Model Order Reduction techniques for CFD: nonlinear approximations and constrained formulation

> Tommaso Taddei Inria, MEMPHIS Team

Seminar LIMSI Paris, April 18th 2019





Institut de Mathématiques de Bordeaux

# **Collaborators:**

- Lambert Fick (TAMU)
- Angelo Iollo (IMB, Inria MEMPHIS)
- Yvon Maday (Sorbonne University)
- Anthony T Patera (MIT)

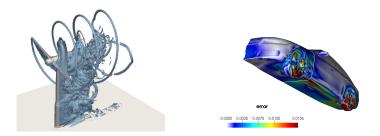
# Special thanks to:

Michel Bergmann, Sebastien Riffaud (Inria MEMPHIS) Pierre Mounoud (University of Bordeaux) Masayuki Yano (University of Toronto)

# Objective

The goal of pMOR is to reduce the **marginal** cost associated with the solution to parameterized problems.

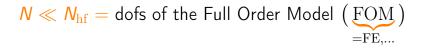
pMOR is motivated by *real-time* and *many-query* problems design and optimization, UQ, control<sup>1</sup>...



 $^1{\rm Pictures}$  show results of simulations performed by the MEMPHIS team: courtesy of Angelo Iollo.

#### The Reduced Basis method: general recipe

# **Pb:** find $u_{\mu} \in \mathcal{X} : A_{\mu}(u_{\mu}, v) = F(v)$ $\forall v \in \mathcal{Y} \ \mu \in \mathcal{P}$ **Approx:** $\hat{u}_{\mu} = \sum_{n=1}^{N} \alpha_{\mu}^{n} \zeta_{n}, \qquad \alpha^{n} : \mathcal{P} \to \mathbb{R}, \ \zeta_{n} \in \mathcal{X}$



#### The Reduced Basis method: general recipe

**Pb:** find  $u_{\mu} \in \mathcal{X} : A_{\mu}(u_{\mu}, v) = F(v)$   $\forall v \in \mathcal{Y} \ \mu \in \mathcal{P}$ **Approx:**  $\hat{u}_{\mu} = \sum_{n=1}^{N} \alpha_{\mu}^{n} \zeta_{n}, \qquad \alpha^{n} : \mathcal{P} \to \mathbb{R}, \ \zeta_{n} \in \mathcal{X}$ 

**Offline stage:** (performed once) compute  $u_{\mu^1}, \ldots, u_{\mu^{n_{\text{train}}}}$  using a FE (or FV...) solver; construct  $\{\zeta_n\}_{n=1}^N$  and define  $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ .

**Online stage:** (performed for any new  $\bar{\mu} \in \mathcal{P}$ ) solve  $\hat{u}_{\bar{\mu}} \in \mathcal{Z}_N : A_{\bar{\mu}}(\hat{u}_{\bar{\mu}}, v) = F(v), \quad \forall v \in \mathcal{Z}_N;$ estimate  $\|\hat{u}_{\bar{\mu}} - u_{\bar{\mu}}\|_{\mathcal{X}}$ .

 $N \ll N_{\rm hf} = {
m dofs} \ {
m of} \ {
m the} \ {
m Full} \ {
m Order} \ {
m Model} \ \left( \underbrace{{
m FOM}}_{={
m FE},...} 
ight)$ 

#### The Reduced basis method: challenges

**Pb:** find  $u_{\mu} \in \mathcal{X} : A_{\mu}(u_{\mu}, \mathbf{v}) = F(\mathbf{v}) \quad \forall \mathbf{v} \in \mathcal{Y} \ \mu \in \mathcal{P}$ **Approx:**  $\hat{u}_{\mu} = \sum_{n=1}^{N} \alpha_{\mu}^{n} \zeta_{n}, \qquad \alpha^{n} : \mathcal{P} \to \mathbb{R}, \ \zeta_{n} \in \mathcal{X}$ 

**Offline stage:** (performed once) compute  $u_{\mu^1}, \ldots, u_{\mu^n \text{train}}$  using a FE (or FV...) solver; 1. construct  $\{\zeta_n\}_{n=1}^N$  and define  $\mathcal{Z}_N = \text{span}\{\zeta_n\}_{n=1}^N$ .

**Online stage:** (performed for any new  $\bar{\mu} \in \mathcal{P}$ )

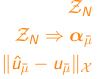
- 2. solve  $\hat{u}_{\bar{\mu}} \in \mathcal{Z}_N$ :  $A_{\bar{\mu}}(\hat{u}_{\bar{\mu}}, \mathbf{v}) = F(\mathbf{v}) \ \forall \mathbf{v} \in \mathcal{Z}_N$ ;
- 3. estimate  $\|\hat{u}_{\bar{\mu}} u_{\bar{\mu}}\|_{\mathcal{X}}$ .

 $N \ll N_{\rm hf} =$  dofs of the Full Order Model (FOM) = FE....

### Successful applications of Reduced Basis methods

Past and current research on pMOR focuses on

- 1. data compression
- 2. reduced formulation
- 3. a posteriori error estimation



# Successful applications of Reduced Basis methods

- Past and current research on pMOR focuses on
- 1. data compression
- 2. reduced formulation
- 3. a posteriori error estimation

 $egin{aligned} & \mathcal{Z}_{\mathcal{N}} \ & \mathcal{Z}_{\mathcal{N}} \Rightarrow oldsymbol{lpha}_{ar{\mu}} \ & \|\hat{u}_{ar{\mu}} - u_{ar{\mu}}\|_{\mathcal{X}} \end{aligned}$ 

- PR-scRBE: Patera, Huynh, Knezevic, Akselos S.A. Port-Reduced static condensation RB Element method component-based structures, solid mechanics.
- LRB-Ms: Ohlberger, Schindler, .... Localized RB Multiscale method multiscale problems, porous media.

Akselos is a software company that provides a commercial implementation of  $\mathsf{PR}\text{-}\mathsf{scRBE}.$ 

#### Data compression

**Challenges:** turbulence (wide spectrum of scales), approximation of shocks, boundary/internal layers...

# Reduced formulation Challenges: fragility of Galerkin models, nonlinearities.

#### Error estimation

Challenge: need for estimates of averaged QOIs.

#### Data compression

**Challenges:** turbulence (wide spectrum of scales), approximation of shocks, boundary/internal layers...

nonlinear approximation procedures.

# Reduced formulation

**Challenges:** fragility of Galerkin models, nonlinearities. stabilized formulations; hyper-reduction.

#### Error estimation

**Challenge:** need for estimates of averaged QOIs. time-averaged error indicators. Goal: present two contributions for fluid problems.

- 1. A Lagrangian nonlinear approximation procedure for stationary problems.
- 2. A constrained Galerkin formulation for turbulent flows.

Iollo, Taddei, A nonlinear approximation procedure for parameterized Model Order Reduction; in preparation.

Fick, Maday, Patera, Taddei, A stabilized POD model for turbulent flows over a range of Reynolds numbers: optimal parameter sampling and constrained projection; JCP, 2018.

