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PBDW METHOD FOR STATE ESTIMATION: ERROR ANALYSIS
FOR NOISY DATA AND NONLINEAR FORMULATION*

HELIN GONG!, YVON MADAY?*, OLGA MULA$, AND TOMMASO TADDEIY

Abstract. We present an error analysis and further numerical investigations of the Parameter-
ized-Background Data-Weak (PBDW) formulation to variational Data Assimilation (state estima-
tion), proposed in [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965].
The PBDW algorithm is a state estimation method involving reduced models. It aims at approxi-
mating an unknown function u**“¢ living in a high-dimensional Hilbert space from M measurement
observations given in the form ym = €, (™), m = 1,..., M, where £, are linear functionals. The
method approximates u'™¢ with @& = 2 4+ 7). The background 2 belongs to an N-dimensional linear
space Zx built from reduced modelling of a parameterized mathematical model, and the update 7
belongs to the space Ups spanned by the Riesz representers of (41, ...,£€p). When the measurements
are noisy, — i.e., Ym = €m (ut'"®) + €, With €, being a noise term — the classical PBDW formu-
lation is not robust in the sense that, if N increases, the reconstruction accuracy degrades. In this
paper, we propose to address this issue with an extension of the classical formulation, which consists
in searching for the background 2 either on the whole Z5 in the noise-free case, or on a well-chosen
subset Ky C Zxn in presence of noise. The restriction to K makes the reconstruction be nonlinear
and is the key to make the algorithm significantly more robust against noise. We further present
an a priori error and stability analysis, and we illustrate the efficiency of the approach on several
numerical examples.

Key words. variational data assimilation; parameterized partial differential equations; model
order reduction.

AMS subject classifications. 62-07, 93E24

1. Introduction. Let I/ be a Hilbert space defined over a domain  C R? and
equipped with inner product (-,-) and induced norm || - || = /(-,+). In this paper,
we consider the following state estimation problem: we want to recover an unknown
function u'™¢ € U that represents the state of a physical system of interest from M
measurements given in the form

ym:€m(utrue)+€m mzla"'vMa

where ¢ ...,0p; are M independent linear functionals over U and e, ..., ey reflect
the experimental noise. In the following, we gather in the vector

y = [yl,...,yM]TERM

the set of measurement data.

Several authors have proposed to exploit Bayesian approaches [14, 23, 9] that
consist in adding certain prior assumptions and then searching through the most
plausible solution through sampling strategies of the posterior density. Since this
is very costly in a high-dimensional framework, approaches involving dimensionality
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2 H. GONG ET AL.

reduction techniques have become a very active research field in recent years. Our
focus lies on strategies involving reduced modelling of parameterized PDEs for which a
number of different approaches have been proposed in recent years, see [15, 16, 17, 13,
3]. Note, however, that other compression approaches are possible and, in particular,
we cite the works of [1, 5] in the field of signal processing and compressive sensing,
which share similarities with the main ideas propagated in the reduced modelling
approach as well.

Our starting point is the so-called Parameterized-Background Data-Weak method
(PBDW) that was originally introduced in [17]. The method has been further devel-
oped and analyzed in several works. We cite [6, 8] for relevant works on the theoretical
front, [7] for works on sensor placement. The methodology has been applied to non-
trivial applications in [17, 12, 11] and an analysis on how the method can be used as
a vehicle to find optimal sensor locations can be found in [7]. Our paper is devoted
to the topic of the noise in measurements for which previous works are [18, 25, 24].
We outline our contribution on this topic in what follows.

The PBDW method exploits the knowledge of a parameterized best-knowledge
(bk) model that describes the physical system, to improve performance. We denote by
uP¥(p) € U, the solution to the parameterized model for the parameter value p € PPX,

GVl (uP () = 0.

Here, GP#(-) denotes the parameterized bk model associated with the system, and
PPk C RP is a compact set that reflects the lack of knowledge in the value of the
parameters of the model. We further define the bk manifold

MK = {uP () : e PPY,

which collects the solution to the bk model for all values of the parameter. Note that
here, for simplicity of exposition, the model is defined over €: in [26], the authors
considered the case in which the model is defined over a domain QP* that strictly
contains the domain of interest 2. We here intend, but we do not assume, that u®*4¢
is close to the bk manifold: there exists p'™¢ € PP¥ such that ||ut™e — uPk(ytrue))||
is small. In our state estimation problem, we are given the vector y € RM of mea-
surement data but the value of u*1¢ is unknown so we cannot simply run a forward
computation to approximate 1 with u*(ut™¢). That is why we refer to the lack
of knowledge of the value of ut*u¢ as to anticipated or parametric ignorance. On the
other hand, we refer to inf,,cpui || —u"*(11)|| as to unanticipated or nonparametric
model error.
The PBDW method seeks an approximation

U=2+1
employing projection by data. For perfect measurements, that is €, = 0, m =
1,..., M, the estimate @ is built by searching 7 of minimum norm subject to the
observation constraints £,, (%) = y,, for m = 1,..., M. In presence of noise, PBDW

can be formulated as a Tikhonov regularization of the perfect-measurement statement
that depends on an hyper-parameter £ > 0 which should be tuned using out-of-
sample data. We refer to the above mentioned literature (see in particular [17, 25])
for a detailed discussion of the connections between PBDW and other existing state
estimation techniques.
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PBDW METHOD FOR STATE ESTIMATION 3

The first contribution to w, is the deduced background estimate,
(L.1)

N N
Z= Z2Cn € KN = {Z 2nCn: 2z =[z1,.. .,ZN]T € @N} C Zy = span{(n}fy:l,
n=1
where Zy is an N-dimensional linear space spanned by the basis {¢,})_;, and Ky C
Zn is a subset of Zy. The space Zy is built based on the bk manifold MP¥ and
summarizes two approximations:

(i) the approximation coming from the model, which suffers from a bias (unan-

ticipated model error),
(i) the approximation of the elements of MP* due to the finite dimension N of
ZN.

Note that, while the second approximation can be systematically improved by increas-
ing N, the first one is incompressible and inherent to the choice of the model. One of
the novelties with respect to previous works on noise is that we restrict the search of
z to a well-chosen subset K of Z5. The information that is encoded in Kx reflects
some “learning” acquisition on the behavior of the coefficients 2 = [21, ..., 2y]7 of the
solutions to the best-knowledge model when the parameter varies. The relevance of
this set is a more complete formalization of the decrease of the Kolmogorov thickness
and of course depends on the proper choice of the reduced basis {(,}Y_;. We will see
further how this can be taken into account. As shown later in the paper, the state
estimate @ is a linear function of the measurements y if and only if &5 = RV (i.e.,
Kn = Zy): for this reason, we refer to the case &y = RY as linear PBDW, and to
the case @y C RY (i.e., Ky € Zx) as nonlinear PBDW.

