An Adaptive PBDW approach to state estimation

Tommaso Taddei

Université Pierre et Marie Curie Laboratoire Jacques-Louis Lions

> Seminar MATHICSE Lausanne, Switzerland

> > May 15th 2018

Acknowledgments: Y Maday (UPMC, Brown), and AT Patera (MIT).

Formulation

Given a physical system, we wish to integrate

a best-knowledge model with uncertain parameters,

and M experimental observations

to estimate the state u^{true} over the domain $\Omega \subset \mathbb{R}^d$.

Given a physical system, we wish to integrate

a best-knowledge model with uncertain parameters, $\begin{aligned} G^{\mathrm{bk},\mu}(u^{\mathrm{bk}}(\mu)) &= 0, \\ \mu \in \mathcal{P}^{\mathrm{bk}} \text{ uncertain model parameters,} \\ & \text{well-posed over } \Omega^{\mathrm{bk}} \supset \Omega, \end{aligned}$

and M experimental observations

$$y_m = \ell_m^o(u^{ ext{true}}) + \epsilon_m, \ m = 1, \dots, M$$

 $\ell_1^o, \dots, \ell_M^o$ linear functionals,
 $\mathcal{L}_M = [\ell_1^o, \dots, \ell_M^o]$,

to estimate the state u^{true} over the domain $\Omega \subset \mathbb{R}^d$.

Decomposition of the true field

Estimate ($\mu^{\text{true}}, \eta^{\text{true}}$): Partial Spline Model (Wahba, 1990)

Reformulation of the PSM: rank-N approximations

Substitute $u^{\mathrm{bk}}(\mu)$ with the rank-N approximation: $u^{\mathrm{bk}}_{N}(x,\mu) := \sum_{n=1}^{N} \alpha_{n}(\mu)\zeta_{n}(x), \quad \mu \in \mathcal{P}^{\mathrm{bk}}, \ x \in \Omega \subset \Omega^{\mathrm{bk}}.$

$$\min_{(\mu,\eta)\in\mathcal{P}^{\mathrm{bk}}\times\mathcal{U}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M \left(\sum_{n=1}^N \alpha_n(\mu)\zeta_n + \eta \right) - \mathbf{y} \right)$$

state estimate: $u_{\xi}^{\star} = \sum_{n=1}^N \alpha_n(\mu_{\xi}^{\star})\zeta_n + \eta_{\xi}^{\star}.$

Reformulation of the PSM: rank-N approximations

Substitute $u^{bk}(\mu)$ with the rank-N approximation: $u_N^{bk}(x,\mu) := \sum_{n=1}^N \alpha_n(\mu)\zeta_n(x), \quad \mu \in \mathcal{P}^{bk}, \quad x \in \Omega \subset \Omega^{bk}.$ Define $\Phi_N := \{ [\alpha_1(\mu), \dots, \alpha_N(\mu)] : \mu \in \mathcal{P}^{bk} \} \subset \mathbb{R}^N.$ Minimize over $(\alpha, \eta) \in \Phi_N \times \mathbb{R}^N$

$$\min_{(\alpha,\eta)\in\Phi_N\times\mathcal{U}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M \left(\sum_{n=1}^N \alpha_n \zeta_n + \eta \right) - \mathbf{y} \right)$$

state estimate: $u_{\xi}^{\star} = \sum_{n=1}^N \alpha_{\xi,n}^{\star} \zeta_n + \eta_{\xi}^{\star}.$

Relaxation: $PSM \rightarrow PBDW$

Introduce the approximation of Φ_N , $\widetilde{\Phi}_N \subset \mathbb{R}^N$. Then, obtain the **PBDW statement**:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\boldsymbol{\Phi}}_{N}\times\mathcal{U}} \xi \|\eta\|^{2} + V_{M}\left(\mathcal{L}_{M}\left(\sum_{n=1}^{N}\alpha_{n}\zeta_{n}+\eta\right)-\mathbf{y}\right)$$

Relaxation: $\mathsf{PSM} \to \mathsf{PBDW}$

Introduce the approximation of Φ_N , $\Phi_N \subset \mathbb{R}^N$. Then, obtain the **PBDW statement**:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\boldsymbol{\Phi}}_{\boldsymbol{N}}\times\mathcal{U}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M\left(\sum_{n=1}^N \alpha_n \zeta_n + \eta\right) - \mathbf{y}\right)$$

The Partial Spline Model is non-convex, and highly nonlinear.