#### Nonlinear approximation

- pMOR for hyperbolic problems
- Registration algorithm
- Application to a linear transport problem

#### Nonlinear approximation

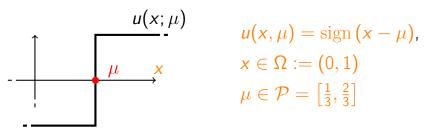
# • pMOR for hyperbolic problems

- Registration algorithm
- Application to a linear transport problem

Develop a pMOR procedure for hyperbolic stationary equations

in the presence of parameter-dependent shocks.

## Example



#### Failure of linear approximation strategies

Linear Reduced Order Models (ROMs) rely on *N*-term linear expansions to approximate *u*:

$$\begin{split} u_{\mu}(x) &\approx \widehat{u}_{\mu}(x) = Z_{N}(x)\alpha_{\mu}, \qquad \qquad Z_{N} = [\zeta_{1}, \dots, \zeta_{N}] \\ \text{If } u_{\mu}(x) &= \text{sign}(x - \mu), \\ \sup_{\mu \in \mathcal{P}} \inf_{(Z_{N}, \alpha)} \|u_{\mu} - Z_{N}(\cdot)\alpha\|_{L^{2}(\Omega)} = \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \\ \text{for Lagrangian spaces (i.e., } Z_{N} = \left[u_{\mu^{1}}, \dots, u_{\mu^{N}}\right]). \\ \text{Linear ROMs are ill-suited for travelling fronts.} \end{split}$$

Taddei, Perotto, Quarteroni, 2015.

# **Recipe:** given $\mu \in \mathcal{P}$ ,

- 1. define the reduced operator  $Z_{N,\mu} : \mathbb{R}^N \to L^2(\Omega)$ ;
- 2. determine the approximation  $\widehat{u}_{\mu} = Z_{N,\mu}(\alpha_{\mu})$  using a projection method.
- Selected references:
  - Manifold learning
    - Amsallem, Farhat, 2008; Lee, Carlberg, 2018<sup>2</sup>.
  - "Transported/transformed snapshot" methods Nair, Balajewicz, 2017; Welper, 2017.

*hp*-in-parameter adaptive refinement Eftang et al., 2010; Carlberg, 2015; Peherstorfer, 2018.

<sup>2</sup>Here, the authors consider  $\widehat{u}_{\mu} = g(x; oldsymbol{lpha}_{\mu})$ 

#### Lagrangian approaches to nonlinear approximation

# **Recipe:** given $\mu \in \mathcal{P}$ ,

- 1. define a bijective mapping  $\Phi_{\mu}: \Omega \to \Omega$ ;
- 2. determine the approximation  $\hat{\vec{u}}_{\mu} = \tilde{Z}_N \alpha_{\mu}$ of  $\tilde{\vec{u}}_{\mu} := u_{\mu} \circ \Phi_{\mu}$  using a projection method. Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015; Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

#### Lagrangian approaches to nonlinear approximation

# **Recipe:** given $\mu \in \mathcal{P}$ ,

- 1. define a bijective mapping  $\Phi_{\mu}: \Omega \to \Omega$ ;
- 2. determine the approximation  $\widehat{\tilde{u}}_{\mu} = \widetilde{Z}_N \alpha_{\mu}$ of  $\widetilde{u}_{\mu} := u_{\mu} \circ \Phi_{\mu}$  using a projection method. Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015; Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

Example  $u_{\mu}(x) = \operatorname{sign}(x - \mu), x \in \Omega = (0, 1).$ 

If we choose  $\Phi_{\mu}(X) = \begin{cases} 2\mu X & X < \frac{1}{2} \\ \mu + (1-\mu)(2X-1) & X \ge \frac{1}{2} \end{cases}$ ,

the mapped field is  $\mu$ -independent.

$$\widetilde{u}_{\mu}(X) = \operatorname{sign}(2X-1).$$

# Lagrangian approaches: offline/online decomposition<sup>3</sup>

# **Offline stage:** (performed once)

- 1. compute  $u_{\mu^1}, \ldots, u_{\mu^{n_{\text{train}}}}$  using a FE/FV solver;
- 2. define the mapping  $\Phi_{\mu}$  for all  $\mu \in \mathcal{P}$ ;
- 3. define the ROM for  $\tilde{u} = u \circ \Phi$ . ROM:  $\mu \mapsto \hat{\tilde{u}}_{\mu} = \tilde{Z}_N \alpha_{\mu}$

**Online stage:** (performed for any new  $\bar{\mu} \in \mathcal{P}$ )

- 1. query the ROM to compute  $\hat{\underline{u}}_{\mu}$ ;
- 2. (if needed) compute  $\widehat{u}_{\overline{\mu}} = \widehat{\widetilde{u}}_{\overline{\mu}} \circ \Phi_{\overline{\mu}}^{-1}$ .
- 3. estimate the error  $\|\widehat{u}_{\mu} u_{\mu}\|_{\mathcal{X}}$ .

 $<sup>^3{\</sup>rm Mojgani},$  Balajewicz have proposed to simultaneously learn the mapping and the coefficients during the online stage.

# Lagrangian approaches: offline/online decomposition<sup>3</sup>

# **Offline stage:** (performed once)

- 1. compute  $u_{\mu^1}, \ldots, u_{\mu^{n_{\text{train}}}}$  using a FE/FV solver;
- 2. define the mapping  $\Phi_{\mu}$  for all  $\mu \in \mathcal{P}$ ;
- 3. define the ROM for  $\tilde{u} = u \circ \Phi$ . ROM:  $\mu \mapsto \hat{\tilde{u}}_{\mu} = \tilde{Z}_N \alpha_{\mu}$

**Online stage:** (performed for any new  $\bar{\mu} \in \mathcal{P}$ )

- 1. query the ROM to compute  $\hat{\underline{u}}_{\mu}$ ;
- 2. (if needed) compute  $\widehat{u}_{\overline{\mu}} = \widehat{\widetilde{u}}_{\overline{\mu}} \circ \Phi_{\overline{\mu}}^{-1}$ .
- 3. estimate the error  $\|\widehat{u}_{\mu} u_{\mu}\|_{\mathcal{X}}$ .

 $<sup>^3{\</sup>rm Mojgani},$  Balajewicz have proposed to simultaneously learn the mapping and the coefficients during the online stage.

**Refined goal:** develop a *general* registration algorithm for the construction of  $\Phi_{\mu}$  for Lagrangian approaches.

# Agenda:

- 1. Registration algorithm.
- 2. Application to a linear advection-reaction problem.

*General* = independent of the underlying PDE model.

#### Nonlinear approximation

- pMOR for hyperbolic problems
- Registration algorithm
- Application to a linear transport problem

# Well-posedness

Projection is performed in the mapped configuration. Therefore, for all  $\mu \in \mathcal{P}$ , the map  $\Phi_{\mu}$  should satisfy

$$\Phi_\mu(\Omega)=\Omega, \; \mathfrak{J}_\mu(X)=ig|
abla \Phi_\mu(X)ig|>0, \;\; X\in \Omega.$$

# Efficiency

The map  $\Phi_{\mu}$  should be designed such that the manifold

$$\widetilde{\mathcal{M}} = \{\widetilde{\mathit{u}}_\mu = \mathit{u}_\mu \circ \Phi_\mu: \ \mu \in \mathcal{P}\}$$

is "more favorable" than<sup>4</sup>  $\mathcal{M} = \{u_{\mu} : \mu \in \mathcal{P}\}$  for linear approximation methods.

