an a priori result and two remarks.

Proposition 3 Let CF := supv∈X

∫
Ω
‖F (x;v)‖22 dx
‖v‖X . Then,∣∣L(µ) − LM (µ)

∣∣ ≤ CF ‖Υµ − ΥM,µ‖L2(Ω).

Proof Applying the inverse triangle inequality and Cauchy-Schwarz inequality,
we find∣∣L(µ) − LM (µ)

∣∣ ≤ ‖Lµ − LM,µ‖X ′ = sup
v∈X

∫
Ω

(Υµ − ΥM,µ) · F (v) dx

‖v‖X
≤ CF ‖Υµ − ΥM,µ‖L2(Ω),

which is the thesis.

Remark 4 Computational cost. The offline cost of a typical ATI procedure
— such as the one employed in the numerical results and detailed in Appendix
B — scales with O(MCriesz +M2N ) plus the cost of defining the surrogate of
Υµ. If we resort to POD (as in Appendix B), given {Υ k}ntrain

k=1 , this cost scales
with O(n2

trainN ), provided that ntrain � N . Note that our cost estimate does
not include the cost of generating the snapshots {Υ k = Υµk}ntrain

k=1 . On the
other hand, the online cost scales with O(M2).

Remark 5 ATI+ES. Given the surrogate LM,µ in (27b), we might consider
the approximation

LJes,M (µ) = sup
v∈XJes

LM,µ(v)

‖v‖X
= Hati(µ)ΘM (µ),

where
(
Hati(µ)

)
j,m

= Lm(φj). Here, the space XJes should be designed to

approximate the manifold ML,M := {RXLM,µ : µ ∈ P}. Note that if we
choose XJes=M = span{RXLm}Mm=1, we have LJes,M (µ) = LM (µ). In section
4, we investigate whether it is beneficial to consider Jes < M .

3.2 Discussion

The construction of the affine surrogate of Υ in (27a) involves (i) the definition
of an approximation space ZM = span{ζm}Mm=1 ⊂ [L2(Ω)]D, and (ii) the
definition of an interpolation/approximation procedure to efficiently compute
the parameter-dependent coefficients ΘM (µ) such that ‖Υµ − ΥM,µ‖L2(Ω) ≈
infζ∈ZM ‖Υµ − ζ‖L2(Ω).

– As opposed to the EQ+ES approach where the estimation error is the sum
of two contributions associated with two subsequent approximations, the
only source of error in

∣∣L(µ)− LM (µ)
∣∣ is the substitution Lµ → LM,µ.
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– While the empirical test space XJes should approximate the manifold of
Riesz representers ML := {ξµ : µ ∈ P} ⊂ X , the space ZM should be
tailored to approximate the manifold {Υµ : µ ∈ P} ⊂ [L2(Ω)]D; therefore,
for X 6= L2(Ω), we do not expect the spaces ZM and XJes to be related.

– Although small approximation errors in Υµ lead to small errors in dual
norm prediction (cf. Proposition 3), the objectives of function approxi-
mation and dual norm prediction are arguably quite different: we thus
expect — and we empirically demonstrate in the numerical sections —
that integration-only strategies, which bypass the task of approximating
Υµ, might be preferable when approximating Υµ is significantly more chal-
lenging than predicting the dual norm of Lµ.

– If we neglect the cost of computing {Υ k = Υµk}ntrain

k=1 , we observed in Re-
mark 4 that the offline cost of the ATI procedure scales with O(MCriesz +
(M2 + ntrain)N ): for ntrain = nes

train � M , this cost is significantly lower
than the cost of building the empirical test space XJes , O(nes

trainCriesz +
(M2 +(nes

train)2N )). However, for several problems, including the ones con-
sidered in the numerical section, computation of Υµ involves the solution
to a PDE: as a result, we expect that in many cases the cost associated
with the construction of the empirical test space is negligible compared to
the overall offline cost.

Proposition 4 relates the number of quadrature points that are needed to
achieve a target accuracy to the magnitude of the other discretization pa-
rameters M and Jes. We postpone the proof of Proposition 4 to Appendix
C.

