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Objective
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Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost
associated with the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control1...

1Pictures show results of simulations performed by the MEMPHIS team:
courtesy of Angelo Iollo.
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The Reduced Basis method: general recipe

Pb: find uµ ∈ X : Aµ(uµ, v) = F (v) ∀ v ∈ Y µ ∈ P
Approx: ûµ =

∑N
n=1 α

n
µ ζn, αn : P → R, ζn ∈ X

Offline stage: (performed once)
compute uµ1, . . . , uµntrain using a FE (or FV...) solver;
construct {ζn}Nn=1 and define ZN = span{ζn}Nn=1.

Online stage: (performed for any new µ̄ ∈ P)
solve ûµ̄ ∈ ZN : Aµ̄(ûµ̄, v) = F (v), ∀ v ∈ ZN ;
estimate ‖ûµ̄ − uµ̄‖X .

N � Nhf = dofs of the Full Order Model
(

FOM︸ ︷︷ ︸
=FE,...

)
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The Reduced basis method: challenges

Pb: find uµ ∈ X : Aµ(uµ, v) = F (v) ∀ v ∈ Y µ ∈ P
Approx: ûµ =

∑N
n=1 α

n
µ ζn, αn : P → R, ζn ∈ X

Offline stage: (performed once)
compute uµ1, . . . , uµntrain using a FE (or FV...) solver;
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Successful applications of Reduced Basis methods

Past and current research on pMOR focuses on
1. data compression ZN

2. reduced formulation ZN ⇒ αµ̄

3. a posteriori error estimation ‖ûµ̄ − uµ̄‖X

PR-scRBE: Patera, Huynh, Knezevic, Akselos S.A.
Port-Reduced static condensation RB Element method
component-based structures, solid mechanics.

LRB-Ms: Ohlberger, Schindler, ....
Localized RB Multiscale method
multiscale problems, porous media.

Akselos is a software company that provides a commercial implementation of

PR-scRBE.
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Reduced basis methods for fluid problems

Data compression
Challenges: turbulence (wide spectrum of scales),
approximation of shocks, boundary/internal layers...

nonlinear approximation procedures.

Reduced formulation
Challenges: fragility of Galerkin models, nonlinearities.

stabilized formulations;
hyper-reduction.

Error estimation
Challenge: need for estimates of averaged QOIs.

time-averaged error indicators.
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Outline of the talk

Goal: present two contributions for fluid problems.

1. A Lagrangian nonlinear approximation procedure for
stationary problems.

2. A constrained Galerkin formulation for turbulent flows.

Iollo, Taddei, A nonlinear approximation procedure for parameterized
Model Order Reduction; in preparation.

Fick, Maday, Patera, Taddei, A stabilized POD model for turbulent
flows over a range of Reynolds numbers: optimal parameter
sampling and constrained projection; JCP, 2018.
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Nonlinear approximation

pMOR for hyperbolic problems
Registration algorithm
Application to a linear transport problem
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Objective: approximation of shock waves

Develop a pMOR procedure for
hyperbolic stationary equations

in the presence of parameter-dependent shocks.

Example

u(x ;µ)

xµ

u(x , µ) = sign (x − µ),

x ∈ Ω := (0, 1)

µ ∈ P =
[1
3 ,

2
3

]
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Failure of linear approximation strategies

Linear Reduced Order Models (ROMs) rely on N-term
linear expansions to approximate u:

uµ(x) ≈ ûµ(x) = ZN(x)αµ, ZN = [ζ1, . . . , ζN ]

If uµ(x) = sign(x − µ),

sup
µ∈P

inf
(ZN ,α)

‖uµ − ZN(·)α‖L2(Ω) = O
(

1√
N

)
for Lagrangian spaces (i.e., ZN =

[
uµ1, . . . , uµN

]
).

Linear ROMs are ill-suited for travelling fronts.