If Φ_N is convex, the PBDW statement is a convex relaxation of the PSM.

If $\widehat{\Phi}_N$ is a convex polytope and $V_M(\mathbf{w}) = \mathbf{w}^T \mathbb{O} \mathbf{w}$, the PBDW statement is a QP.

$\mathsf{PSM}\to\mathsf{PBDW}:$ the role of MOR

PBDW relies on a *N*-term approximation of u^{bk} : $u^{bk}(x,\mu) \approx \sum_{n=1}^{N} \alpha_n(\mu) \zeta_n(x) \quad \forall \mu \in \mathcal{P}^{bk}, \ x \in \Omega,$

where $N \leq M$ due to stability issues.

MOR provides efficient tools for data compression.

$\mathsf{PSM}\to\mathsf{PBDW}:$ the role of MOR

PBDW relies on a *N*-term approximation of u^{bk} : $u^{bk}(x,\mu) \approx \sum_{n=1}^{N} \alpha_n(\mu) \zeta_n(x) \quad \forall \mu \in \mathcal{P}^{bk}, \ x \in \Omega,$

where $N \leq M$ due to stability issues.

MOR provides efficient tools for data compression.

Data compression: given the bk manifold

 $\mathcal{M}^{\mathrm{bk}} = \{u^{\mathrm{bk}}(\mu)|_{\Omega}: G^{\mathrm{bk},\mu}(u^{\mathrm{bk}}(\mu)) = 0, \ \mu \in \mathcal{P}^{\mathrm{bk}}\}$

find a *background* space $\mathcal{Z}_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$ s.t.

 $\sup_{\mu\in\mathcal{P}^{\mathrm{bk}}}\inf_{z\in\mathcal{Z}_{N}}\|u^{\mathrm{bk}}(\mu)|_{\Omega}-z\| \text{ is small.}$

PBDW formulation: contribution and challenges

Main features

Two-level mechanism to accomodate parametric and non-parametric model uncertainty.

Use of MOR to generate a linear surrogate $\mathcal{Z}_N =$ span $\{\zeta_n\}_{n=1}^N$ of $\mathcal{M}^{\mathrm{bk}} = \{u^{\mathrm{bk}}(\mu')|_{\Omega} : \mu' \in \mathcal{P}^{\mathrm{bk}}\}.$

PBDW formulation: contribution and challenges

General formulation:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\Phi}_{N}\times\mathcal{U}}\xi\|\eta\|^{2}+V_{M}\left(\mathcal{L}_{M}\left(\sum_{n=1}^{N}\alpha_{n}\zeta_{n}+\eta\right)-\mathbf{y}\right)$$

Challenges and open questions Choice of V_M , $(\mathcal{U}, \|\cdot\|)$, ξ \leftrightarrow model selection (Machine Learning) Choice of $\mathcal{Z}_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$ $\Omega = \Omega^{\mathrm{bk}} \leftrightarrow \operatorname{monolithic} \operatorname{MOR}$ $\Omega \subset \Omega^{\mathrm{bk}} \leftrightarrow \operatorname{component-based} \operatorname{MOR}$

Choice of Φ_N .

Maday, Patera, Penn, Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, IJNME, 2015

Maday, Patera, Penn, Yano, *PBDW state estimation: Noisy observations;* configuration-adaptive background spaces; physical interpretations, M2AN, 2015.

Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk, *Data assimilation in reduced modeling*, JUQ, 2017.

Taddei, An adaptive parametrized-background data-weak approach to variational data assimilation, M2AN, 2017

Taddei, Patera, A localization strategy for Data Assimilation; application to state estimation and parameter estimation, SISC, (accepted).