Proposition 4 Let LM,µ(v) =
∫
Ω
ΥM,µ(x)·F (x; v) dx, ΥM,µ =

∑M
m=1 Θm(µ)ζm,

satisfy∣∣LM,µ(φj)− Lµ(φj)
∣∣ ≤ δati ∀µ ∈ P, j = 1, . . . , Jes, (29a)

for some tolerance δati > 0. Then, if we introduce the interpolation error

εati := sup
x∈Ω, j=1,...,Jes,µ∈P

∣∣ (Υµ(x)− ΥM,µ(x)) · F (x;φj)
∣∣ (29b)

we find that any solution ρopt to (13) with δ = δati + CM,Jes(MJes + 1)εati

satisfies ‖ρopt‖0 ≤MJes + 1, where CM,Jes depends on ΥM,µ and {φj}j.

Proposition 4 suggests that the number of empirical quadrature points Qeq

should depend linearly on Jes: this implies that EQ+ES is likely to become in-
creasingly suboptimal compared to ATI approaches as Jes increases. However,
as discussed above, since ATI approaches do not directly tackle the problem
of interest, there is in practice no guarantee that computable surrogates of L
are quasi-optimal for a given tolerance δ.

We also observe that if Lµ is parametrically-affine (i.e., Lµ = LM,µ for
some M > 0), then (29a) and (29b) hold with δati = εati = 0. As a result,
Proposition 4 shows that, for any δ > 0 and any choice of the training set
µ1, . . . , µn

eq
train , any solution ρopt to (13) satisfies ‖ρopt‖0 ≤MJes + 1.
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4 Numerical results

4.1 Comparison between EQ+ES and an EIM-based ATI approach

We consider the problem of estimating the dual norm of the X = H1(Ω)
functional

Lµ(v) =

∫
Ω

Φ(u(x;µ)) v(x) dx. (30a)

Here, Ω = (0, 3)2, P = [0.7, 1.3]8, and u : Ω × P → R is the solution to the
thermal block problem ([30, section 6.1.1])

−∇ · (κ(µ)∇u(µ)) = 0 in Ω

κ(µ) ∂
∂nu(µ) = g on Γ1 ∪ Γ2 ∪ Γ3

u(µ) = 0 on Γ4

(30b)

where Ω =
⋃9
i=1 Ωi, and

κ(x, µ) =

{
1 inΩ1,
µi inΩi+1, i = 1, . . . , 8;

g(x) =

1 onΓ1,
0 onΓ2,
1− 2x1 onΓ3.

(30c)

Furthermore, we endow X with the inner product

(w, v) = Qhf(∇w · ∇v + wv).

Figure 1(a) shows the computational domain, and the partition {Ωi}9i=1; while
Figure 1(b) shows the behavior of the solution u for a given value of µ ∈ P. We
rely on a P = 3 Finite Element (FE) discretization (N = 8281, Nq = 34200).
Simulations are performed in Matlab 2017b on a Desktop computer (RAM
16Gb, 800 Mhz, Processor Intel Xeon 3.60GHz, 8 cores).

We here consider two choices for Φ:

Φ1(u) = log
(
1 + eu+4

)
, Φ2(u) = max{u+ 4, 0}. (30d)

In statistics and Machine Learning (see, e.g., [25]), Φ1 is known as logistic
loss, while Φ2 is known as Hinge loss; as shown in Figure 1(c), Φ1 is a smooth
approximation of Φ2. Our choice is motivated by the need to investigate per-
formance for both smooth fields and relatively rough fields: we have indeed
that Φ1 ∈ C∞(R), while Φ2 ∈ Lipschitz(R).

We present results for five approaches: an EIM-based ATI approach, an
EIM-based ATI+ES approach (see Remark 5), `1-EQ+ES, EIM-EQ+ES and
MIO-EQ+ES. The empirical test space is generated using the snapshot set

{Φ(u(·;µ`))}n
es
train

`=1 where µ1, . . . , µn
es
train

iid∼ Uniform(P), nes
train = 200; similarly,

the approximation space associated with EIM is generated using the same
snapshot set (see Algorithm 3 in Appendix B for further details). To generate
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Fig. 1: thermal block problem. (a) computational domain. (b) behavior of u for µ =
[1.08, 0.79, 1.02, 1.24, 0.73, 1.23, 1.01, 0.84]. (c) behavior of ϕ1 and ϕ2.

the EQ rule, we impose the accuracy constraints in Ξtrain,eq = {µ`}n
eq
train

`=1 with
neq

train = 50; furthermore, we use the divide-and-conquer approach discussed
in section 2.3.4 with Npart = 40: to speed up computations, local sparse rep-
resentation problems (see (20)) are solved using `1 for both `1-EQ+ES and
MIO-EQ+ES. Moreover, we impose the threshold Tmax = 1800[s] for the max-
imum run time of MIO-EQ+ES. For `1-EQ+ES, we rely on the Matlab routine
linprog to solve the LP problem with default initial condition; for MIO-
EQ+ES, we rely on intlinprog and we consider the `1-EQ+ES solution as
initial condition for the optimizer. On the other hand, performance is measured

using {Φ(u(·; µ̃`))}ntest

`=1 , where µ̃1, . . . , µ̃ntest
iid∼ Uniform(P), ntest = 100.

