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An optimization-based registration approach to geometry reduction

Tommaso Taddei

Abstract

We develop and assess an optimization-based approach to parametric geometry reduction. Given a family
of parametric domains, we aim to determine a parametric diffeomorphism Φ that maps a fixed reference
domain Ω into each element of the family, for different values of the parameter; the ultimate goal of our study
is to determine an effective tool for parametric projection-based model order reduction of partial differential
equations in parametric geometries. For practical problems in engineering, explicit parameterizations of the
geometry are likely unavailable: for this reason, our approach takes as inputs a reference mesh of Ω and
a point cloud {yraw

i }Qi=1 that belongs to the boundary of the target domain V and returns a bijection Φ
that approximately maps Ω in V . We propose a two-step procedure: given the point clouds {xj}Nj=1 ⊂ ∂Ω

and {yraw
i }Qi=1 ⊂ ∂V , we first resort to a point-set registration algorithm to determine the displacements

{vj}Nj=1 such that the deformed point cloud {yj := xj + vj}Nj=1 approximates ∂V ; then, we solve a nonlinear
non-convex optimization problem to build a mapping Φ that is bijective from Ω in Rd and (approximately)
satisfies Φ(xj) = yj for j = 1, . . . , N . We present a rigorous mathematical analysis to justify our approach;
we further present thorough numerical experiments to show the effectiveness of the proposed method.

1 Introduction

A broad range of problems in science and engineering requires parametric studies to assess the influence of
geometry on the solution to a given partial differential equation (PDE). Given the family of parametric domains
{Ωµ : µ ∈ P} in Rd, where µ denotes a vector of parameters in the compact set P in Rp, we seek a reference
domain Ω and a parameterized mapping Φ : Ω×P → Rd such that Φµ(Ω) approximates Ωµ — in a sense to be
defined — and is bijective in Ω for all µ ∈ P. The aim of this work is to develop and analyze an optimization-
based geometry registration and reduction (GRR) framework for the construction of the mapping Φ and for its
rapid evaluation for new configurations. In this work, we refer to the problem of determining a mapping from
the reference domain Ω to the target domain Ωµ as geometry registration; on the other hand, we refer to the
process of determining a low-rank representation of the parametric mapping Φ as geometry reduction.

The ultimate goal of our study is parametric (projection-based) model order reduction (pMOR, [9, 27])
for PDEs in parametric geometries. Given the parametric PDE model Lµ(uµ) = 0 defined over the domain
Ωµ, pMOR methods rely on a parametric mapping Φ to recast the problem over a parameter-independent
configuration Ω ; then, pMOR methods resort to the projection of the PDE over suitable parameter-independent
low-dimensional trial and test spaces to approximate the mapped field uµ ◦ Φµ. As discussed in Remark 2.1,
the formulation in the reference domain might be performed implicitly (discretize-then-map) or explicitly (map-
then-discretize): for finite element (FE) discretizations, both approaches rely on the introduction of a mesh

T hf =
(
{xhf

i }
Nhf
i=1, T

)
with nodes {xhf

i }
Nhf
i=1 and connectivity matrix T. Despite the many contributions to the

field [16, 17, 21, 22, 29], development of rapid and reliable geometry reduction techniques for large deformations
is still a challenging task.

Effective GRR techniques should fulfill the following requirements.

• Hidden parameterization. In many applications (e.g., modeling of biological processes in patient-specific

geometries), the parameterization is unknown and the only available information is a set of points {yraw
i }

Q
i=1

that belong to the boundary of Ωµ. GRR algorithms should thus take as input the mesh Thf and the point

cloud {yraw
i }

Q
i=1 ⊂ ∂Ωµ and return the deformed mesh Φµ(Thf) with deformed nodes {Φµ(xhf

i )}Nhf
i=1 and

fixed connectivity matrix T.

• Real-time computations. In many scenarios, the computation of the deformed mesh should be performed
extremely rapidly, possibly with little computing resources. To achieve this goal, effective reduction
strategies based on the low-rank approximation of the sought mapping should be developed.

• Control of mesh quality and geometric error. GRR methods should explicitly ensure that the geometric
error — measured by the Hausdorff distance between Φµ(Ω) and Ωµ (see section 3) — and the quality of
the deformed mesh meet user-defined tolerances.

1



In this work, we propose a two-step procedure: given the point clouds {xj}Nj=1 ⊂ ∂Ω and {yraw
i }

Q
i=1 ⊂ ∂Ωµ,

we first resort to a point-set registration (PSR,[10, 18, 19, 20, 40]) algorithm to determine the displacements
{vj}Nj=1 such that the deformed point cloud {yj := xj + vj}Nj=1 approximates ∂Ωµ; then, we seek a mapping Φµ
that is bijective in Ω and (approximately) satisfies Φµ(xj) = yj for j = 1, . . . , N . To accomplish the first task, we
rely on the coherent point drift (CPD, [25, 24]) method: CPD is a well-established non-rigid PSR technique that
is broadly used for image processing and pattern recognition applications and is also the point of departure of
several more recent methods. On the other hand, following [31], we recast the problem of finding the mapping
Φ as an optimization problem: the optimization framework allows us to directly control the geometry error
and also the quality of the deformed mesh; furthermore, the spectacular advances in non-convex optimization
enable the solution to highly-nonlinear and non-convex problems in a reasonable time frame. Finally, we resort
to proper orthogonal decomposition (POD, [36]) to identify a low-rank approximation space for the mapping
and ultimately speed up the registration process.

We present a rigorous mathematical analysis of the geometry error that provides a rigorous foundation for
the optimization approach. In more detail, we show that for smooth domains, under mild assumptions on Φ
the Hausdorff distance between Ωµ and Φµ(Ω) is controlled by maxj=1,...,N ‖Φµ(xj) − yj‖2 (see Propositions
3.1 and 3.2); we also show that the same result does not hold for Lipschitz domains with corners. Moreover,
we establish a connection between elasticity-based mesh morphing and registration methods (cf. Remark 2.2).
Finally, we investigate the performance of several variants of the optimization statement considered in [31] for
a number of two-dimensional model problems.

This work is also linked to optimization-based mesh morphing, which rely on the solution to a (convex)
optimization problem to determine the deformed mesh (see the review [30]); here, we emphasize the application
to parametric problems and the use of a global — as opposed to local, compactly-supported — basis for the
mapping. Furthermore, our approach exploits the connection between GRR and the problem of point-set
registration in bounded domains, which was previously considered in [12] for MOR applications.

We further remark that several authors have proposed mesh moving strategies for unsteady PDEs that rely
on multiple incremental solutions to a suitable elasticity problem with mesh-dependent properties (see [34, 35]
and references therein). In the parametric setting, we can interpret this strategy as feed-forward maps of the
form Φ = ΦN ◦ . . . ◦ Φ1 where the i-th map Φi maps Ωi into Ωi+1 with Ω1 = Ω and ΩN+1 = Ωµ. In this work,
we consider instead linear approximations (cf. (13)) that are determined by solving a single highly-nonlinear
optimization problem: this choice provides a natural framework for linear-subspace data compression methods
(such as POD) and is thus well-suited for MOR applications.

The outline of the paper is as follows. In section 2, we present the methodology: first, we consider the problem
of point-set registration in bounded domains; second, we present the extension to geometry registration; third,
we comment on dimensionality reduction. In section 3, we present the analysis of the geometry error; in section
4, we present the results of the numerical experiments; finally, in section 5, we provide a summary of the
contributions and of the numerical results . Several appendices conclude the paper.

2 Optimization-based registration

In section 2.1, we introduce relevant notation and preliminary definitions that are useful for the subsequent
discussion. Then, in section 2.2, we discuss the problem of point-set registration in bounded domains: we
provide a complete discussion for tensorized domains and we comment on the extension to more general domains.
In section 2.3, we discuss the problem of geometry registration and reduction. In the remainder, the spatial
dimension d is either d = 2 or d = 3.

2.1 Notation and preliminary definitions

We denote by x a generic point of the domain Ω, and by n(x) the outward normal to Ω at x ∈ ∂Ω. We define the
identity map id : Ω→ Ω such that id(x) = x; then, given the mapping Φ : Ω→ Rd, we denote by u = Φ− id

the displacement field and by J(Φ) = det(∇Φ) the Jacobian determinant. We denote by Thf a finite element

(FE) mesh of Ω with Ne elements {Dk}Ne

k=1; we define the reference element D̂ = {x̃ ∈ (0, 1)d :
∑d
i=1(x̃)i < 1}

and the shape functions {`i}
nlp

i=1 of the polynomial space Pp(D̂) associated with the nodes {x̃i}
nlp

i=1. Then, we

represent the elemental mappings Ψhf
k from D̂ to Dk for k = 1, . . . , Ne as

Ψhf
k (x̃) =

nlp∑
i=1

xhf
i,k `i(x̃), (1)

where {xhf
i,k := Ψhf

k (x̃i) : i = 1, . . . , nlp, k = 1, . . . , Ne} are the nodes of the mesh. To simplify the presentation,
we here consider the same basis for both FE fields and FE elemental mappings (isoparametric FE); the discussion
below can be trivially extended to sub- and sup-parametric discretizations. We say that the mapping Φ is
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bijective if J(Φ) is strictly positive in Ω; on the other hand, we say that Φ is discretely bijective with respect
to the mesh Thf if the elemental mappings

Ψhf
Φ,k(x̃) =

nlp∑
i=1

Φ
(
xhf
i,k

)
`i(x̃) (2)

are all bijective. Note that the function Φ : Ω→ Rd is bijective with respect to Thf if Φhf : Ω→ Rd given by

Φhf(x) = Ψhf
Φ,k

((
Ψhf
k

)−1
(x)
)
, ∀x ∈ Dk, k = 1, . . . , Ne, (3)

is a bijection. Bijectivity and discrete bijectivity are two independent conditions, which are both important for
model reduction of parametric systems in parameterized geometries as discussed in the following remark.

