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Abstract. We present an error analysis and further numerical investigations of the Parameter-4
ized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estima-5
tion), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965].6
The PBDW algorithm is a state estimation method involving reduced models. It aims at approxi-7
mating an unknown function utrue living in a high-dimensional Hilbert space from M measurement8
observations given in the form ym = `m(utrue), m = 1, . . . ,M , where `m are linear functionals. The9
method approximates utrue with û = ẑ + η̂. The background ẑ belongs to an N -dimensional linear10
space ZN built from reduced modelling of a parameterized mathematical model, and the update η̂11
belongs to the space UM spanned by the Riesz representers of (`1, . . . , `M ). When the measurements12
are noisy, — i.e., ym = `m(utrue) + εm with εm being a noise term — the classical PBDW formu-13
lation is not robust in the sense that, if N increases, the reconstruction accuracy degrades. In this14
paper, we propose to address this issue with an extension of the classical formulation, which consists15
in searching for the background ẑ either on the whole ZN in the noise-free case, or on a well-chosen16
subset KN ⊂ ZN in presence of noise. The restriction to KN makes the reconstruction be nonlinear17
and is the key to make the algorithm significantly more robust against noise. We further present18
an a priori error and stability analysis, and we illustrate the efficiency of the approach on several19
numerical examples.20

Key words. variational data assimilation; parameterized partial differential equations; model21
order reduction.22
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1. Introduction. Let U be a Hilbert space defined over a domain Ω ⊂ Rd and
equipped with inner product (·, ·) and induced norm ‖ · ‖ =

√
(·, ·). In this paper,

we consider the following state estimation problem: we want to recover an unknown
function utrue ∈ U that represents the state of a physical system of interest from M
measurements given in the form

ym = `m(utrue) + εm m = 1, . . . ,M,

where `1 . . . , `M are M independent linear functionals over U and ε1, . . . , εM reflect
the experimental noise. In the following, we gather in the vector

y = [y1, . . . , yM ]T ∈ RM

the set of measurement data.24

Several authors have proposed to exploit Bayesian approaches [14, 23, 9] that25

consist in adding certain prior assumptions and then searching through the most26

plausible solution through sampling strategies of the posterior density. Since this27

is very costly in a high-dimensional framework, approaches involving dimensionality28
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2 H. GONG ET AL.

reduction techniques have become a very active research field in recent years. Our29

focus lies on strategies involving reduced modelling of parameterized PDEs for which a30

number of different approaches have been proposed in recent years, see [15, 16, 17, 13,31

3]. Note, however, that other compression approaches are possible and, in particular,32

we cite the works of [1, 5] in the field of signal processing and compressive sensing,33

which share similarities with the main ideas propagated in the reduced modelling34

approach as well.35

Our starting point is the so-called Parameterized-Background Data-Weak method36

(PBDW) that was originally introduced in [17]. The method has been further devel-37

oped and analyzed in several works. We cite [6, 8] for relevant works on the theoretical38

front, [7] for works on sensor placement. The methodology has been applied to non-39

trivial applications in [17, 12, 11] and an analysis on how the method can be used as40

a vehicle to find optimal sensor locations can be found in [7]. Our paper is devoted41

to the topic of the noise in measurements for which previous works are [18, 25, 24].42

We outline our contribution on this topic in what follows.43

The PBDW method exploits the knowledge of a parameterized best-knowledge
(bk) model that describes the physical system, to improve performance. We denote by
ubk(µ) ∈ U , the solution to the parameterized model for the parameter value µ ∈ Pbk,

Gbk,µ(ubk(µ)) = 0.

Here, Gbk,µ(·) denotes the parameterized bk model associated with the system, and
Pbk ⊂ RP is a compact set that reflects the lack of knowledge in the value of the
parameters of the model. We further define the bk manifold

Mbk = {ubk(µ) : µ ∈ Pbk},

which collects the solution to the bk model for all values of the parameter. Note that44

here, for simplicity of exposition, the model is defined over Ω: in [26], the authors45

considered the case in which the model is defined over a domain Ωbk that strictly46

contains the domain of interest Ω. We here intend, but we do not assume, that utrue47

is close to the bk manifold: there exists µtrue ∈ Pbk such that ‖utrue − ubk(µtrue)‖48

is small. In our state estimation problem, we are given the vector y ∈ RM of mea-49

surement data but the value of µtrue is unknown so we cannot simply run a forward50

computation to approximate utrue with ubk(µtrue). That is why we refer to the lack51

of knowledge of the value of µtrue as to anticipated or parametric ignorance. On the52

other hand, we refer to infµ∈Pbk ‖utrue−ubk(µ)‖ as to unanticipated or nonparametric53

model error.54

The PBDW method seeks an approximation

û = ẑ + η̂

employing projection by data. For perfect measurements, that is εm = 0, m =55

1, . . . ,M , the estimate û is built by searching η̂ of minimum norm subject to the56

observation constraints `m(û) = ym for m = 1, . . . ,M . In presence of noise, PBDW57

can be formulated as a Tikhonov regularization of the perfect-measurement statement58

that depends on an hyper-parameter ξ > 0 which should be tuned using out-of-59

sample data. We refer to the above mentioned literature (see in particular [17, 25])60

for a detailed discussion of the connections between PBDW and other existing state61

estimation techniques.62
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PBDW METHOD FOR STATE ESTIMATION 3

The first contribution to û, is the deduced background estimate,63

(1.1)

ẑ =

N∑
n=1

ẑnζn ∈ KN =

{
N∑
n=1

znζn : z = [z1, . . . , zN ]T ∈ ΦN

}
⊂ ZN := span{ζn}Nn=1,64

where ZN is an N -dimensional linear space spanned by the basis {ζn}Nn=1, and KN ⊆65

ZN is a subset of ZN . The space ZN is built based on the bk manifold Mbk and66

summarizes two approximations:67

(i) the approximation coming from the model, which suffers from a bias (unan-68

ticipated model error),69

(ii) the approximation of the elements of Mbk due to the finite dimension N of70

ZN .71

Note that, while the second approximation can be systematically improved by increas-72

ing N , the first one is incompressible and inherent to the choice of the model. One of73

the novelties with respect to previous works on noise is that we restrict the search of74

ẑ to a well-chosen subset KN of ZN . The information that is encoded in KN reflects75

some “learning” acquisition on the behavior of the coefficients ẑ = [ẑ1, . . . , ẑN ]T of the76

solutions to the best-knowledge model when the parameter varies. The relevance of77

this set is a more complete formalization of the decrease of the Kolmogorov thickness78

and of course depends on the proper choice of the reduced basis {ζn}Nn=1. We will see79

further how this can be taken into account. As shown later in the paper, the state80

estimate û is a linear function of the measurements y if and only if ΦN = RN (i.e.,81

KN = ZN ): for this reason, we refer to the case ΦN = RN as linear PBDW, and to82

the case ΦN ( RN (i.e., KN ( ZN ) as nonlinear PBDW.83

The second term in û, η̂ ∈ UM is the update estimate: the linear M -dimensional
space UM is the span of Riesz representers q1, . . . , qM ∈ U of the M observation
functionals {`m}Mm=1,

UM := span{qm}Mm=1, (qm, v) = `m(v) ∀ v ∈ U .