The second term in 4, 1) € Ups is the update estimate: the linear M-dimensional
space Ups is the span of Riesz representers qi,...,qum € U of the M observation
functionals {¢,,}M_,,

Unt = span{gu} s, (qmiv) = bulv) Vo el

The background Z addresses the lack of knowledge in the value of the model param-
eters, while the update 7 accomodates the non-parametric model error.
The contributions of the present work are twofold.
(i) We present a complete a priori error analysis of linear PBDW, and we present
a stability analysis for the nonlinear case. More in detail, we present an error
analysis for general linear recovery algorithms, which relies on the definition of
three computable constants; we specialize our analysis to linear PBDW; and
we present, once again for linear PBDW, two optimality results that motivate
our approach. Furthermore, for the nonlinear case, we prove that, if &y is
convex, small perturbations in the measurements lead to small perturbations
in the state estimate. As explained in section 3, in the linear case, our analysis
is based on an extension of the framework presented in [5] to a broader class
of linear recovery algorithms. The extension is necessary since linear PBDW
does not belong to the recovery class of [5]. For the analysis of the nonlinear
case, we use tools originally developed in the inverse problem literature (see,
e.g., [10]).
(ii) We present several numerical results that empirically motivate the introduc-
tion of the constraints for the background coefficients z (i.e., &y < RY).
We consider the specific case where @ = ®N [an,b,] and {ay,b,}, are

n=1
estimated based on the bk manifold. We present numerical investigations of
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4 H. GONG ET AL.

the stability of the formulation as a function of (i) the hyper-parameter £
associated with the regularizer, (ii) the background dimension N, and (iii)
the measurement locations. Note that the idea of introducing box constraints
has originally been introduced in [4] to stabilize the Generalized Empirical
Interpolation Method in presence of noise (GEIM, [15]). In this respect, the
present paper can be understood as an extension of the latter methodology
to PBDW.

The paper is organized as follows. In section 2, we present the PBDW method:
we discuss the well-posedness of the mathematical formulation, and we present the
actionable algebraic form which is used in the numerical implementation. In section
3, we present the analysis of the method: we here discuss the error analysis for linear
PBDW and the stability bound for the nonlinear case. To simplify the exposition,
in sections 2 and 3 we consider real-valued problems; the extension to the complex-
valued case is straightforward and is briefly outlined at the end of section 2. In section
4 we present several numerical results for a two-dimensional and a three-dimensional
model problem, and in section 5 we draw some conclusions.

2. Formulation.

2.1. PBDW statement. In view of the presentation of the PBDW formulation,
we recall the definition of the experimental measurements

(2.1) Ym = L (U™ + €, m=1,..., M,

where {£,,}M_, c U’ and {e,, }*_, are unknown disturbances, and of the parameter-
ized bk mathematical model

(2.2) GV (uP (1)) = 0,

where u corresponds to the set of uncertain parameters in the model and belongs to
the compact set PPX € RP. We here assume that GP%* is well-posed for all j € PPk
over a domain QP¥ that contains (2; we further assume that the restriction of uP*(u)
to 2, uP*(u)|q, belongs to U. Then, we introduce the rank-N approximation of u"X|q,
uR(p)a = ZTJLI 2P%(11)¢,, and we denote by @ C RY a suitable bounding box of
the set {z*(u) : p € PPk},

We can now introduce the PBDW statement: find ¢ = 25:1 (2¢),, Gn + 7 such
that (z¢,7¢) € @y x U minimizes

- 2
2.3 : ) = 2 He . B ‘ |
( ) (zyn)rggj”u j&(z 77) 5”77” nEZI ZnCn + 1 y i
with £ = [01,...,¢y]T : U — R and where || - ||2 is the Euclidean ¢?-norm in R¥.

For reasons that will become clear soon, we further introduce the limit formulations:

N
2.4 70, M0) € a i , subjectto £ + =y;
(2.4) (20,70) € arg  min I, subj <; ZnCn n) y
and
N 2
(2.5) Zoo € arg zré%r]lv Hé (T; zn<n> —yHQ.
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PBDW METHOD FOR STATE ESTIMATION 5

We anticipate that (2.4) and (2.5) can be rigorously linked to (2.3): we address this
issue in the next section.

We shall now interpret the PBDW statement introduced above. The first term
in (2.3) penalizes the distance of the state estimate from the set K defined in (1.1),
which is an approximation of the bk solution manifold MP¥; the second term penalizes
the data misfit; finally, the hyper-parameter £ > 0 regulates the relative importance
of the background compared to the data. We remark that PBDW can be interpreted
as a relaxation of the Partial Spline Model presented in [28]: we refer to [24, section
2] and [19, section 2] for a detailed derivation. We further observe that in (2.3) we
consider the £2 loss, Vas(-) = || - ||3, to penalize the data misfit: in presence of a priori
information concerning the properties of the measurement noise, other loss functions
could also be considered.

Model order reduction techniques for data compression are here employed to
generate the background space Zx = span{(,}_; from the bk manifold. We refer to
[17] and to the references therein for a detailed discussion; we further refer to [26] for
the construction of local approximation spaces when ) is strictly contained in QPX.
On the other hand, ®y C RY is built by exploiting (estimates of) snapshots of the
bk solution manifold for selected values of the parameters p!,. .., pu"rin € PPk In
particular, we here consider two choices for ®n: &y = RN and &y = ®2[:1[an, by].
In the former case, it is easy to verify that PBDW reduces to the original linear
algorithm of [17], while for the second case we anticipate that computation of the
state estimate requires the solution to a quadratic programming problem with box
constraints. We defer the detailed description of the definition of {a,,b,}, to the
numerical examples presented in section 4.

2.2. Finite-dimensional formulation and limit cases. We introduce the
matrices

L= (Lm,n)llémgf\v/l S RN[’Nv Lm,n = Em(Cn%
_n_

and

M, M
R™M,

K= (Km,m’)1§m7m/§M € Konm = (Qm,Qm’)

In the remainder of this work, we assume that
M > N.

Given a symmetric positive definite matrix W € RMM e define the weighted norm
| - [[w, such that for all y € RM we have |ly|lw := /y? Wy, and we denote by
Amin(W) and Apax (W) the minimum and maximum eigenvalues of W. Proposi-
tion 2.1 summarizes key properties of the PBDW formulation stated in the previous
section. The proof is provided in Appendix A.

PROPOSITION 2.1. Let {1,...,y € U’ be linear independent. Let G = Zi:[:l
(2¢),, Cn + 1 be a solution to (2.3) for & >0, and let iy = SN (20),, G + 70 be a
solution to (2.4). Then, the following hold.

1. The updates fie and 7y belong to the space Upr = span{gm, }M_;.
2. The vector of coefficients Z¢ associated with the deduced background solves the
least-squares problem:

(2.6a) min [|[Lz —y|lw,, where W¢:= ({Id + K)™ ',
FASLiNg
where 1d is the identity matriz; e is the unique solution to

. err (/s 2 err
(2.6b)  min &|nl* + [[€(n) -y (2¢)||,, where y*'(2) :=y — La.
ne€UNM
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In addition, the solution (zg, 7o) to (2.4) solves

g — vl
in Lz — yk-1,

2.7
@1) min [l subject to £(n) = 3" (20).

nens

3. Any solution z¢ to (2.3) satisfies

R + Amax(K) .
(2.89) Lo~ vl < S5m0 min syl

5 + Amin(K) zed

and

(2.8) Lyl < Al <£+Amm<K>

in |Lz —y|%_..
(K) £+)\max(K)) Join [Tz = ylic

Furthermore, the optimal update 9 satisfies
. . . N .
(2.9 lnell® < ¢ o Lz —yll5:  [1€(2) + Lze — y[3 < &l

4. If L is full rank, any solution to (2.3) is bounded for any choice of ®n and
for any € > 0.

5. If &y is convex and L is full rank, then the solution to (2.3) is unique for
any € > 0.

Estimates (2.8) can be used to prove rigorous links between (2.3) and the limit
cases (2.4) and (2.5): we state the formal result in the following corollary, which is an
extension of [24, Proposition 2.9]. Motivated by this corollary, with some abuse of no-
tation, we extend the PBDW formulation (2.3) to £ € [0, oo], with the understanding
that £ = 0 corresponds to (2.4) and & = oo corresponds to (2.5).