Remark 2.1. To clarify the distinction between bijectivity and discrete bijectivity, consider the problem of
approximating the solution to the following Laplace equation in the family parameterized domains {Ωµ : µ ∈ P}:

−∆Uµ = fµ in Ωµ, Uµ|∂Ωµ = 0, (4)

for some fµ ∈ H−1(Ωµ). Given the reference domain Ω, we denote by Φ : Ω × P → Rd a mapping such that
Φµ(Ω) = Ωµ for all µ ∈ P, by Thf a FE mesh of Ω, and by Xhf ⊂ H1

0 (Ω) the corresponding FE space. To devise

a FE discretization of (4), we first observe that the mapped field Ũµ := Uµ ◦ Φµ satisfies∫
Ω

J(Φµ)
(
∇Φ−1

µ (∇Φµ)−?∇Ũµ · ∇v − fµ ◦ Φµ v
)
dx = 0 ∀ v ∈ H1

0 (Ω), (5)

where ∇Φ?µ denotes the transpose of ∇Φµ; then, we proceed to discretize (5) by projecting the equations over

the FE space Xhf . Alternatively, we might consider the formulation: find Uhf
µ ∈ Xhf,µ such that

Ne∑
k=1

∫
Dµ,k

(
∇Uhf

µ · ∇v − fµ v
)
dx = 0 ∀ v ∈ Xhf,µ, (6)

where Xhf,µ is the FE space associated with the deformed FE mesh Φµ(Thf), while Dµ,k = {Ψhf
µ,k(x̃) : x̃ ∈ D̂}

denotes the k-th deformed element of the mesh. Clearly, (5) and (6) are equivalent if and only if Φ = Φhf (see
(3)). Both approaches (5) and (6) are broadly used for the treatment of parameterized geometries in pMOR:
following [32], we refer to (5) as to map-then-discretize approach and to (6) as to discretize-then-map approach.
Note that (5) requires the bijectivity of the mapping Φ, while (6) requires the discrete bijectivity with respect to
the mesh Thf .

2.2 Point-set registration in bounded domains

2.2.1 Optimization statement

Given the domain Ω ⊂ Rd, and the point clouds {xi}Ni=1 and {yi}Ni=1, we consider the problem of finding a
mapping Φ = id+u such that Φ(xi) = yi for i = 1, . . . , N and Φ is bijective from Ω in itself. Towards this end,
we define the operator B : [C(Ω)]d → Rd·N and the vector z such that

BΦ =



(Φ(x1))1
...
(Φ(xN ))1
...
(Φ(xN ))d

 , z =



(y1)1
...
(y1)1
...
(yN )d

 . (7)

Then, we can state the constrained optimization statement as follows: given (i) the set of vector-valued functions
X , (ii) the objective function fobj : X → R, we seek Φ ∈ X to minimize

min
Φ∈W

fobj(Φ) s.t. BΦ = z. (8)

Clearly, the performance of registration relies on the choice of W, fobj and also on the optimization algorithm
that is employed to determine local minima of (8) . We address these points in the next sections.
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In many contexts, the hard constraint BΦ = z is either inappropriate (e.g., if the point clouds are subject
to noise) or might lead to an ill-posed statement (e.g., if two points are coincident). Exploiting classical theory
in inverse problems. we consider two regularization strategies for (8):

min
Φ∈W

ξ fobj(Φ) +
1

2
‖BΦ− z‖22, (9)

and
min
Φ∈W

fobj(Φ) s.t. ‖BΦ− z‖∞ ≤ δ. (10)

Following taxonomy from the inverse problem literature [13], we refer to (9) as to Tykhonov-regularized registra-
tion statement and to (10) as to Morozov-regularized registration statement. We observe that both approaches
rely on the introduction of an hyper-parameter — ξ and δ, respectively.

Morozov regularization allows to directly control the geometry error through the choice of the parameter
δ; if W is a linear space, the choice of the norm ‖ · ‖∞ in (10) leads to an optimization statement with linear
inequality constraints, which can be effectively tackled using interior point methods. Tykhonov regularization
does not enable direct control of the geometry error and requires a careful selection of the parameter ξ; however,
the resulting optimization problem is unconstrained and, in our experience, can be solved more efficiently than
(10) using quasi-Newton methods, particularly for the choice of the squared 2-norm in (9).

2.2.2 Choice of the objective function and of the search space W for tensorized domains

The choice of the space W and of the objective function fobj should ensure that (i) B is a bounded functional
over W, (ii) any minimizer Φ of the problem (9) or (10) should be a bijection in Ω and/or should be discretely
bijective with respect to the target mesh Thf , and (iii) the space W is well-suited to fit a broad range of
bijections in Ω (high expressive power). In this section, we discuss the choice of W and fobj for tensorized
domains. Without loss of generality, we consider Ω = (0, 1)d.

If Ω is a tensorized domain, we can prove that Φ = id+u is bijective in Ω if u ·n|∂Ω = 0 and J(Φ) is strictly
positive in Ω (cf. Proposition 2.3 in [31]). We can thus choose the affine space W as

W =
{
id + ϕ : ϕ ∈ [H2(Ω)]d, ϕ · n|∂Ω = 0

}
. (11)

Note that W is a linear affine space of continuous functions for d ≤ 3; more precisely, in two and three
dimensions H2 is the Sobolev space of minimal regularity that is contained in the space of continuous functions
[1]. For practical computations, we replace the infinite-dimensional space H2(Ω) in (11) with a finite-dimensional
tensorized polynomial space of dimension (nlp + 1)d, that is Whf = id + Uhf with

Uhf =
{
ϕ ∈ [Qnlp

]d : ϕ · n|∂Ω = 0
}
, Qnlp

= span

{
ϕ(x) =

d∏
i=1

`i((x)i) : `1, . . . , `d ∈ Pnlp
(R)

}
, (12)

where Pnlp
(R) denotes the space of one-dimensional polynomials of degree up to nlp. We observe that Whf is

dense in W in the limit nlp → ∞; we further observe that the space Uhf is of dimension M = d(nlp + 1)d −
2d(nlp + 1)d−1. Given the orthonormal basis of Uhf {ψm}Mm=1, we can introduce the operator N : RM → Whf

such that

N(x; a) := x+

M∑
m=1

(a)m ψm(x); (13)

note that N is a linear affine operator and N(·; 0) = id.
We propose two different objective functions: the former is designed to enforce bijectivity of Φ, while the

latter is designed to enforce discrete bijectivity. In both cases, we add the regularization term

P(Φ) =
1

2|Ω|
|Φ|2H2(Ω) =

1

2|Ω|

∫
Ω

d∑
i,j,k=1

(∂i,j(Φ)k)
2
dx, (14)

which is designed to promote smoothness: the regularization P (14) ensures that the H2 norm of any global
minimum of (9) or (10) is uniformly bounded in H2 for M → ∞. Given ε, Cexp > 0, we define the objective
function fobj = fjac + P such that

fjac(Φ) =
1

|Ω|

∫
Ω

exp

(
ε− J(Φ)

Cexp

)
dx. (15)

The parameter ε provides a weak lower bound for the value of the Jacobian determinant of the mapping Φ:
provided that eε/Cexp � 1, the objective function (15) forces the optimizer to ensure the condition J(Φ) & ε
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everywhere in Ω; the H2 penalization enforces smoothness of Φ and is also instrumental to ensure bijectivity
(see [31, section 2.2]). Given the constant κmsh, following [15] (see also [39]), we define the objective function
fobj = fmsh + P such that

fmsh(Φ) =
1

|Ω|

Ne∑
k=1

|Dk|
∫
D̂

exp (κmsh − qΦ,k) dx̃, qΦ,k :=
1

d2

(
‖∇Ψhf

Φ,k‖2F
(det(∇Ψhf

Φ,k))
2/d
+

)2

, (16)

where Ψhf
Φ,k is defined in (2), ‖ · ‖F is the Frobenius norm and (·)+ = max(·, 0). The ratio qΦ,k measures

the degree of anisotropy of the mesh: it can thus be interpreted as a measure of the quality of the deformed
mesh. Note that if ΨΦ,k is perfectly isotropic, qΦ,k = 1. Similarly to (15), fobj = fmsh + P strongly penalizes
deformations for which qΦ,k exceeds κmsh for some element Dk of the mesh, and promotes smoothness of the
mapping in regions where qΦ,k < κmsh.

We observe that (15) and to (16) depend on several hyper-parameters — ε, Cexp and κmsh. In our numerical
results, we investigate the sensitivity with respect to ε and κmsh; on the other hand, we set Cexp = 0.025ε.
We further observe that neither (15) nor (16) are convex: therefore, we do not expect that problems (9) and
(10) admit a unique solution; we provide extensive numerical investigations of the registration approach based
on the two choices of the objective function in section 4. In the remainder, we refer to (15) and to (16) as to
“exp-jac” objective and “exp-mesh” objective, respectively. Finally, we observe that (14), (15) and (16) — and
thus also the objective function fobj — are invariant under translations and rotations, that is

P(b + RΦ) = P(Φ), fjac(b + RΦ) = fjac(Φ), fmsh(b + RΦ) = fmsh(Φ),

for any b ∈ Rd and any rotation R ∈ Rd×d.

Remark 2.2. We might attempt to establish a direct link between optimization-based registration and elasticity-
based mesh morphing. We might indeed formally consider the statement

min
Φ∈W

fel(Φ) s.t. BΦ = z, (17)

where fel(Φ) =
∫

Ω
ψse(x; Φ) dx is the integral over Ω of the strain energy ψse. To provide concrete references

that are considered in the numerical experiments, we might consider the linear isotropic model:

ψse(·; Φ = id + u) = λ1(∇ · u)2 + 2λ2‖
1

2
(∇u+ (∇u)?) ‖2F, (18)

or the nonlinear Neohookean model (for d = 2):

ψse(·; Φ) =
1

2
λ2‖∇Φ‖2F − λ2log(J(Φ)) + λ1 (log(J(Φ)))

2
, (19)

where λ1, λ2 are the Lamè constants.
We observe that the models (18) and (19) are naturally defined in H1(Ω), which is not contained in the

space of continuum functions in Ω for d ≥ 1. On the other hand, the objective functions (15) and (16) involve
derivatives of the deformation gradient ∇Φ: therefore, they cannot be interpreted as strain energies of a suitable
hyper-elastic material.

2.2.3 Generalization to arbitrary domains

The extension of the registration approach to non-tensorized domains is particularly challenging due to the
difficulty to ensure the condition Φ(Ω) = Ω. From an algorithmic standpoint, we should identify a new operator
N (cf. (13)) and a new penalization term P (cf. (14)). A potential strategy based on a spectral element
approximation to deal with this case is proposed in [33]. In this paper, we do not address this issue.

2.2.4 Generalization to unsorted point clouds

In many applications, the reference and target point clouds {xi}Ni=1 and {yraw
i }

Q
i=1 might be of different cardi-

nality (i.e., N 6= Q) and/or might not be properly sorted. We are hence in need of a point-set registration (PSR)
algorithm that aligns the two point clouds, that is, it finds {vi}Ni=1 such that {yi := xi+ vi}Ni=1 approximates —

in a sense to be defined — the target point cloud {yraw
i }

Q
i=1. If we define the matrices X = [x1, . . . , xN ]? ∈ RN×d,

Yraw = [yraw
1 , . . . , yraw

Q ]? ∈ RQ×d and Y = [x1 + v1, . . . , yN + vN ]? ∈ RN×d, we can formalize an abstract PSR
algorithm as

Y = PSR (X,Yraw) .
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The literature on PSR is extremely vast and a thorough review of the subject is beyond the scope of the present
work. In this paper, we rely on the coherent point drift (CPD, [25, 24]) algorithm: CPD is a well-established
non-rigid PSR technique that is broadly used and is also the point of departure of several more recent methods.