The background ẑ addresses the lack of knowledge in the value of the model param-84

eters, while the update η̂ accomodates the non-parametric model error.85

The contributions of the present work are twofold.86

(i) We present a complete a priori error analysis of linear PBDW, and we present87

a stability analysis for the nonlinear case. More in detail, we present an error88

analysis for general linear recovery algorithms, which relies on the definition of89

three computable constants; we specialize our analysis to linear PBDW; and90

we present, once again for linear PBDW, two optimality results that motivate91

our approach. Furthermore, for the nonlinear case, we prove that, if ΦN is92

convex, small perturbations in the measurements lead to small perturbations93

in the state estimate. As explained in section 3, in the linear case, our analysis94

is based on an extension of the framework presented in [5] to a broader class95

of linear recovery algorithms. The extension is necessary since linear PBDW96

does not belong to the recovery class of [5]. For the analysis of the nonlinear97

case, we use tools originally developed in the inverse problem literature (see,98

e.g., [10]).99

(ii) We present several numerical results that empirically motivate the introduc-100

tion of the constraints for the background coefficients ẑ (i.e., ΦN ( RN ).101

We consider the specific case where ΦN =
⊗N

n=1[an, bn] and {an, bn}n are102

estimated based on the bk manifold. We present numerical investigations of103
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4 H. GONG ET AL.

the stability of the formulation as a function of (i) the hyper-parameter ξ104

associated with the regularizer, (ii) the background dimension N , and (iii)105

the measurement locations. Note that the idea of introducing box constraints106

has originally been introduced in [4] to stabilize the Generalized Empirical107

Interpolation Method in presence of noise (GEIM, [15]). In this respect, the108

present paper can be understood as an extension of the latter methodology109

to PBDW.110

The paper is organized as follows. In section 2, we present the PBDW method:111

we discuss the well-posedness of the mathematical formulation, and we present the112

actionable algebraic form which is used in the numerical implementation. In section113

3, we present the analysis of the method: we here discuss the error analysis for linear114

PBDW and the stability bound for the nonlinear case. To simplify the exposition,115

in sections 2 and 3 we consider real-valued problems; the extension to the complex-116

valued case is straightforward and is briefly outlined at the end of section 2. In section117

4 we present several numerical results for a two-dimensional and a three-dimensional118

model problem, and in section 5 we draw some conclusions.119

2. Formulation.120

2.1. PBDW statement. In view of the presentation of the PBDW formulation,121

we recall the definition of the experimental measurements122

(2.1) ym = `m(utrue) + εm, m = 1, ...,M,123

where {`m}Mm=1 ⊂ U ′ and {εm}Mm=1 are unknown disturbances, and of the parameter-124

ized bk mathematical model125

(2.2) Gbk,µ(ubk(µ)) = 0,126

where µ corresponds to the set of uncertain parameters in the model and belongs to127

the compact set Pbk ⊂ RP . We here assume that Gbk,µ is well-posed for all µ ∈ Pbk128

over a domain Ωbk that contains Ω; we further assume that the restriction of ubk(µ)129

to Ω, ubk(µ)|Ω, belongs to U . Then, we introduce the rank-N approximation of ubk|Ω,130

ubk
N (µ)|Ω =

∑N
n=1 z

bk
n (µ)ζn, and we denote by ΦN ⊂ RN a suitable bounding box of131

the set {zbk(µ) : µ ∈ Pbk}.132

We can now introduce the PBDW statement: find ûξ =
∑N
n=1 (ẑξ)n ζn + η̂ξ such133

that (ẑξ, η̂ξ) ∈ ΦN × U minimizes134

(2.3) min
(z,η)∈ΦN×U

Jξ(z, η) := ξ‖η‖2 +
∥∥∥`( N∑

n=1

znζn + η

)
− y

∥∥∥2

2
,135

with ` = [`1, . . . , `M ]T : U → RM , and where ‖ · ‖2 is the Euclidean `2-norm in RN .136

For reasons that will become clear soon, we further introduce the limit formulations:137

(2.4) (ẑ0, η̂0) ∈ arg min
(z,η)∈ΦN×U

‖η‖, subject to `

(
N∑
n=1

znζn + η

)
= y;138

and139

(2.5) ẑ∞ ∈ arg min
z∈ΦN

∥∥∥`( N∑
n=1

znζn

)
− y

∥∥∥2

2
.140
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PBDW METHOD FOR STATE ESTIMATION 5

We anticipate that (2.4) and (2.5) can be rigorously linked to (2.3): we address this141

issue in the next section.142

We shall now interpret the PBDW statement introduced above. The first term143

in (2.3) penalizes the distance of the state estimate from the set KN defined in (1.1),144

which is an approximation of the bk solution manifoldMbk; the second term penalizes145

the data misfit; finally, the hyper-parameter ξ > 0 regulates the relative importance146

of the background compared to the data. We remark that PBDW can be interpreted147

as a relaxation of the Partial Spline Model presented in [28]: we refer to [24, section148

2] and [19, section 2] for a detailed derivation. We further observe that in (2.3) we149

consider the `2 loss, VM (·) = ‖ · ‖22, to penalize the data misfit: in presence of a priori150

information concerning the properties of the measurement noise, other loss functions151

could also be considered.152

Model order reduction techniques for data compression are here employed to153

generate the background space ZN = span{ζn}Nn=1 from the bk manifold. We refer to154

[17] and to the references therein for a detailed discussion; we further refer to [26] for155

the construction of local approximation spaces when Ω is strictly contained in Ωbk.156

On the other hand, ΦN ⊂ RN is built by exploiting (estimates of) snapshots of the157

bk solution manifold for selected values of the parameters µ1, . . . , µntrain ∈ Pbk. In158

particular, we here consider two choices for ΦN : ΦN = RN and ΦN =
⊗N

n=1[an, bn].159

In the former case, it is easy to verify that PBDW reduces to the original linear160

algorithm of [17], while for the second case we anticipate that computation of the161

state estimate requires the solution to a quadratic programming problem with box162

constraints. We defer the detailed description of the definition of {an, bn}n to the163

numerical examples presented in section 4.164

2.2. Finite-dimensional formulation and limit cases. We introduce the
matrices

L = (Lm,n)1≤m≤M
1≤n≤N

∈ RM,N , Lm,n = `m(ζn),

and
K = (Km,m′)1≤m,m′≤M ∈ RM,M , Km,m′ = (qm, qm′)

In the remainder of this work, we assume that

M ≥ N.

Given a symmetric positive definite matrix W ∈ RM,M , we define the weighted norm165

‖ · ‖W, such that for all y ∈ RM we have ‖y‖W :=
√
yTWy, and we denote by166

λmin(W) and λmax(W) the minimum and maximum eigenvalues of W. Proposi-167

tion 2.1 summarizes key properties of the PBDW formulation stated in the previous168

section. The proof is provided in Appendix A.169

Proposition 2.1. Let `1, . . . , `M ∈ U ′ be linear independent. Let ûξ =
∑N
n=1170

(ẑξ)n ζn + η̂ξ be a solution to (2.3) for ξ > 0, and let û0 =
∑N
n=1 (ẑ0)n ζn + η̂0 be a171

solution to (2.4). Then, the following hold.172

1. The updates η̂ξ and η̂0 belong to the space UM = span{qm}Mm=1.173

2. The vector of coefficients ẑξ associated with the deduced background solves the174

least-squares problem:175

(2.6a) min
z∈ΦN

‖Lz− y‖Wξ
, where Wξ := (ξId + K)

−1
,176

where Id is the identity matrix; η̂ξ is the unique solution to177

(2.6b) min
η∈UM

ξ‖η‖2 +
∥∥`(η)− yerr(ẑξ)

∥∥2

2
, where yerr(z) := y − Lz.178

This manuscript is for review purposes only.



6 H. GONG ET AL.

In addition, the solution (ẑ0, η̂0) to (2.4) solves179

(2.7)


min
z∈ΦN

‖Lz− y‖K−1 ,

min
η∈UM

‖η‖, subject to `(η) = yerr(ẑ0).
180

3. Any solution ẑξ to (2.3) satisfies181

(2.8a) ‖Lẑξ − y‖22 ≤
ξ + λmax(K)

ξ + λmin(K)
min
z∈ΦN

‖Lz− y‖22,182

and183

(2.8b) ‖Lẑξ − y‖2K−1 ≤
λmax(K)

λmin(K)

(
ξ + λmin(K)

ξ + λmax(K)

)
min
z∈ΦN

‖Lz− y‖2K−1 .184

Furthermore, the optimal update η̂ξ satisfies185

(2.9) ‖η̂ξ‖2 ≤
1

ξ
min
z∈ΦN

‖Lz− y‖22; ‖`(η̂ξ) + Lẑξ − y‖22 ≤ ξ ‖η̂0‖2.186

4. If L is full rank, any solution to (2.3) is bounded for any choice of ΦN and187

for any ξ > 0.188

5. If ΦN is convex and L is full rank, then the solution to (2.3) is unique for189

any ξ > 0.190

Estimates (2.8) can be used to prove rigorous links between (2.3) and the limit191

cases (2.4) and (2.5): we state the formal result in the following corollary, which is an192

extension of [24, Proposition 2.9]. Motivated by this corollary, with some abuse of no-193

tation, we extend the PBDW formulation (2.3) to ξ ∈ [0,∞], with the understanding194

that ξ = 0 corresponds to (2.4) and ξ =∞ corresponds to (2.5).195

Corollary 2.2. Given the sequence {ξi}∞i=1 such that ξi > 0, we define the196

sequence of solutions {(ẑi, η̂i) := (ẑξi , η̂ξi)}∞i=1 to (2.3). Then, if L is full rank with197

M ≥ N , the following hold: (i) if ξi →∞, then η̂i → 0 and any limit point of {ẑi}∞i=1198

is a solution to (2.5); (ii) if ξi → 0, then any limit point of {(ẑi, η̂i)}∞i=1 is a solution199

to (2.4); and (iii) if ΦN is convex, then the solution map ξ 7→ (ẑξ, η̂ξ) is continuous200

in [0,∞].201

Proof. We here prove the first statement. The proofs of the second and of the third
statements follow similar ideas. Since L is full rank and K is invertible, exploiting
(2.8a) and (2.9), there exists C <∞ such that

sup
i
‖ẑi‖2, sup

i
ξi ‖η̂i‖2 ≤ C.