COROLLARY 2.2. Given the sequence {§;}$2, such that & > 0, we define the
sequence of solutions {(2;,7M;) = (Ze,, e, ) }i21 to (2.3). Then, if L is full rank with
M > N, the following hold: (i) if & — oo, then 7j; — 0 and any limit point of {2;}32,
is a solution to (2.5); (it) if & — 0, then any limit point of {(2;,7:)}52, s a solution
to (2.4); and (ii3) if P is convex, then the solution map & — (Z¢,Me) is continuous
in [0, 00].

Proof. We here prove the first statement. The proofs of the second and of the third
statements follow similar ideas. Since L is full rank and K is invertible, exploiting
(2.8a) and (2.9), there exists C' < oo such that

sup [|zi[l2, sup & [[ill2 < C.
1 1
This implies that 7; — 0, while, applying Bolzano-Weierstrass theorem, we find that

{2;}; admits convergent subsequences. Let z* be a limit of point of {2;};; then by
taking the limit in (2.8a), we obtain

ILz* —yl|3 < limsup |[Lz; — y||3 < min ||Lz - y]f3,
i— 00 AN

which proves the first statement. 0
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PBDW METHOD FOR STATE ESTIMATION 7

For non-convex domains @y, the solution to (2.3) is not in general unique: for
this reason, we here restrict our attention to the case in which @ is convex. We thus
specialize (2.6) to the two choices of @y considered in this work. For ®x = RY the
vector Z¢ solves the linear problem:

(2.10a) LWLz = L"W,y,
while the vector ), associated with the update 7, )¢ = Z%zl(ﬁg)mqm, satisfies
(2.10b) (K+¢Id) e =y — Lz.

Note that in this case there exists a linear map between the data y and the solution
iie. We further observe that the update ¢ belongs to Zx NUns (see [25, Proposition
2.2.2]), where Z3% is the orthogonal complement of Zy. On the other hand, for
Oy = ®2]:1[an, by], z¢ solves the quadratic programming problem:

(2.11)

zrgﬂi{{l;lV %ZT (LTW5L) z — ZTLTW5y, subjectto a, <z, <b,, n=1,...,N;

which can be easily solved with classical optimization methods. The update )¢ can be
computed using (2.6b) as for the linear case. Note that in this case the map between
data and state estimate is nonlinear, and the update 7)¢ does not in general belong' to
Z3% NUpr. As anticipated in the introduction, we refer to (2.3) with &5 = R as to
linear PBDW, and we refer to (2.3) with &y = ®2f:1[an7 b,] as to nonlinear PBDW.

Remark 2.3. We can easily extend the previous developments to complex-valued

problems. If U is a space of complex-valued functions, the measurements y,...,yy €
C and @y = CV, we can find the counterpart of (2.10):
(2.12) LYWLz = L"Wey,  (K+¢Id) i) =y — Lz

where ()7 denotes the Hermitian conjugate. For the nonlinear case, if we set

N N
Oy = {z’e +iz™ ;7 € ®[an,bn]7 z™ € ®[an+N,bn+N], } ,
n=1

n=1
for some {a,,b,}2Y,, it is easy to obtain that 27 = [Re{z¢}, Im{Z¢}] € R*" solves
1
(2.13a) min —z' Hz — fTz subjectto a, < z, <b,, n=1,...,2N;
zeR2N 2

where

Re{L¥W,L} —Im{LYW.L}
m{LAW,L} Re{L¥W,L}

[t ]

3. Analysis. We present below a mathematical analysis of the PBDW formu-
lation for noisy measurements. In section 3.1, we extend the analysis presented in
[5] to general linear recovery algorithms, and we apply it to PBDW. In section 3.2,
we prove that the solution to nonlinear PBDW depends continuously on data. To
conclude, in section 3.3, we briefly discuss how the analysis presented in this section
could be exploited to choose measurement locations.

(2.13b) H=

IWe found empirically that explicitly adding the constraint n € Z]%, does not improve recon-

struction performance, and can even deteriorate the accuracy of the PBDW estimate in presence of
substantial model bias and moderate experimental noise.
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8 H. GONG ET AL.

3.1. Analysis for linear PBDW: a prior: error bounds and optimality.

3.1.1. A general result for linear recovery algorithms. We first introduce
some notation. Given the closed linear subspace Q C U, we denote by Illg : U — Q
the orthogonal projection operator onto Q, and we denote by Q< its orthogonal
complement. We also denote by £(X,)) the space of linear bounded operators from
the Hilbert space X' to the Hilbert space Y, equipped with the norm [|A[lzx,y) =
SUP,cx ”’ﬁf]ﬁ)ﬂy . Given the algorithm A : RM — U/, we define the image of A, Im(A) :=
{A(y) : y € RM}; we denote by @ the dimension of the space Im(A), Q < M, and we
denote by {d)q}qQ:l an orthonormal basis of Im(A). We further denote by Ag : U — U
the L(U,U) operator such that Ag(u) = A(£(u)).

We can now introduce the stability constants associated with A:

[AM)II

3.1 Ay(A) :=||A My = ,
(3.1) 2(4) = Aoz = s
and

u— Ag(u
(32) Aual4) = 14 = Az = sup 1= 2]

ueld [[ull
We further define the biasing constant
[[u— Ag(u)

(3.3) AP (A) = 1d — Aglim(a) | c(ma)u) = sup
u€lm(A) ||UH

Note that AP}#$(A) = 0 if and only if Ap(u) = u for all u € Im(A). Next Lemma sum-

marizes important properties of the constants introduced above. We remark that if

APjas(A) # 0, exact computation of Ay(A) is in general not possible. In the numerical
lu—Ag(u))l

flll
is the A/-dimensional approximation of the space U, based on a high-fidelity (spectral,
Finite Element,...) discretization, and then we resort to an Arnoldi iterative method
to (approximately) solve the corresponding eigenvalue problem.

LEMMA 3.1. Given the linear algorithm A : RM — U, the following hold.
1. The constants Ao(A) and AP#S(A) can be computed as follows:

(3.4) Ao(A) = Smax(A),  AYP(A) = spmax(Id — Ay),

experiments, we consider the approximation Ay/(A) ~ sup,c,, , where Uns

where Smax(W) denotes the mazimum singular value of W. Here, A €
ROM and Ay € RP? are such that Ay, = (Alem), V) and (Ag)g.y =
(Ae(g), ), where {€y,}m is the canonical basis in RM.
2. Suppose that APi*(A) = 0. Then, Ag is idempotent (i.e., A3 = Ag), and
Ay (A) = | Aell c@iuy. Furthermore, we have Ay (A) = Smax (AK/2).
Proof. Proof of the identities in (3.4) is tedious but straightforward. We omit the
details.
To prove the second statement, we recall that AP#$(A) = 0 if and only if Ag(u) = u
for all u € Im(A). The latter implies that A7 = 4. Recalling [21, Corollary 3], we
then obtain that Ay (A) = |[Id — Aellz@uy = || Aell £@iu)- Finally, we observe

[[Ae(w)| [Ae(w)|| _ |AKq|

Ay(A) =sup 2 = qup R = qyp 2 — 5 (AKY/?),
weu  |[ull wety ||l qerv [K1/2qlla — 7T
which completes the proof. 0
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PBDW METHOD FOR STATE ESTIMATION 9

Proposition 3.2 links the previously-defined quantities to the state estimation er-
ror. We observe that Ay(A) measures the sensitivity of A to measurement error, while
Ay (A) measures the sensitivity to the approximation error — given by [Ty, a)2 u®"||.
Finally, ABiaS(A) should be interpreted as the maximum possible relative error for per-
fect measurements (i.e., y = £(u"°)) and perfect approximation (i.e., u""¢ € Im(A4)).