Taddei, Perotto, Quarteroni, 2015.
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Eulerian approaches to nonlinear approximation

Recipe: given µ ∈ P ,
1. define the reduced operator ZN,µ : RN → L2(Ω);
2. determine the approximation ûµ = ZN,µ (αµ)

using a projection method.
Selected references:
Manifold learning

Amsallem, Farhat, 2008; Lee, Carlberg, 20182.

"Transported/transformed snapshot" methods
Nair, Balajewicz, 2017; Welper, 2017.

hp-in-parameter adaptive refinement
Eftang et al., 2010; Carlberg, 2015; Peherstorfer, 2018.

2Here, the authors consider ûµ = g(x ;αµ)
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Lagrangian approaches to nonlinear approximation

Recipe: given µ ∈ P ,
1. define a bijective mapping Φµ : Ω→ Ω;
2. determine the approximation ̂̃uµ = Z̃N αµ

of ũµ := uµ ◦ Φµ using a projection method.
Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015;
Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

Example uµ(x) = sign (x − µ) , x ∈ Ω = (0, 1).

If we choose Φµ(X ) =

{
2µX X < 1

2
µ + (1− µ)(2X − 1) X ≥ 1

2
,

the mapped field is µ-independent.
ũµ(X ) = sign(2X − 1).
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Lagrangian approaches: offline/online decomposition3

Offline stage: (performed once)

1. compute uµ1, . . . , uµntrain using a FE/FV solver;

2. define the mapping Φµ for all µ ∈ P ;
3. define the ROM for ũ = u ◦ Φ.

ROM: µ 7→ ̂̃uµ = Z̃Nαµ

Online stage: (performed for any new µ̄ ∈ P)
1. query the ROM to compute ̂̃uµ̄;
2. (if needed) compute ûµ̄ = ̂̃uµ̄ ◦ Φ−1µ̄ .

3. estimate the error ‖ûµ̄ − uµ̄‖X .
3Mojgani, Balajewicz have proposed to simultaneously learn the mapping and

the coefficients during the online stage.
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Overview

Refined goal: develop a general registration algorithm
for the construction of Φµ for Lagrangian approaches.

Agenda:

1. Registration algorithm.

2. Application to a linear advection-reaction problem.

General = independent of the underlying PDE model.

16



Nonlinear approximation

pMOR for hyperbolic problems
Registration algorithm
Application to a linear transport problem
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Desiderata for Φµ

Well-posedness
Projection is performed in the mapped configuration.
Therefore, for all µ ∈ P , the map Φµ should satisfy

Φµ(Ω) = Ω, Jµ(X ) =
∣∣∇Φµ(X )

∣∣ > 0, X ∈ Ω.

Efficiency
The map Φµ should be designed such that the manifold

M̃ = {ũµ = uµ ◦ Φµ : µ ∈ P}
is "more favorable" than4 M = {uµ : µ ∈ P}
for linear approximation methods.

4This notion should be formalized by means of the introduction of a
Kolmogorov N-width.

18



Overall strategy

Inputs: snapshots {uk = uµk}ntrain
k=1 , reference

5 ū.

Output: mapping Φµ : Ω→ Ω for all µ ∈ P .
1. Determine a family of mappings {Ψ(·; a)}a∈RM for

the domain Ω;

2. choose Ψ(·; ak) using uk and ū;
→ {µk , ak}ntrain

k=1

3. learn a : P → RM based on {µk , ak}ntrain
k=1 ;

regression problem

4. set Φµ = Ψ(·; a(µ)).

5Here, ū is set equal to uµ̄, where µ̄ = 1
ntrain

∑
k µ

k .
19



Family of mappings {Ψ(·; a)}a: a theoretical result6

Let Ω be diffeomorphic to Ω̂ = {x ∈ Rd : f (x) < 0}
where f is convex.