This implies that η̂i → 0, while, applying Bolzano-Weierstrass theorem, we find that
{ẑi}i admits convergent subsequences. Let ẑ? be a limit of point of {ẑi}i; then by
taking the limit in (2.8a), we obtain

‖Lẑ? − y‖22 ≤ lim sup
i→∞

‖Lẑi − y‖22 ≤ min
z∈ΦN

‖Lz− y‖22,

which proves the first statement.202
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PBDW METHOD FOR STATE ESTIMATION 7

For non-convex domains ΦN , the solution to (2.3) is not in general unique: for203

this reason, we here restrict our attention to the case in which ΦN is convex. We thus204

specialize (2.6) to the two choices of ΦN considered in this work. For ΦN = RN , the205

vector ẑξ solves the linear problem:206

(2.10a) LTWξL ẑξ = LTWξy,207

while the vector η̂ξ associated with the update η̂ξ, η̂ξ =
∑M
m=1(η̂ξ)mqm, satisfies208

(2.10b) (K + ξId) η̂ξ = y − L ẑξ.209

Note that in this case there exists a linear map between the data y and the solution210

ûξ. We further observe that the update η̂ξ belongs to Z⊥N ∩ UM (see [25, Proposition211

2.2.2]), where Z⊥N is the orthogonal complement of ZN . On the other hand, for212

ΦN =
⊗N

n=1[an, bn], ẑξ solves the quadratic programming problem:213

(2.11)

min
z∈RN

1

2
zT
(
LTWξL

)
z − zTLTWξy, subject to an ≤ zn ≤ bn, n = 1, . . . , N ;214

which can be easily solved with classical optimization methods. The update η̂ξ can be215

computed using (2.6b) as for the linear case. Note that in this case the map between216

data and state estimate is nonlinear, and the update η̂ξ does not in general belong1 to217

Z⊥N ∩ UM . As anticipated in the introduction, we refer to (2.3) with ΦN = RN as to218

linear PBDW, and we refer to (2.3) with ΦN =
⊗N

n=1[an, bn] as to nonlinear PBDW.219

Remark 2.3. We can easily extend the previous developments to complex-valued220

problems. If U is a space of complex-valued functions, the measurements y1, . . . , yM ∈221

C and ΦN = CN , we can find the counterpart of (2.10):222

(2.12) LHWξL ẑξ = LHWξy, (K + ξId) η̂ξ = y − L ẑξ;223

where (·)H denotes the Hermitian conjugate. For the nonlinear case, if we set

ΦN =

{
zre + izim : zre ∈

N⊗
n=1

[an, bn], zim ∈
N⊗
n=1

[an+N , bn+N ],

}
,

for some {an, bn}2Nn=1, it is easy to obtain that ẑ?ξ = [Re{ẑξ}, Im{ẑξ}] ∈ R2N solves224

(2.13a) min
z∈R2N

1

2
zT Hz − fT z subject to an ≤ zn ≤ bn, n = 1, . . . , 2N ;225

where226

(2.13b) H =

[
Re{LHWξL} −Im{LHWξL}
Im{LHWξL} Re{LHWξL}

]
, f =

[
Re{LHWξy}
Im{LHWξy}

]
.227

3. Analysis. We present below a mathematical analysis of the PBDW formu-228

lation for noisy measurements. In section 3.1, we extend the analysis presented in229

[5] to general linear recovery algorithms, and we apply it to PBDW. In section 3.2,230

we prove that the solution to nonlinear PBDW depends continuously on data. To231

conclude, in section 3.3, we briefly discuss how the analysis presented in this section232

could be exploited to choose measurement locations.233

1We found empirically that explicitly adding the constraint η ∈ Z⊥N does not improve recon-
struction performance, and can even deteriorate the accuracy of the PBDW estimate in presence of
substantial model bias and moderate experimental noise.
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3.1. Analysis for linear PBDW: a priori error bounds and optimality.234

3.1.1. A general result for linear recovery algorithms. We first introduce235

some notation. Given the closed linear subspace Q ⊂ U , we denote by ΠQ : U → Q236

the orthogonal projection operator onto Q, and we denote by Q⊥ its orthogonal237

complement. We also denote by L(X ,Y) the space of linear bounded operators from238

the Hilbert space X to the Hilbert space Y, equipped with the norm ‖A‖L(X ,Y) =239

supv∈X
‖A(v)‖Y
‖v‖X . Given the algorithmA : RM → U , we define the image ofA, Im(A) :=240

{A(y) : y ∈ RM}; we denote by Q the dimension of the space Im(A), Q ≤M , and we241

denote by {ψq}Qq=1 an orthonormal basis of Im(A). We further denote by A` : U → U242

the L(U ,U) operator such that A`(u) = A(`(u)).243

We can now introduce the stability constants associated with A:244

(3.1) Λ2(A) := ‖A‖L(RM ,U) = sup
y∈RM

‖A(y)‖
‖y‖2

,245

and246

(3.2) ΛU (A) := ‖Id−A`‖L(U,U) = sup
u∈U

‖u−A`(u))‖
‖u‖

.247

We further define the biasing constant248

(3.3) Λbias
U (A) := ‖Id−A`|Im(A)‖L(Im(A),U) = sup

u∈Im(A)

‖u−A`(u)‖
‖u‖

.249

Note that Λbias
U (A) = 0 if and only if A`(u) = u for all u ∈ Im(A). Next Lemma sum-250

marizes important properties of the constants introduced above. We remark that if251

Λbias
U (A) 6= 0, exact computation of ΛU (A) is in general not possible. In the numerical252

experiments, we consider the approximation ΛU (A) ≈ supu∈UN
‖u−A`(u))‖
‖u‖ , where UN253

is the N -dimensional approximation of the space U , based on a high-fidelity (spectral,254

Finite Element,...) discretization, and then we resort to an Arnoldi iterative method255

to (approximately) solve the corresponding eigenvalue problem.256

Lemma 3.1. Given the linear algorithm A : RM → U , the following hold.257

1. The constants Λ2(A) and Λbias
U (A) can be computed as follows:258

(3.4) Λ2(A) = smax(A), Λbias
U (A) = smax(Id−A`),259

where smax(W) denotes the maximum singular value of W. Here, A ∈260

RQ,M and A` ∈ RQ,Q are such that Aq,m = (A(em), ψq) and (A`)q,q′ =261

(A`(ψq′), ψq), where {em}m is the canonical basis in RM .262

2. Suppose that Λbias
U (A) = 0. Then, A` is idempotent (i.e., A2

` = A`), and263

ΛU (A) = ‖A`‖L(U,U). Furthermore, we have ΛU (A) = smax(AK1/2).264

Proof. Proof of the identities in (3.4) is tedious but straightforward. We omit the265

details.266

To prove the second statement, we recall that Λbias
U (A) = 0 if and only if A`(u) = u

for all u ∈ Im(A). The latter implies that A2
` = A`. Recalling [21, Corollary 3], we

then obtain that ΛU (A) = ‖Id−A`‖L(U,U) = ‖A`‖L(U,U). Finally, we observe

ΛU (A) = sup
u∈U

‖A`(u)‖
‖u‖

= sup
u∈UM

‖A`(u)‖
‖u‖

= sup
q∈RM

‖AKq‖2
‖K1/2q‖2

= smax(AK1/2),

which completes the proof.267
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Proposition 3.2 links the previously-defined quantities to the state estimation er-268

ror. We observe that Λ2(A) measures the sensitivity of A to measurement error, while269

ΛU (A) measures the sensitivity to the approximation error — given by ‖ΠIm(A)⊥u
true‖.270

Finally, Λbias
U (A) should be interpreted as the maximum possible relative error for per-271

fect measurements (i.e., y = `(utrue)) and perfect approximation (i.e., utrue ∈ Im(A)).272

Proposition 3.2. Given the linear algorithm A : RM → U , the following esti-273

mate holds:274

(3.5)
‖A(y)− utrue‖ ≤ Λ2(A)‖y− `(utrue)‖2 + ΛU (A) ‖ΠIm(A)⊥u

true‖ + Λbias
U (A) ‖utrue‖ .275

Furthermore, if y = `(utrue) + ε with εm
iid∼ (0, σ2), the mean-square error is bounded276

by277

(3.6)
E
[
‖A(y)− utrue‖2

]
≤

(
ΛU (A) ‖ΠIm(A)⊥u

true‖ + Λbias
U (A) ‖utrue‖

)2
+σ2 trace

(
ATA

)
,

278

where A was introduced in Lemma 3.1.279

Proof. Exploiting the definition of ΛU (A) and Λbias
U (A), we find

‖u−A`(u)‖ ≤ ‖(I −A`)ΠIm(A)⊥u‖ + ‖(I −A`)ΠIm(A)u‖

≤ ΛU (A)‖ΠIm(A)⊥u‖ + Λbias
U (A)‖u‖.