PROPOSITION 3.2. Given the linear algorithm A : RM — U, the following esti-
mate holds:
(3.5) )
[ AQy) = '™ < Ao (A)lly — (™) ]l2 + Ag(A) [Trmcays u™ [ + AZG*(A) [u'™] .

Furthermore, if y = £(u*¢) + € with €, s (0,02), the mean-square error is bounded
by
(36) E[[A(y) — a2 < (Aue(A) [Ty u™ + AF(A) [u™]])”
+ o2 trace (ATA) ,
where A was introduced in Lemma 3.1.
Proof. Exploiting the definition of Ay(A4) and A}*(A), we find

u—=Ae(u)| < (1 = Ae)ymcayrull + [[(1 = Ae) I ayul|
Age(A) [Ty ay =l + AZ(A) [ul].

N

IN

Then, we obtain (3.5):
|A(y) — u™| < [|A (y — £(u'™)) || + [ Ag(u'™) — u'™|
< Aa(A)lly — ™) |2 + Agr(A)| Ty ayewt™| + AP (A)Jute|].

To prove (3.6), we first define y*¥¢ := £(u'"9°); then, if we exploit the definition
of A, we find

E [HA(Y) _ utrue”Q] S E [HA (y _ ytrue) 4 (Ae(utrue) _ utrue) Hﬂ

=E [HA (€) HQ} + || Ae(ut™) — u““‘eH2 = o’trace(ATA) + ||Ag(u™) — u”“eH2
ias 2
< o”trace(ATA) + (Au(A) [Ty u™ | + A (A)][u™[])",
which is the thesis. In the second-to-last step we used the identity E[ HA(G) HQ} =
E {HAGH?], and then we applied [22, Theorem C, Chapter 14.4] . d
Remark 3.3. Perfect algorithms. In [5], the authors restrict their attention to
perfect algorithms, that is algorithms satisfying Ag(u) = u for all u € Im(A). Clearly,

a linear algorithm A is perfect if and only if Az'f,iaS(A) = 0. If A is perfect, estimate
(3.5) reduces to

A(y) = ™) < Aa(A)ly = ™) + el corn Wma- o™

which is the error bound proved in [5]. We recall that in [5] Ay(A) is referred to
as reconstruction operator norm, while Ay(A) is called quasi-optimality constant. As
observed in the next section, for £ € (0,00) PBDW is not perfect; therefore, the
analysis in [5] cannot be applied.
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3.1.2. Application to Ridge regression. Before applying the error analysis
to PBDW, we specialize our analysis to the recovery algorithm associated with the
following optimization statement:

: 2 o2
(3.7) min &fful|” + [|€(w) —y .

We denote by A¢ the recovery algorithm associated to (3.7). We remark that (3.7)
has been widely studied in the context of spline smoothing and learning theory: more
in detail, (3.7) is typically referred to as Ridge regression in the statistics literature,
and as Tikhonov regularization in the inverse problem literature; we refer to [29] and
to the references therein for a thorough discussion. We observe that Im(A¢) = Uns;
furthermore, the constants in Proposition 3.2 are given by

_ )‘m(K) _ bias _
Aalde) = max, ey Ml =1 A =1 -

)\min(K)
g + Amin (K) .

Since A}jias(Ag) # 0, the algorithm does not belong to the class of methods studied
in [5]. On the other hand, applying (3.5), we obtain the estimate:

1 Amin (K)
A _ ,,true < iy true 1I true 1 — min true

[Ae(y)—u™|| < NG [y =€) [l + [Ty, u™[| + £+ A (K) [l
where we used the identity max;e(0,00) g157 = 2—\1/5 to bound As(A¢). Note that in

presence of noise the optimal value £°P of £ that minimizes the right-hand side of the
error bound satisfies 0 < £°Pt < co.

3.1.3. Application to linear PBDW. We now specialize the analysis to the
linear PBDW recovery algorithm, APP":€ First, we observe that APPIW:¢ satisfies:

ZN B (ZJJ\‘, QUM) £ €[0,00)

Im (Apbdw,§> _ {

ZN f:OO

Moreover, for all values of &, (Id — Agbdw’é)z =0 for all z € Zy; as a result, we can
specialize (3.5) as
[[APPAVE (y) — e < Ag(APPME) |y — £(uT) 2

+Au(f4pbdw’§) ||H1m(Ar)bdwv€)LUtmc|| + AgaS(Apbdw’E) ||Hz]¢muMUth|| .

We can further bound the latter as
”Apbdw,f(y) _ utruell < A2(Apbdw,£)||y _ E(utrue)”2

+ (Au(Apbdw,E) + Al}f{ias(Apbdw,g)) ||H2§utrue” .

Therefore, we can interpret the sum (Au + Altjias) as the sensitivity to the model
mismatch? ||TT zi utue|| and A, as the sensitivity to experimental noise.

true”

2 More precisely, as explained in [17, section 2.7], ||HZIJ\7U should be interpreted as the sum of

true

a nonparametric model error inf,,  \ o [|[u*™® —w|| and of a discretization error sup,,c pqok ||z L w||
N

associated with the compression of the solution manifold.
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It is easy to show that APJ2S(APPIVE) — 0 as & — 0F and APj2s(APPIW:E) — 1
as & — oo. For the model problems considered in section 4, we further empirically
demonstrate that A,(APP3:€) is monotonic decreasing in &, while Ay (APP¥:¢) and
ABiaS(APde’g) are monotonic increasing in £: this suggests that the optimal value of
¢ should depend on the ratio [y — £(u""¢)[|2/|TIzLu*"[|. In the numerical experi-
ments, we also find that Ay (APPI¥:€) and Ay (APPIVE) increase as N increases while
HHZ;# u™"°|| decreases as N increases; as a result, the choice of N should also reflect
the amount of noise and the behavior of [|IIz L u®"¢|| with N. Since the noise level and
||ITT En u™ue|| are typically unknown, the choice of £ and N should be performed online
based on out-of-sample data. We anticipate that the constrained formulation is sig-
nificantly less sensitive to the choice of N than the standard unconstrained approach;
on the other hand, both formulations are nearly equally sensitive to the choice of &.
We also emphasize that the present discussion for the choice of £ is in good agreement
with the conclusions drawn in [24, 19].

We further observe that the biasing constant satisfies:

0 §e{0,00},

Abias Apbdw,§ —
) {>o £ € (0.0),

and is continuous in [0,00). Finally, we observe that for £ = 0 we can relate Ay to
the inf-sup constant Sy v = inf.ez, sup,ey,, % introduced in [18] to measure
stability with respect to model mismatch for (2.4):

1
(3.8) Mgy (APPIWE=0y — _—

C By
Identity (3.8) implies that (3.5) reduces to the estimate proved in [6] for A = APPdW:¢=0
and perfect measurements.