Let Φ : Ω′ → Rd , Ω ⊂⊂ Ω′, satisfy

(i) Φ ∈ C 1(Ω′;Rd);

(ii) infX∈Ω J(X ) = |∇Φ(X )| > 0;

(iii) dist (Φ(X ), ∂Ω) = 0 for all X ∈ ∂Ω.
i.e. Φ(∂Ω) ⊂ ∂Ω

Then, Φ is a bijection from Ω into itself.

Examples: Ω̂ = (0, 1)d , Ω̂ = B1(0), . . .

6We thank Pierre Mounoud (University of Bordeaux) for fruitful discussions.
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Family of mappings {Ψ(·; a)}a: implications for Ω = (0, 1)2

Consider Ψ(X ; a) = X +
M∑

m=1

amϕm(X ), with

ϕm(X ) · e1 = 0 on {X1 = 0, 1}, m = 1, . . . ,M ;

ϕm(X ) · e2 = 0 on {X2 = 0, 1}, m = 1, . . . ,M .

(ii) holds for a = ā ⇒ Ψ(·; ā) is bijective + Ψ(Ω; ā) = Ω.

Ω ΩΦ
X (1)

x (1) = Φ(X (1))

X (2) x (2) = Φ(X (2))
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[
0
1

]
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Registration algorithm for (uk , ū)→ ak

Find ak to minimize

min
a

∫
Ω

‖uk(Ψ(X ; a))− ū(X )‖22dX + ξ
∣∣Ψ(·; a)

∣∣2
H2(Ω)

s.t.
∫

Ω

exp
(
ε− Ja(X )

Cexp

)
+ exp

(
Ja(X )− 1/ε

Cexp

)
dX ≤ δ

Non-convex nonlinear optimization problem.

Solver: Matlab 2018b fmincon (interior-point).

Initial condition: a1 = 0, ak = ak−1.

We reorder µ1, . . . , µntrain so that
µk+1 = argminµ∈{µk′}ntrain

k′=k+1
‖µk − µ‖2.
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Registration algorithm for (uk , ū)→ ak : interpretation∫
Ω

‖uk(Ψ(X ; a))− ū(X )‖22dX measures the "distance"

between uk and ū in the mapped configuration;

ξ
∣∣Ψ(·; a)

∣∣2
H2(Ω)

is a regularization term to bound gradient
and Hessian of Ψ(·; a);

the constraint∫
Ω

exp
(
ε− Ja(X )

Cexp

)
+ exp

(
Ja(X )− 1/ε

Cexp

)
dX ≤ δ

imposes weakly that Ja(X ) ∈ [ε, 1/ε] for all X ∈ Ω.

The statement depends on ξ, ε,Cexp, δ:
Here, we set ξ = 10−3, ε = 0.1,Cexp = 0.005, δ = 1.
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Generalization: {µk , ak}k ⇒ a : P → RM

We proceed as follows.
1. POD reduction: a ≈ UΦar, UT

ΦUΦ = 1, ar ∈ RMr,
Mr < M .

2. RBF approximation: {µk , akr }k ⇒ ar : P → RMr.

POD reduction: POD leads to a significant reduction
in terms of online costs and reduces the dependence on
the preliminary choice of M .

Drawback of RBF regression: there is no guarantee
that

min
X∈Ω,µ∈P

Jµ(X ) > 0

Potential fixes (work in progress): multi-fidelity
approaches, constrained regression.
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Nonlinear approximation

pMOR for hyperbolic problems
Registration algorithm
Application to a linear transport problem
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Steady advection-reaction problem

Consider the problem σµ uµ +∇ · (cµ uµ) = fµ in Ω

uµ = uD,µ on Γin,µ

where Γin,µ = {x ∈ ∂Ω : cµ · n < 0}, and
cµ = [cos(µ1), sin(µ1)], σµ = 1 + µ2 e

x1+x2,

fµ = 1 + x1x2, uD,µ = 4 arctan (µ3 (x2 − 1/2) ) x2(1− x2)

µ1 ∈
[
− π

10 ,
π
10

]
, µ2 ∈ [0.3, 0.7], µ3 ∈ [60, 100].