Figure 2 shows the behavior of the maximum out-of-sample error maxk L(µ̃k)−
LJes(µ̃

k) and compares it with the squared best-fit error maxk ‖ΠX⊥
Jes
ξµ‖2X ,

for the two choices of Φ considered. We observe that L(µ̃k) − LJes(µ̃
k) ∼

C‖ΠX⊥
Jes
ξµ‖2X : this is in good agreement with Eq. (25) of Proposition 2. We

further observe that convergence with Jes is extremely rapid for both Φ = Φ1

and Φ = Φ2.
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Fig. 2: behavior of maxk L(µ̃k)−LJes (µ̃k) and maxk ‖ΠX⊥
Jes

ξµ‖2X with Jes, for two choices

of Φ.
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Figures 3 show results for the five procedures: for `1-EQ+ES and MIO-
EQ+ES, we impose the non-negativity constraint. Here, Con denotes the num-
ber of floating points loaded during the online stage for the different methods:
note that Con = M2 for ATI, Con = MJes for ATI+ES, and Con = JesQeq for

EQ+ES. On the other hand, E
(∞)
test is the maximum prediction error over the

test set:

E
(∞)
test := max

k=1,...,ntest

∣∣L(µ̃k) − L̂(µ̃k)
∣∣, (31)

where L̂(·) denotes the predicted dual norm. For ATI, we show results for
M = 1, 2, . . . , 120; for EQ+ES we show results for several prescribed tolerances
— δ = [10−2, 10−3, 10−4, 10−5, 10−6] for Φ = Φ1 and δ = [10−2, 10−3, 5 ·
10−4, 10−4] for Φ = Φ2 — and two values of Jes, Jes = 10, 15. We recall (cf.
Remark 5) that for Jes ≥ M ATI+ES is equivalent to ATI; therefore, we set
Jes,M = min(M,Jes).

Some comments are in order. We observe that in all our examples ATI+ES
is superior to the standard ATI approach: for Jes & 10, discretization error
associated with the empirical test space is negligible compared to the error
|L(µ) − LM (µ)|. This also explains why increasing Jes from 10 to 15 does
not lead to any significant improvement in accuracy. We further observe that
ATI+ES significantly outperforms the three EQ+ES procedures considered
for Φ = Φ1 (smooth case), while ATI and ATI+ES approaches are less accu-
rate than `1-EQ+ES and MIO-EQ+ES for most choices of the discretization
parameters for Φ = Φ2 (rough case). These results suggest that EQ proce-
dures might guarantee better performance for irregular parametric functions
Φ, particularly for small tolerances. Finally, we note that `1-EQ+ES and MIO-
EQ+ES lead to similar performance, for both choices of Φ and for all choices
of the discretization parameters, while EIM-EQ+ES is less accurate for the
rough test case.

In Table 1, we report representative offline costs of dual norm estimation
procedures; to facilitate interpretation, we separate sampling costs associated

with the computation of {Φ(u(·;µ`))}n
es
train=ntrain

`=1 — which are shared by all
methods — from the other offline costs. ATI and ATI+ES are less expensive
than `1-EQ, EIM-EQ+ES and MIO-EQ+ES; however, due to the overhead as-
sociated with the sampling cost, costs of ATI, ATI+ES, `1-EQ, EIM-EQ+ES
are of the same order magnitude. On the other hand, MIO-EQ+ES is consid-
erably more expensive.

In Figure 4, we show results for `1-EQ+ES and MIO-EQ+ES for both
non-negative weights and for real-valued weights. We observe that considering
real-valued weights leads to a slight improvement in performance, particularly
for Φ = Φ2.

In Figure 5, we investigate performance of `1-EQ+ES with positive weights
for Φ = Φ1, Φ2, for several values of Jes. We observe that for small values of Jes,

the “Jes-error” associated with ES dominates; as Jes increases, E
(∞)
test reaches a

threshold that depends on the value of the quadrature tolerance δ. We further
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Fig. 3: performance of several dual norm prediction routines. Behavior of E
(∞)
test (31) with

respect to Con, for Φ = Φ1, Φ2, and Jes = 10, 15.