The CPD method seeks mappings of the form

Φcpd(x) = x+

N∑
i=1

wiφ (‖x− xi‖2) , with φ(r) = exp

(
− 1

2β2
r2

)
. (20)

where W = [w1, . . . , wN ]? ∈ RN×d is a matrix of coefficients that is chosen through an iterative procedure;
therefore, the CPD method seeks mappings in the affine space

Wcpd
hf = id + Ucpd

hf , with Ucpd
hf = span {φ(‖ · −xi‖2)ej : i = 1, . . . , N, j = 1, . . . , d} , (21)

where e1, . . . , ed are the elements of the canonical basis of Rd. Since the CPD methodology is at this stage
well-established, we postpone the detailed description to Appendix A. Here, we anticipate that the method can
naturally cope with low-dimensional search spaces Ucpd

M ⊂ H2(Rd): we discuss in section 2.3.2 the importance
of this observation.

2.3 Geometry registration and reduction

2.3.1 Optimization statement

We adapt the framework of section 2.2 to the problem of geometry registration: given the reference domain
Ω and the point cloud {yraw

i }Mi=1 that belongs to the boundary of the domain V , we seek a bijective mapping
Φ from Ω to V . This task is propedeutic to the problem of geometry reduction, which is addressed in the
next section. In the remainder, we denote by {xi}Ni=1 the discretization of the boundary ∂Ω that is used for
registration; we also denote by Thf a FE mesh in Ω.

We introduce the hyper-rectangle Ωbox that strictly contains Ω and the point cloud {yraw
i }i; we define the

affine space Whf = id + Uhf with Uhf = [Qnlp
]d; given Φ ∈ Whf , we further define the counterparts of the

quantities in section 2.2.2 P(Φ) = 1
2|Ωbox| |Φ|

2
H2(Ωbox) (cf. (14)), fjac(Φ) = 1

|Ωbox|
∫

Ωbox
exp

(
ε−J(Φ)
Cexp

)
dx (cf. (15)),

and fmsh(Φ) as in (16). Then, we consider the following two-step registration procedure: first, we resort to PSR
to determine the deformed points {yi = xi + vi}Ni=1 (cf. section 2.2.4); second, we solve a registration problem
in Ωbox with inputs {xi}Ni=1 and {yi}Ni=1. Towards this end, we consider the Tykhonov-regularized registration
statement

min
Φ∈Whf

ξfobj(Φ) +
1

2
‖BΦ− z‖22; (22)

and the Morozov-regularized registration statement

min
Φ∈Whf

fobj(Φ) s.t. ‖BΦ− z‖∞ ≤ δ. (23)

The operator B and the vector z are defined as in (7); as in section 2.2.2, the objective fobj is given by
fobj = fjac + P (“exp-jac”) or by fobj = fmsh + P (“exp-mesh”).

In view of the numerical assessment, we further introduce the formulation

min
Φ∈Whf

1

2
‖BΦ− z‖22 + ξP(Φ) s.t. f?(Φ)− δcon ≤ 0, (24)

which was considered in [31]. Statement (24) reads as a nonlinear constrained optimization problem with
quadratic objective function and nonlinear non-convex inequality constraint. We envision that the advantage
of (24) is that it allows to control more explicitly the minimum of the Jacobian determinant (for ? = jac) or the
mesh quality (for ? = msh); on the other hand, it does not explicitly control the geometry error (unlike (23))
and it involves a nonlinear constraint. We compare performance of (24) with (22) and (23) in the numerical
experiments.

We here consider a polynomial spaceWhf in (22), (23), (24). This choice is motivated by the need to compute
second-order derivatives for the regularization term and by the strong approximation properties of polynomials
in moderate dimensions. A thorough assessment of other approximation classes is beyond the scope of the
present work.

We remark that the goal of geometry registration is to find a mapping Φ such that Φ(Ω) is close (in the
sense of Hausdorff) to the domain V . Statements (22) and (23) (24) control the error BΦ − z in a convenient
norm; in section 3, we discuss under what conditions the control of the difference BΦ − z ensures appropriate
reconstruction of V .
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2.3.2 Dimensionality reduction

Given the results of ntrain geometry registration problems {Φi = id + ui}ntrain
i=1 for different configurations, we

might apply dimensionality reduction techniques to identify a low-dimensional representation of the mapping.
The objective of dimensionality reduction is twofold: first, by reducing the number of unknowns, we might
significantly speed up computations; second, dimensionality reduction techniques might also act as low-pass
filters to avoid overfitting, especially for noisy datasets.

In this work, we rely on proper orthogonal decomposition (POD, [36]) based on the H2(Ωbox) inner product
to determine a M -dimensional reduced space UM = span{ψm}Mm=1 ⊂ Uhf . We first assemble the Gramian matrix
C ∈ Rntrain×ntrain such that Ci,j = (ui, uj)H2(Ωbox) for i, j = 1, . . . , ntrain; then, we compute the eigenpairs of C
{(λi,ψi)}i such that λ1 ≥ . . . ≥ λntrain

≥ 0. Finally, we define the POD space

ψm =
1√
λm

ntrain∑
i=1

ui (ψm)i , m = 1, . . . ,M.

The size M of the reduced space is chosen according to the criterion

M := min {m : ECm(λ) ≥ 1− tolpod} , where ECm(λ) =

ntrain∑
j=1

λj

−1
m∑
i=1

λi. (25)

In the remainder, ECm(λ) is referred to as the relative energy content of the POD space UM .
We observe that the cost of solving the optimization problems (22), (23), (24) with reduced search space

id + UM might still be significant due to the need to compute the function (16) over all elements of the mesh.
To address this issue, we might extend reduced quadrature techniques developed in the pMOR framework[5, 38]
to the registration framework. This extension is beyond the scope of the present paper.

As discussed above, we first resort to PSR to determine the sorted deformed points {yi}Ni=1 and then to one
of the statements (22), (23), (24) to obtain the bijective mapping. So far, we proposed to apply POD to reduce
the cost of the second step of the procedure. Even if the latter dominates by far computational costs, since the
problem of interest is inherently non-convex, the difference in the ansatz spaces employed by CPD (cf. (21))
and by registration might lead to inaccurate performance. To investigate this issue, in the numerical results we
consider two distinct strategies: (i) apply CPD with Wcpd

hf ; (ii) apply CPD with

Wcpd
M = id + span {ψm}Mm=1 . (26)

The second strategy requires to slightly modify the original CPD formulation that are described in Appendix
A.

3 Analysis

We denote by U and V two Lipschitz domains that are isomorphic to the unit ball and are compactly embedded
in the hyper-cube Ωbox. We denote by distH(U, V ) the Hausdorff distance between U and V such that

distH(U, V ) = max

{
sup
x∈U

dist(x, V ), sup
x∈V

dist(x, U)

}
, (27)

where dist(x, ω) = infy∈ω ‖x− y‖2 for any x ∈ Rd and any measurable set ω ⊂ Rd. Given the target domain V
and the reference domain Ω, the goal of geometry registration algorithms is to determine a bijective mapping
Φ from Ω to Rd such that the Hausdorff distance distH(Φ(Ω), V ) is below a given tolerance.

In order to bridge the gap between the target (27) and the computational procedure introduced in this
paper, we introduce the non-symmetric boundary distance:

distbnd(U ;V ) = sup
x∈∂U

dist(x, ∂V ). (28)

Next Proposition clarifies the link between (28) and the geometry constraint in (22) and (23); the proof is
contained in Appendix B.

Proposition 3.1. Let {xi}Ni=1 ⊂ ∂U be an ε-cover of ∂Ω, that is supx∈∂Ω dist (x, {xi}i) = ε. Assume that
Φ : Ω→ Rd is a Lipschitz bijective map with Lipschitz constant K and let {yi}Ni=1 ⊂ ∂V . Then, we have

distbnd(Φ(U);V ) ≤ max
i=1,...,N

‖Φ(xi)− yi‖2 +Kε. (29)

Note that maxi=1,...,N ‖Φ(xi)− yi‖2 ≤
√
dmaxi=1,...,N ‖Φ(xi)− yi‖∞ =

√
d‖BΦ− z‖∞, which is the constraint

of the optimization statement (23).
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The objective of this section is to establish conditions for which (28) is equal to (27). Towards this end,
we first present a number of definitions and preliminary results (cf. section 3.1), then we present the main
proposition for smooth domains (cf. section 3.2) and we show through the vehicle of a two-dimensional example
that (27) and (28) cannot be equal for Lipschitz domains with corners (cf. section 3.3). Proofs of the Lemmas
below are contained in Appendix B.

3.1 Preliminary results and definitions

Given δ > 0, we define the δ-neighborhood of ∂U as

Neighδ(∂U) := {x ∈ Ωbox : dist (x, ∂U) < δ} , (30)

and the tubular neighborhood of ∂U as

Neight
δ(∂U) := {y ∈ Rd : y = x+ tn(x), |t| < δ, x ∈ ∂U}. (31)

Next Lemma summarizes important properties of Neighδ(∂U),Neight
δ(∂U) that will be used below — we remark

that the second statement of Lemma 3.1 is an immediate consequence of the Weyl’s tube formula[7]. Given the
set A, we denote by |A|(d−1) (resp., |A|(d)) the (d − 1)-dimensional (resp., d-dimensional) measure of A — to
fix ideas, if d = 2, |A|(1) is the length of the curve A embedded in R2, while |A|(2) is the area of the region A.
If not specified otherwise, we shall assume that δ is small enough so that Neighδ(∂U) is compactly embedded
in Ωbox.

Lemma 3.1. Let U ⊂ Ωbox be a C1 domain isomorphic to the unit ball. Then, (i) Neighδ(∂U) = Neight
δ(∂U),

and (ii)

|Neighδ(∂U)|(d) ≤


2δ|∂U |(d−1) if d = 2,

2δ|∂U |(d−1) +
8π2

3
δ3 if d = 3.

(32)

We introduce a special class of domains.

Definition 3.1. We say that U is δ-regular if for any given x ∈ ∂U any set V diffeomorphic to the unit ball
such that ∂V ⊂ Neighδ(∂U) \ Bδ(x) is contained in Neighδ(∂U).

Figure 1 provides an interpretation of Definition 3.1: for a circle U = B1(0) (cf. Figure 1(a)), we find by
inspection that any V such that ∂V ⊂ Neighδ(∂U) \ Bδ(x) for some x ∈ ∂U must be contained in the annulus
B1+δ(0) \ B1−δ(0), provided that 0 < δ < 1. For any fixed δ > 0, we might construct smooth domains with
bounded curvature that are not δ-regular (cf. example in Figure 1(b)). The example in Figure 1(b) also shows
that δ-regularity is a global property of ∂U in the sense that does not uniquely depend on local properties (e.g.,
curvature, Lipschitz constant) of the boundary.