Maday, Taddei, Adaptive PBDW approach to state estimation: noisy observations; user-defined update spaces, (submitted).

Binev, Cohen, Mula, Nichols, *Greedy algorithms for optimal measurements selection in state estimation using reduced models*, (submitted).

Hammond, Chakir, Bourquin, Maday, *PBDW: a non-intrusive reduced basis data assimilation method and its application to outdoor air quality models*, (submitted).

Agenda of the talk

We consider the formulation

$$\begin{split} \min_{\substack{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}}} \xi \|\eta\|^2 &+ \frac{1}{M} \sum_{m=1}^M \left(\ell_m^o(z+\eta) - y_m\right)^2, \\ \text{which corresponds to } \widetilde{\Phi}_N &= \mathbb{R}^N, \ V_M &= \frac{1}{M} \|\cdot\|_2^2. \end{split}$$
 Topics of the talk: choice of $(\mathcal{U}, \|\cdot\|);$

a priori error analysis;

construction of \mathcal{Z}_N for $\Omega \subset \Omega^{\mathrm{bk}}$.

Hypothesis: $\ell_m^o(z) = 0, \ z \in \mathcal{Z}_N \Leftrightarrow z \equiv 0$ $(\mathcal{Z}_N, \mathcal{L}_M)$ - unisolvency

Comparison with a Model-Based (MB) formulation

Given $\mathcal{U}_{bk} = \mathcal{U}_{bk}(\Omega^{bk})$, find $(\mu_{\xi}^{\star}, u_{\xi}^{\star})$ s.t. $\min_{\substack{\mu \in \mathcal{P}, u \in \mathcal{U}_{bk} \\ \eta \in \mathcal{U}_{adm} \subset \mathcal{U}'_{bk}}} \xi \|\eta\|_{\star}^{2} + V_{\mathcal{M}}(\mathcal{L}_{\mathcal{M}}(u|_{\Omega}) - \mathbf{y}) \text{ s.t. } \mathcal{G}^{bk,\mu}(u) = \eta,$

Comparison with a Model-Based (MB) formulation

Given $\mathcal{U}_{bk} = \mathcal{U}_{bk}(\Omega^{bk})$, find $(\mu_{\xi}^{\star}, u_{\xi}^{\star})$ s.t. $\min_{\substack{\mu \in \mathcal{P}, u \in \mathcal{U}_{bk} \\ \eta \in \mathcal{U}_{adm} \subset \mathcal{U}'_{bk}}} \xi \|\eta\|_{\star}^{2} + V_{\mathcal{M}}(\mathcal{L}_{\mathcal{M}}(u|_{\Omega}) - \mathbf{y}) \text{ s.t. } \mathcal{G}^{bk,\mu}(u) = \eta,$

- 1. MB is equivalent to PSM for $\mathcal{P} = \{\bar{\mu}\}$, if $\Omega^{bk} = \Omega$, $\mathcal{G}^{bk,\mu}(\cdot) = \mathcal{A}_{\mu}(\cdot) - \mathcal{F}_{\mu}$, and $\|\cdot\|_{\star} = \|\mathcal{A}_{\mu}^{-1}(\cdot)\|$; i.e., $u_{\xi}^{\star} = \arg\min_{u \in \mathcal{U}} \xi \|u - u^{bk}(\bar{\mu})\|^2 + V_M(\mathcal{L}_M(u) - \mathbf{y})$
- 2. MB can prescribe the allowed model biases \mathcal{U}_{adm} . advantage over PSM/PBDW
- 3. For $\mathcal{P} \neq \{\overline{\mu}\}$, MB is highly nonlinear, difficult to convexify, and ill-suited to tackle pbs with $\Omega \subsetneq \Omega^{bk}$. disadvantage compared to PBDW