Table 1: representative costs of dual norm estimation procedures; we separate sampling
costs from the other costs.

Method elapsed cost [s]

ATI (M = 120) 10.40 + 0.60

ATI+ES (M = 120, Jes = 10) 10.40 + 1.08

`1 EQ+ES (δ = 10−6, Jes = 10, pos. weights) 10.40 + 26.12

MIO EQ+ES (δ = 10−6, Jes = 10, pos. weights) 10.40 + 1800
EIM EQ+ES (Qeq = 200, Jes = 10) 10.40 + 4.85

observe that Qeq grows linearly with Jeq: this is in good agreement with the
result in Proposition 4.

Figure 6 shows the interpolation points selected by EIM, and the quadra-
ture points obtained by applying MIO-EQ with δ = 10−4 and real-valued
weights. Interestingly, we observe that the qualitative pattern of the points
selected by the two procedures is extremely similar.
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Fig. 4: influence of the non-negativity constraints (12) for `1-EQ+ES and MIO-EQ+ES.

Behavior of E
(∞)
test with respect to Con, for Φ = Φ1, Φ2 and Jes = 10.

4.2 Application to residual calculations

4.2.1 Problem statement

We apply the ATI+ES and EQ+ES approaches to the computation of the time-
averaged residual indicator proposed in [20] for the unsteady incompressible
Navier-Stokes equations. We refer to [20] for all the details concerning the defi-
nition of the model problem (a two-dimensional lid-driven cavity flow problem
over a range of Reynolds numbers), and the Reduced Order Model (ROM)
employed; here, we only introduce quantities that are directly related to the
residual indicator. Given Ω = (−1, 1)2 and the time grid {tj = j∆t}Jj=0, we

define the space Vdiv = {v ∈ [H1
0 (Ω)]2 : ∇ · v ≡ 0}. Then, for any sequence

{wj}Jj=0 ⊂ Vdiv we define the time-averaged residual

〈R〉
(
{wj}Jj=0, v; Re

)
=

∆t

T − T0

J−1∑
j=J0

e(wj , wj+1, v; Re), (32a)
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Fig. 5: performance of `1-EQ+ES for Φ = Φ1, Φ2, for Jes = 1, . . . , 15.
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Fig. 6: EIM interpolation points and MIO-EQ quadrature points.

where Re ∈ P = [15000, 25000] denotes the Reynolds number, T = tJ , T0 = tJ0

and e : Vdiv × Vdiv × Vdiv → R is the residual associated with the discretized
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Navier-Stokes equations at time tj

e(wj , wj+1, v; Re) =
∫
Ω

(
wj+1−wj

∆t + (wj +Rg) · ∇(wj+1 +Rg)
)
· v

+
1

Re
∇
(
wj+1 +Rg

)
: ∇v dx.

(32b)

Finally, Rg ∈ [H1(Ω)]2, ∇ · Rg ≡ 0 is a suitable lift associated with the
Dirichlet boundary condition g ∈ [H1/2(∂Ω)]2.

Our goal is to compute the dual norm of the residual 〈R〉,

∆u
(
{wj}Jj=0; Re

)
:= ‖〈R〉

(
{wj}Jj=0, ·; Re

)
‖V ′

div
(33)

for a given ROM Re ∈ P 7→ {ûj(Re)}j satisfying ûj(x; Re) =
∑N
n=1 a

j
n(Re)

ζrom
n (x). For this class of ROMs, we introduce the parameterized functional

〈̃R〉 associated with 〈R〉,

〈̃R〉 (v; Re) = 〈R〉
(
{ûj(Re)}j , v; Re

)
=

∫
Ω

Υ (x; Re) · F (x; v) dx (34a)

where F (·; v) = [(∇v1)1, (∇v1)2, (∇v2)1, (∇v2)2, v1, v2] and Υ = [Ψ1,1, . . . Ψ2,2, Φ1, Φ2],
with

Ψ(·; Re) =
1

Re

N∑
n=1

a+
n ∇ζrom

n +∇Rg,

Φ(·; Re) =

N∑
n=1

(
aJn − aJ0n
T − T0

)
ζrom
n + a+

n (Rg · ∇) ζrom
n + a−n (ζrom

n · ∇)Rg

+

N∑
m,n=1

c̄m,n (ζrom
n · ∇) ζrom

m + (Rg · ∇)Rg,

(34b)

and

a+
n =

∆t

T − T0

J∑
j=J0+1

akn, a−n =
∆t

T − T0

J−1∑
j=J0

ajn, c̄m,n =
∆t

T − T0

J−1∑
j=J0

aj+1
m ajn.