The problem is discretized using a Q2 DG discretization
with Local Lax-Friedrichs flux.

65790 dofs.
26



Mapped configuration; reduced formulation

Offline computations are based on ntrain = 250 snapshots.

Reduced operator Z̃N built using POD.

Reduced formulation: Galerkin.

Hyper-reduction based on POD with EIM point selection.
[Barrault et al., 2004], [Grepl et al., 2007]

Mapping based on Q7 tensorized polynomials (M = 72).

Remark: ũµ satisfies an AR problem with

σ̃µ = Jµ σµ, c̃µ = Jµ∇Φ−1µ cµ, f̃µ = Jµ fµ, ũD,µ = uD,µ.

27



Visualization of the solution field: µ = [−π/10, 0.3, 60]

The mapping Φµ reduces the sensitivity of the solution to
changes in µ1.

cµ = [cos(µ1), sin(µ1)];

µ̄ = [0, 0.5, 80].

(a) u(µ) (b) ū
28
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Behavior of the POD eigenvalues

Decay rate is nearly the same for both registered and
unregistered configurations, but
we have (λreg

n /λreg
1 )/(λunreg

n /λunreg
1 ) = O(102).
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Performance of the Reduced Basis ROM

Relative error is computed based on ntest = 20 parameters,
in the physical configuration.
The nonlinear ROM is approximately 4 times more
accurate than the linear ROM.

30



Constrained formulation

pMOR for turbulent flows
Lid-driven cavity problem
A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin

31



Constrained formulation

pMOR for turbulent flows
Lid-driven cavity problem
A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin

32



Objective

Develop a pMOR procedure for

the parametrized unsteady Navier-Stokes equations

in the turbulent regime.

We wish to efficiently and accurately estimate QOIs
associated with the velocity field

u(µ) = u(x , t;µ), x ∈ Ω ⊂ Rd ,
t ∈ (0,∞),
µ ∈ P ⊂ RP

in the limit of many queries.
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Efficient and accurate ROMs for turbulence

Efficiency: measured wrt the FOM in terms of
memory requirements;
computational time.

Accuracy: measured wrt the FOM in terms of

the long-time averaged flow 〈u〉 = lim
T→∞

1
T

∫ T

0
u(t) dt,

the TKE7 TKE(t) =
1
2

∫
Ω

‖u(x , t)− 〈u〉(x)‖22 dx .
For chaotic flows, prediction of the instantaneous velocity
is out of reach.

7More precisely, we shall estimate the moments of the TKE.
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A simplified task: solution reproduction problem (P = {µ̄})

We seek an estimate of u(µ̄) s.t.

û(x , t) =
N∑

n=1

αn(t)ζn(x)

Offline stage:
given {u(·, tk , µ̄)}Kk=1,

generate the reduced space ZN = span{ζn}Nn=1, and
formulate the Reduced Order Model

Online stage:
query the ROM for the same µ = µ̄ to estimate
{αn(t)}Nn=1 for t > 0.

Limited practical interest, but key intermediate step
toward the development of the ROM formulation.
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Constrained formulation

pMOR for turbulent flows
Lid-driven cavity problem
A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin
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A lid-driven cavity problem8

Consider the problem:
∂tu + (u · ∇)u − 1

Re
∆u +∇p = 0 Ω× R+

∇ · u = 0 Ω× R+

u|∂Ω = g , u(0) = 0

Ω
Ω = (−1, 1)2

Re = 15000
(turbulent regime)

g = 0g = 0

g = 0

g = (1− x21 )2e1

8Model problem considered in Balajewicz, Dowell, Nonlinear Dyn (2012).
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Weak formulation for the lifted equations (ů := u − Rg)