Then, we obtain (3.5):

‖A(y)− utrue‖ ≤ ‖A
(
y − `(utrue)

)
‖+ ‖A`(u

true)− utrue‖

≤ Λ2(A)‖y − `(utrue)‖2 + ΛU (A)‖ΠIm(A)⊥u
true‖+ Λbias

U (A)‖utrue‖.

To prove (3.6), we first define ytrue := `(utrue); then, if we exploit the definition
of A, we find

E
[
‖A(y)− utrue‖2

]
≤ E

[∥∥A (y − ytrue
)

+
(
A`(u

true)− utrue
) ∥∥2

]
= E

[∥∥A (ε)
∥∥2
]

+
∥∥A`(u

true)− utrue
∥∥2

= σ2trace(ATA) +
∥∥A`(u

true)− utrue
∥∥2

≤ σ2trace(ATA) +
(
ΛU (A)‖ΠIm(A)⊥u

true‖+ Λbias
U (A)‖utrue‖

)2
,

which is the thesis. In the second-to-last step we used the identity E
[ ∥∥A(ε) ∥∥2]

=280

E
[∥∥A ε∥∥2

2

]
, and then we applied [22, Theorem C, Chapter 14.4] .281

Remark 3.3. Perfect algorithms. In [5], the authors restrict their attention to
perfect algorithms, that is algorithms satisfying A`(u) = u for all u ∈ Im(A). Clearly,
a linear algorithm A is perfect if and only if Λbias

U (A) = 0. If A is perfect, estimate
(3.5) reduces to

‖A(y)− utrue‖ ≤ Λ2(A)‖y − `(utrue)‖2 + ‖A`‖L(U,U) ‖ΠIm(A)⊥u
true‖ ,

which is the error bound proved in [5]. We recall that in [5] Λ2(A) is referred to282

as reconstruction operator norm, while ΛU (A) is called quasi-optimality constant. As283

observed in the next section, for ξ ∈ (0,∞) PBDW is not perfect; therefore, the284

analysis in [5] cannot be applied.285
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3.1.2. Application to Ridge regression. Before applying the error analysis286

to PBDW, we specialize our analysis to the recovery algorithm associated with the287

following optimization statement:288

(3.7) min
u∈U

ξ‖u‖2 + ‖`(u)− y‖22.289

We denote by Aξ the recovery algorithm associated to (3.7). We remark that (3.7)
has been widely studied in the context of spline smoothing and learning theory: more
in detail, (3.7) is typically referred to as Ridge regression in the statistics literature,
and as Tikhonov regularization in the inverse problem literature; we refer to [29] and
to the references therein for a thorough discussion. We observe that Im(Aξ) = UM ;
furthermore, the constants in Proposition 3.2 are given by

Λ2(Aξ) = max
m=1,...,M

√
λm(K)

ξ + λm(K)
, ΛU (Aξ) = 1, Λbias

U (Aξ) = 1 − λmin(K)

ξ + λmin(K)
.

Since Λbias
U (Aξ) 6= 0, the algorithm does not belong to the class of methods studied

in [5]. On the other hand, applying (3.5), we obtain the estimate:

‖Aξ(y)−utrue‖ ≤ 1

2
√
ξ
‖y−`(utrue)‖2 + ‖ΠU⊥Mu

true‖+

(
1 − λmin(K)

ξ + λmin(K)

)
‖utrue‖,

where we used the identity maxx∈(0,∞)
x

ξ+x2 = 1
2
√
ξ

to bound Λ2(Aξ). Note that in290

presence of noise the optimal value ξopt of ξ that minimizes the right-hand side of the291

error bound satisfies 0 < ξopt <∞.292

3.1.3. Application to linear PBDW. We now specialize the analysis to the
linear PBDW recovery algorithm, Apbdw,ξ. First, we observe that Apbdw,ξ satisfies:

Im
(
Apbdw,ξ

)
=

{ ZN ⊕ (Z⊥N ∩ UM) ξ ∈ [0,∞)

ZN ξ =∞

Moreover, for all values of ξ, (Id− Apbdw,ξ
` )z = 0 for all z ∈ ZN ; as a result, we can

specialize (3.5) as

‖Apbdw,ξ(y)− utrue‖ ≤ Λ2(Apbdw,ξ)‖y − `(utrue)‖2

+ ΛU (Apbdw,ξ) ‖ΠIm(Apbdw,ξ)⊥u
true‖ + Λbias

U (Apbdw,ξ) ‖ΠZ⊥N∩UMu
true‖ .

We can further bound the latter as

‖Apbdw,ξ(y)− utrue‖ ≤ Λ2(Apbdw,ξ)‖y − `(utrue)‖2

+
(
ΛU (Apbdw,ξ) + Λbias

U (Apbdw,ξ)
)
‖ΠZ⊥Nu

true‖ .

Therefore, we can interpret the sum
(
ΛU + Λbias

U
)

as the sensitivity to the model293

mismatch2 ‖ΠZ⊥Nu
true‖, and Λ2 as the sensitivity to experimental noise.294

2 More precisely, as explained in [17, section 2.7], ‖ΠZ⊥
N
utrue‖ should be interpreted as the sum of

a nonparametric model error infw∈Mbk ‖utrue−w‖ and of a discretization error supw∈Mbk ‖ΠZ⊥
N
w‖

associated with the compression of the solution manifold.
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It is easy to show that Λbias
U (Apbdw,ξ) → 0 as ξ → 0+ and Λbias

U (Apbdw,ξ) → 1295

as ξ → ∞. For the model problems considered in section 4, we further empirically296

demonstrate that Λ2(Apbdw,ξ) is monotonic decreasing in ξ, while ΛU (Apbdw,ξ) and297

Λbias
U (Apbdw,ξ) are monotonic increasing in ξ: this suggests that the optimal value of298

ξ should depend on the ratio ‖y − `(utrue)‖2/‖ΠZ⊥Nu
true‖. In the numerical experi-299

ments, we also find that Λ2(Apbdw,ξ) and ΛU (Apbdw,ξ) increase as N increases while300

‖ΠZ⊥Nu
true‖ decreases as N increases; as a result, the choice of N should also reflect301

the amount of noise and the behavior of ‖ΠZ⊥Nu
true‖ with N . Since the noise level and302

‖ΠZ⊥Nu
true‖ are typically unknown, the choice of ξ and N should be performed online303

based on out-of-sample data. We anticipate that the constrained formulation is sig-304

nificantly less sensitive to the choice of N than the standard unconstrained approach;305

on the other hand, both formulations are nearly equally sensitive to the choice of ξ.306

We also emphasize that the present discussion for the choice of ξ is in good agreement307

with the conclusions drawn in [24, 19].308

We further observe that the biasing constant satisfies:

Λbias
U

(
Apbdw,ξ

)
=

{
0 ξ ∈ {0,∞},

> 0 ξ ∈ (0,∞),

and is continuous in [0,∞). Finally, we observe that for ξ = 0 we can relate ΛU to309

the inf-sup constant βN,M = infz∈ZN supq∈UM
(z,q)
‖z‖‖q‖ introduced in [18] to measure310

stability with respect to model mismatch for (2.4):311

(3.8) ΛU (Apbdw,ξ=0) =
1

βN,M
.312

Identity (3.8) implies that (3.5) reduces to the estimate proved in [6] for A = Apbdw,ξ=0313

and perfect measurements.314

Proof. (Identity (3.8)) The state estimate û0 = Apbdw,ξ=0(`(u)) ∈ Im(A) = ZN⊕
(Z⊥N ∩ UM ) satisfies (û0, q) = (u, q) for all q ∈ UM . As a result, recalling standard
results in Functional Analysis and Lemma 3.1, we find ΛU (Apbdw,ξ=0) = 1