(34c)

Note that the functional 〈̃R〉 is parametrically affine; however, the number of
expansion’s terms MR is equal to N2 + 3N + 2, and is thus extremely large
for practical values of N .

The functional 〈̃R〉 (34) is of the form studied in this paper; for this reason,
we can apply the techniques presented in sections 2 and 3 to estimate its dual
norm. We consider T = 103, T0 = 500, ∆t = 5 · 10−3, and we consider the
constrained Galerkin ROM proposed in [20] anchored in Re = 20000, for two
values of the ROM dimension N . The high-fidelity discretization is based on a
P=8 spectral element discretization with N = 25538 degrees of freedom and
Nhf = 36864 quadrature points.
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4.2.2 Numerical results

We consider EIM-based ATI(+ES) and `1-EQ+ES to approximate the dual

norm of 〈̃R〉. To generate the empirical test space, we use nes
train = 150 uniformly-

sampled Reynolds numbers Re1, . . . ,Rentrain in P. Then, to generate the EQ
rule, we consider the tolerance δ = 10−7, we impose the accuracy constraints
for neq

train = 50 parameters, and we use the divide-and-conquer strategy dis-
cussed in section 2.3.4 with Npart = 32. On the other hand, to generate the
ATI approximation we employ the same training set used for the generation
of the empirical test space. Numerical results are presented for M = 50 and
M = 100, and Jes = 50. Note that for M = Jes we have an exact ATI approxi-
mation. To assess performance, we consider ntest = 11 equispaced parameters.

Figure 7 shows the behavior of E∞,rel
Jes

= maxRe

‖ΠX
J⊥
es
ξRe‖X

‖ξRe‖X over the train-

ing set and over the test set, for two values of N . Note that for Jes & 50 the
relative error is below O(10−1).
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Fig. 7: behavior of the maximum relative error E∞,rel
Jes

with respect to Jes.

Figure 8 shows the behavior of the truth and estimated error indicator
∆u(Re) over the test set, for two values of the ROM dimension N , N = 60, 80.
We observe that both ATI+ES and `1-EQ+ES lead to similar performance in
terms of accuracy. `1-EQ+ES returns a quadrature rule with Qeq = 717 points
for N = 60 and Qeq = 720 points for N = 80: `1-EQ+ES thus requires the
offline computation of nes

train = 150 Riesz elements and the online storage cost
of Con = DJesQeq ≈ 2.2 · 105 floating points6. On the other hand, ATI(+ES)
requires the computation of nes

train = 150 Riesz elements and the online storage
of Con = MJesD = 0.3 · 105 floating points: memory costs of ATI+ES for this
test case are significantly lower than the costs of `1-EQ+ES.

We conclude by commenting on the computational savings of the here-
presented approaches compared to the approach employed in [20]. In [20], the

6 Computational cost associated with the construction of the EQ rule is here negligible
compared to the other offline costs.
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Fig. 8: behavior of truth and estimated error indicator ∆u(Re) for ntest = 11 out-of-sample
Reynolds numbers.

authors exploit the fact that 〈̃R〉 (34) is parametrically affine to compute the
truth dual norm. For N = 80, the procedure in [20] requires the offline compu-
tation and the storage of MR = 6642 Riesz elements and the online storage of
Con = M2

R = 4.4 ·107 floating points. Therefore, both `1-EQ+ES and ATI+ES
dramatically reduce offline and online memory costs. As regards the online
computational cost, computation of the residual indicator involves the compu-
tation of the O(N2) coefficients in (34), which requires O(N2(J − J0)) flops.
Since J −J0 ≈ 105 � N2, the online cost is dominated by the computation of
the parameter-dependent coefficients in (34) for both approaches: as a result,
the benefit of EQ+ES and ATI+ES in terms of online computational savings
is extremely modest for the problem at hand.

5 Conclusions

In this paper, we developed and analyzed an offline/online computational pro-
cedure for computing the dual norm of parameterized linear functionals. The
key elements are an Empirical test Space (ES) built using POD, which reduces
the dimensionality of the optimization problem associated with the computa-
tion of the dual norm, and an Empirical Quadrature (EQ) procedure based
on an `1 relaxation or on MIO, which allows efficient calculations in an of-
fline/online setting.