 $^{4}$ This notion should be formalized by means of the introduction of a Kolmogorov N-width.

**Inputs:** snapshots  $\{u^k = u_{\mu^k}\}_{k=1}^{n_{\text{train}}}$ , reference<sup>5</sup>  $\bar{u}$ . **Output:** mapping  $\Phi_{\mu} : \Omega \to \Omega$  for all  $\mu \in \mathcal{P}$ .

- 1. Determine a family of mappings  $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a} \in \mathbb{R}^M}$  for the domain  $\Omega$ ;
- 2. choose  $\Psi(\cdot; \mathbf{a}^k)$  using  $u^k$  and  $\overline{u}$ ;

 $\rightarrow \{\mu^k, \mathbf{a}^k\}_{k=1}^{n_{\mathrm{train}}}$ 

3. learn  $\mathbf{a}: \mathcal{P} \to \mathbb{R}^M$  based on  $\{\mu^k, \mathbf{a}^k\}_{k=1}^{n_{\text{train}}}$ ; regression problem

4. set 
$$\Phi_{\mu} = \Psi(\cdot; \mathbf{a}(\mu))$$
.

<sup>5</sup>Here,  $\bar{u}$  is set equal to  $u_{\bar{\mu}}$ , where  $\bar{\mu} = \frac{1}{n_{\text{train}}} \sum_{k} \mu^{k}$ .

Family of mappings  $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$ : a theoretical result<sup>6</sup>

Let  $\Omega$  be diffeomorphic to  $\widehat{\Omega} = \{x \in \mathbb{R}^d : f(x) < 0\}$ where f is convex.

Let  $\Phi : \Omega' \to \mathbb{R}^d$ ,  $\Omega \subset \subset \Omega'$ , satisfy

(i) 
$$\Phi \in C^1(\Omega'; \mathbb{R}^d);$$

(ii)  $\inf_{X \in \Omega} \mathfrak{J}(X) = |\nabla \Phi(X)| > 0;$ 

(iii) dist  $(\Phi(X), \partial \Omega) = 0$  for all  $X \in \partial \Omega$ . i.e.  $\Phi(\partial \Omega) \subset \partial \Omega$ 

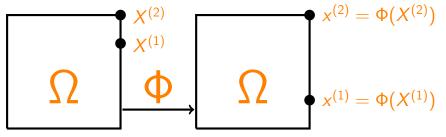
Then,  $\Phi$  is a bijection from  $\Omega$  into itself.

Examples:  $\widehat{\Omega} = (0, 1)^d$ ,  $\widehat{\Omega} = \mathcal{B}_1(0), \ldots$ 

<sup>&</sup>lt;sup>6</sup>We thank Pierre Mounoud (University of Bordeaux) for fruitful discussions.

# Family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$ : implications for $\Omega = (0, 1)^2$

Consider 
$$\Psi(X; \mathbf{a}) = X + \sum_{m=1}^{M} a_m \varphi_m(X)$$
, with  
 $\varphi_m(X) \cdot \mathbf{e}_1 = 0 \text{ on } \{X_1 = 0, 1\}, \ m = 1, \dots, M;$   
 $\varphi_m(X) \cdot \mathbf{e}_2 = 0 \text{ on } \{X_2 = 0, 1\}, \ m = 1, \dots, M.$   
(ii) holds for  $\mathbf{a} = \bar{\mathbf{a}} \Rightarrow \Psi(\cdot; \bar{\mathbf{a}})$  is bijective  $+ \Psi(\Omega; \bar{\mathbf{a}}) = \Omega$ .



# Family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$ : implications for $\Omega = (0, 1)^2$

Consider 
$$\Psi(X; \mathbf{a}) = X + \sum_{m=1}^{M} a_m \varphi_m(X)$$
, with

 $\varphi_m(X) \cdot \mathbf{e}_1 = 0 \text{ on } \{X_1 = 0, 1\}, \ m = 1, \dots, M;$ 

 $\varphi_m(X) \cdot \mathbf{e}_2 = 0 \text{ on } \{X_2 = 0, 1\}, \ m = 1, \dots, M.$ 

(ii) holds for  $\mathbf{a} = \mathbf{\bar{a}} \Rightarrow \Psi(\cdot; \mathbf{\bar{a}})$  is bijective  $+ \Psi(\Omega; \mathbf{\bar{a}}) = \Omega$ .

In our implementation, we resort to a tensorized polynomial expansion.

 $\varphi_1(X) = \ell_0(X_1)\ell_0(X_2)X_1(1-X_1) \begin{bmatrix} 1\\0 \end{bmatrix}, \dots$  $\varphi_M(X) = \ell_p(X_1)\ell_p(X_2)X_2(1-X_2) \begin{bmatrix} 0\\1 \end{bmatrix}.$ 

 $\ell_i$  = Legendre polynomial of degree  $i_{21}$ 

# Registration algorithm for $(u^k, \bar{u}) \rightarrow \mathbf{a}^k$

Find 
$$\mathbf{a}^{k}$$
 to minimize  

$$\min_{\mathbf{a}} \int_{\Omega} \|u^{k}(\Psi(X; \mathbf{a})) - \bar{u}(X)\|_{2}^{2} dX + \xi \left|\Psi(\cdot; \mathbf{a})\right|_{H^{2}(\Omega)}^{2}$$
s.t.  $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{\mathbf{a}}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{\mathbf{a}}(X) - 1/\epsilon}{C_{\exp}}\right) dX \leq \delta$ 

Non-convex nonlinear optimization problem.

**Solver:** Matlab 2018b fmincon (interior-point).

Initial condition:  $\mathbf{a}^1 = \mathbf{0}$ ,  $\mathbf{a}^k = \mathbf{a}^{k-1}$ .

We reorder 
$$\mu^1, \ldots, \mu^{n_{\text{train}}}$$
 so that  
 $\mu^{k+1} = \arg \min_{\mu \in \{\mu^{k'}\}_{k'=k+1}^{n_{\text{train}}}} \|\mu^k - \mu\|_2.$ 

Registration algorithm for  $(u^k, \bar{u}) \rightarrow \mathbf{a}^k$ : interpretation

$$\begin{split} &\int_{\Omega} \|u^{k}(\Psi(X;\mathbf{a})) - \bar{u}(X)\|_{2}^{2} dX \quad \text{measures the "distance"} \\ & \text{between } u^{k} \text{ and } \bar{u} \text{ in the mapped configuration;} \\ &\xi \left|\Psi(\cdot;\mathbf{a})\right|_{H^{2}(\Omega)}^{2} \text{ is a regularization term to bound gradient} \\ & \text{ and Hessian of } \Psi(\cdot;\mathbf{a}); \end{split}$$

the constraint

 $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{a}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{a}(X) - 1/\epsilon}{C_{\exp}}\right) dX \leq \delta$ imposes weakly that  $\mathfrak{J}_{a}(X) \in [\epsilon, 1/\epsilon]$  for all  $X \in \Omega$ . Registration algorithm for  $(u^k,ar{u}) o \mathbf{a}^k$ : interpretation

 $\int_{\Omega} \|u^{k}(\Psi(X; \mathbf{a})) - \bar{u}(X)\|_{2}^{2} dX \quad \text{measures the "distance"}$ between  $u^{k}$  and  $\bar{u}$  in the mapped configuration;  $\xi |\Psi(\cdot; \mathbf{a})|_{H^{2}(\Omega)}^{2}$  is a regularization term to bound gradient and Hessian of  $\Psi(\cdot; \mathbf{a})$ ;

the constraint

 $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{\mathbf{a}}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{\mathbf{a}}(X) - 1/\epsilon}{C_{\exp}}\right) \, dX \leq \delta$ imposes weakly that  $\mathfrak{J}_{\mathbf{a}}(X) \in [\epsilon, 1/\epsilon]$  for all  $X \in \Omega$ .