Proof. (Identity (3.8)) The state estimate @g = APPI":¢=0(£(u)) € Im(A) = Zy @
(Z% NUyr) satisfies (g, q) = (u,q) for all ¢ € Upr. As a result, recalling standard
results in Functional Analysis and Lemma 3.1, we find Ay (APPI":£=0) = % where
8= inf,c1m(a) SUPeu,, Tollal It remains to prove that B = BN,

2
62 — lnf (Z + 77»(])
(zmeZnx(Z§ntar) \aethar /||2]12 + 0]l ¢]]
(i) inf 1My, (2) + 1l
(zmeZnx(ZEnta)  112]12 + [In]]?
(i) ot Mot (2))1% + lInll
GmezyxEinun) 1212+ [In]?
iii II 2 , 2
@ e uM(;Z)II — inf swp < (2 q)> .
z€zy |2 2€Zn ey \ |24l ’

where we used (i) n € Ups, (ii) (9, Iy, 2) = (n,2) = 0 (which exploits the fact that
0 € Z NUay), and (i) [Ty 2] < [12]2, 0

3.1.4. Optimality of PBDW algorithms. In the next two Propositions, we
prove two optimality statements satisfied by PBDW for the limit cases £ = 0 and
& = o0.
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The first result — which was proved in Theorem 2.9 of [6] — illustrates the
connection between PBDW and the problem of optimal recovery ([20]), for perfect
measurements. We recall that in [25, Chapter 2.2.2] a similar optimality statement
is proved for the case & > 0. Note that another relevant result on the optimality
of PBDW can be found in the recent work [8], where it is proven that the optimal
affine algorithm that is possible to build among all state estimation algorithms can
be expressed as a PBDW algorithm.

The second result shows that the algorithm IIz, APPI¥:S 1y s 3¢ = 25:1 (2¢),,
Cp for @ = RY minimizes Ao for € = oo and Ay for € = 0 over all linear algorithms
A:RM — Zy satisfying All}ias(A) = 0. As mentioned in the introduction, Proposition
3.5 has been proved in [5]. The proof of Proposition 3.4 is omitted, while the proof
of Proposition 3.5 — which exploits a different argument from the one in [5] — is
contained in Appendix B.

PROPOSITION 3.4. Given the space Zy = span{(,}N_; C U and the set of linear
observation functionals £ : U — RM | we introduce the compact set

Knan(6y) = {u el [Mzpul <5, £u) =y}

where § > 0 is a given constant. Then, for ally € RM and § > 0 such that Ky p(5,y)
is not empty, the linear PBDW algorithm APPIV:¢=0 . RM _ 1/ satisfies

Apbdwf:o(y) = arg inf sup [lu — w]|.
WEU yekn a(8,y)

Note that the PBDW algorithm does not depend on the value of 4.

PROPOSITION 3.5. Given the space Zy = span{(,}N_; C U, and the set of linear
functionals £ : U — RM | let A be a linear algorithm such that Im(A) = Zyn and
APjas(A) = 0. Then,

(39)  Aa(A) > Ap(APPIVET) A (A) > Ay (T, APPIE).

3.2. Analysis of nonlinear PBDW: a stability estimate. We here show
that if @y is convex the deduced background z. associated with the (nonlinear)
PBDW solution satisfies the stability estimate ||Z¢(y1) — 2¢(y2)|2 < Clly1 — y2l|2 for
some constant C' and for any data y1,y2 € RM™. Since the update is a linear function
of the residual y — Lz (cf. Proposition 2.1), this implies that the whole PBDW
estimate depends continuously on data. Towards this end, we recall that the deduced
background z¢ € RY satisfies (cf. Proposition 2.1)

(3.10)
Q¢ = LTWL,

1
ze € arg min ||Lz—y||%,. = arg min -z’ Qez+z ce, where
¢ € arg min |[Lz—y|[w, g min o2° Qez+z ¢ ce = —LTWey.

Furthermore, we define the constant

71—zl \
(3.11) Agl(@N):< min ”12HQE> .

21,22€P N, 21 F22 ||21 — Z2||§

Next Lemma lists a number of properties of Agl(é N)-

LEMMA 3.6. Let {¢,}_, be an orthonormal basis of Zn and L € RMN be full

n=1

rank with M > N. Then, the constant AEI(CI)N) (3.11) satisfies the following.
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L. If &y C @)y, then AP (By) < APN(®ly).
2. If oy = RN, then A{g}l((bN) = ||Q€_1||2. In particular, for £ =0 (i.e., Q¢ =
LTK~'L), we have AEI(CDN) = AM(APde7E:O) =1

BN,M°
Proof. The first statement follows directly from the definition of minimum. On
the other hand, for &y = RY, Agl can be rewritten as:

Lzl ) 1
Anl RN _ : W, — _ —1
5( ) (ngﬂlg% ||Z||g )\min(LngL) HQg ”27

where in the second identity we exploited the relationship between eigenvalues of
symmetric matrices and minimum Rayleigh quotients, and in the third identity we

used a standard property of the || - |2 norm of symmetric matrices. Finally, for £ = 0
exploiting [16, Lemma 3.3] and the fact that {¢,,}2__, is an orthonormal basis, we find
that Bn s = Amin(LTK7IL). Thesis then follows recalling (3.8). a

Next Proposition motivates the definition of Agl.

PROPOSITION 3.7. Let ®n be convex, and let the hypotheses of Lemma 3.6 hold.
Given y1,y2 € RM we denote by z¢; the solution to (3.10) fory =y;, fori=1,2.
Then, we have

(3.12) |2¢.2 — 2e1ll2 < [IL"Well2 A2 (@n) [ly1 — y2ll2,

where Agl is defined in (3.11).

In view of the proof, we state the following standard result (see, e.g., [10, Lemma
5.13]).

LEMMA 3.8. Let f: RN — R be convex and differentiable with gradient V f, and
let ®n C RN be a closed convex set. Then,

z* € arg Iél})n f(z) & (Vf(z*),h—2"),>0 Vhe ®y

where (-,-)2 denotes the Euclidean inner product.

Proof. (Proposition 3.7). For ¢ = 1,2, problem (3.10) for y = y; can be restated
as

1
mil;lv fi(z) := §ZTQ€Z + zTcg,i, Q¢ = LTVV§L7 Cei = —LTW§yi.
z€R

Exploiting Lemma 3.8, we find for any hi,hy € &y
(Qezei+Cei, i —26,), >0,  i=1,2.
If we consider hy = z¢ 5 and hy = Z¢; and we sum the two inequalities, we obtain
(Qe(Ze1 — Z¢2) + Ce1 — Ce2s Ze2 —2Z1)y 2 0
= [|2e1 — Ze2llg, < (Cen — Ce2,2e2 — 2e1),y < lleen — cepllallze — 2|2

2 < AZ(Pw) [lega — eeallz < AZ(@n) LT Wellz [ly1 — y2 2

= 21 — 2¢,2

which is the thesis. O
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14 H. GONG ET AL.

Remark 3.9. Comparison with linear PBDW. Recalling the properties of the
constant Agl (cf. Lemma 3.8), estimate (3.12) suggests that considering ®y C RY
reduces the sensitivity of (3.10) to perturbations in the data. However, if we restrict
the bound (3.12) to linear algorithms, we find

. . -1
ze.2 — Zeall2 < | (LTWEL)  [|2 [L"Well2 lyr — yzll2,
which is clearly suboptimal compared to the optimal bound?
. . -1
|2e2 — zeall2 < || (LTWL)  LTWella [lys — vl

Although we cannot rigorously prove that reducing the admissible set ® y for z¢ always
improves the stability of the formulation, several numerical results presented in the
next section confirm this intuition, and ultimately motivate the nonlinear approach.

3.3. Selection of the observation functionals. In [18], a greedy algorithm
called SGreedy was proposed to adaptively select the observation centers* {z,, }M_, C
Q for functionals of the form

£ () = Cr /Q w(llz = Emll) v(z) d,

where w : Ry — R, is a suitable convolutional kernel associated with the physical
transducer. A convergence analysis of the algorithm can be found in reference [7],
which is a general study on greedy algorithms for the optimal sensor placement using
reduced models.