Given Rg s.t. Rg |∂Ω = g , ∇ · Rg ≡ 0, find (ů, p) s.t.
〈∂t ů(t), v〉? +

1
Re

∫
Ω

∇(ů(t) + Rg) : ∇v dx

+c(ů(t) + Rg , ů(t) + Rg , v) + b(v , p(t)) = 0

b(ů(t), q) = 0 ∀ v ∈ V , q ∈ Q, a.e. t > 0.

where V = [H1
0 (Ω)]2, Q = {q ∈ L2(Ω) :

∫
Ω q = 0}, and

c(w , v , z) =

∫
Ω

(w · ∇)v · z dx , b(v , q) =−
∫

Ω

(∇ · v)q dx .

Choice for the lift: Rg = Stokes solution

The choice Rg = 〈u〉 is not suitable for the parametric case.
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High-fidelity model: SEM in Nek5000

We rely on the spectral element solver Nek5000 to
generate the DNS data.

We refer to nek5000.mcs.anl.gov for details concerning
the software.

Simulations were performed by Dr. Lambert Fick (Texas
A&M) at Argonne National Lab.

Deville, Fischer, Mund, Cambridge University Press (2002).

39
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Constrained formulation

pMOR for turbulent flows
Lid-driven cavity problem
A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin
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Galerkin ROM (semi-implicit time integration)

Given ZN := span{ζn}Nn=1 ⊂ Vdiv = {v ∈ V : ∇ · v = 0},
and {t j = j∆t}Jj=0, find {ûj}j ⊂ ZN such that(

ûj+1 − ûj

∆t
, v

)
L2(Ω)

+
1

Re

∫
Ω

∇(ûj+1 + Rg) : ∇v dx

+c(ûj + Rg , û
j+1 + Rg , v) = 0 ∀ v ∈ ZN , j = 0, 1, . . . ;

The space ZN is built through the DNS data {ůk = u(tk)
−Rg}Kk=1 ⊂ Vdiv using POD.
We consider the following choice of the inner product (·, ·):

(w , v) =
∫

Ω ∇w : ∇v dx H1 − POD

Iollo, Lanteri, Désidéri, Theor Comp Fluid Dyn (2000).
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ûj+1 − ûj

∆t
, v

)
L2(Ω)

+
1

Re

∫
Ω

∇(ûj+1 + Rg) : ∇v dx

+c(ûj + Rg , û
j+1 + Rg , v) = 0 ∀ v ∈ ZN , j = 0, 1, . . . ;

The space ZN is built through the DNS data {ůk = u(tk)
−Rg}Kk=1 ⊂ Vdiv using POD.
We consider the following choice of the inner product (·, ·):

(w , v) =
∫

Ω ∇w : ∇v dx H1 − POD

Iollo, Lanteri, Désidéri, Theor Comp Fluid Dyn (2000).
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Galerkin ROM: algebraic formulation (semi-implicit in time)

The coefficients αj = [αj
1, . . . , α

j
N ] (↔ {ûj}j) solve

A(αj)αj+1 = F(αj) j = 0, 1, . . . , (û· =
∑

n α
·
nζn)

where A : RN → RN,N , and F : RN → RN are

Am,n(w) =
1

∆t

∫
Ω

ζn · ζm dx +
1

Re

∫
Ω

∇ζn : ∇ζm dx

+c(Rg , ζn, ζm) +
N∑
i=1

wi c(ζi , ζn, ζm)

Fm(w) =
N∑

n=1

wn

(
1

∆t

∫
Ω

ζn · ζm dx − c(ζn,Rg , ζm)

)
− 1

Re

∫
Ω

∇Rg : ∇ζm dx
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Computational summary (POD-Galerkin)

Offline stage:
Compute DNS data {uk = u(·, tk)}Kk=1, t

k = T0 + k

T0 = 500, K = 500
Use POD to build the space ZN = span{ζn}Nn=1

Define A : RN → RN,N , and F : RN → RN

Online stage:
Solve the discrete dynamical system:
A(αj)αj+1 = F(αj), j = 0, . . . , J − 1