The statement depends on  $\xi, \epsilon, C_{exp}, \delta$ :

Here, we set  $\xi = 10^{-3}, \epsilon = 0.1, C_{exp} = 0.005, \delta = 1.$ 

# Generalization: $\{\mu^k, \mathbf{a}^k\}_k \Rightarrow \mathbf{a} : \mathcal{P} \to \mathbb{R}^M$

We proceed as follows.

1. POD reduction:  $\mathbf{a} \approx \mathbf{U}_{\Phi} \mathbf{a}_{r}, \ \mathbf{U}_{\Phi}^{T} \mathbf{U}_{\Phi} = \mathbb{1}, \ \mathbf{a}_{r} \in \mathbb{R}^{M_{r}}, \ M_{r} < M_{r}$ 

2. RBF approximation:  $\{\mu^k, \mathbf{a}_{\mathbf{r}}^k\}_k \Rightarrow \mathbf{a}_{\mathbf{r}} : \mathcal{P} \to \mathbb{R}^{M_{\mathbf{r}}}$ .

# Generalization: $\{\mu^k, \mathbf{a}^k\}_k \Rightarrow \mathbf{a} : \mathcal{P} \to \mathbb{R}^M$

We proceed as follows.

1. POD reduction:  $\mathbf{a} \approx \mathbf{U}_{\Phi} \mathbf{a}_{r}, \ \mathbf{U}_{\Phi}^{T} \mathbf{U}_{\Phi} = \mathbb{1}, \ \mathbf{a}_{r} \in \mathbb{R}^{M_{r}},$  $M_{r} < M.$ 

2. RBF approximation:  $\{\mu^k, \mathbf{a}_{\mathbf{r}}^k\}_k \Rightarrow \mathbf{a}_{\mathbf{r}} : \mathcal{P} \to \mathbb{R}^{M_{\mathbf{r}}}$ .

**POD reduction:** POD leads to a significant reduction in terms of online costs and reduces the dependence on the preliminary choice of M.

**Drawback of RBF regression:** there is no guarantee that

 $\min_{X\in\Omega,\mu\in\mathcal{P}}\,\mathfrak{J}_{\mu}(X)>0$ 

Potential fixes (work in progress): multi-fidelity approaches, constrained regression.

#### Nonlinear approximation

- pMOR for hyperbolic problems
- Registration algorithm
- Application to a linear transport problem

#### Steady advection-reaction problem

Consider the problem  $\begin{cases} \sigma_{\mu} u_{\mu} + \nabla \cdot (\mathbf{c}_{\mu} u_{\mu}) = f_{\mu} & \text{in } \Omega \\ u_{\mu} = u_{\mathrm{D},\mu} & \text{on } \mathsf{\Gamma}_{\mathrm{in},\mu} \end{cases}$ where  $\Gamma_{\text{in},\mu} = \{ x \in \partial \Omega : \mathbf{c}_{\mu} \cdot \mathbf{n} < 0 \}$ , and  $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_1)], \quad \sigma_{\mu} = 1 + \mu_2 \, e^{x_1 + x_2},$  $f_{\mu} = 1 + x_1 x_2, \quad u_{\mathrm{D},\mu} = 4 \arctan\left(\mu_3 \left(x_2 - 1/2
ight)
ight) x_2 (1 - x_2)$  $\mu_1 \in \left[-\frac{\pi}{10}, \frac{\pi}{10}\right], \ \mu_2 \in [0.3, \ 0.7], \ \mu_3 \in [60, \ 100].$ 

The problem is discretized using a Q2 DG discretization with Local Lax-Friedrichs flux.

65790 dofs.

Offline computations are based on  $n_{\text{train}} = 250$  snapshots. Reduced operator  $\tilde{Z}_N$  built using POD.

Reduced formulation: Galerkin.

Hyper-reduction based on POD with EIM point selection. [Barrault et al., 2004], [Grepl et al., 2007]

Mapping based on Q7 tensorized polynomials (M = 72).

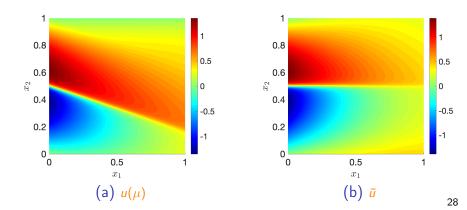
**Remark:**  $\tilde{u}_{\mu}$  satisfies an AR problem with

 $\tilde{\sigma}_{\mu} = \mathfrak{J}_{\mu} \, \sigma_{\mu}, \quad \widetilde{\mathbf{c}}_{\mu} = \mathfrak{J}_{\mu} \, \nabla \Phi_{\mu}^{-1} \, \mathbf{c}_{\mu}, \quad \tilde{f}_{\mu} = \mathfrak{J}_{\mu} \, f_{\mu}, \quad \tilde{u}_{\mathrm{D},\mu} = u_{\mathrm{D},\mu}.$ 

#### Visualization of the solution field: $\mu = [-\pi/10, 0.3, 60]$

The mapping  $\Phi_{\mu}$  reduces the sensitivity of the solution to changes in  $\mu_1$ .

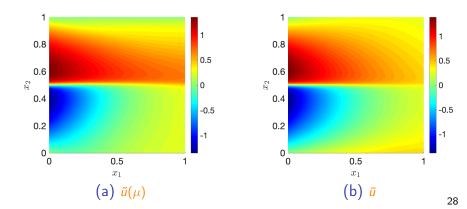
 $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_1)];$  $\bar{\mu} = [0, 0.5, 80].$ 



Visualization of the solution field:  $\mu = [-\pi/10, 0.3, 60]$ 

The mapping  $\Phi_{\mu}$  reduces the sensitivity of the solution to changes in  $\mu_1$ .