We presented theoretical and numerical results to justify our approach. In
particular, our results suggest that resorting to ES for proper choices of Jes

might significantly reduce computational and memory costs without affecting
accuracy. Furthermore, for the problem at hand, ATI was clearly superior for
smooth integrands, while EQ strategies were able to achieve better accuracies
for a non-differentiable integrand. Finally, the performance of `1-EQ+ES was
inferior to that of an ATI+ES approach for the estimation of the time-averaged
residual indicator proposed in [20].
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We believe that several aspects of the proposed approach deserve further
investigations. First, we wish to extend the analysis to quadrature rules with
positive weights, and we wish to study the performance of the divide-and-
conquer approach presented in section 2.3. Second, we envision that our ap-
proach could also be employed to reduce memory and computational costs
associated with minimum residual ROMs ([13,36]) for nonlinear problems.

A Notation

High-fidelity discretization

X = span{ϕi}Ni=1 ambient space defined over Ω ⊂ Rd
X ′ dual space
RX : X ′ → X Riesz operator
ΠW : X → W orthogonal projection operator onto the closed linear space W ⊂ X

Qhf(v) =
∑Nq

i=1 ρ
hf
i v(xhf

i ) high-fidelity quadrature rule

v ∈ RN vector of coefficients such that v =
∑
i vi ϕi

L ∈ RN vector L = [L(ϕ1), . . . ,L(ϕN )] for any L ∈ X ′
X ∈ RN×N matrix such that Xi,j = (ϕj , ϕi)X
Criesz = O(N s) cost to compute RXL for a given L ∈ X ′

Parameterized functional

µ ∈ P ⊂ RP vector of parameters

F (·; v) : Ω → RD linear function of v and its derivatives

(e.g., F (x; v) = [v(x),∇v(x)])

Υµ : Ω → RD parameterized function

Lµ(v) = Qhf(η(·; v, µ)) parameterized functional with η(x; v, µ) = Υµ(x) · F (x; v)

L(µ) = ‖Lµ‖X ′ dual norm

ξµ = RXLµ Riesz element of Lµ
ML = {ξµ : µ ∈ P} dual norm

EQ+ES discretization

XJes = span{φj}Jesj=1 empirical test space

Qeq(v) =
∑Qeq

q=1 ρ
eq
q v(xeq

q ) empirical quadrature rule

LJes,Qeq (µ) = supφ∈XJes
Qeq(η(·;φ,µ))
‖φ‖X

EQ+ES dual norm estimate

LJes (µ) = ‖Lµ‖XJes ES dual norm estimate

Ξtrain,es = {µ`}n
es
train
`=1 ⊂ P parameter training set for XJes generation

Ξtrain,eq = {µ`}n
eq
train
`=1 ⊂ P parameter training set associated with (10)

K = neq
trainJeq + 1 number of rows in G in (13)

ATI discretization
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ΥM,µ(x) =
∑M
m=1 (ΘM (µ))m ζm(x) M -term affine approximation of Υµ

LM,µ(v) = Qhf(ηM (·; v, µ)) M -term affine approximation of Lµ
ηM (x; v, µ) := ΥM,µ(x) · F (x; v)

LM (µ) = ‖LM,µ‖X ′ ATI dual norm estimate

LM,Jes (µ) = ‖LM,µ‖X ′
Jes

ATI+ES dual norm estimate

B Empirical Interpolation Method

B.1 Review of the interpolation procedure for scalar fields

We review the Empirical Interpolation Method (EIM), and we discuss its application to
empirical quadrature and its extension to the approximation of vector-valued fields. Given
the Hilbert space Y defined over Ω, the M -dimensional linear space ZM = span{ψm}Mm=1 ⊂
Y and the points {xi

m}Mm=1 ⊂ Ω, we define the interpolation operator IM : Y → ZM such
that IM (v)(xi

m) = v(xi
m) for m = 1, . . . ,M for all v ∈ Y. Given the manifold F ⊂ Y and

an integer M > 0, the objective of EIM is to determine an approximation space ZM and M
points {xi

m}Mm=1 such that IM (f) accurately approximates f for all f ∈ F .
Algorithm 3 summarizes the EIM procedure as implemented in our code. The algo-

rithm takes as input snapshots of the manifold {fk}ntrain
k=1 ⊂ F and returns the func-

tions {ψm}Mm=1, the interpolation points {xi
m}Mm=1 and the matrix B ∈ RM×M such that

Bm,m′ = ψm(xi
m′ ). It is possible to show that the matrix B is lower-triangular: for this

reason, online computations can be performed in O(M2) flops. Note that in the original
EIM paper the authors resort to a strong Greedy procedure to generate ZM , while here (as
in several other works including [14]) we resort to POD. A thorough comparison between
the two compression strategies is beyond the scope of the present work.