SGreedy aims at maximizing the inf-sup constant Gy as: recalling (3.8), maxi-
mizing By, a is equivalent to minimizing Ay, for £ = 0. In [25, 19], a variant of the
SGreedy algorithm is proposed: first, the SGreedy routine is executed until Sy ar
exceeds a certain threshold, then the remaining points are chosen to minimize the
fill distance hyr = sup,cq Mini<m<ar || — &m|2, which is empirically found to be
correlated with As.

While for perfect measurements and linear PBDW these Greedy routines are
mathematically sounding and have been successfully tested, their performance for
noisy measurement and nonlinear PBDW has not been fully investigated yet. In
section 4, we present numerical results for two model problems. Our numerical results
suggest that SGreedy is effective — if compared to standard a priori selections —
also in presence of noise for linear methods; on the other hand, the introduction of
box constraints reduces the sensitivity of the method to measurement locations.

4. Numerical results.
4.1. A two-dimensional problem.

4.1.1. Problem statement. We first investigate the performance of PBDW
using the following two-dimensional advection-diffusion model problem:

—Aug(p) +b(p)  Vug(p) = z122 + g1 € Q:=(0,1)?
(4.1) ug(p) =4x2(1 —x2) (14 g2) z el :={0} x(0,1)
Ontug(p) =0 z € 0Q\T

3The optimal bound can be trivially derived using (2.10a).

4 As explained in the original paper, SGreedy can also be used to choose £9,...,44, from a
dictionary of available functionals £ C U’.
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where b() = puy [cos(u2),sin(u2)] with g = [p1, po] € PP¥ = [0.1,10] x [0, 7/4]. We
here define the bk manifold as

MPE = {uPR(n) == ugmo(p) : pe PR}

and we consider

g1(z) = 0.22%

r r I bk
ut e = ug:(gl»!?Z)(/’[/t ue) fOI'SOme l’(‘t e E P 9 { {72(39) — 01 Sin(2ﬂ'$2).

The lack of knowledge of the value of p'*"® constitutes the anticipated parametric

ignorance in the model, while uncertainty in g constitutes the unanticipated non-
parametric ignorance.
We consider Gaussian observation functionals with standard deviation r,, = 0.01:

(4.2) L (V) = L(V; Ty, Tw) = C(T) /Q exp (—271,‘%”.’[} - xm||§> v(x) dz

where C(z,,) is a normalization constant such that ¢,,(1) = 1. To assess perfor-
mance for imperfect observations, we pollute the measurements by adding Gaussian
homoscedastic random disturbances €1,...,€p:

Ym = L (") + €,  Where €, iiNdj\/((L 0?), o std ({E (utr“e;:%j7 rw) ;0:01) ,

~ SNR
for given signal-to-noise ratio SNR > 0 and uniformly-randomly chosen observation
points {Z;}; C Q.

We define the ambient space U = H'(Q) endowed with the inner product

(u,v) :/ Vu - Vv + uvdz.
Q

Then, we generate the background space Zy using Proper Orthogonal Decomposition
(POD, [27]) based on the U inner product: we compute the solution to (4.1) for g =0
for Ngrain = 10% choices of the parameters {u’}5* in PPk then we use POD to
build the background expansion {¢,}_,. Furthermore, in view of the application of
nonlinear PBDW (@5 C RY), we set

G, := min (ubk(ui), §n) , bp:i= max (ubk(ui), Cn) , n=1,...,N.

i=1,...,N¢rain 1=1,...,N¢rain

The property of the POD construction (i.e., the decay rate of the POD eigenvalues)
gives some intuition of the fact that these bounds encode some valuable information.

4.1.2. Results.

Linear PBDW. Figure 1 shows the behavior of Az, Ay and APi*S with respect to
the hyper-parameter £ > 0, for several values of M and N. As anticipated in section
3, Ay is monotonic decreasing in £ and increases as N increases; Ay is monotonic
increasing in £ and N, and decreases as M increases; finally, Azl}ias is monotonic
increasing in £, and weakly depends on M and N. We remark that we observed the
same qualitative behavior for several other choices of M, N.

Figure 2 shows the behavior of the average relative error

(4.3)
Ntest K true(,,j ~(k,7)
1 ey [ut™e(p?) = g || L2() iid
E,, = — , 7~ Uniform(PP¥),
g(f) K % Ntost Z Z ||utrueHL2(Q) 12 ( )

j=1 k=1
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o N=6,M=10 | Trrrereess o N=6,M=10
—N=6M=20 —N=6M=20
«N=6,M=40 « N =6, M=40

—N =10, M = 40 ~—N =10, M = 40
1 1
107 10° 10° 10° 10'"° 1070 10° 10° 10° 100
13 13
(a) (b)

Fig. 1: two-dimensional problem. Behavior of Ao, Ay, and A'g,ias for several choices of
N and M.

where K = 50, ntest = 10, and ﬁék’j) is the (linear) PBDW estimate associated with

the k-th realization of the random disturbance €, and the j-th true field u'"¢(u/)
considered. To compute u*™°(u?), we both consider the solution to (4.1) for g = 0
(unbiased) and g # 0 (biased). We further consider two different signal-to-noise
levels, SNR = oo, SNR = 10: the choice SNR = oo corresponds to the case of perfect
measurements. As expected, for perfect measurements, the optimal value of £ is equal
to zero, while for noisy measurements optimal performance is achieved for £ = oo in
the case of unbiased model, and for £ € (0,00) in presence of bias. These results are
in good qualitative agreements with the discussion in section 3, and with the results
in [24, 19].

o N=6,M=10
M =20
M =40
, M = 40

10
M =10
- =20
. =40
—N =10, M = 40
-6 -6
mm“” 10° 10'° mm““ 10° 10'°
13 13
(a) unbiased, SNR = oo (b) biased, SNR = oo
10” 107
fossessassnsnn 00092992992999%
L psasssesssssenee
107
-3
mw“” 10'0 100
€
(c) unbiased, SNR = 10 (d) biased, SNR = 10

Fig. 2: two-dimensional problem. Behavior of F,,, for several values of { and three
choices of N, M, for linear PBDW (®y = RY).

Figure 3(a) shows the first M = N + 5 points selected by the SGreedy-procedure

for N = 5, while Figures 3(b) and (c) show the behavior of the stability constants
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Ay and Ay for different choices of the observation centers and £ = 0. Figures 3(d)-
(e)-(f) show analogous results for N = 15. We observe that for small values of M the
SGreedy procedure reduces the constants Ay and As compared to a equispaced grid
of observations and to a grid associated with Gaussian quadrature nodes. We further
observe that the application of the variant SGreedy + approximation (with threshold
tol = 0.4) leads to more moderate values of Ay compared to the plain SGreedy, at the
price of a slight deterioration in Ay,.

prox (tol = 0.4)

g 1 6 5 10’ <10

0.4

10
0.2
0 4o 100 100

0 02 04 06 08 1 ) [) 20 40 60 80 100
z M

(a) N=5 (c) N=5
1 14 10 o2 102 10?

o3 o3 fapprox (tol = 0.4)
0.8

o5 .
06 012 15 °
& o F10' ERl
0.4 16
o7
o1
02 8
0 o4 9 10° 10°
0 02 04 06 08 1 [} 0 20 40 60 80 100
) M
(d) N=15 (f) N=15

Fig. 3: two-dimensional problem. Figures (a)-(d): location of the observation centers
selected by SGreedy. Figures (b)-(e): behavior of Ay with M for different choices of
the observation centers. Figures (c)-(f): behavior of Ay with M for different choices
of the observation centers.