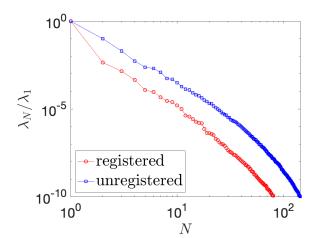
 $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_1)];$  $\bar{\mu} = [0, 0.5, 80].$ 



#### Behavior of the POD eigenvalues

Decay rate is nearly the same for both registered and unregistered configurations, **but** 

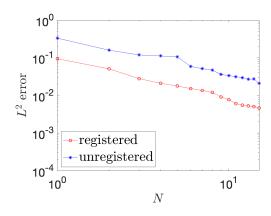
we have  $(\lambda_n^{\text{reg}}/\lambda_1^{\text{reg}})/(\lambda_n^{\text{unreg}}/\lambda_1^{\text{unreg}}) = \mathcal{O}(10^2).$ 



#### Performance of the Reduced Basis ROM

Relative error is computed based on  $n_{\text{test}} = 20$  parameters, in the physical configuration.

The nonlinear ROM is approximately 4 times more accurate than the linear ROM.



## Constrained formulation

- pMOR for turbulent flows
- Lid-driven cavity problem
- A first attempt: POD-Galerkin
- Our proposal: POD-constrained Galerkin

## Constrained formulation

## • pMOR for turbulent flows

- Lid-driven cavity problem
- A first attempt: POD-Galerkin
- Our proposal: POD-constrained Galerkin

## Develop a pMOR procedure for

- the parametrized unsteady Navier-Stokes equations
- in the turbulent regime.

## Develop a pMOR procedure for

the parametrized unsteady Navier-Stokes equations

in the turbulent regime.

We wish to *efficiently* and *accurately* estimate QOIs associated with the velocity field

 $u(\mu)=u(x,t;\mu),$ 

 $egin{aligned} & x \in \Omega \subset \mathbb{R}^d, \ & t \in (0,\infty), \ & \mu \in \mathcal{P} \subset \mathbb{R}^P \end{aligned}$ 

in the limit of many queries.

**Efficiency:** measured wrt the FOM in terms of memory requirements; computational time.

Accuracy: measured wrt the FOM in terms of

the long-time averaged flow  $\langle u \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T u(t) dt$ , the TKE<sup>7</sup> TKE $(t) = \frac{1}{2} \int_{\Omega} ||u(x, t) - \langle u \rangle(x)||_2^2 dx$ . For chaotic flows, prediction of the *instantaneous* velocity is out of reach.

<sup>&</sup>lt;sup>7</sup>More precisely, we shall estimate the *moments* of the TKE.

A simplified task: solution reproduction problem ( $\mathcal{P} = \{\bar{\mu}\}$ )

We seek an estimate of  $u(\bar{\mu})$  s.t.  $\hat{u}(x,t) = \sum_{n=1}^{N} \alpha_n(t)\zeta_n(x)$ Offline stage:

given  $\{u(\cdot, t^k, \bar{\mu})\}_{k=1}^K$ ,

generate the reduced space  $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ , and formulate the Reduced Order Model

#### **Online stage:**

query the ROM for **the same**  $\mu = \bar{\mu}$  to estimate  $\{\alpha_n(t)\}_{n=1}^N$  for t > 0.

A simplified task: solution reproduction problem ( $\mathcal{P} = \{\bar{\mu}\}$ )

We seek an estimate of  $u(\bar{\mu})$  s.t.  $\hat{u}(x,t) = \sum_{n=1}^{N} \alpha_n(t)\zeta_n(x)$ Offline stage:

given  $\{u(\cdot, t^k, \bar{\mu})\}_{k=1}^K$ ,

generate the reduced space  $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ , and formulate the Reduced Order Model

#### **Online stage:**

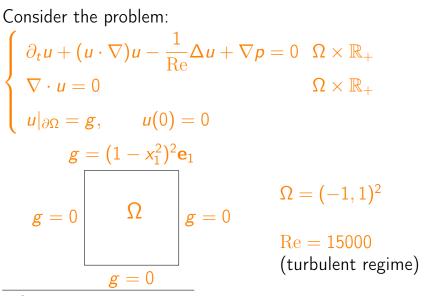
query the ROM for **the same**  $\mu = \bar{\mu}$  to estimate  $\{\alpha_n(t)\}_{n=1}^N$  for t > 0.

Limited practical interest, but key intermediate step toward the development of the ROM formulation.

## Constrained formulation

- pMOR for turbulent flows
- Lid-driven cavity problem
- A first attempt: POD-Galerkin
- Our proposal: POD-constrained Galerkin

## A lid-driven cavity problem<sup>8</sup>



<sup>8</sup>Model problem considered in Balajewicz, Dowell, Nonlinear Dyn (2012).

Weak formulation for the lifted equations  $(\dot{u} := u - R_g)$ 

Given 
$$R_g$$
 s.t.  $R_g|_{\partial\Omega} = g$ ,  $\nabla \cdot R_g \equiv 0$ , find  $(\mathring{u}, p)$  s.t.  

$$\begin{cases} \langle \partial_t \mathring{u}(t), v \rangle_{\star} + \frac{1}{\text{Re}} \int_{\Omega} \nabla(\mathring{u}(t) + R_g) : \nabla v \, dx \\ + c(\mathring{u}(t) + R_g, \mathring{u}(t) + R_g, v) + b(v, p(t)) = 0 \\ b(\mathring{u}(t), q) = 0 \qquad \forall v \in V, \quad q \in Q, \text{ a.e. } t > 0. \end{cases}$$
where  $V = [H_0^1(\Omega)]^2$ ,  $Q = \{q \in L^2(\Omega) : \int_{\Omega} q = 0\}$ , and  
 $c(w, v, z) = \int_{\Omega} (w \cdot \nabla) v \cdot z \, dx, \ b(v, q) = -\int_{\Omega} (\nabla \cdot v) q \, dx.$ 

Choice for the lift:  $R_g =$  Stokes solution

The choice  $R_g = \langle u \rangle$  is not suitable for the parametric case.

We rely on the **spectral element** solver Nek5000 to generate the DNS data.

We refer to nek5000.mcs.anl.gov for details concerning the software.

Simulations were performed by Dr. Lambert Fick (Texas A&M) at Argonne National Lab.

Deville, Fischer, Mund, Cambridge University Press (2002).

## Constrained formulation

- pMOR for turbulent flows
- Lid-driven cavity problem
- A first attempt: POD-Galerkin
- Our proposal: POD-constrained Galerkin

#### Galerkin ROM (semi-implicit time integration)

Given  $\mathcal{Z}_{N} := \operatorname{span}\{\zeta_{n}\}_{n=1}^{N} \subset V_{\operatorname{div}} = \{v \in V : \nabla \cdot v = 0\},\$ and  $\{t^{j} = j\Delta t\}_{j=0}^{J}$ , find  $\{\hat{u}^{j}\}_{j} \subset \mathcal{Z}_{N}$  such that  $\left(\frac{\hat{u}^{j+1} - \hat{u}^{j}}{\Delta t}, v\right)_{L^{2}(\Omega)} + \frac{1}{\operatorname{Re}}\int_{\Omega} \nabla(\hat{u}^{j+1} + R_{g}) : \nabla v \, dx$  $+ c(\hat{u}^{j} + R_{g}, \hat{u}^{j+1} + R_{g}, v) = 0 \quad \forall v \in \mathcal{Z}_{N}, \ j = 0, 1, \ldots$ 