2δV

U

(a)

U

V
2δ

(b)

Figure 1: geometric interpretation of Definition 3.1. Dashed lines in (a) denote the boundary of Neighδ(∂U).

Next three Lemmas offer further interpretations and properties of δ-regular domains: Lemma 3.2 provides a
sufficient condition for δ-regularity; Lemma 3.3 shows that smooth domains are δ-regular for sufficiently small
values of δ; Lemma 3.4 shows an interesting property of δ-regular domains that is exploited below. As currently
stated, Lemma 3.3 does not provide an explicit estimate of δ0; in Appendix B we provide a more detailed
expression for δ0. We anticipate that δ0 depends on the maximum principal curvature over ∂U and also on a
global property of the boundary.
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Lemma 3.2. Let U be diffeomorphic to the unit ball. Assume that the hyper-surfaces {x± δn(x) : x ∈ ∂U} do
not have self intersections. Then, U is δ-regular.

Lemma 3.3. Let U be a C2 domain isomorphic to the unit ball. Then, there exists δ0 > 0 such that U is
δ-regular for any δ < δ0.

Lemma 3.4. Let U, V be Lipschitz domains that are isomorphic to the unit ball. Assume that (i) V is δ-
regular for some δ > 0; (ii) |U |(d) > |Neighδ(∂V )|(d); (iii) distbnd(U, V ) = maxx∈∂U dist(x, ∂V ) ≤ δ. Then,
distH(∂U, ∂V ) ≤ δ and distH(U, V ) ≤ δ.

3.2 Equivalence of (27) and (28) for smooth domains

Proposition 3.2 contains the result that is relevant for our discussion.

Proposition 3.2. Let Φ : Ωbox → Rd be a bijection in Ωbox and let Ω, V ⊂ Ωbox be diffeomorphic to the unit
ball. Define ε := minx∈Ω det(∇Φ), δ := distbnd(Φ(Ω);V ). Assume that (i) ε|Ω|(d) > |Neighδ(∂V )|(d) and (ii) V
is δ-regular. Then, we have distH(Φ(Ω), V ) ≤ δ, distH(∂Φ(Ω), ∂V ) ≤ δ.

Proof. We define U = Φ(Ω). Clearly, U is isomorphic to the unit ball; furthermore, using the change-of-variable
formula and the definition of ε, we obtain

|U |(d) =

∫
Ω

det(∇Φ) dx ≥ ε|Ω|(d) > |Neighδ(∂V )|(d).

Using the definition (28) and the identity ∂Φ(Ω) = Φ(∂Ω), which is valid for any bijection Φ, we also find

max
x∈∂U

dist(x, ∂V ) = max
x∈∂Ω

dist(Φ(x), ∂V ) ≤ δ.

Therefore, U, V satisfy the hypotheses of Lemma 3.4: we conclude that distH(U, V ),distH(∂U, ∂V ) ≤ δ.

Proposition 3.2 — together with Proposition 3.1 — provides a rigorous justification of the geometry regis-
tration strategy proposed in section 2. We observe that the value ε in Proposition 3.2 is weakly controlled by
the exp-jac objective function (15). In practice, we expect ε to be significantly larger than the geometric error δ
at the boundary: therefore, the condition ε|Ω|(d) ≥ |Neighδ(∂V )|(d) should in practice be easy to enforce, even

for slender domains with small
|V |(d)

|∂V |(d−1)
.

On the other hand, we cannot establish a rigorous connection between the exp-mesh objective function (16)
and the quantity ε in Proposition 3.2. In this respect, we recall that in the discretize-then-map framework
(cf. Remark 2.1) the mapping to be considered in Proposition 3.2 for the mesh Thf is Φhf (cf. (3)): for purely

isotropic P1 FE discretizations, it is easy to verify that ∇Φhf |Dk =
|DΦ,k|
|Dk| 1, while the ratio qΦ,k in (16) is equal

to one. We conclude that the solution to the registration problem with objective given by (16) might lead
to extremely small elements (see Figure 3 in the numerical example of section 4.1), which might prevent the
application of Proposition 3.2. If large deformations are expected in the proximity of the boundary, it might
thus be necessary to combine (15) and (16).

3.3 Strict inequality for Lipschitz domains

The analysis of the previous section cannot be readily extended to Lipschitz domains with corners. To investigate
the problem, we shall consider the domain depicted in Figure 2: we are here interested in the neighborhood of
the vertex x?; we assume that V is of class C2 elsewhere. We denote by 2α ∈ [0, π] the angle associated with
the corner at x?; the case 2α ∈ [π, 2π] is analogous.

We first consider the domains U and V in Figure 2(a): the dashed lines denote the boundary of Neighδ(∂V ).
Clearly, U belongs to Neighδ(∂U); the point x? satisfies dist(x?, ∂U) = δ

sin(α) =: rδ > δ. The example shows

that, for a domain V with a corner of angle 2α we might construct a domain U such that U is isomorphic to
B1(0), |U |(d) > 2δ|∂V |(d−1), ∂U ⊂ Neighδ(∂V ), and maxx∈∂V dist(x, U) = rδ > δ.

We seek an upper bound for maxx∈∂V dist(x, U) among all domains U satisfying (i) U is isomorphic to the
unit ball B1(0), (ii) |U |(d) > 2δ|∂V |(d−1), (iii) ∂U ⊂ Neighδ(∂V ), and (iv) x? ∈ ∂U . Exploiting the same

argument as in Lemma 3.3 (cf. Appendix B), we find that there exists δ0 > 0 such that the curves γ±δ = γ± δn
do not have self-intersections in ∂V \ Brδ(x?) for all δ ≤ δ0. Therefore, we have

max
x∈∂V \Brδ (x?)

dist(x, ∂U) ≤ δ,

for any U that satisfies (i)-(iv). On the other hand, in the neighborhood of x? , we can show that the domain
U depicted in Figure 2(b) maximizes maxx∈∂V ∩Brδ (x?) dist(x, ∂U). Note that U is the limit of domains iso-
morphic to the unit ball; therefore, computation of the distance of ∂V from U provides an upper bound for
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maxx∈∂V \Brδ (x?) dist(x, ∂U) among Lipschitz domains U that satisfy (i)-(iv). Exploiting well-known trigono-

metric identities, we find that the point x(t) in Figure 2(b) satisfies

‖x(t)−A?‖2 =
√

(rδ − t)2 + (tan(α)t)2 = δ
√

(1/ sin(α)− t′)2 + (tan(α)t′)2, t′ =
t

δ
,

and

‖x(t)− x?‖2 = δ
t′

cos(α)
, ‖x(t)−B?‖2 = (1 + 2 sin(α)t′) δ.

In conclusion, we obtain

max
x∈∂U

dist(x, ∂V ) = max
t∈[0, δ

sin(α)
−δ sin(α)]

dist(x(t), ∂U) = C(α) δ, (33a)

where

C(α) = max
t′∈[0, 1

sin(α)
−sin(α)]

min

{√
(1/ sin(α)− t′)2 + (tan(α)t′)2,

t′

cos(α)
, 1 + 2 sin(α)t′

}
. (33b)

In Figure 2(c), we show the behavior of C(α) with respect to α and we compare it with 1
sin(α) . Note that

C(α) ≤ min{3, 1
sin(α)} for all α ∈ [0, π/2]; C is monotonic decreasing with α; and C(α = π/4) = 1. The

assumption x? ∈ ∂U leads to a reduction of the worst-case scenario for maxx∈∂V dist(x, ∂U) (and thus for
distH(∂V, ∂U)) but does not guarantee that maxx∈∂V dist(x, ∂U) = δ asymptotically. We note, however, that,
while the domain U depicted in Figure 2(a) is regular, the domain in Figure 2(b) is not Lipschitz and thus the
upper bound in (33) cannot be achieved.

V

U

x?

(a)

x?

x(t)

U

t

A?

B?

(b) (c)

Figure 2: analysis for Lipschitz domains. (a) example of domains U, V isomorphic to B1(0) with |U |(2) >

2δ|∂V |(1) and ∂U ⊂ Neighδ(∂V ) such that distH(∂U, ∂V ) = δ
sin(α) . (b) domain U satisfying (i)-(iv) such that

distH(∂U, ∂V ) = C(α)δ. (c) behavior of 1
sin(α) and C(α) with respect to α ∈ [0, π/2].

The analysis of this section shows that the approximation of slender bodies and/or of bodies with cusps
and corners is challenging for the optimization-based registration procedure discussed in this paper. However,
if we are able to to ensure appropriate approximation — via interpolation — of the target shape at corners and
cusps, we can recover near-optimal bounds for the geometry error.

4 Numerical results

We present several numerical experiments for a number of two-dimensional model problems. In order to assess
the performance of a given mapping Φ, we report the behavior of the minimum value qmin of the radius ratio1 over
the elements of the deformed target mesh Thf . We also report the minimum value of the Jacobian determinant
over the domain Ω, Jmin = minx∈Ω J(Φ)(x). All numerical simulations are performed in Matlab 2020b on a
commodity laptop.

1The radius ratio is the ratio between the radius of the circle inscribed in the triangle and the radius of the circle circumscribed
around the triangle.
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4.1 Three-point registration

Given Ω = (0, 1)2, we consider the problem of deforming the points x1 = (1/2, 1/2), x2 = (1/4, 1/4), x3 =
(3/4, 1/4) into the points y1 = (1/4, 3/4), y2 = (1/16, 1/16), y3 = (1/2, 1/4). The aim of this test is to illustrate
the impact of the objective function on performance. Towards this end, we consider the Morozov-regularized
formulation (10) with objective function equal to fobj = P (dubbed “H2” below), fobj = fjac +P (dubbed “exp-
jac”), fobj = fmsh +P (dubbed “exp-mesh”) — we refer to section 2.2.2 for the definitions. We also investigated
other objective functions including the ones associated with the linear elasticity strain energy (18) and with the
neohookean strain energy (19): we provide a representative test for these objective functions in Appendix C.

Figure 3(a) shows the reference and deformed points and the mesh Thf that is used to assess performance.
We resort to the Matlab function fmincon based on the interior-point method; in all our tests, we consider the
initial condition Φ = id. Figures 3(b) and (c) show the deformed mesh obtained using the exp-jac objective
and the exp-mesh objective, respectively. We consider δ = 10−6 in (10), and we set ε = 0.1 for the exp-jac
objective, and κmsh = 10 for the exp-mesh objective. Note that the two deformed meshes significantly differ
from each other in the proximity of the origin.