β̃
where

β̃ = infw∈Im(A) supq∈UM
(w,q)
‖w‖‖q‖ . It remains to prove that β̃ = βN,M :

β̃2 = inf
(z,η)∈ZN×(Z⊥N∩UM )

(
sup
q∈UM

(z + η, q)√
‖z‖2 + ‖η‖2‖q‖

)2

(i)
= inf

(z,η)∈ZN×(Z⊥N∩UM )

‖ΠUM (z) + η‖2

‖z‖2 + ‖η‖2

(ii)
= inf

(z,η)∈ZN×(Z⊥N∩UM )

‖ΠUM (z)‖2 + ‖η‖2

‖z‖2 + ‖η‖2

(iii)
= inf

z∈ZN

‖ΠUM (z)‖2

‖z‖2
= inf
z∈ZN

sup
q∈UM

(
(z, q)

‖z‖‖q‖

)2

= β2
N,M

where we used (i) η ∈ UM , (ii) (η,ΠUM z) = (η, z) = 0 (which exploits the fact that315

η ∈ Z⊥N ∩ UM ), and (iii) ‖ΠUM z‖2 ≤ ‖z‖2.316

3.1.4. Optimality of PBDW algorithms. In the next two Propositions, we317

prove two optimality statements satisfied by PBDW for the limit cases ξ = 0 and318

ξ =∞.319
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The first result — which was proved in Theorem 2.9 of [6] — illustrates the320

connection between PBDW and the problem of optimal recovery ([20]), for perfect321

measurements. We recall that in [25, Chapter 2.2.2] a similar optimality statement322

is proved for the case ξ > 0. Note that another relevant result on the optimality323

of PBDW can be found in the recent work [8], where it is proven that the optimal324

affine algorithm that is possible to build among all state estimation algorithms can325

be expressed as a PBDW algorithm.326

The second result shows that the algorithm ΠZNA
pbdw,ξ : y 7→ ẑξ =

∑N
n=1 (ẑξ)n327

ζn for ΦN = RN minimizes Λ2 for ξ =∞ and ΛU for ξ = 0 over all linear algorithms328

A : RM → ZN satisfying Λbias
U (A) = 0. As mentioned in the introduction, Proposition329

3.5 has been proved in [5]. The proof of Proposition 3.4 is omitted, while the proof330

of Proposition 3.5 — which exploits a different argument from the one in [5] — is331

contained in Appendix B.332

Proposition 3.4. Given the space ZN = span{ζn}Nn=1 ⊂ U and the set of linear
observation functionals ` : U → RM , we introduce the compact set

KN,M (δ,y) :=
{
u ∈ U : ‖ΠZ⊥Nu‖ ≤ δ, `(u) = y

}
where δ > 0 is a given constant. Then, for all y ∈ RM and δ > 0 such that KN,M (δ,y)
is not empty, the linear PBDW algorithm Apbdw,ξ=0 : RM → U satisfies

Apbdw,ξ=0(y) = arg inf
w∈U

sup
u∈KN,M (δ,y)

‖u− w‖.

Note that the PBDW algorithm does not depend on the value of δ.333

Proposition 3.5. Given the space ZN = span{ζn}Nn=1 ⊂ U , and the set of linear334

functionals ` : U → RM , let A be a linear algorithm such that Im(A) = ZN and335

Λbias
U (A) = 0. Then,336

(3.9) Λ2(A) ≥ Λ2(Apbdw,ξ=∞), ΛU (A) ≥ ΛU
(
ΠZNA

pbdw,ξ=0
)
.337

3.2. Analysis of nonlinear PBDW: a stability estimate. We here show338

that if ΦN is convex the deduced background ẑξ associated with the (nonlinear)339

PBDW solution satisfies the stability estimate ‖ẑξ(y1)− ẑξ(y2)‖2 ≤ C‖y1 − y2‖2 for340

some constant C and for any data y1,y2 ∈ RM . Since the update is a linear function341

of the residual y − Lẑξ (cf. Proposition 2.1), this implies that the whole PBDW342

estimate depends continuously on data. Towards this end, we recall that the deduced343

background ẑξ ∈ RN satisfies (cf. Proposition 2.1)344

(3.10)

ẑξ ∈ arg min
z∈ΦN

‖Lz−y‖2Wξ
= arg min

z∈ΦN

1

2
zTQξz+zT cξ, where

{
Qξ = LTWξL,

cξ = −LTWξy.
345

Furthermore, we define the constant346

(3.11) Λnl
ξ (ΦN ) =

(
min

z1,z2∈ΦN , z1 6=z2

‖z1 − z2‖2Qξ

‖z1 − z2‖22

)−1

.347

Next Lemma lists a number of properties of Λnl
ξ (ΦN ).348

Lemma 3.6. Let {ζn}Nn=1 be an orthonormal basis of ZN and L ∈ RM,N be full349

rank with M ≥ N . Then, the constant Λnl
ξ (ΦN ) (3.11) satisfies the following.350
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1. If ΦN ⊂ Φ′N , then Λnl
ξ (ΦN ) ≤ Λnl

ξ (Φ′N ).351

2. If ΦN = RN , then Λnl
ξ (ΦN ) = ‖Q−1

ξ ‖2. In particular, for ξ = 0 (i.e., Qξ =352

LTK−1L), we have Λnl
ξ (ΦN ) = ΛU (Apbdw,ξ=0) = 1

βN,M
.353

Proof. The first statement follows directly from the definition of minimum. On
the other hand, for ΦN = RN , Λnl

ξ can be rewritten as:

Λnl
ξ (RN ) =

(
min
z∈RN

‖Lz‖2Wξ

‖z‖22

)−1

=
1

λmin(LTWξL)
= ‖Q−1

ξ ‖2,

where in the second identity we exploited the relationship between eigenvalues of354

symmetric matrices and minimum Rayleigh quotients, and in the third identity we355

used a standard property of the ‖ · ‖2 norm of symmetric matrices. Finally, for ξ = 0356

exploiting [16, Lemma 3.3] and the fact that {ζn}Nn=1 is an orthonormal basis, we find357

that βN,M = λmin(LTK−1L). Thesis then follows recalling (3.8).358

Next Proposition motivates the definition of Λnl
ξ .359

Proposition 3.7. Let ΦN be convex, and let the hypotheses of Lemma 3.6 hold.360

Given y1,y2 ∈ RM , we denote by ẑξ,i the solution to (3.10) for y = yi, for i = 1, 2.361

Then, we have362

(3.12) ‖ẑξ,2 − ẑξ,1‖2 ≤ ‖LTWξ‖2 Λnl
ξ (ΦN ) ‖y1 − y2‖2,363

where Λnl
ξ is defined in (3.11).364

In view of the proof, we state the following standard result (see, e.g., [10, Lemma365

5.13]).366

Lemma 3.8. Let f : RN → R be convex and differentiable with gradient ∇f , and
let ΦN ⊂ RN be a closed convex set. Then,

z? ∈ arg min
z∈ΦN

f(z) ⇔ (∇f(z?), h− z?)2 ≥ 0 ∀h ∈ ΦN

where (·, ·)2 denotes the Euclidean inner product.367

Proof. (Proposition 3.7). For i = 1, 2, problem (3.10) for y = yi can be restated
as

min
z∈RN

fi(z) :=
1

2
zTQξz + zT cξ,i, Qξ = LTWξL, cξ,i = −LTWξyi.

Exploiting Lemma 3.8, we find for any h1,h2 ∈ ΦN

(Qξẑξ,i + cξ,i, hi − ẑξ,i)2 ≥ 0, i = 1, 2.