#### Galerkin ROM (semi-implicit time integration)

Given  $\mathcal{Z}_{N} := \operatorname{span}\{\zeta_{n}\}_{n=1}^{N} \subset V_{\operatorname{div}} = \{v \in V : \nabla \cdot v = 0\},\$ and  $\{t^{j} = j\Delta t\}_{j=0}^{J}$ , find  $\{\hat{u}^{j}\}_{j} \subset \mathcal{Z}_{N}$  such that  $\left(\frac{\hat{u}^{j+1} - \hat{u}^{j}}{\Delta t}, v\right)_{L^{2}(\Omega)} + \frac{1}{\operatorname{Re}}\int_{\Omega} \nabla(\hat{u}^{j+1} + R_{g}) : \nabla v \, dx$  $+ c(\hat{u}^{j} + R_{g}, \hat{u}^{j+1} + R_{g}, v) = 0 \quad \forall v \in \mathcal{Z}_{N}, \ j = 0, 1, \ldots$ 

The space  $\mathcal{Z}_N$  is built through the DNS data  $\{ \overset{\bullet}{u}^k = u(t^k) - R_g \}_{k=1}^K \subset V_{\text{div}}$  using POD.

We consider the following choice of the inner product  $(\cdot, \cdot)$ :  $(w, v) = \int_{\Omega} \nabla w : \nabla v \, dx \quad H^1 - \text{POD}$ 

Iollo, Lanteri, Désidéri, Theor Comp Fluid Dyn (2000).

#### Galerkin ROM: algebraic formulation (semi-implicit in time)

The coefficients  $\boldsymbol{\alpha}^{j} = [\alpha_{1}^{j}, \dots, \alpha_{N}^{j}] (\leftrightarrow \{\hat{\boldsymbol{u}}^{j}\}_{j})$  solve  $\mathbb{A}(\boldsymbol{\alpha}^{j}) \boldsymbol{\alpha}^{j+1} = \mathbb{F}(\boldsymbol{\alpha}^{j}) \quad j = 0, 1, \dots, \quad (\hat{\boldsymbol{u}}^{\cdot} = \sum_{n} \alpha_{n}^{\cdot} \zeta_{n})$ 

#### Galerkin ROM: algebraic formulation (semi-implicit in time)

The coefficients 
$$\boldsymbol{\alpha}^{j} = [\alpha_{1}^{j}, \dots, \alpha_{N}^{j}] (\leftrightarrow \{\hat{u}^{j}\}_{j})$$
 solve  
 $\mathbb{A}(\boldsymbol{\alpha}^{j}) \boldsymbol{\alpha}^{j+1} = \mathbb{F}(\boldsymbol{\alpha}^{j}) \quad j = 0, 1, \dots, \quad (\hat{u}^{\cdot} = \sum_{n} \alpha_{n}^{\cdot} \zeta_{n})$   
where  $\mathbb{A} : \mathbb{R}^{N} \to \mathbb{R}^{N,N}$ , and  $\mathbb{F} : \mathbb{R}^{N} \to \mathbb{R}^{N}$  are  
 $\mathbb{A}_{m,n}(\mathbf{w}) = \frac{1}{\Delta t} \int_{\Omega} \zeta_{n} \cdot \zeta_{m} \, dx + \frac{1}{\operatorname{Re}} \int_{\Omega} \nabla \zeta_{n} : \nabla \zeta_{m} \, dx$   
 $+ c(R_{g}, \zeta_{n}, \zeta_{m}) + \sum_{i=1}^{N} w_{i} \, c(\zeta_{i}, \zeta_{n}, \zeta_{m})$   
 $\mathbb{F}_{m}(\mathbf{w}) = \sum_{n=1}^{N} w_{n} \left( \frac{1}{\Delta t} \int_{\Omega} \zeta_{n} \cdot \zeta_{m} \, dx - c(\zeta_{n}, R_{g}, \zeta_{m}) \right)$   
 $- \frac{1}{\operatorname{Re}} \int_{\Omega} \nabla R_{g} : \nabla \zeta_{m} \, dx$ 

#### Computational summary (POD-Galerkin)

#### Offline stage:

Compute DNS data  $\{u^{k} = u(\cdot, t^{k})\}_{k=1}^{K}, t^{k} = T_{0} + k$  $T_{0} = 500, K = 500$ 

Use POD to build the space  $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ Define  $\mathbb{A} : \mathbb{R}^N \to \mathbb{R}^{N,N}$ , and  $\mathbf{F} : \mathbb{R}^N \to \mathbb{R}^N$ 

## Online stage:

Solve the discrete dynamical system:

 $\mathbb{A}(\boldsymbol{\alpha}^j)\boldsymbol{\alpha}^{j+1} = \mathsf{F}(\boldsymbol{\alpha}^j), \qquad j = 0, \dots, J-1$ 

#### Computational summary (POD-Galerkin)

#### Offline stage:

Compute DNS data  $\{u^k = u(\cdot, t^k)\}_{k=1}^K$ ,  $t^k = T_0 + k$  $T_0 = 500, K = 500$ 

Use POD to build the space  $Z_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$ Define  $\mathbb{A} : \mathbb{R}^N \to \mathbb{R}^{N,N}$ , and  $\mathbf{F} : \mathbb{R}^N \to \mathbb{R}^N$ 

## Online stage:

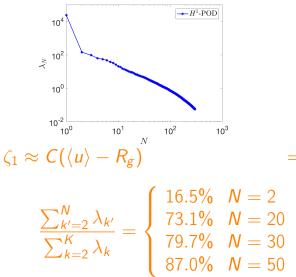
Solve the discrete dynamical system:  $\mathbb{A}(\alpha^{j})\alpha^{j+1} = \mathsf{F}(\alpha^{j}),$ 

 $j=0,\ldots,J-1$ 

Online memory requirements:  $\mathcal{O}(N^3)$ . Online cost:  $\mathcal{O}(N^3J)$ .

## POD eigenvalues (Re = 15000)

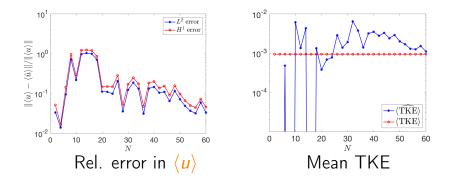
## POD eigenvalues $\{\lambda_N\}_N$ decay slowly with N.



$$u^{k} := u(\cdot, t^{k})$$
  
 $t^{k} := 500 + k,$   
 $k = 1, \dots, K = 500$ 

⇒ no contribution to fluctuating field

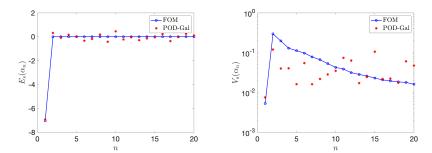
## Numerical results (Re = 15000): performance (I)



We observe several **spurious** effects for moderate *N*: false stable steady flows, overly unstable flows...
 For *N* ≥ 50, accuracy improves.