Figure 4 shows the behavior of E,,, defined in (4.3) with IV, for several choices
of M. Observations are chosen using the SGreedy-+approximation algorithm with
threshold tol = 0.4. Here, the value of £ is chosen using holdout validation based on
I = M/2 additional measurements (see [24, 19] for further details). We observe that
for noisy measurements the error reaches a minimum for an intermediate value of N,
which depends on M and on the noise level. These results are consistent with the
interpretation — stated in section 3 — of N as a regularization parameter.

Nonlinear PBDW. Figure 5 replicates the experiment of Figure 4 for the non-
linear formulation. We observe that the nonlinear formulation is significantly more
robust to the choice of N compared to the linear formulation, particularly in the
presence of noise.

In Figures 6 and 7, we investigate the behavior of Fy,s with N, for M = N + 3,
for both linear and nonlinear formulations, and two noise levels. We consider three
strategies for the selection of the observation centers: uniform points, Gaussian points,
and adaptive points (based on SGreedy). For the problem at hand, the nonlinear
formulation improves reconstruction performance, particularly in presence of noise
and for non-adaptive selections of measurement locations.
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0 5 T\? 15 20 0 5 ‘\q 15 20
(a) unbiased, SNR = oo (b) biased, SNR = oo
e
107 107
e e
1020 5 10 15 20 1020 5 10 15 20
N N
(c) unbiased, SNR = 3 (d) biased, SNR =3

Fig. 4: two-dimensional problem. Behavior of E,,s with IV for several values of M,
for linear PBDW (®y = RY).

" =% M=%
10 M =50 M =50
—a— M = 100 —a— M = 100
‘ ‘ N
10 _10?
& o~
10 \
10°® 10°
0 5 10 15 20 0 5 10 15 20
N N
(a) unbiased, SNR = oo (b) biased, SNR = oo
——M =20 ——M =20
M = 50 M = 50
—— M = 100 —a— M = 100
107 107!
~
I 2
0 0 5 10 15 20 o 0 5 10 15 20
N N
(c) unbiased, SNR = 3 (d) biased, SNR = 3

Fig. 5: two-dimensional problem. Behavior of E,,, with N for several values of M,
for nonlinear PBDW (&5 C RY).

448 4.2. A three-dimensional problem.
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—e—SGreedy
102 —e—Gauss.
—e—uniform

(a) linear, SNR = oo

10”
=102
——SGreedy
~e—Gauss
——uniform
-3
10
[ 5 10 15 20 25

N

(c) linear, SNR =3

——SGreedy
102 ——Gauss
——uniform

0 5 10 15 20 25
N

(b) nonlinear, SNR = oo

107
g 1072
——SGreedy
~e—Gauss
——uniform
-3
10
[ 5 10 15 20 25

N

(d) nonlinear, SNR = 3

Fig. 6: two-dimensional problem. Behavior of Fy,, with N for M = N + 3, for linear
and nonlinear PBDW, and several choices of measurement locations (unbiased case).

10”
2102
——SGreedy
—e—Gauss
——uniform
-3
10
[ 5 10 15 20 25

N

(a) linear, SNR = oo

1

w
2102
510
—e—SGreedy
—e—Gauss
—e—uniform
10°
[ 5 10 5 20 25

N

(c) linear, SNR = 3

10”
£10?
——SGreedy
~e—Gauss
——uniform
-3
10
0 5 10 15 20 25

N

(b) nonlinear, SNR = oo

10
Z.92
510
——SGreedy
—Gauss
——uniform
10°
[ 5 10 15 20 25

N

(d) nonlinear, SNR = 3

Fig. 7: two-dimensional problem. Behavior of E,., with N for M = N + 3, for linear
and nonlinear PBDW, and several choices of measurement locations (biased case).
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4.2.1. Problem statement. We consider the three-dimensional model prob-
lem:

{ —(1+ei)Aug(p) — (2mp)ug(p) =g in
(4.4)

Ontg(p) =0 on 0

where ¢ = 1072, Q = (—1.5,1.5) x (0,3) x (0, 3)\ %, Qe = (—0.5,0.5) x (0.25, 0.5) x
(0,1). Figure 8 shows the geometry; the same test case has been considered in [19].
We define the bk manifold M"* = {u*(p) = w e (p) : p € PP* =[0.1,0.5]}, and we
define the true field as the solution to (4.4) for some p™¢ € PPX and g = ¢g'™"°, where

bk (12 true| 2
ll2, 3.

gbk(x) =10 e—||m—p gtrue(x) =10 e—Hz—p
and pP* = [0,2,1], p*™¢ = [-0.02,2.02,1]. Lack of knowledge of the input frequency
w constitutes the anticipated ignorance in the system, while the incorrect location of
the acoustic source (that is, pP* # p'™°) constitutes unanticipated ignorance/model
error . Computations are based on a P2 Finite Element (FE) discretization with
roughly A" = 16000 degrees of freedom in €.

Q Q
T3 T3
cht }777771
i Qeut !
T | x |
(b) (c)

Fig. 8: three-dimensional problem: computational domain.

As in the previous example, we model the synthetic observations by a Gauss-
ian convolution with standard deviation 7y, see (4.2). In order to simulate noisy
observations, we add Gaussian homoscedastic disturbances

Yo = L (W) + €55+ i, where € N(0,07), e ® N (0,07,),
with ore = g std ({Re{l (u™°; &, ry)} }201) , Oim = g std({Im{0(u'™"°; &5, ry,)
100 " for given signal-to-noise ratio SNR > 0 and uniformly-randomly chosen ob-
J 1) g g y y
servation points {Z;}; C Q. Furthermore, we measure performance by computing the
average relative L? error Eiavg (4.3) over niesy = 10 different choices of the parameter
;. Dbk
win PPX.
We consider the ambient space U = H'(Q) endowed with the inner product

(u,v) :/Vu-VTJ + uvdz,
Q

where Z denotes the complex conjugate of z € C. On the other hand, the background
space Zy is built using the Weak-Greedy algorithm based on the residual, as in [17].
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Since the solution is complex, we compute the solution to the nonlinear for-
mulation by solving the complex-valued counterpart of (2.11) as a 2NN-dimensional
real-valued quadratic problem for z; = [Re{2¢},Im{Z¢}] (see Remark 2.3). Given

N < Npax = 30, we estimate the constraints {a,, b, }2Y; by evaluating a Galerkin

Reduced Order Model (ROM) based on the reduced space Zy, .. for ngamm = 103
parameters u!, ..., ynrain A Uniform(PPk):
an = min - Re{(uxi (1), G}
bn = i:1ma£( Re{(udex( i)a Cn)} )
, n=1,...,N.
An4+N = o mlzll Im{(uNmax )a Cﬂ)} ’
bnin = i:lmaﬁ Im{(uNmax .), Cn)} )

Here ub’\}‘ denotes the solution to the Galerkin ROM with Ny, degrees of freedom.
We refer to the Reduced Basis literature for further details concerning the generation
and the evaluation of the ROM; we emphasize that by resorting to the low-dimensional
ROM — as opposed to the FE model — to estimate lower and upper bounds for the
background coefficients we significantly reduce the offline computational effort.

4.2.2. Results. Figure 9 shows the behavior of As and Ay with N for M =
N +2 and M = N + 5, for two choices of the measurement locations: the SGreedy

adaptive algorithm, and a random uniform algorithm in which 1, ..., x; are sampled
uniformly in Q with the constraint that dist (xm, {Zms }ii 1) > = 0.02, for m =
1,..., M. Results for the latter procedure are averaged over K = 10 independent

random choices of measurement locations. We observe that the Greedy algorithm
leads to a reduction in both As and Ay compared to the random uniform algorithm.