If we consider h1 = ẑξ,2 and h2 = ẑξ,1 and we sum the two inequalities, we obtain

(Qξ(ẑξ,1 − ẑξ,2) + cξ,1 − cξ,2, ẑξ,2 − ẑξ,1)2 ≥ 0

⇒ ‖ẑξ,1 − ẑξ,2‖2Qξ
≤ (cξ,1 − cξ,2, ẑξ,2 − ẑξ,1)2 ≤ ‖cξ,1 − cξ,2‖2‖ẑξ,2 − ẑξ,1‖2

⇒ ‖ẑξ,1 − ẑξ,2‖2 ≤ Λnl
ξ (ΦN ) ‖cξ,1 − cξ,2‖2 ≤ Λnl

ξ (ΦN ) ‖LT Wξ‖2 ‖y1 − y2‖2

which is the thesis.368
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Remark 3.9. Comparison with linear PBDW. Recalling the properties of the
constant Λnl

ξ (cf. Lemma 3.8), estimate (3.12) suggests that considering ΦN ( RN
reduces the sensitivity of (3.10) to perturbations in the data. However, if we restrict
the bound (3.12) to linear algorithms, we find

‖ẑξ,2 − ẑξ,1‖2 ≤ ‖
(
LTWξL

)−1 ‖2 ‖LTWξ‖2 ‖y1 − y2‖2,

which is clearly suboptimal compared to the optimal bound3

‖ẑξ,2 − ẑξ,1‖2 ≤ ‖
(
LTWξL

)−1
LTWξ‖2 ‖y1 − y2‖2.

Although we cannot rigorously prove that reducing the admissible set ΦN for ẑξ always369

improves the stability of the formulation, several numerical results presented in the370

next section confirm this intuition, and ultimately motivate the nonlinear approach.371

3.3. Selection of the observation functionals. In [18], a greedy algorithm
called SGreedy was proposed to adaptively select the observation centers4 {xm}Mm=1 ⊂
Ω for functionals of the form

`m(v) = Cm

∫
Ω

ω(‖x− xm‖2) v(x) dx,

where ω : R+ → R+ is a suitable convolutional kernel associated with the physical372

transducer. A convergence analysis of the algorithm can be found in reference [7],373

which is a general study on greedy algorithms for the optimal sensor placement using374

reduced models.375

SGreedy aims at maximizing the inf-sup constant βN,M : recalling (3.8), maxi-376

mizing βN,M is equivalent to minimizing ΛU for ξ = 0. In [25, 19], a variant of the377

SGreedy algorithm is proposed: first, the SGreedy routine is executed until βN,M378

exceeds a certain threshold, then the remaining points are chosen to minimize the379

fill distance hM = supx∈Ω min1≤m≤M ‖x − xm‖2, which is empirically found to be380

correlated with Λ2.381

While for perfect measurements and linear PBDW these Greedy routines are382

mathematically sounding and have been successfully tested, their performance for383

noisy measurement and nonlinear PBDW has not been fully investigated yet. In384

section 4, we present numerical results for two model problems. Our numerical results385

suggest that SGreedy is effective — if compared to standard a priori selections —386

also in presence of noise for linear methods; on the other hand, the introduction of387

box constraints reduces the sensitivity of the method to measurement locations.388

4. Numerical results.389

4.1. A two-dimensional problem.390

4.1.1. Problem statement. We first investigate the performance of PBDW391

using the following two-dimensional advection-diffusion model problem:392

(4.1)


−∆ug(µ) + b(µ) · ∇ug(µ) = x1 x2 + g1 x ∈ Ω := (0, 1)2

ug(µ) = 4x2(1− x2) (1 + g2) x ∈ Γ := {0} × (0, 1)

∂nug(µ) = 0 x ∈ ∂Ω \ Γ

393

3The optimal bound can be trivially derived using (2.10a).
4 As explained in the original paper, SGreedy can also be used to choose `o1, . . . , `

o
M from a

dictionary of available functionals L ⊂ U ′.
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where b(µ) = µ1 [cos(µ2), sin(µ2)] with µ = [µ1, µ2] ∈ Pbk = [0.1, 10] × [0, π/4]. We
here define the bk manifold as

Mbk :=
{
ubk(µ) := ug=0(µ) : µ ∈ Pbk

}
and we consider

utrue = ug=(ḡ1,ḡ2)(µ
true) for some µtrue ∈ Pbk,

{
ḡ1(x) = 0.2x2

1

ḡ2(x) = 0.1 sin(2πx2).

The lack of knowledge of the value of µtrue constitutes the anticipated parametric394

ignorance in the model, while uncertainty in g constitutes the unanticipated non-395

parametric ignorance.396

We consider Gaussian observation functionals with standard deviation rw = 0.01:397

(4.2) `m(v) = ` (v;xm, rw) = C(xm)

∫
Ω

exp

(
− 1

2r2
w

‖x− xm‖22
)
v(x) dx398

where C(xm) is a normalization constant such that `m(1) = 1. To assess perfor-
mance for imperfect observations, we pollute the measurements by adding Gaussian
homoscedastic random disturbances ε1, . . . , εM :

ym = `m(utrue)+εm, where εm
iid∼ N (0, σ2), σ =

1

SNR
std
(
{`
(
utrue; x̃j , rw

)
}100
j=1

)
,

for given signal-to-noise ratio SNR > 0 and uniformly-randomly chosen observation399

points {x̃j}j ⊂ Ω.400

We define the ambient space U = H1(Ω) endowed with the inner product

(u, v) =

∫
Ω

∇u · ∇v + u v dx.

Then, we generate the background space ZN using Proper Orthogonal Decomposition
(POD, [27]) based on the U inner product: we compute the solution to (4.1) for g = 0
for ntrain = 103 choices of the parameters {µi}ntrain

i=1 in Pbk, then we use POD to
build the background expansion {ζn}Nn=1. Furthermore, in view of the application of
nonlinear PBDW (ΦN ( RN ), we set

an := min
i=1,...,ntrain

(
ubk(µi), ζn

)
, bn := max

i=1,...,ntrain

(
ubk(µi), ζn

)
, n = 1, . . . , N.

The property of the POD construction (i.e., the decay rate of the POD eigenvalues)401

gives some intuition of the fact that these bounds encode some valuable information.402

4.1.2. Results.403

Linear PBDW. Figure 1 shows the behavior of Λ2, ΛU and Λbias
U with respect to404

the hyper-parameter ξ > 0, for several values of M and N . As anticipated in section405

3, Λ2 is monotonic decreasing in ξ and increases as N increases; ΛU is monotonic406

increasing in ξ and N , and decreases as M increases; finally, Λbias
U is monotonic407

increasing in ξ, and weakly depends on M and N . We remark that we observed the408

same qualitative behavior for several other choices of M,N .409

Figure 2 shows the behavior of the average relative error410

(4.3)

Eavg(ξ) =
1

K × ntest

ntest∑
j=1

K∑
k=1

‖utrue(µj)− û(k,j)
ξ ‖L2(Ω)

‖utrue‖L2(Ω)
, µj

iid∼ Uniform(Pbk),411
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(a) (b) (c)

Fig. 1: two-dimensional problem. Behavior of Λ2, ΛU and Λbias
U for several choices of

N and M .

where K = 50, ntest = 10, and û
(k,j)
ξ is the (linear) PBDW estimate associated with412

the k-th realization of the random disturbance ε, and the j-th true field utrue(µj)413

considered. To compute utrue(µj), we both consider the solution to (4.1) for g ≡ 0414

(unbiased) and g 6= 0 (biased). We further consider two different signal-to-noise415

levels, SNR =∞, SNR = 10: the choice SNR =∞ corresponds to the case of perfect416

measurements. As expected, for perfect measurements, the optimal value of ξ is equal417

to zero, while for noisy measurements optimal performance is achieved for ξ = ∞ in418

the case of unbiased model, and for ξ ∈ (0,∞) in presence of bias. These results are419

in good qualitative agreements with the discussion in section 3, and with the results420

in [24, 19].421

(a) unbiased, SNR =∞ (b) biased, SNR =∞

(c) unbiased, SNR = 10 (d) biased, SNR = 10

Fig. 2: two-dimensional problem. Behavior of Eavg for several values of ξ and three
choices of N,M , for linear PBDW (ΦN = RN ).

Figure 3(a) shows the first M = N + 5 points selected by the SGreedy-procedure422

for N = 5, while Figures 3(b) and (c) show the behavior of the stability constants423
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ΛU and Λ2 for different choices of the observation centers and ξ = 0. Figures 3(d)-424

(e)-(f) show analogous results for N = 15. We observe that for small values of M the425

SGreedy procedure reduces the constants ΛU and Λ2 compared to a equispaced grid426

of observations and to a grid associated with Gaussian quadrature nodes. We further427

observe that the application of the variant SGreedy + approximation (with threshold428

tol = 0.4) leads to more moderate values of Λ2 compared to the plain SGreedy, at the429

price of a slight deterioration in ΛU .430

(a) N = 5 (b) N = 5 (c) N = 5

(d) N = 15 (e) N = 15 (f) N = 15

Fig. 3: two-dimensional problem. Figures (a)-(d): location of the observation centers
selected by SGreedy. Figures (b)-(e): behavior of ΛU with M for different choices of
the observation centers. Figures (c)-(f): behavior of Λ2 with M for different choices
of the observation centers.