(a) (b) exp-mesh (c) exp-jac

(d) exp-mesh (e) exp-jac

Figure 3: three-point registration problem; visualization of the reference mesh and of the deformed mesh for two
different registration algorithms (δ = 10−6, ε = 0.1, κmsh = 10). Figures (d)-(e) show a zoom of the deformed
meshes in the proximity of the origin.

Figure 4 shows the performance of the Morozov-regularized statement (10) for the objective functions H2,
exp-jac and exp-mesh, for three choices of δ and for the deformation points {yi(t) = (1 − t)xi + tyi}3i=1 for
t ∈ [0, 1]. The quadratic objective function H2 fails to deliver a proper mesh for t > 0.6 — i.e., the deformed
mesh contains inverted elements. On the other hand, the two nonlinear approaches are able to deliver bijective
maps that are also bijective with respect to the target mesh Thf .

Figure 5 compares the performance of registration based on the “full” polynomial space (cf. (12)) with the
performance of registration based on the “potential space”Wpot

hf = {id+∇φ : φ ∈ Qn′lp , ∂nφ|∂Ω = 0}. We recall

that the condition det(∇Φ) > 0 for Φ = id+∇φ ∈ Wpot
hf is equivalent to the convexity of φ. The interest for this

particular choice of the search space is that there exist several effective convexification procedures, which have
been recently developed for optimal transport problems (see, e.g., [14]), that might pave the way for effective
registration strategies. To ensure the fairness of the test, we choose two different polynomial degrees in order to
have trial spaces of comparable dimension — M = 1150 for the “full” space and M = 1155 for the “potential”
space. We observe that the potential approximation significantly deteriorates the performance of registration
for large deformations.

Figure 6 shows the sensitivity of the algorithm with respect to the choice of the polynomial order nlp in
(12). We here consider the exp-mesh objective function with κmsh = 10. We observe that for this particular
test case results are nearly independent of nlp for nlp & 10.
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(d) H2
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Figure 4: three-point registration problem. Performance of the Morozov-regularized statement (10) for the
objective functions H2, exp-jac and exp-mesh, for three choices of δ and for the deformation points {yi(t) =
(1− t)xi + tyi}3i=1 for t ∈ [0, 1]. δ = 10−6 ; δ = 10−4 , δ = 10−2 .
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Figure 5: three-point registration problem. Comparison of performance for “full” space and “potential” space.
Objective function exp-mesh, κmsh = 10, δ = 10−6 ( full basis ; potential ).

4.2 Large deformation mesh morphing

We consider the domain Ω = (0, 1)2 \ (0.4, 0.6)2 in Figure 7(a) and we consider a P2 FE triangulation Thf with
linear elements of Ω that is also depicted in Figure 7(a). We fix the outer boundary and we rotate the inner
boundary about the center x̄ = [0.5, 0.5] by an angle θ ∈ (0, 120o]. The same test case was previously considered
in [6] to demonstrate the quality of an elasticity-based mesh deformation method.

We consider the registration statement (10) with δ = 10−6, {xi}Ni=1 equal to the points of the mesh on
the interior boundary ∂Ωin and {yi = Rot(θ)(xi − x̄)}Ni=1; we consider the exp-jac objective with ε = 0.05
and the exp-mesh objective with κmsh = 10. We consider polynomials of degree nlp = 25. In order to solve
the optimization problem, we split the interval (0, 120o] into Nθ = 15 equispace sub-intervals (θk−1, θk) with
k = 1, . . . , Nθ; then, we consider a continuation strategy in which we initialize the optimizer for θ = θk using
the previously-computed solution for θ = θk−1.

Figures 7(b) and (c) show the deformed meshes for θ = 60o and θ = 120o for the exp-mesh objective. Figures
8(a)-(b)-(c) compare the behavior of the minimum radius qmin, the minimum Jacobian determinant Jmin, and
the number of iterations of the interior point method for the two choices of the objective function and for several
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Figure 6: three-point registration problem; sensitivity with respect to the polynomial order nlp for t = 1.
Objective function: exp-mesh; δ = 10−6, κmsh = 10.

values of θ.

(a) θ = 0o (b) θ = 60o (c) θ = 120o

Figure 7: large deformation mesh morphing. (a) reference configuration. (b)-(c) deformed meshes obtained
using (10) with exp-mesh objective, δ = 10−6, κmsh = 10, nlp = 25.
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Figure 8: Large deformation mesh morphing. Behavior of the minimum radius ratio qmin, the minimum Jacobian
Jmin, and the number of iterations for exp-jac and exp-mesh objective function and for several values of θ.
(δ = 10−6, ε = 0.05, κmsh = 10, nlp = 25). exp-mesh ; exp-jac .

Some comments are in order. Both approaches succeed to deliver valid deformations with respect to their
target — that is, the bijectivity of Φ for the exp-jac objective and discrete bijectivity for the exp-mesh objective.
Note, however, that for θ & 100o the solution to (10) with exp-jac objective fails to deliver a valid deformed
mesh; similarly, the solution to (10) with exp-mesh objective is not bijective over Ω. Recalling Remark 2.1, we
conclude that the choice of the objective function should be driven by the choice of the strategy to deal with
geometry variations — namely, discretize-then-map or map-then-discretize.
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4.3 Geometry reduction of a parametric two-dimensional domain

We consider a variant of the parametric geometry reduction problem considered in [31]. We introduce Ωbox =

(−2, 2)2 and we define the reference domain Ω = Ωbox \
⋃2
i=1 Ω

(i)
in where Ω

(1)
in ,Ω

(2)
in are two circles of radius

r = 1/2 centered in x̄1 = (−1, 0) and x̄2 = (1, 0), respectively. We parameterize the inner circles using the

functions γ
(i)
ref,in : [0, 2π)→ R2 with γ

(i)
ref,in(t) = x̄i+

1
2 [cos(t), sin(t)]. We further introduce the parameter domain

Pin = [0.1, 0.4]2 × [0, π/4] and the curves

γ
(i)

in,ν(i)(t) = x̄i +
1

2

 cos(t)

(
1 + ν

(i)
1

(
cos(t+ ν

(i)
3 )
)2

+ 2 · 10−3 ((2π − t) t)2

)
sin(t)

(
1 + ν

(i)
2

(
sin(t+ ν

(i)
3 )
)2

+ 2 · 10−3 ((2π − t) t)2

)
 , (34)

with x̄1 = [−1, 0], x̄2 = [1, 0] and r = 1/2. Then, we define the vector of parameters µ = [ν(1), ν(2)] in the
parameter region P = Pin × Pin and we introduce the family of parameterized domains

Ωµ = Ωbox \
(

Ω
(1)

in,ν(1) ∪ Ω
(2)

in,ν(2)

)
, with ∂Ω

(i)

in,ν(i) = γ
(i)

in,ν(i)([0, 2π)), i = 1, 2. (35)

Figure 9(a) shows the reference configuration and the mesh Thf employed for the numerical investigations;
Figures 9(b) and (c) show two elements of the family {Ωµ : µ ∈ P}.

(a) (b) exp-mesh (c) exp-jac

Figure 9: geometry reduction of a parametric two-dimensional domain. (a) reference configuration. (b) domain

Ωµ for µ = [νmin, νmin], with (νmin)j = minν∈Pin
(ν)j , j = 1, 2, 3. (c) domain Ωµ for µ = [ν

(1)
max, ν

(2)
max], with

(νmax)j = maxν∈Pin
(ν)j , j = 1, 2, 3.

We consider nlp = 20 and we enforce (Φ − id) · n|∂Ωbox
= 0 to ensure bijectivity over Ωbox — note that

the resulting affine space Whf is of dimension M = 720. We generate training and test sets Ptrain,Ptest ⊂ P of
cardinality ntrain = 100 and ntest = 20 using independent realizations of an uniform random variable over P.
We apply registration with exp-mesh objective function (κmsh = 10) and we describe the internal reference and
parameterized domains using Nv = 100 points,{

xi:=k+(j−1)Nv
= γ

(j)
in,ref(tk) : k = 1, . . . , Nv, j = 1, 2

}
, with tk =

k − 1

Nv{
yi:=k+(j−1)Nv

(µ) = γ
(j)

in,ν(j)(tk) : k = 1, . . . , Nv, j = 1, 2
}
.

(36)

Note that the reference and target points are sorted a priori and that N = 2Nv = 200. In all our tests, we
initialize the registration algorithm with Φ = id.

We here design a GRR algorithm that takes as input the points {xi}Ni=1 and {yraw
i }

Q
i=1 and the mesh Thf of

Ω and returns a deformed mesh Φ(Thf),

Φ(Thf) = registration
(
Thf , {xi}Ni=1, {yraw

i }
Q
i=1

)
. (37)

We do not exploit the knowledge of the parameterization. We first consider the simplified case of “sorted” points
(cf. (36)) in which we feed the algorithm (37) with {yraw

i = yi}Q=N
i=1 ; then, we consider the more challenging

problem of unsorted and sparse points in which we feed (37) with

{yraw
i = yIi}

Q
i=1, Q = 0.8N, I ⊂ {1, . . . , N}

where I is obtained by selecting the first Q points of a random permutation of {1, . . . , N}. We envision that
the unsorted problem is an adequate proxy of the geometry registration problems encountered in practical
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applications. Table 1 summarizes the choice of the hyper-parameters considered in the numerical experiments.
Here, the geometric error is practically estimated as

Egeo(Φ) = max
i=1,...,N

min
j=1,...,5N

‖Φ(xi)− ytest
j ‖2, (38)

where {ytest
j }5Nj=1 are defined as in (36) with Nv = 500.

Method Hyper-parameters Optimization method
Tykhonov (22) exp-mesh objective, κmsh = 10, ξ ∈ {10−4, 10−5} quasi-Newton
Morozov (23) exp-mesh objective, δ ∈ {10−3, 10−4} interior point (linear constraints)
Inverted (24) exp-mesh constraint, ξ ∈ {10−4, 10−5}, δcon = 1 interior point (nonlinear constraints)
Coherent point drift β = 1, λ = 1, w = 0 Algorithm 2, Appendix A

Table 1: geometry reduction of a parametric two-dimensional domain. Details of the optimization method.

Table 2 and Table 3 summarize the average and worst performance of the registration methods of section
2.3 on the training and the test set, respectively. In more detail, in Table 2, we consider the statements (22),
(23), and (24): Tykhonov regularization enables faster predictions, particularly in the worst-case cost; Morozov
regularization enables a sharp control of the geometric error — which is in the order of

√
2δ for all numerical

experiments — at the price of significantly larger worst-case costs; the inverted formulation leads to results that
are close to Tykhonov regularization. In Table 3, we compare performance of the same registration algorithms
over the test set based on the full space (M = 720) and on the reduced space obtained using POD with tolerance
tolpod = 10−5 (cf. (25)): we set ξ = 10−5 in (22) and (24), and δ = 10−4 in (23). we observe that POD enables
speedups in the order of O(100) without any significant deterioration of performance. Even more, we observe
that dimensionality reduction slightly improves reconstruction performance for certain configurations: this
empirical finding suggests that the reduction of the number of unknowns simplifies the optimization task and
might prevent convergence to suboptimal local minima.