Online memory requirements: O(N3).
Online cost: O(N3J).
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POD eigenvalues (Re = 15000)

POD eigenvalues {λN}N decay slowly with N .

uk := u(·, tk)
tk := 500 + k ,
k = 1, . . . ,K = 500

ζ1 ≈ C (〈u〉 − Rg) ⇒ no contribution to
fluctuating field∑N

k ′=2 λk ′∑K
k=2 λk

=


16.5% N = 2
73.1% N = 20
79.7% N = 30
87.0% N = 50 44



Numerical results (Re = 15000): performance (I)

Rel. error in 〈u〉 Mean TKE

We observe several spurious effects for moderate N :
false stable steady flows,
overly unstable flows...

For N & 50, accuracy improves.
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Numerical results (Re = 15000): performance (II)

Moments of {αn}n (ů(·, t) =
∞∑
n=1

αn(t)ζn): N = 20

Es(αn, {tk}) =
1
K

K∑
k=1

αn(tk),

Vs(αn, {tk}) =
1

K − 1

K∑
k=1

(
αn(tk)− Es(αn, {tk})

)2
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Numerical results (Re = 15000): performance (II)
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K∑
k=1

αn(tk),

Vs(αn, {tk}) =
1

K − 1

K∑
k=1

(
αn(tk)− Es(αn, {tk})

)2

46



Numerical results (Re = 15000): performance (II)

Moments of {αn}n (ů(·, t) =
∞∑
n=1

αn(t)ζn): N = 60

Es(αn, {tk}) =
1
K

K∑
k=1

αn(tk),

Vs(αn, {tk}) =
1

K − 1

K∑
k=1

(
αn(tk)− Es(αn, {tk})

)2
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Comments

POD-Galerkin approach does not provide an adequate
approximation of the long-time system dynamics,
particularly for moderate N .

We observe several spurious effects
false stable steady flows,
overly unstable flows...

This behavior is similar to the one observed for
highly-truncated spectral approximations to turbulent
flows.

Curry, Herring, Loncaric, Orszag, J Fluid Mech (1984).
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Constrained formulation

pMOR for turbulent flows
Lid-driven cavity problem
A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin
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cGalerkin formulation (semi-implicit in time)

We propose the following ROM (cGalerkin):
αj+1 := arg min

w∈RN
‖A(αj)w − F(αj)‖22,

subject to an ≤ wn ≤ bn, n = 1, . . . ,N .
A and F are the matrix-valued and vector-valued functions
introduced for the Galerkin ROM.

If αj+1
Gal := A(αj)−1 F(αj) satisfies the constraints,

cGalerkin = Galerkin.
For semi-implicit and explicit time discretizations,
cGalerkin corresponds to a convex quadratic
programming problem, which can be solved using an
interior point method.
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Estimates of {an}n and {bn}n

an and bn are lower and upper bounds for9

αn(t) := (ů(t) = u(t)− Rg , ζn).
Given the snapshots {uk}Kk=1, we set {an}n and {bn}n as
an = mu

n − ε(Mu
n −mu

n), bn = Mu
n + ε(Mu

n −mu
n);

where ε = 0.0110, and
mu

n := min
k=1,...,K

(ůk , ζn)V , Mu
n := max

k=1,...,K
(ůk , ζn)V .

The hyper-parameters {an}n and {bn}n of cGalerkin
admit a simple interpretation, and
can be easily tuned based on sparse DNS data.