Figures 10 and 11, show the behavior of the average relative error E,y, (4.3) with
N for several fixed values of M, for two choices of the observation centers, for linear
and nonlinear PBDW, for two noise levels, and for both the biased and the unbi-
ased case. In all cases, the regularization hyper-parameter £ is chosen using holdout
validation, based on I = M /2 additional measurements. As for the previous model
problem, we empirically find that the nonlinear formulation improves reconstruction
performance for noisy measurements and for non-adaptive selections of measurement
locations.

5. Conclusions. In this paper, we provided theoretical and empirical investiga-
tions of the performance of the PBDW approach. First, we presented a mathematical
analysis of the PBDW formulation. For the linear case, we generalized the analysis
in [5] to obtain a complete a priori error analysis for noisy measurements, and we
also presented two optimality results that motivate the approach. For the nonlinear
case, we showed a stability estimate that exploits a well-known result, first appeared
in the inverse problem literature. The latter estimate suggests that the nonlinear for-
mulation should be more robust to measurement error. Second, we provided several
numerical examples to compare the performance of linear PBDW with the perfor-
mance of nonlinear PBDW.

Results suggest that the box constraints for the entries of the background vector
Z¢ improve the accuracy of the recovery algorithm, provided that measurements are
polluted by a non-negligible disturbance. As regards the choice of the observation
centers, the SGreedy method stabilizes the recovery algorithm for N ~ M and &5 =
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5 10 15 20 25 30 0 5 10 15 20 25 30

(¢) M=N+5 (d M=N+5

Fig. 9: three-dimensional problem. Behavior of Ay and Ay with N for M = N + 2
(Figures (a)-(b)) and M = N + 5 (Figures (c¢)-(d)).

RY. On the other hand, at least for the numerical example considered in this work,
in presence of box constraints, SGreedy does not lead to substantial improvements.
Finally, we also empirically found that the nonlinear formulation is significantly less
sensitive to the choice of N, particularly for noisy measurements.

Appendix A. Proof of Proposition 2.1.

Proof. Given 1 € U, recalling the definition of Uy, the Riesz theorem and the
projection theorem, we find that J¢(z,n) = J¢(z, Iy, n) + f”Huﬁn”Q: therefore, the
optimal update 7)¢ belongs to Uj,. Using a similar argument, we can also prove that
Mo € Uns-

Proof of (2.6D) is straightforward and is here omitted; we now focus on (2.6a). To-
wards this end, we introduce the eigendecomposition K = UDUT, D = diag()\l, ey
M) and we observe that We = ((Id+K) ™! satisfies W, = UD U™ with (D)
&Ai,ln(K)' If we fix z € RY, it is easy to verify that the unique minimizer of
Jez(:) = Te(z, ) is given by

M
n(z) = (n(2)),, 4m, where n(z) = Wy ().

m=1

m,m

If we substitute the expression of n in (2.3), and we exploit the eigendecomposition
of K and W¢, we find

Te(zn(z) = (v (2)" <§WgKW5 + (KW, —1d)" (KW — Id)) v (2)

= () (1d - KWe) y(2) = (y*(2))" (EWe) y**(2)

which implies (2.6a). Proof of (2.7) follows the exact same ideas and is here omitted.
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Fig. 10: three-dimensional problem. Behavior of F,, with IV for several values of M,
for linear and nonlinear PBDW and two noise levels (unbiased case).

We now prove (2.8). Given x € RM | exploiting the eigendecomposition of W, we
find

1 1
max min
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Fig. 11: three-dimensional problem. Behavior of F,, with IV for several values of M,
for linear and nonlinear PBDW and two noise levels, (biased case).

By exploiting the latter, we obtain

min ||Lz - y|f3 >

zED N

= (64 Auin(K)) [ L — y [, >

(€ + Amin(K)) min [|Lz -y |3y,

6 + )\min (K)

S T Amn\R 15 — v|2
£+Amax(K)H Z¢ Y||27

which is (2.8a). By observing that the generalized eigenvalues of Wé/ 2 @, = A&
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Am (K)

K_1/2¢m are given by )\%len = F———=form= 17 ey M7 we obtain
E+Am(K)
)\min(K) 2 2 )‘max(K) 9
_ Mminiy) < o Amax(K) i
€+ Ain(K) [x[lg-1 < HXHW§ hS f+)\max(K)HX”K 1
and finally
€+ Amax(K)

: o 2 : o 2
zIélgzlv Lz — yllg— zmH}V | Lz YHWE

T Amax(K)  zee
f + )‘max(K) ~ 2 )‘min(K) § + )‘max(K) A )
== — " 7 L _ > L _ o
)\max(K) || ZE yHWE - )\rnaX(K) £+ Am1n(I{) H zg y”K

which is (2.8b).
Since (2¢, 7je) minimizes (2.3) over all (z,7) € @ x U, we have

Ellel” < Jelae, ) < Tl 0) = min Lz~ v
1€° () + Lize — y 3 < Je (e, fie) < Je(zo,0) = €ll7joll*,
which is (2.9).
The fourth and fifth statements follow directly from the algebraic formulation of

the PBDW statement, and from well-known results in convex optimization: we omit
the details. 1]

Appendix B. Proof of Proposition 3.5 . We state upfront that the proof fol-
lows the same idea of the well-known Gauss-Markov theorem ([2]) for linear unbiased
estimators.

Proof. Without loss of generality, we assume that {(,}N_; is orthonormal; then,
we denote by Z¢(y) the vector of coefficients associated with the basis {¢,}A_; and
the solution to the PBDW statement for £ € {0,000}, and we denote by z4(y) the
vector of coefficients associated with the algorithm A.

We first prove that Ag(A) > Ag(APPIV:¢=2°)  Since both PBDW and A are linear,
recalling the definition of L, Ly, », = 1, ((,), we have that

24(y) = 200(y) + Dy,  2s(y) = (L'L) ' L7y,

for a proper choice of D € RMM. Since APj**(A) = 0, we must have z4(Lz) = z for
all z € RY; this implies that

za(Lz)=z + DLz = DL =0.

Recalling (3.4), we shall prove that

smax (L7L) L7 + D) = sy (L7L) ' L7) .
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Towards this end, we observe that®

L7L) 'L + D)yl L(L7L)"" + D7) z|3
(Aol = sup ||(( ) 2 ) ng . ||( (LT L) 2 ) >
yERM Ivl3 ZERN k45

27 (L'1)™ + (LL) " (DL) + DL (L7L) ™ + DDT) 2

= sup

2€RN |13
27 ((L7L)™" + DD7) 5 27 (L7L) ™) 2
= sup 5 2> sup 3
2ERN 123 2€RN 123

= (Ag(APbiwE=e))?,

520 which is the thesis. Note that in the second-to-last step we used the fact that DD
521 is semi-positive definite.
We now prove that Ay(A) > Ay(Ilz, APPI":£=0) As for the previous case, we
observe that

R R gL _
za(y) = 2o(y) + Ey, zo(y) = (LTK™'L) L"K™'y,

where the matrix E € RV>™ should satisfy EL = 0. Exploiting Lemma 3.1, we find
the desidered result:

K2 (K-'L ('K L) + BT 4,

Ay(A) = Smax(AKY?) = sup
2ERN (AP

\/ZT ((LTKflL)_l n EKET) z

\/ZT (LTK-'L)"' 2
sup > sup

2€RN ]2 2ERN 2|2
= Au (HZN Apbdw,f=0) .
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