Training (sorted) qmin geo error nbr its cost [s]
avg min avg max avg max avg max

Tykhonov (ξ = 10−4) 0.44 0.32 9.53 · 10−5 1.98 · 10−4 287.5 401 31.85 44.04
Tykhonov (ξ = 10−5) 0.42 0.27 8.18 · 10−5 1.17 · 10−4 274.9 383 30.62 42.39
Morozov (δ = 10−3) 0.45 0.34 1.40 · 10−3 1.42 · 10−3 78.6 176 26.58 68.18
Morozov (δ = 10−4) 0.45 0.34 1.36 · 10−4 1.42 · 10−4 75.7 211 30.06 108.04
Inverted (ξ = 10−4) 0.41 0.24 3.37 · 10−4 6.20 · 10−4 199.6 285 33.03 49.38
Inverted (ξ = 10−5) 0.41 0.24 8.43 · 10−5 1.29 · 10−4 204.14 349 32.92 55.89

Table 2: geometry reduction of parametric two-dimensional domain. Registration performance on the training
set Ptrain for sorted data, M = 720.

Test (sorted) qmin geo error nbr its cost [s]
avg min avg max avg max avg max

Tykhonov, full (M = 720) 0.41 0.30 0.81 · 10−4 1.01 · 10−4 270.0 378 30.10 41.91
Tykhonov, reduced (M = 20) 0.42 0.31 0.73 · 10−4 1.01 · 10−4 59.3 91 0.23 0.31
Morozov, full (M = 720) 0.44 0.34 1.37 · 10−4 1.40 · 10−4 68.3 86 26.31 73.12
Morozov, reduced (M = 21) 0.44 0.35 1.35 · 10−4 1.42 · 10−4 47.1 61 0.51 0.63
Inverted, full (M = 720) 0.41 0.27 0.79 · 10−4 1.13 · 10−4 217.0 320 34.68 51.71
Inverted, reduced (M = 21) 0.40 0.26 0.69 · 10−4 1.20 · 10−4 77.5 117 0.35 0.51

Table 3: geometry reduction of a parametric two-dimensional domain. Registration performance on the test set
Ptest for sorted data.

Table 4 shows performance for the unsorted problem; in this test, we consider unsorted data both for
training and assessment, and we resort to the full CPD space. We observe that both Tykhonov and the inverted
formulation lead to performance that are comparable to the performance obtained using CPD in terms of
geometric error. Note also that the number of POD modes required to achieve the tolerance tolpod = 10−5 in
(25) is significantly larger (see also Figure 11) for the unsorted dataset: this empirical finding suggests that the
application of CPD to the unsorted dataset with missing points might introduce numerical noise that ultimately
hinders the compressibility of the manifold associated with the mapping Φ.
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Test (unsorted) qmin geo error nbr its cost [s]
avg min avg max avg max avg max

CPD — — 6.68 · 10−3 8.61 · 10−3 53.0 97 0.03 0.05
Tykhonov, full (M = 720) 0.43 0.29 6.93 · 10−3 8.61 · 10−3 334.5 401 37.39 44.75
Tykhonov, reduced (M = 48) 0.43 0.29 6.93 · 10−3 8.67 · 10−3 181.1 237 1.19 1.52
Inverted, full (M = 720) 0.40 0.26 7.03 · 10−3 8.86 · 10−3 208.0 245 33.91 41.41
Inverted, reduced (M = 40) 0.40 0.26 7.32 · 10−3 9.03 · 10−3 130.3 143 0.85 1.02

Table 4: geometry reduction of a parametric two-dimensional domain. Registration performance on the test set
Ptest for unsorted data, with 80% training data (ξ = 10−4). CPD is based on the full space (21).

20 40 60 80 100

10−9

10−7

10−5

10−3

10−1

k

1
−
E
C
k
(λ

)

sorted
unsorted

(a) Tykhonov

20 40 60 80 100

10−9

10−7

10−5

10−3

10−1

k
1
−
E
C
k
(λ

)

sorted
unsorted

(b) Inverted

Figure 10: geometry reduction of a parametric two-dimensional domain. POD eigenvalues for sorted and
unsorted data for Tykhonov and inverted formulations with ξ = 10−4; CPD is based on the full space (21).

Figure 11 shows the deformed meshes obtained for an out-of-sample parameter using Tykhonov regularization
with full space and sorted data (ξ = 10−5), Morozov regularization with full space and sorted data (δ = 10−4),
Tykhonov regularization (in combination with CPD) with reduced space and unsorted data, respectively (ξ =
10−5, M = 48). For this test case, we obtain that the geometric error (38) is given by 7.8·10−5, 1.4·10−4, 5.9·10−3,
respectively; the geometric error of CPD is 5.9 · 10−3.

(a) Tykhonov, full, sorted (b) Morozov, full, sorted (c) Tykhonov, reduced, unsorted

Figure 11: geometry reduction of a parametric two-dimensional domain. Deformed mesh obtained using three
different methods for µ = [νmax, νmax].

Table 5 investigates performance of the registration method based on sorted training on a unsorted test
dataset: we envision that this scenario is of interest for real-time applications for which online data are con-
siderably more noisy than data used for training. We consider the Tykhonov formulation with ξ = 10−4; we
perform POD with tolerance tolpod = 10−5 to obtain a reduced space of cardinality M = 22; then, we compare
performance obtained using CPD based on the full space (21) with the performance obtained using CPD with
the reduced space (26). We observe that dimensionality reduction in the CPD algorithm has a beneficial effect
on the accuracy of the registration procedure and also reduces the cost of CPD.

5 Summary and discussion

We presented an optimization-based approach to the problem of geometry registration and reduction (GRR).
GRR is of paramount importance in pMOR to deal with PDEs in parametric geometries. We presented a
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Full-space CPD qmin geo error nbr its cost [s]
avg min avg max avg max avg max

CPD 6.68 · 10−3 8.61 · 10−3 53.0 97 0.04 0.08
Tykhonov, reduced (M = 22) 0.46 0.30 2.95 · 10−2 5.91 · 10−2 95.3 119 0.33 0.39

Reduced-space CPD qmin geo error nbr its cost [s]
avg min avg max avg max avg max

CPD 6.09 · 10−3 1.13 · 10−2 26.4 39 0.01 0.02
Tykhonov, reduced (M = 22) 0.41 0.34 3.29 · 10−3 1.14 · 10−2 68.4 116 0.24 0.38

Table 5: geometry reduction of parametric two-dimensional domain. Registration performance on the test set
Ptest for unsorted data; training performed on sorted data, ξ = 10−4, tolpod = 10−5.

thorough mathematical analysis that offers the theoretical foundations for the methodology; we further presented
thorough numerical investigations for three two-dimensional model problems.

The analysis of section 3 rigorously justifies the proposed approach for smooth C2 domains; it also illustrates
the issues that the approach faces when dealing with slender bodies and/or domains with corners. In particular,
ensuring appropriate approximation — via interpolation — of the target shape at corners and cusps is key to
recover near-optimal bounds for the geometry error.

The numerical results of section 4 provide a thorough overview of the performance of optimization-based
registration methods, for several choices of the objective function and of the parameters. First, Tykhonov
regularization appears to be superior in terms of computational performance at the price of a less straightforward
choice of the free parameter ξ (compared to Morozov regularization). In addition, the combination with a
representative PSR procedure did not lead to any unstable behavior and/or lack of convergence. Second, we
observe that potential approximations of the form Φ = id + ∇φ are highly suboptimal (cf. Figure 5) in our
setting: this is in striking contrast with the related problem of optimal transportation for which the solution
is guaranteed to be the gradient of a convex function [3]. Third, the results of section 4.3 show that geometry
reduction based on POD might greatly reduce the cost of registration. In this respect, the development of
specialized hyper-reduction (see, e.g., [5, 38]) techniques might lead to much more significant computational
gains for large-scale problems. Fourth, we observed that the deformation is highly sensitive to the choice of the
objective function (see, e.g., Figure 3 and Figure 8): for projection-based pMOR applications, this choice should
thus be driven by the strategy to deal with geometry variations — namely, discretize-then-map or map-then-
discretize. Fifth, we observe that the approach can also cope with unsorted data when trained on sorted data
(cf. Table 5): towards this end, the application of the reduced-space CPD seems crucial to achieve accurate
reconstructions.
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A Coherent point drift

In this Appendix, we review the coherent point drift (CPD) algorithm first introduced in [24]. CPD is a proba-
bilistic method based on a Gaussian mixture model (GMM): the PSR problem is formulated as a maximum like-
lihood estimation problem with a motion coherence constraint and is solved using an expectation-maximization
(EM) procedure. First, we briefly present EM algorithms for maximum likelihood estimation; then, we present
the probabilistic model of CPD and we discuss the application of EM; finally, we comment on dimensionality
reduction. In Appendix A.1 and Appendix A.2, we denote by Y = [y1, . . . , yQ]? the observed data to shorten
notation.

A.1 Expectation maximization procedures

The EM algorithm is a prominent method in machine learning to find maximum likelihood solutions for models
with latent variables; EM is used when the maximization of the likelihood of the observed variables is difficult
but can be made easier by enlarging the sample with latent (unobserved) data. We refer to [2] Chapter 9, and
to [8, Chapter 8] for a thorough review of the methodology and for a rigorous theoretical justification.

We denote by Θ the parameter values of the model, by Y = [y1, . . . , yQ]? ∈ RQ×d the observed data and by
Z = [z1, . . . , zQ]? ∈ {1, . . . , N}Q the latent variables for some N ∈ N — we here consider the case of a single
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discrete latent variable; however, the method can also deal with continuous latent variables. We denote by
p(Y,Z|Θ) the joint likelihood; recalling the Bayes’ theorem, we find the expression for the posterior of Z:

Pr(Z|Y,Θ) =
Pr(Y,Z|Θ)

Pr(Z|Θ)
. (39)

Assuming that the samples are independent identically distributed, the EM procedure can be stated as in
Algorithm 1. Note that, since the logarithm acts directly on the joint distribution, the M-step maximization
might be tractable. The choice of the expectation in the M-step is rigorously justified by interpreting EM
as an alternative minimization algorithm (see, [2, Chapter 9.4] [8, Chapter 8.5.3]). Several authors have also
considered to partition the parameters Θ into groups and then break down the M-step into multiple steps each
of which involves optimizing one of the subsets with the remainders held fixed [23].

Algorithm 1: Expectation-Maximization algorithm.

1: Set Θ(k) = Θ0.

2: for k = 1, 2, . . . , until convergence do

3: E-step: Evaluate (P)i,j = Pr(Z = zj |Y = yi,Θ
(k)) using (39).