9NOTE 1: (ζm, ζn) = δm,n
10NOTE 2: {tk}k sampling times, {t j}j time grid, K � J. 50
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Computational summary (constrained POD-Galerkin)

Offline stage:
Compute DNS data {uk = u(·, tk)}Kk=1
Use POD to build the space ZN = span{ζn}Nn=1

Define A : RN → RN,N , and F : RN → RN

Define {an}n and {bn}n based on the DNS data {ůk}k
Online stage:
Solve the discrete dynamical system:
αj+1 = arg min

w∈RN
‖A(αj)w − F(αj)‖22, s.t. an ≤ wn ≤ bn

Online memory requirements: O(N3).
Online cost: O(N3 Jpure︸︷︷︸

Gal. solves

+ κN3︸︷︷︸
cost QP

(J − Jpure)).
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Numerical results (Re = 15000): performance (I)

Rel. error in 〈u〉 Mean TKE

The constrained Galerkin formulation consistently
underestimates the TKE.
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Numerical results (Re = 15000): performance (II)

Galerkin constrained Galerkin

For some values of N , 〈TKEcGal〉 > 〈TKEGal〉. For some
other values 〈TKEcGal〉 < 〈TKEGal〉.
⇒ cGalerkin does not add artificial viscosity to

Galerkin.
53



Numerical results (Re = 15000): performance (III)

Moments of {αn}n (ů(·, t) =
∞∑
n=1

αn(t)ζn): N = 20

Es(αn, {tk}) =
1
K

K∑
k=1

αn(tk),

Vs(αn, {tk}) =
1

K − 1

K∑
k=1

(
αn(tk)− Es(αn, {tk})

)2
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Numerical results (Re = 15000): performance (III)
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Numerical results (Re = 15000): performance (III)

Moments of {αn}n (ů(·, t) =
∞∑
n=1

αn(t)ζn): N = 60

Es(αn, {tk}) =
1
K

K∑
k=1

αn(tk),

Vs(αn, {tk}) =
1

K − 1

K∑
k=1

(
αn(tk)− Es(αn, {tk})

)2
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Behavior of the turbulent kinetic energy (N = 20)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 8.6 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 5.5 · 10−9.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Behavior of the turbulent kinetic energy (N = 40)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 9.4 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 1.7 · 10−7.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Behavior of the turbulent kinetic energy (N = 60)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 7.65 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 5.8 · 10−8.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Sensitivity analysis wrt ε (Re = 15000,N = 40)

ε enters in the definition of the bounds an and bn:
an = mu

n − ε(Mu
n −mu

n), bn = Mu
n + ε(Mu

n −mu
n);

Rel. error in 〈u〉 Mean TKE % αj+1 = αj+1
Gal

Interpretation: as N increases, the Galerkin model
becomes more and more accurate, and box constraints
become less and less important.
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Conclusions and perspectives
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Summary

Fluid problems present unique challenges for MOR.

Data compression
boundary layers, shocks;

→ Lagrangian nonlinear approximation procedure.

wide spectrum of scales (turbulence).

Reduced formulation
fragility of Galerkin ROMs;

→ constrained Galerkin formulation.

presence of nonlinearities.
Error estimation

→ time-avg error indicators (Fick et al., 2018).

58



Summary

Fluid problems present unique challenges for MOR.

Data compression
boundary layers, shocks;

→ Lagrangian nonlinear approximation procedure.
wide spectrum of scales (turbulence).

Reduced formulation
fragility of Galerkin ROMs;

→ constrained Galerkin formulation.

presence of nonlinearities.
Error estimation

→ time-avg error indicators (Fick et al., 2018).
58



Ongoing work

Nonlinear approximation (with A Iollo)
definition of the reference field ↔ clustering

reduction of offline costs for map generation
↔ hierarchy of models

Constrained Galerkin (with P Fischer11, AT Patera)
identification of new sets of constraints;

extension to more challenging problems.

11Two PhD theses were funded on this subject at University of Illinois (PI:
Paul Fischer).
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Thank you for your
attention!

Reference: (constrained Galerkin)
Fick, Maday, Patera, Taddei. A stabilized POD model for turbulent
flows over a range of Reynolds numbers: Optimal parameter
sampling and constrained projection, 2018; JCP.
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