Algorithm 3 Empirical Interpolation Method.

Inputs: {fk}ntrain
k=1 , M

Outputs: {ψm}Mm=1,B ∈ RM×M , {xi
m}Mm=1

1: Build the POD space ζ1, . . . , ζM based on the snapshot set {fk}ntrain

k=1 .

2: xi
1 := arg maxx∈Ω |ψ1(x)|, ψ1 := 1

ζ1(xi
1)
ζ1, (B)1,1 = 1

3: for m = 2, . . . ,M do
4: rm = ζm − Im−1ζm

5: xi
m := arg maxx∈Ω |rm(x)|, ψm = 1

rm(xi
m) rm, (B)m,m′ = ψm(xi

m′).

6: end for

B.2 Application to empirical quadrature

As shown in [2], EIM naturally induces a specialized quadrature rule for elements of F . To
show this, we consider the approximation:

Qhf (f) ≈ Qhf (IM (f)) =

M∑
m,m′=1

Qhf (ψm)B−1
m,m′ f(xi

m′ ) =

M∑
m′=1

ρeq
m′ f(xi

m′ )



Dual norm calculation of parameterized functionals 29

where ρeq
m′ =

∑M
m=1 B−1

m,m′Qhf (ψm). Note that in the first equality we used IM (f)(x) =∑M
m,m′=1 B−1

m,m′ f(xi
m′ )ψm(x).

B.3 Extension to vector-valued fields

The EIM procedure can be extended to vector-valued fields. We present below the non-
interpolatory extension of EIM employed in section 4.2. We refer to [33,26] for two alterna-
tives applicable to vector-valued fields. Given the space ZM = span{ζm}Mm=1 ⊂ Y and the

points {xi
m}Mm=1 ⊂ Ω, we define the least-squares approximation operator IM : Y → ZM

such that for all v ∈ Y

IM (v) := arg min
ζ∈ZM

M∑
m=1

‖v(xi
m)− ζ(xi

m)‖22.

It is possible to show that IM is well-defined if and only if the matrix B ∈ RMD×M ,

B =

 ζ1(xi
1), . . . , ζM (xi

1)
...

ζ1(xi
M ), . . . , ζM (xi

M )

 (35a)

is full-rank. In this case, we find that IM can be efficiently computed as

IM (v) =
M∑
m=1

(α(v))m ζm, α(v) = B†

 v(xi
1)

...
v(xi

M )

 (35b)

for any v ∈ Y, where B† = (BTB)−1BT denotes the Moore-Penrose pseudo-inverse of B.

Algorithm 4 summarizes the procedure employed to compute ZM , {xi
m}Mm=1 and the

matrix B. We observe that for scalar fields the procedure reduces to the one outlined in Algo-
rithm 3. We further observe that online computational cost scales with O(DM2), provided
that B† is computed offline.

Algorithm 4 Empirical Interpolation Method for vector-valued fields.

Inputs: {fk}ntrain
k=1 , M

Outputs: {ζm}Mm=1,B† ∈ RM×M , {xi
m}Mm=1

1: Build the POD space ζ1, . . . , ζM based on the snapshot set {fk}ntrain

k=1 .

2: Set xi
1 := arg maxx∈Ω ‖ζ1(x)‖2, and BM=1 using (35).

3: for m = 2, . . . ,M do
4: rm = ζm − Im−1ζm

5: Set xi
m := arg maxx∈Ω ‖rm(x)‖2, and update BM=m using (35).

6: end for

7: Compute B† = (BTB)−1B.
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C Proof of Proposition 4

In view of the proof of Proposition 4, we need the following Lemma.

Lemma C1 Let WN = span{wn}Nn=1 ⊂ C(Ω̄) be a N-dimensional space. Then, there
exist xo1, . . . , x

o
N ∈ Ω̄ and ψ1, . . . , ψN such that ψn(xo

n′ ) = δn,n′ n, n′ = 1, . . . , N , and

w(x) =

N∑
n=1

w(xon)ψn(x) ∀x ∈ Ω, ∀w ∈ WN . (36)

Similarly, given the matrix G ∈ RK×Nq such that rank(G) = N , there exist A ∈ RK×N ,
B ∈ RN×Nq and IN ⊂ {1, . . . ,Nq} such that

G = AB, B(:, IN ) = IN . (37)

Proof Proofs of (36) and (37) are analogous; for this reason, we prove below (36), and we
omit the proof of (37) .