4: M-step: Maximize the expectation of the complete data log-likelihood

Θ 7→ Q(Θ; P) :=

Q∑
i=1

K∑
j=1

(P)i,j log (Pr(Z = zi, Y = yj |Θ)) to find Θ(k+1).

5: end for

A.2 Probabilistic model of CPD

We introduce the mixture model

Y =

N∑
j=1

1(Z = j)Y (j) + 1(Z = N + 1)Y (N+1), (40)

where Y (j) ∼ N (µj , σ
2
1) for j = 1, . . . , N , Y (N+1) ∼ Uniform(D), and Z ∼ Multinomial({1, . . . , N + 1}) are

independent random variables. Given w ∈ [0, 1), we set

Pr(Z = j) =

{
1− w
N

j = 1, . . . , N

w j = N + 1
|D| = Q.

Exploiting the previous hypotheses, we find

Pr(Y = y, Z = j) = Pr(Y (j) = y) Pr(Z = j) =


1− w
N

1

(2πσ2)d/2
exp

(
−‖y − µj‖

2
2

2σ2

)
if j ∈ {1, . . . , N}

w

Q
if j = N + 1.

We consider the set of tunable parameters Θ = {µ1, . . . , µN , σ
2}, while we fix w,D a priori. We observe that

(40) reads as a GMM with a perturbance given by the uniform random variable Y (N+1): the latter is intended
to account for noise and outliers in the dataset. We do not explicitly construct the domain D: we simply assume
that all the observed datapoints belong to D.

Given j ∈ {1, . . . , N + 1} and y ∈ D, using (39), we find

Pr (Z = j|Y = y) =
Pr(Y (j) = y, Z = j)∑N+1

k=1 Pr(Z = k)Pr(Y (k) = y)
=

Pr(Y (j) = y) Pr(Z = j)∑N+1
k=1 Pr(Z = k)Pr(Y (k) = y)

=
exp

(
−‖y−µj‖

2
2

2σ2

)
∑N
k=1 exp

(
−‖y−µk‖

2
2

2σ2

)
+ c

,

(41)
with c = w

1−w
N
Q (2πσ2)d/2, for j = 1, . . . , N . We further introduce the matrix P ∈ RQ×N such that (P)i,j =

Pr (Z = j|Y = yi) for i = 1, . . . , Q and j = 1, . . . , N and we define Qp =
∑
i,j(P)i,j ; then, assuming that
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y1, . . . , yQ ∈ D, we obtain

−Q(Θ; P) = −
Q∑
i=1

 N∑
j=1

(P)i,j log Pr (Y = yi, Z = j|Θ)

+

(
1−

N∑
k=1

(P)i,k

)
log(1/|D|)


=

Q∑
i=1

N∑
j=1

(P)i,j

(
1

2σ2
‖yi − µj‖22 +

d

2
log(σ2) + log

(
1− w

N(2π)d/2

))
+ C1;

=

 1

2σ2

Q∑
i=1

N∑
j=1

(P)i,j‖yi − µj‖22

+
dQp

2
log(σ2) + C2,

(42)

where C1, C2 are constants that are independent of Θ.
So far, we have not forced the GMM centroids to move coherently; towards this end, we propose the model

µj = xj + v(xj) where {xj}Nj=1 is the reference point cloud that we wish to deform and v : Rd → Rd is
a displacement field that is assumed to belong to the native Reproducing Kernel Hilbert space (RKHS) Hφ
associated with the radial basis function (RBF) φ : r 7→ exp

(
− r2

2β2

)
. Then, we introduce the objective function

E for the M-step by adding the regularization λ
2 ‖v‖

2
Hφ to (42):

E(v, σ2|P) =
1

2σ2

Q∑
i=1

N∑
j=1

(P)i,j‖yi − xj − v(xj)‖22 +
dQp

2
log(σ2) +

λ

2
‖v‖2Hφ . (43)

Exploiting the representation theorem for RKHS (e.g., [37]), we find that minimizers of (43) belong to the

space Ucpd
hf introduced in (21); we also observe that in the Bayesian setting the regularization λ

2 ‖v‖
2
Hφ might be

associated to the logarithm of a prior on the displacement field.
We observe that the probabilistic model introduced in this section depends on three free parameters: w, β, λ.

The parameter w ∈ [0, 1] is designed to account for noise and outliers in the datasets: it should be set to zero
for noiseless data. The parameter β reflects the strength of interaction between points: the value of β should
thus depend on the characteristic length-scale of the displacement field we wish to approximate. The value of λ
is associated with the Tikhonov regularization of the E-step and thus reflects the trade-off between data fitting
and smoothness regularization. Finally, the algorithm also depends on the choice of the RBF φ: following [24],
we here consider the Gaussian kernel; however,we observe that several other choices are possible and there is
an extensive literature on the comparison between different RBFs [28].

A.3 Coherent point drift procedure

We adapt the EM algorithm 1 to the mixture model (40): we present the detailed procedure in Algorithm 2.
To facilitate the M-step, we first solve for the displacement v and then for σ2.

Algorithm 2: Coherent point drift [24].

Inputs: X = [x1, . . . , xN ]? ∈ RN×d, Yraw = [yraw
1 , . . . , yraw

Q ]? ∈ RQ×d.
Hyper-parameters: w ∈ [0, 1), β, λ > 0.

Outputs: Y = [x1 + v(x1), . . . , xN + v(xN )]? ∈ RN×d.

1: Set v(0) = 0 and σ2,(0) = 1
dQN

∑Q
i=1

∑N
j=1 ‖xj − yraw

i ‖22.

2: for k = 1, 2, . . . , until convergence do

3: E-step: Find P(k) ∈ RQ×N such that (P(k) )i,j = Pr (Z = j|Y = yraw
i ) using (41) with µj = xj

+v(k−1)(xj) and σ2 = σ2,(k−1).

4: M-step (I): find v(k) = arg minv∈Hφ E(v, σ2,(k−1))|P(k)) (cf. (43)).

5: M-step (II): find σ2,(k) = arg minσ2∈R+
E(v(k), σ2|P(k)).

6: end for

Exploiting the representation theorem for v, we find that v(k)(·) =
∑N
j=1 w

(k)
j φ(‖ · −xi‖2) and W(k) =

[w
(k)
1 , . . . , w

(k)
N ]? ∈ RN×d solves the linear system (we omit dependence on the iteration count k at the right-
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hand-side to shorten notation)

W(k) =
(
G + λσ2 (d(P1Q)

−1
)−1 (

(d(P1Q))
−1

PYraw −X
)
, (44)

where G ∈ RN×N satisfies (G)i,j = exp
(
− 1

2β2 ‖xi − xj‖22
)

, i, j = 1, . . . , N , 1Q is the Q-dimensional vector with

entries all equal to one, and d (P1Q) = diag ((P1Q)1, . . . , (P1Q)N ) ∈ RN×N . By tedious but straightforward
calculations, we also find the explicit expression for σ2,(k)

σ2,(k) =
1

Qpd

(
Tr ((Yraw)?d(P?1N )Yraw) − 2 Tr

(
(PYraw)

?
Y
)

+ Tr (Y?d(P?1N )Y)
)
. (45)

with Qp =
∑
i,j

(
P(k)

)
i,j

and Y = X + GW(k).

Since the seminal work [24], several authors have discussed how to effectively implement Algorithm 2 to
enable its application to large datasets and also to prevent unstable behaviors. In this work, we resort to an
eigenvalue decomposition of the matrix G and to the Woodbury identity to invert the system in (44) (cf. [24,

section 6]). Furthermore, before solving the system, we remove all lines i for which
∑Q
j=1(P)i,j < 10−12 and we

set W(i, :) = 0. In all our numerical experiments, we consider the termination condition

‖W(k) −W(k−1)‖2 < 10−4 OR max
j=1,...,Q

min
i=1,...,N

‖Yraw(j, :)−Y(i, :)‖2 < 10−5. (46)

A.4 Low-dimensional representation of the displacement field v

As discussed in section 2.3.2, and also shown in the numerical experiment of section 4.3, we might wish to
restrict computations over a low-dimensional subspace Ucpd

M . Since we are ultimately interested in bounded-

domain registration, the natural choice is Ucpd
M = UM . Since in general UM is not contained in Hφ, we propose

to replace the regularization ‖ · ‖2Hφ in (43) with ‖ · ‖2H2(Ωbox). In conclusion, we replace Line 4 of Algorithm 2
with

v(k+1) = arg min
v∈UM

1

2σ2

Q∑
i=1

N∑
j=1

(P)i,j‖yi − xj − v(xj)‖22 +
λ

2
‖v‖2H2(Ωbox). (47)

Provided that {ψm}Mm=1 is an orthonormal basis of UM , by tedious but straightforward calculations, we find

that v(k+1)(·) =
∑M
m=1

(
A−1b

)
m
ψm(·) where

(A)m,m′ = λσ2 δm,m′ +

N∑
j=1

d∑
`=1

(ψm(xj))` (P1Q)j (ψm′(xj))`

(b)m =

N∑
j=1

d∑
`=1

(ψm(xj))` (PYraw − d(P1Q)X)j,` ,

for m,m′ = 1, . . . ,M .

B Proofs

B.1 Proposition 3.1

We first observe that if {xi}Ni=1 is an ε-cover of ∂Ω then {Φ(xi)}Ni=1 is Kε-cover of ∂Φ(Ω). To prove this
statement, consider x̃ ∈ ∂Φ(Ω); since Φ is bijective, ∂Φ(Ω) = Φ(∂Ω) and thus there exists x ∈ ∂Ω such that
x̃ = Φ(x). We denote by i? ∈ {1, . . . , N} the index that satisfies ‖x− xi?‖2 = dist

(
x, {xi}Ni=1

)
: since {xi}Ni=1 is

an ε-cover of ∂Ω, we have ‖x− xi?‖2 ≤ ε. Then, we find

dist
(
x̃, {Φ(xi)}Ni=1

)
= dist

(
Φ(x), {Φ(xi)}Ni=1

)
≤ ‖Φ(x)− Φ(xi?)‖2 ≤ Kε.

Exploiting the previous estimate, we obtain that for all x̃ = Φ(x) ∈ ∂Φ(Ω) we have

dist (x̃, ∂V ) = inf
y∈∂V

‖Φ(x)− y‖2 ≤ min
i=1,...,N

‖Φ(x)− yi‖2

≤ min
i=1,...,N

(‖Φ(xi)− yi‖2 + ‖Φ(xi)− Φ(x)‖2)

≤
(

max
i=1,...,N

‖Φ(xi)− yi‖2
)

+

(
min

i=1,...,N
‖Φ(xi)− Φ(x)‖2

)
≤ max
i=1,...,N

‖Φ(xi)− yi‖2 +Kε.
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B.2 Lemma 3.1

Proof of the second statement is an immediate consequence of the Weyl’s tube formula [7], which states that if
the curves (or surfaces for d = 3) {x± δn(x) : x ∈ ∂U} do not have self-intersections, we have

Neighδ(∂U) = 2δ|∂U |(d−1) +
4π

3
χ(∂U)δ3,

where χ(∂U) is the so-called Euler characteristics. The quantity χ(∂U) is invariant under isomorphisms and is
equal to 0 for the unit circle and to 2 for the unit sphere.