Figure 4 shows the behavior of Eavg defined in (4.3) with N , for several choices431

of M . Observations are chosen using the SGreedy+approximation algorithm with432

threshold tol = 0.4. Here, the value of ξ is chosen using holdout validation based on433

I = M/2 additional measurements (see [24, 19] for further details). We observe that434

for noisy measurements the error reaches a minimum for an intermediate value of N ,435

which depends on M and on the noise level. These results are consistent with the436

interpretation — stated in section 3 — of N as a regularization parameter.437

Nonlinear PBDW. Figure 5 replicates the experiment of Figure 4 for the non-438

linear formulation. We observe that the nonlinear formulation is significantly more439

robust to the choice of N compared to the linear formulation, particularly in the440

presence of noise.441

In Figures 6 and 7, we investigate the behavior of Eavg with N , for M = N + 3,442

for both linear and nonlinear formulations, and two noise levels. We consider three443

strategies for the selection of the observation centers: uniform points, Gaussian points,444

and adaptive points (based on SGreedy). For the problem at hand, the nonlinear445

formulation improves reconstruction performance, particularly in presence of noise446

and for non-adaptive selections of measurement locations.447

This manuscript is for review purposes only.



18 H. GONG ET AL.

(a) unbiased, SNR =∞ (b) biased, SNR =∞

(c) unbiased, SNR = 3 (d) biased, SNR = 3

Fig. 4: two-dimensional problem. Behavior of Eavg with N for several values of M ,
for linear PBDW (ΦN = RN ).

(a) unbiased, SNR =∞ (b) biased, SNR =∞

(c) unbiased, SNR = 3 (d) biased, SNR = 3

Fig. 5: two-dimensional problem. Behavior of Eavg with N for several values of M ,
for nonlinear PBDW (ΦN ( RN ).

4.2. A three-dimensional problem.448
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(a) linear, SNR =∞ (b) nonlinear, SNR =∞

(c) linear, SNR = 3 (d) nonlinear, SNR = 3

Fig. 6: two-dimensional problem. Behavior of Eavg with N for M = N + 3, for linear
and nonlinear PBDW, and several choices of measurement locations (unbiased case).

(a) linear, SNR =∞ (b) nonlinear, SNR =∞

(c) linear, SNR = 3 (d) nonlinear, SNR = 3

Fig. 7: two-dimensional problem. Behavior of Eavg with N for M = N + 3, for linear
and nonlinear PBDW, and several choices of measurement locations (biased case).
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4.2.1. Problem statement. We consider the three-dimensional model prob-449

lem:450

(4.4)

{ −(1 + εi)∆ug(µ) − (2πµ)2ug(µ) = g in Ω;

∂nug(µ) = 0 on ∂Ω;
451

where ε = 10−2, Ω = (−1.5, 1.5)×(0, 3)×(0, 3)\Ωcut, Ωcut = (−0.5, 0.5)×(0.25, 0.5)×
(0, 1). Figure 8 shows the geometry; the same test case has been considered in [19].
We define the bk manifold Mbk = {ubk(µ) = ugbk(µ) : µ ∈ Pbk = [0.1, 0.5]}, and we
define the true field as the solution to (4.4) for some µtrue ∈ Pbk and g = gtrue, where

gbk(x) = 10 e−‖x−p
bk‖22 ; gtrue(x) = 10 e−‖x−p

true‖22 ;

and pbk = [0, 2, 1], ptrue = [−0.02, 2.02, 1]. Lack of knowledge of the input frequency452

µ constitutes the anticipated ignorance in the system, while the incorrect location of453

the acoustic source (that is, pbk 6= ptrue) constitutes unanticipated ignorance/model454

error . Computations are based on a P2 Finite Element (FE) discretization with455

roughly N = 16000 degrees of freedom in Ω.456

(a)

Ω

Ωcut

x2

x3

(b)

Ωcut

Ω

x1

x3

(c)

Fig. 8: three-dimensional problem: computational domain.

As in the previous example, we model the synthetic observations by a Gauss-
ian convolution with standard deviation rw, see (4.2). In order to simulate noisy
observations, we add Gaussian homoscedastic disturbances

ym = `m(utrue) + εrem + iεimm , where εrem
iid∼ N (0, σ2

re), εimm
iid∼ N (0, σ2

im),

with σre = 1
SNR std

(
{Re{` (utrue; x̃j , rw)}}100

j=1

)
, σim = 1

SNR std
(
{Im{`

(
utrue; x̃j , rw

)
457

}}100
j=1

)
, for given signal-to-noise ratio SNR > 0 and uniformly-randomly chosen ob-458

servation points {x̃j}j ⊂ Ω. Furthermore, we measure performance by computing the459

average relative L2 error Eavg (4.3) over ntest = 10 different choices of the parameter460

µ in Pbk.461

We consider the ambient space U = H1(Ω) endowed with the inner product

(u, v) =

∫
Ω

∇u · ∇v̄ + u v̄ dx,

where z̄ denotes the complex conjugate of z ∈ C. On the other hand, the background462

space ZN is built using the Weak-Greedy algorithm based on the residual, as in [17].463
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Since the solution is complex, we compute the solution to the nonlinear for-
mulation by solving the complex-valued counterpart of (2.11) as a 2N -dimensional
real-valued quadratic problem for ẑ?ξ = [Re{ẑξ}, Im{ẑξ}] (see Remark 2.3). Given

N ≤ Nmax := 30, we estimate the constraints {an, bn}2Nn=1 by evaluating a Galerkin
Reduced Order Model (ROM) based on the reduced space ZNmax

for ntrain = 103

parameters µ1, . . . , µntrain
iid∼ Uniform(Pbk):

an := min
i=1,...,ntrain

Re
{(
ubk
Nmax

(µi), ζn
)}
,

bn := max
i=1,...,ntrain

Re
{(
ubk
Nmax

(µi), ζn
)}
,

an+N := min
i=1,...,ntrain

Im
{(
ubk
Nmax

(µi), ζn
)}
,

bn+N := max
i=1,...,ntrain

Im
{(
ubk
Nmax

(µi), ζn
)}
,

n = 1, . . . , N.

Here ubk
Nmax

denotes the solution to the Galerkin ROM with Nmax degrees of freedom.464

We refer to the Reduced Basis literature for further details concerning the generation465

and the evaluation of the ROM; we emphasize that by resorting to the low-dimensional466

ROM — as opposed to the FE model — to estimate lower and upper bounds for the467

background coefficients we significantly reduce the offline computational effort.468

4.2.2. Results. Figure 9 shows the behavior of Λ2 and ΛU with N for M =469

N + 2 and M = N + 5, for two choices of the measurement locations: the SGreedy470

adaptive algorithm, and a random uniform algorithm in which x1, . . . , xM are sampled471

uniformly in Ω with the constraint that dist
(
xm, {xm′}m−1

m′=1

)
≥ δ = 0.02, for m =472

1, . . . ,M . Results for the latter procedure are averaged over K = 10 independent473

random choices of measurement locations. We observe that the Greedy algorithm474

leads to a reduction in both Λ2 and ΛU compared to the random uniform algorithm.475

Figures 10 and 11, show the behavior of the average relative error Eavg (4.3) with476

N for several fixed values of M , for two choices of the observation centers, for linear477

and nonlinear PBDW, for two noise levels, and for both the biased and the unbi-478

ased case. In all cases, the regularization hyper-parameter ξ is chosen using holdout479

validation, based on I = M/2 additional measurements. As for the previous model480

problem, we empirically find that the nonlinear formulation improves reconstruction481

performance for noisy measurements and for non-adaptive selections of measurement482

locations.483

5. Conclusions. In this paper, we provided theoretical and empirical investiga-484

tions of the performance of the PBDW approach. First, we presented a mathematical485

analysis of the PBDW formulation. For the linear case, we generalized the analysis486

in [5] to obtain a complete a priori error analysis for noisy measurements, and we487

also presented two optimality results that motivate the approach. For the nonlinear488

case, we showed a stability estimate that exploits a well-known result, first appeared489

in the inverse problem literature. The latter estimate suggests that the nonlinear for-490

mulation should be more robust to measurement error. Second, we provided several491

numerical examples to compare the performance of linear PBDW with the perfor-492

mance of nonlinear PBDW.493

Results suggest that the box constraints for the entries of the background vector494

ẑξ improve the accuracy of the recovery algorithm, provided that measurements are495

polluted by a non-negligible disturbance. As regards the choice of the observation496

centers, the SGreedy method stabilizes the recovery algorithm for N ≈M and ΦN =497
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(a) M = N + 2 (b) M = N + 2

(c) M = N + 5 (d) M = N + 5

Fig. 9: three-dimensional problem. Behavior of Λ2 and ΛU with N for M = N + 2
(Figures (a)-(b)) and M = N + 5 (Figures (c)-(d)).