## Numerical results (Re = 15000): performance (II)

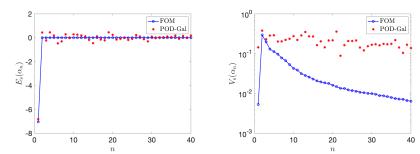
Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{20}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 



46

#### Numerical results (Re = 15000): performance (II)

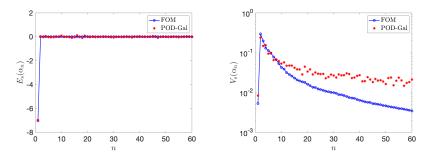
Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{40}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 



46

#### Numerical results (Re = 15000): performance (II)

Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{60}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 



#### Comments

POD-Galerkin approach does not provide an adequate approximation of the long-time system dynamics, particularly for moderate N.

We observe several spurious effects false stable steady flows, overly unstable flows...

This behavior is similar to the one observed for highly-truncated spectral approximations to turbulent flows.

Curry, Herring, Loncaric, Orszag, J Fluid Mech (1984).

## Constrained formulation

- pMOR for turbulent flows
- Lid-driven cavity problem
- A first attempt: POD-Galerkin
- Our proposal: POD-constrained Galerkin

#### cGalerkin formulation (semi-implicit in time)

We propose the following ROM (cGalerkin):  $\alpha^{j+1} := \arg \min_{\mathbf{w} \in \mathbb{R}^N} \|\mathbb{A}(\alpha^j)\mathbf{w} - \mathbf{F}(\alpha^j)\|_2^2,$ subject to  $a_n \leq w_n \leq b_n, n = 1, \dots, N.$ A and F are the matrix-valued and vector-valued functions introduced for the Galerkin ROM.

#### cGalerkin formulation (semi-implicit in time)

We propose the following ROM (cGalerkin):  $\alpha^{j+1} := \arg \min_{\mathbf{w} \in \mathbb{R}^N} \|\mathbb{A}(\alpha^j)\mathbf{w} - \mathbf{F}(\alpha^j)\|_2^2,$ subject to  $a_n \leq w_n \leq b_n, n = 1, \dots, N.$ A and **F** are the matrix-valued and vector-valued functions introduced for the Galerkin ROM.

If  $\alpha_{\text{Gal}}^{j+1} := \mathbb{A}(\alpha^j)^{-1} \mathsf{F}(\alpha^j)$  satisfies the constraints, cGalerkin = Galerkin.

For semi-implicit and explicit time discretizations, cGalerkin corresponds to a **convex quadratic programming** problem, which can be solved using an interior point method.

## Estimates of $\{a_n\}_n$ and $\{b_n\}_n$

 $\begin{array}{l} a_n \mbox{ and } b_n \mbox{ are lower and upper bounds for}^9\\ \alpha_n(t) := (\mathring{u}(t) = u(t) - R_g, \zeta_n).\\ \mbox{Given the snapshots } \{u^k\}_{k=1}^K, \mbox{ we set } \{a_n\}_n \mbox{ and } \{b_n\}_n \mbox{ as }\\ a_n = m_n^{\rm u} - \epsilon(M_n^{\rm u} - m_n^{\rm u}), \qquad b_n = M_n^{\rm u} + \epsilon(M_n^{\rm u} - m_n^{\rm u});\\ \mbox{where } \epsilon = 0.01^{10}, \mbox{ and }\\ m_n^{\rm u} := \min_{k=1,\ldots,K} (\mathring{u}^k, \zeta_n)_V, \qquad M_n^{\rm u} := \max_{k=1,\ldots,K} (\mathring{u}^k, \zeta_n)_V. \end{array}$ 

<sup>9</sup>NOTE 1:  $(\zeta_m, \zeta_n) = \delta_{m,n}$ <sup>10</sup>NOTE 2:  $\{t^k\}_k$  sampling times,  $\{t^j\}_j$  time grid,  $K \ll J$ .

## Estimates of $\{a_n\}_n$ and $\{b_n\}_n$

 $a_n$  and  $b_n$  are lower and upper bounds for<sup>9</sup>  $\alpha_n(t) := (\mathbf{u}(t) = \mathbf{u}(t) - R_{\sigma}, \zeta_n).$ Given the snapshots  $\{u^k\}_{k=1}^K$ , we set  $\{a_n\}_n$  and  $\{b_n\}_n$  as  $a_n = m_n^{\mathrm{u}} - \epsilon (M_n^{\mathrm{u}} - m_n^{\mathrm{u}}),$  $b_n = M_n^{\mathrm{u}} + \epsilon (M_n^{\mathrm{u}} - m_n^{\mathrm{u}});$ where  $\epsilon = 0.01^{10}$ . and  $m_n^{\mathrm{u}} := \min_{k=1}^{K} (\mathring{u}^k, \zeta_n)_V, \qquad M_n^{\mathrm{u}} := \max_{k=1}^{K} (\mathring{u}^k, \zeta_n)_V.$ The hyper-parameters  $\{a_n\}_n$  and  $\{b_n\}_n$  of cGalerkin admit a simple interpretation, and can be easily tuned based on **sparse DNS data**.

<sup>10</sup>**NOTE 2:**  $\{t^k\}_k$  sampling times,  $\{t^j\}_j$  time grid,  $K \ll J$ .

<sup>&</sup>lt;sup>9</sup>NOTE 1:  $(\zeta_m, \zeta_n) = \delta_{m,n}$ 

### Computational summary (constrained POD-Galerkin)

# Offline stage:

Compute DNS data  $\{u^k = u(\cdot, t^k)\}_{k=1}^K$ 

- Use POD to build the space  $\mathcal{Z}_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$
- Define  $\mathbb{A} : \mathbb{R}^N \to \mathbb{R}^{N,N}$ , and  $\mathbf{F} : \mathbb{R}^N \to \mathbb{R}^N$
- Define  $\{a_n\}_n$  and  $\{b_n\}_n$  based on the DNS data  $\{\mathring{u}^k\}_k$

## Online stage:

Solve the discrete dynamical system:  $\boldsymbol{\alpha}^{j+1} = \arg\min_{\mathbf{w}\in\mathbb{R}^N} \|\mathbb{A}(\boldsymbol{\alpha}^j)\mathbf{w} - \mathbf{F}(\boldsymbol{\alpha}^j)\|_2^2, \text{ s.t. } \boldsymbol{a}_n \leq w_n \leq b_n$ 

### Computational summary (constrained POD-Galerkin)

# Offline stage:

Compute DNS data  $\{u^k = u(\cdot, t^k)\}_{k=1}^K$ Use POD to build the space  $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ 

Define  $\mathbb{A}: \mathbb{R}^N \to \mathbb{R}^{N,N}$ , and  $\mathsf{F}: \mathbb{R}^N \to \mathbb{R}^N$ 

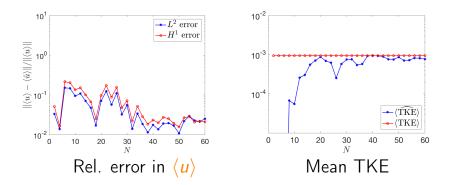
Define  $\{a_n\}_n$  and  $\{b_n\}_n$  based on the DNS data  $\{\mathring{u}^k\}_k$ 

#### Online stage:

Solve the discrete dynamical system:  $\boldsymbol{\alpha}^{j+1} = \arg\min_{\mathbf{w}\in\mathbb{R}^N} \|\mathbb{A}(\boldsymbol{\alpha}^j)\mathbf{w} - \mathbf{F}(\boldsymbol{\alpha}^j)\|_2^2$ , s.t.  $a_n \leq w_n \leq b_n$ 

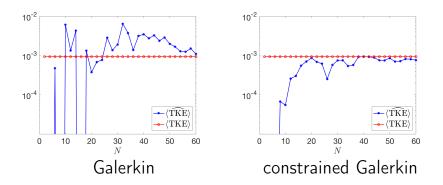
Online memory requirements:  $\mathcal{O}(N^3)$ . Online cost:  $\mathcal{O}(N^3 \underbrace{J_{\text{pure}}}_{\text{Gal, solves}} + \underbrace{\kappa N^3}_{\text{cost QP}} (J - J_{\text{pure}}))$ .