We now prove the first statement. In more detail, we show that any y ∈ Neight
δ(∂U) belongs to Neighδ(∂U)

and then that any y ∈ Neighδ(∂U) belongs to Neight
δ(∂U).

Let y = x + tn(x) ∈ Neight
δ(∂U). Clearly, we have dist(y, ∂U) ≤ ‖y − x‖2 = |t| < δ, which implies that

y ∈ Neighδ(∂U).
Let y ∈ Neighδ(∂U). We define f : ∂U → R such that f(x) = ‖x−y‖22; we denote by ∇∂Uf := ∇f−n(n·∇f)

the surface gradient of f . Since ∂U is a closed set in Rd, there exists a minimizer x̃ ∈ ∂U that f(x̃) =
infx∈∂U f(x); furthermore,

‖x̃− y‖22 = inf
x∈∂U

f(x) = (dist(y, ∂U))
2
< δ2 ⇒ ‖x̃− y‖2 < δ.

Since ∂U is a closed hyper-surface without boundary, x̃ must be a stationary point of f over ∂U , that is
∇∂Uf(x̃) = 0. Exploiting the definition of the surface gradient, we find that x̃ − y = ñ(ñ · (x? − y)) with
ñ = n(x̃), which implies that x̃− y is parallel to ñ and then that

y = x̃− (θ‖x̃− y‖2) ñ,

for either θ = 1 or θ = −1. Recalling (31), we find that y ∈ Neight
δ(∂U).

B.3 Lemma 3.2

The no-intersection hypothesis implies that Neighδ(∂U) is diffeomorphic to a spherical shell. Therefore, there
exists a mapping Φ that transforms U into the unit ball and Neighδ(∂U) into the shell B1+δ(0) \ B1−δ(0). We
conclude that it suffices to prove the result for U equal to the unit ball.

By contradiction, let y ∈ (V \ Neighδ(∂U)) ∩ B1−δ(0) and consider p = x − δn(x) ∈ U \ V ; note that
p ∈ ∂B1−δ(0). Clearly, the segment Γ = {tp + (1 − t)y : t ∈ (0, 1)} is contained in B1−δ(0) and — since y ∈ V
and p /∈ V — intersects ∂V at some point z ∈ ∂V ∩ Γ. We thus proved the existence of a point z ∈ ∂V that
does not belong to Neighδ(∂U)), which is a contradiction. The case y ∈ (V \ Neighδ(∂U)) \ B1+δ(0) can be
treated similarly.

B.4 Lemma 3.3.

The aim of this section is to further discuss Definition 3.1 and to prove a refined version of Lemma 3.3. We focus
on the three-dimensional case: the same argument applies to two-dimensional domains with minor modifications.

We first recall the following elementary result.

Lemma B.1. Let f : [a, b]→ Rk be differentiable. Then, ‖f(b)− f(a)‖2 ≤ (b− a) maxζ∈[a,b] ‖f(ζ)‖2.

Proof. It suffices to apply the mean value theorem to the scalar function φ(ζ) = (f(b)− f(a)) · f(ζ).

Next Lemma introduces relevant quantities for the subsequent result.

Lemma B.2. Let U be a three-dimensional bounded domain of class C2. Then, there exist positive constants
L,Linv, r such that for any x ∈ ∂U there exists a bijective mapping Φx : A→ U ∩ Br(x) with A = Br(0) ∩ {x′ :
(x′)2 < 0} with the following properties: (i) Φx has Lipschitz constant L, (ii) the inverse of Φx has Lipschitz
constant Linv, (iii) s ∈ Cr(0) 7→ Φx([s, 0]) is a regular parameterization of ∂U ∩ Br(x) where Cr(0) denotes
the two-dimensional ball of radius r centered in the origin. Furthermore, there exists κmax > 0 such that the
principal curvatures are uniformly bounded in absolute value by κmax.

Proof. If U is of class C2, it is in particular a bi-Lipschitz domain. This implies that for any x ∈ ∂U there exists
R = R(x) and a bijection Φx : A→ U ∩ BR(x) with A = BR(0) ∩ {x′ : (x′)2 < 0} with the following properties:
(i) Φx has Lipschitz constant L, (ii) the inverse of Φx has Lipschitz constant Linv, (iii) s ∈ CR(0) 7→ Φx([s, 0]) is
a regular parameterization of ∂U ∩ Br(x). We denote by Rmax : ∂U → R+ the maximum radius for which the
above conditions hold: it is easy to verify that Rmax is a continuous function; therefore, since ∂U is compact,
exploiting the Weierstrass theorem, we find that Rmax attains a minimum at some x ∈ ∂U ; we thus find
r := Rmax(x) > 0.

If U is of class C2, the principal curvatures are continuous over ∂U and thus uniformly bounded.
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Then, Lemma B.3 provides a refined version of Lemma 3.3. Note that the bound on δ0 depends on the
global property r of ∂U , and on the local properties κmax, L, Linv. The proof involves the introduction of the
so-called shape operator (see, e.g., [26, Chapter 5]). Given x ∈ ∂U , we denote by Tx the tangent space at x and
we define the operator S[x] such that

S[x]t = − lim
ε→0

n(x+ εt)− n(x)

ε
, ∀ t ∈ Tx.

It is possible to prove that S[x] is a linear symmetric operator from Tx to Tx whose eigenvalues are the principal
curvatures of ∂U at x κ1(x), κ2(x). Therefore, we find that the dual norm of S[x] satisfies

‖S[x]‖? := sup
t∈Tx

‖S[x]t‖2
‖t‖2

= max {|κ1(x)|, |κ2(x)|} . (48)

Lemma B.3. Let L,Linv, r, κmax > 0 be the quantities introduced in Lemma B.2. Then, we find that U is
δ-regular for δ < min{ r2 ,

1
LLinvκmax

}.

Proof. Let x, y ∈ ∂U satisfy
x− δn(x) = y − δn(y). (49)

Below, we prove that if δ < r/2 then (49) implies that δ ≥ 1
LLinvκmax

. Recalling Lemma 3.2, the latter implies

that U is guaranteed to be δ-regular if δ < r/2 and δ < 1
LLinvκmax

.
If δ < r/2, we have ‖x − y‖2 ≤ δ‖n(x) − n(y)‖2 ≤ 2δ < r; therefore, given A = Br(0) ∩ {x′ : (x′)3 < 0},

there exists a mapping Φ : A → U ∩ Br(x) that satisfies the conditions of Lemma B.2. Then, if we denote by
t, s ∈ R2 the points satisfying x = Φ([t, 0]), y = Φ([s, 0]) such that ‖s‖2, ‖t‖2 < r, we find

‖t− s‖2
(i)

≤ Linv‖x− y‖2
(ii)
= (Linv‖n(x)− n(y)‖2) δ.

Note that in (i) we used the fact that Φ−1 is Lipschitz, while in (ii) we used (49).
Let γ : ξ 7→ [(1 − ξ)t + ξs, 0] be a path from t to s in A and define N : ξ 7→ n(Φ(γ(ξ))). Clearly, we

have N(0) = n(x), N(1) = n(y), and we also have that ∇Φ(γ(ξ))γ′(ξ)) belongs the tangent space Tx with
x = Φ(γ(ξ)). . Then, applying Lemma B.1, the chain rule, and the definition in Eq. (48), we obtain

‖n(x)− n(y)‖2 ≤ max
ξ∈[0,1]

‖N′(ξ)‖ = max
ξ∈[0,1]

‖S [Φ(γ(ξ))] ‖?‖∇Φ(γ(ξ))‖2‖t− s‖2 ≤ κmaxL‖t− s‖2.

By combining the latter two equations, we obtain

‖t− s‖2 ≤ LLinvκmax‖t− s‖2δ.

By dividing both sides by ‖t− s‖2, we obtain δ ≥ (LLinvκmax)−1.

B.5 Lemma 3.4

We first remark that
distH(U, V ) ≤ distH(∂U, ∂V ) (50)

We have indeed that supx∈V dist(x, U) = supx∈V \U dist(x, U) = supx∈∂V \U dist(x, U) = supx∈∂V \U dist(x, ∂U) ≤
distH(∂U, ∂V ). Similarly, we verify that supx∈U dist(x, V ) ≤ distH(∂U, ∂V ).

Let x ∈ ∂V . By contradiction, assume that dist(x, ∂U) > δ, that is Bδ(x) ∩ ∂U = ∅, which implies ∂U ⊂
Neighδ(∂V ) \ Bδ(x). Since V is δ-regular, we must have that U ⊂ Neighδ(∂V ) and thus |U |(d) ≤ Neighδ(∂V ),
which contradicts Hypothesis (ii).

In conclusion, we find

distH(U, V )
(50)

≤ distH(∂U, ∂V ) = max
{

max
x∈∂V

dist(x, ∂U)︸ ︷︷ ︸
≤δ

, max
x∈∂U

dist(x, ∂V )︸ ︷︷ ︸
≤δ

}
≤ δ.

C Further investigations for the three-point registration problem

We assess performance of the elasticity-based objectives introduced in Remark 2.2 for the model problem in
section 4.1. We consider t = 0.7, δ = 10−6, nlp = 25; we set λ1 = ν

(1−2ν)(1+ν) and λ2 = E
1+ν with E = 1 and

ν = 0.3 in (18) and (19). Note that the choice of λ1, λ2 corresponds to the plane strain assumption; note also
that, since (18) and (19) are linear with respect to the Young’s modulus E, results are independent of its choice.
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Figure 12 shows the results of (10) with (a) linear-elasticity objective, (b) H2 objective, and (c) neo-hookean
objective. We observe that both the linear-elasticity model and the neo-hookean model fail to deliver a proper
deformed mesh for this test case, while the H2 objective does. The linear-elasticity model also leads to a
non-bijective mapping — the minimum Jacobian determinant Jmin is equal to 0.012 for H2, to 0.47 for the
neohookean model and to −0.09 for linear elasticity. We also remark that the introduction of higher-order
derivatives in the objective function has the effect of smoothening the mapping Φ: we conjecture that this
feature of the approach might be important in the pMOR framework to improve the compressibility of the
solution manifold.

(a) linear elasticity strain (b) neohookean strain (c) H2

Figure 12: three-point registration; visualization of the deformed meshes for three choices of the objective
function in (10).
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