RN . On the other hand, at least for the numerical example considered in this work,498

in presence of box constraints, SGreedy does not lead to substantial improvements.499

Finally, we also empirically found that the nonlinear formulation is significantly less500

sensitive to the choice of N , particularly for noisy measurements.501

Appendix A. Proof of Proposition 2.1.502

Proof. Given η ∈ U , recalling the definition of UM , the Riesz theorem and the503

projection theorem, we find that Jξ(z, η) = Jξ(z,ΠUM η) + ξ‖ΠU⊥M η‖
2: therefore, the504

optimal update η̂ξ belongs to UM . Using a similar argument, we can also prove that505

η̂0 ∈ UM .506

Proof of (2.6b) is straightforward and is here omitted; we now focus on (2.6a). To-
wards this end, we introduce the eigendecomposition K = UDUT , D = diag

(
λ1, . . . ,

λM
)

and we observe that Wξ = (ξId+K)−1 satisfies Wξ = UDξU
T with (Dξ)m,m =

1
ξ+λm(K) . If we fix z ∈ RN , it is easy to verify that the unique minimizer of

Jξ,z(·) = Jξ(z, ·) is given by

η(z) =

M∑
m=1

(η(z))m qm, where η(z) = Wξy
err(z).

If we substitute the expression of η in (2.3), and we exploit the eigendecomposition
of K and Wξ, we find

Jξ(z, η(z)) = (yerr(z))
T
(
ξWξKWξ + (KWξ − Id)

T
(KWξ − Id)

)
yerr(z)

= (yerr(z))
T

(Id−KWξ) yerr(z) = (yerr(z))
T

(ξWξ) yerr(z)

which implies (2.6a). Proof of (2.7) follows the exact same ideas and is here omitted.507
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(a) Greedy, lin., SNR =∞ (b) Greedy, nonlin., SNR =∞

(c) random, lin., SNR =∞ (d) random, nonlin., SNR =
∞

(e) Greedy, lin., SNR = 3 (f) Greedy, nonlin., SNR = 3

(g) random, lin., SNR = 3 (h) random, nonlin., SNR = 3

Fig. 10: three-dimensional problem. Behavior of Eavg with N for several values of M ,
for linear and nonlinear PBDW and two noise levels (unbiased case).

We now prove (2.8). Given x ∈ RM , exploiting the eigendecomposition of Wξ we
find

1

ξ + λmax(K)
‖x‖22 ≤ ‖x‖2Wξ

≤ 1

ξ + λmin(K)
‖x‖22.
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(a) Greedy, lin., SNR =∞ (b) Greedy, nonlin., SNR =∞

(c) random, lin., SNR =∞ (d) random, nonlin., SNR =
∞

(e) Greedy, lin., SNR = 3 (f) Greedy, nonlin., SNR = 3

(g) random, lin., SNR = 3 (h) random, nonlin., SNR = 3

Fig. 11: three-dimensional problem. Behavior of Eavg with N for several values of M ,
for linear and nonlinear PBDW and two noise levels, (biased case).

By exploiting the latter, we obtain

min
z∈ΦN

‖Lz− y‖22 ≥ (ξ + λmin(K)) min
z∈ΦN

‖Lz− y‖2Wξ

= (ξ + λmin(K)) ‖Lẑξ − y‖2Wξ
≥ ξ + λmin(K)

ξ + λmax(K)
‖Lẑξ − y‖22,

which is (2.8a). By observing that the generalized eigenvalues of W
1/2
ξ φm = λgen

m
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K−1/2φm are given by λgen
m =

√
λm(K)√
ξ+λm(K)

for m = 1, . . . ,M , we obtain

λmin(K)

ξ + λmin(K)
‖x‖2K−1 ≤ ‖x‖2Wξ

≤ λmax(K)

ξ + λmax(K)
‖x‖2K−1 ,

and finally

min
z∈ΦN

‖Lz− y‖2K−1 ≥
ξ + λmax(K)

λmax(K)
min
z∈ΦN

‖Lz− y‖2Wξ

=
ξ + λmax(K)

λmax(K)
‖Lẑξ − y‖2Wξ

≥ λmin(K)

λmax(K)

(
ξ + λmax(K)

ξ + λmin(K)

)
‖Lẑξ − y‖2K−1 ,

which is (2.8b).508

Since (ẑξ, η̂ξ) minimizes (2.3) over all (z, η) ∈ ΦN × U , we have

ξ‖η̂ξ‖2 ≤ Jξ(ẑξ, η̂ξ) ≤ Jξ(ẑ∞, 0) = min
z∈ΦN

‖Lz− y‖22;

‖`o(η̂ξ) + Lẑξ − y‖22 ≤ Jξ(ẑξ, η̂ξ) ≤ Jξ(ẑ0, η̂0) = ξ‖η̂0‖2,

which is (2.9).509

The fourth and fifth statements follow directly from the algebraic formulation of510

the PBDW statement, and from well-known results in convex optimization: we omit511

the details.512

Appendix B. Proof of Proposition 3.5 . We state upfront that the proof fol-513

lows the same idea of the well-known Gauss-Markov theorem ([2]) for linear unbiased514

estimators.515

Proof. Without loss of generality, we assume that {ζn}Nn=1 is orthonormal; then,516

we denote by ẑξ(y) the vector of coefficients associated with the basis {ζn}Nn=1 and517

the solution to the PBDW statement for ξ ∈ {0,∞}, and we denote by zA(y) the518

vector of coefficients associated with the algorithm A.519

We first prove that Λ2(A) ≥ Λ2(Apbdw,ξ=∞). Since both PBDW and A are linear,
recalling the definition of L, Lm,n = `m(ζn), we have that

zA(y) = ẑ∞(y) + Dy, ẑ∞(y) =
(
LTL

)−1
LT y,

for a proper choice of D ∈ RN,M . Since Λbias
U (A) = 0, we must have zA(Lz) = z for

all z ∈ RN ; this implies that

zA(Lz) = z + DLz ⇒ DL = 0.

Recalling (3.4), we shall prove that

smax

((
LT L

)−1
LT + D

)
≥ smax

((
LT L

)−1
LT
)
.
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Towards this end, we observe that5

(Λ2(A))
2

= sup
y∈RM

∥∥((LT L
)−1

LT + D
)
y
∥∥2

2

‖y‖22
= sup

z∈RN

∥∥(L (LT L
)−1

+ DT
)
z‖22

‖z‖22

= sup
z∈RN

zT
((

LT L
)−1

+
(
LT L

)−1
(DL)

T
+ DL

(
LT L

)−1
+ DDT

)
z

‖z‖22

= sup
z∈RN

zT
((

LT L
)−1

+ DDT
)
z

‖z‖22
≥ sup

z∈RN

zT
((

LT L
)−1
)
z

‖z‖22
=
(
Λ2(Apbdw,ξ=∞)

)2
,

which is the thesis. Note that in the second-to-last step we used the fact that DDT520

is semi-positive definite.521

We now prove that ΛU (A) ≥ ΛU (ΠZNA
pbdw,ξ=0). As for the previous case, we

observe that

zA(y) = ẑ0(y) + Ey, ẑ0(y) =
(
LTK−1L

)−1
LT K−1 y,

where the matrix E ∈ RN,M should satisfy EL = 0. Exploiting Lemma 3.1, we find
the desidered result:

ΛU (A) = smax(AK1/2) = sup
z∈RN

∥∥K1/2
(
K−1L

(
LTK−1L

)−1
+ ET

)
z
∥∥

2

‖z‖2

= sup
z∈RN

√
zT
(

(LTK−1L)
−1

+ EKET
)
z

‖z‖2
≥ sup

z∈RN

√
zT (LTK−1L)

−1
z

‖z‖2
= ΛU

(
ΠZNA

pbdw,ξ=0
)
.
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