## Numerical results (Re = 15000): performance (I)



The constrained Galerkin formulation consistently underestimates the TKE.

### Numerical results (Re = 15000): performance (II)

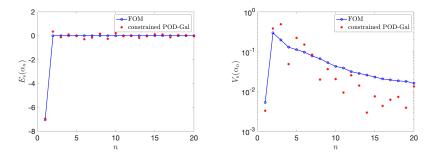


For some values of N,  $\langle \text{TKE}_{cGal} \rangle > \langle \text{TKE}_{Gal} \rangle$ . For some other values  $\langle \text{TKE}_{cGal} \rangle < \langle \text{TKE}_{Gal} \rangle$ .

⇒ cGalerkin does **not** add artificial viscosity to Galerkin.

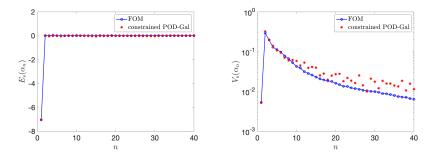
### Numerical results (Re = 15000): performance (III)

Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{20}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 



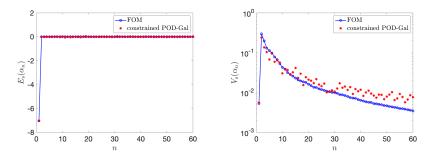
### Numerical results (Re = 15000): performance (III)

Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{40}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 

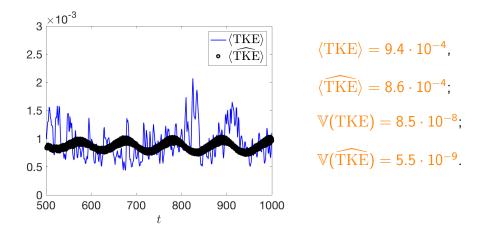


### Numerical results (Re = 15000): performance (III)

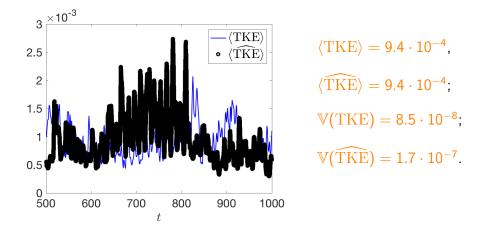
Moments of 
$$\{\alpha_n\}_n (\mathring{u}(\cdot, t) = \sum_{n=1}^{\infty} \alpha_n(t)\zeta_n)$$
:  $\mathbf{N} = \mathbf{60}$   
 $E_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K} \sum_{k=1}^{K} \alpha_n(t^k),$   
 $V_{\mathrm{s}}(\alpha_n, \{t^k\}) = \frac{1}{K-1} \sum_{k=1}^{K} (\alpha_n(t^k) - E_{\mathrm{s}}(\alpha_n, \{t^k\}))^2$ 



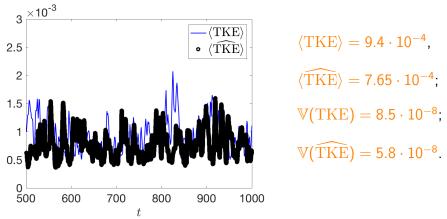
### Behavior of the turbulent kinetic energy (N = 20)



### Behavior of the turbulent kinetic energy (N = 40)



### Behavior of the turbulent kinetic energy (N = 60)

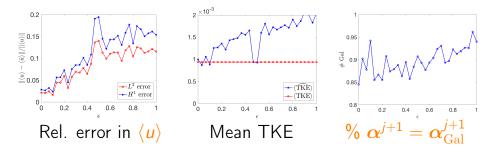


Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is achievable.

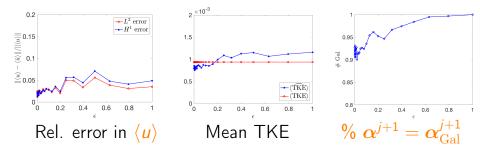
### Sensitivity analysis wrt $\epsilon$ (Re = 15000, N = 40)

 $\epsilon$  enters in the definition of the bounds  $a_n$  and  $b_n$ :  $a_n = m_n^{\rm u} - \epsilon (M_n^{\rm u} - m_n^{\rm u}), \qquad b_n = M_n^{\rm u} + \epsilon (M_n^{\rm u} - m_n^{\rm u});$ 



### Sensitivity analysis wrt $\epsilon$ (Re = 15000, N = 60)

 $\epsilon$  enters in the definition of the bounds  $a_n$  and  $b_n$ :  $a_n = m_n^{\rm u} - \epsilon (M_n^{\rm u} - m_n^{\rm u}), \qquad b_n = M_n^{\rm u} + \epsilon (M_n^{\rm u} - m_n^{\rm u});$ 



**Interpretation:** as *N* increases, the Galerkin model becomes more and more accurate, and box constraints become less and less important.

### Conclusions and perspectives

Fluid problems present unique challenges for MOR.

### Data compression

boundary layers, shocks;

wide spectrum of scales (turbulence).

### **Reduced formulation**

fragility of Galerkin ROMs;

presence of nonlinearities.

### Error estimation

Fluid problems present unique challenges for MOR.

### Data compression

boundary layers, shocks;

 $\rightarrow$  Lagrangian nonlinear approximation procedure. wide spectrum of scales (turbulence).

### **Reduced formulation**

fragility of Galerkin ROMs;

 $\rightarrow$  constrained Galerkin formulation.

presence of nonlinearities.

## Error estimation

 $\rightarrow$  time-avg error indicators (Fick et al., 2018).

# Nonlinear approximation (with A lollo) definition of the reference field ↔ clustering reduction of offline costs for map generation ↔ hierarchy of models

**Constrained Galerkin** (with P Fischer<sup>11</sup>, AT Patera) identification of new sets of constraints;

extension to more challenging problems.

<sup>&</sup>lt;sup>11</sup>Two PhD theses were funded on this subject at University of Illinois (PI: Paul Fischer).

## Thank you for your attention!

### Reference: (constrained Galerkin)

Fick, Maday, Patera, Taddei. A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection, 2018; JCP.