We proceed by induction. For N = 1, if we define xo1 = arg maxx∈Ω̄ |w1(x)| and ψ1(·) =
1

w1(xo1)
w1(·), we find w(x) = w(xo1)ψ1(x) for all x ∈ Ω and w ∈ WN=1, which is (36).

We now assume that the thesis holds for N − 1 = N0, and we prove that it holds also
for N = N0 + 1. With this in mind, we consider w =

∑N
n=1 anwn for some a1, . . . , aN ∈ R.

We observe that

w(x)− aNwN (x) =

N−1∑
n=1

anwn(x) ∀x ∈ Ω.

Then, exploiting the fact that the result holds for N − 1 = N0, we obtain

w(x) = aNwN (x) +

N−1∑
n=1

(w(xon)− aNwN (xon)) ψ̃n(x) = aN ψ̃N (x) +

N−1∑
n=1

w(xon)ψ̃n(x),

where {xon}
N−1
n=1 ⊂ Ω̄, ψ̃n(xo

n′ ) = δn,n′ for n, n′ = 1, . . . , N − 1, and ψ̃N is defined as

ψ̃N (x) = wN (x)−
N−1∑
n=1

wN (xon) ψ̃n(x).

If we define

xoN ∈ arg max
x∈Ω̄

|ψ̃N (x)|, ψN (x) :=
1

ψN (xoN )
ψN (x),

we find that ψN (xon) = δN,n for n = 1, . . . , N , and

w(x) =

(
w(xoN )−

N−1∑
n=1

w(xon) ψ̃n(xoN )

)
ψN (x) +

N−1∑
n=1

w(xon) ψ̃n(x)

= w(xoN )ψN (x) +

N−1∑
n=1

w(xon)
(
ψ̃n(x)− ψ̃n(xoN )ψN (x)

)
Thesis follows by defining ψn(x) := ψ̃n(x) − ψ̃n(xoN )ψN (x) and observing that ψn(xo

n′ ) =
δn,n′ for n, n′ = 1, . . . , N . ut

Proof (Proposition 4) We define ηM (x;φ, µ) := ΥM,µ(x) · F (x;φ) and the matrix GM ∈
RK×Nq such that

GM =


ηM (xhf

1 ;φ1, µ1), . . . ηM (xhf
Nq

;φ1, µ1)

...

ηM (xhf
1 ;φJes , µ

n
eq
train ), . . . ηM (xhf

Nq
;φJes , µ

n
eq
train )

1 . . . 1

 .
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By construction, for any choice of Ξtrain,eq = {µ`}n
eq
train
`=1 , we have that

{ηM (x;φj , µ
`)}j,` ∪ {1} ⊂ WN := span {1, ζ1 · F (·;φ1), . . . , ζM · F (·;φJes )} ,

with dim(WN ) = N ≤MJes +1. Recalling Lemma C1, there exist Atrain
N,M ∈ RK×N , BN,M ∈

RN×Nq and IN ⊂ {1, . . . ,Nq} such that GM = Atrain
N,M BN,M and BN,M (:, IN ) = IN .

We now introduce ρ̂ ∈ RNq such that ρ̂i = 0 if i /∈ IN and ρ̂(IN ) =: ρ̂N = BN,Mρhf .
Then, we find

‖Gρ̂− yhf‖∞ = ‖G(ρ̂− ρhf)‖∞ ≤ ‖GM (ρ̂− ρhf)‖∞︸ ︷︷ ︸
=(I)

+ ‖(G− GM )ρ̂‖∞︸ ︷︷ ︸
=(II)

+ ‖(G− GM )ρhf‖∞︸ ︷︷ ︸
=(III)

By construction, (I)= 0, while exploiting (29a) we find (III)≤ δati. Finally, recalling the
definition of εati in (29b), we obtain

(II) ≤ εati‖ρ̂‖1 = εati

∥∥BN,M ρhf
∥∥

1

If we set CM,Jes =
∥∥BN,M ρhf

∥∥
1
, we obtain that ρ̂ is admissible and has N ≤ MJes + 1

non-zero entries. Thesis follows. ut
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