Choice of ($\mathcal{U}, \|\cdot\|)$

Choice of $(\mathcal{U}, \|\cdot\|)$: variational update

Choose $\mathcal{U} = \mathcal{X}$, $\|\cdot\| = \|\cdot\|_{\mathcal{X}}$ $(\mathcal{X} = H^1(\Omega), V_{\text{div}}, ...)$ $\Rightarrow \eta_{\xi}^*$ belongs to $\mathcal{U}_M = \text{span}\{R_{\mathcal{X}}\ell_m^o\}_{m=1}^M$ $(R_{\mathcal{X}}\ell_m^o, \mathbf{v})_{\mathcal{X}} = \ell_m^o(\mathbf{v}) \ \forall \ \mathbf{v} \in \mathcal{X}$

Choice of $(\mathcal{U}, \|\cdot\|)$: variational update

Choose $\mathcal{U} = \mathcal{X}$, $\|\cdot\| = \|\cdot\|_{\mathcal{X}}$ $(\mathcal{X} = H^1(\Omega), V_{\text{div}}, \ldots)$ $\Rightarrow \eta_{\xi}^{\star}$ belongs to $\mathcal{U}_M = \text{span}\{R_{\mathcal{X}}\ell_m^o\}_{m=1}^M$ $(R_{\mathcal{X}}\ell_m^o, \mathbf{v})_{\mathcal{X}} = \ell_m^o(\mathbf{v}) \ \forall \ \mathbf{v} \in \mathcal{X}$

Originally proposed in [Maday et al., 2015]

The approximation properties of \mathcal{U}_M depend on $\|\cdot\|_{\mathcal{X}}$ and on $\{\ell^o_m\}_{m=1}^M$

Construction of \mathcal{U}_M requires the solution to M Riesz problems.

Choice of $(\mathcal{U}, \|\cdot\|)$: user-defined update

Choose $\mathcal{U} = \mathcal{U}_M = \operatorname{span}\{\psi_m\}_{m=1}^M \subset \mathcal{X}, \|\cdot\| = \|\cdot\|_{\mathcal{X}} \text{ s.t.}$ $\ell_m^o(\psi) = 0, \psi \in \mathcal{U}_M \Leftrightarrow \psi \equiv 0 \quad ((\mathcal{U}_M, \mathcal{L}_M) - unisolvency)$

Choice of $(\mathcal{U}, \|\cdot\|)$: user-defined update

Choose $\mathcal{U} = \mathcal{U}_M = \operatorname{span}\{\psi_m\}_{m=1}^M \subset \mathcal{X}, \|\cdot\| = \|\cdot\|_{\mathcal{X}} \text{ s.t.}$ $\ell_m^o(\psi) = 0, \psi \in \mathcal{U}_M \Leftrightarrow \psi \equiv 0 \quad ((\mathcal{U}_M, \mathcal{L}_M) - unisolvency)$

The unisolvency condition guarantees wellposedness. ψ_1, \ldots, ψ_M are chosen based on approximation considerations.

 ψ_1, \ldots, ψ_M might or might not depend on the choice of $\|\cdot\|_{\cdot}$

Practical choices of ψ_1, \ldots, ψ_M for local measurements

Given functionals of the form $\ell_m^o = \ell(\cdot, x_m^o, r_w)$, $\ell(v, \bar{x}, r_w) = C(r_w) \int_{\Omega} \omega\left(\frac{\|x - \bar{x}\|_2}{r_w}\right) v(x) dx,$ $\ell_m^o \to \delta_{x_m^o} \text{ for } r_w \to 0^+$

possible choices are

- 1. $\psi_m(\cdot) = \Phi(\|\cdot x_m^o\|_2)$ where Φ is a PD RBF, or no need for solving M offline Riesz problems,
- 2. $\psi_m(\cdot) = R_{\mathcal{X}}\ell(\cdot, x_m^o, R_w)$ where $R_w > r_w$. simple treatment of strong BCs

Equivalence between variational and user-defined updates

Define $\mathcal{I}_{M}: \mathcal{X} \to \mathcal{U}_{M} \text{ s.t. } \mathcal{L}_{M}(\mathcal{I}_{M}(v)) = \mathcal{L}_{M}(v) \ \forall v \in \mathcal{X}$

Proposition: let $\mathcal{U}_{M} = \operatorname{span}\{\psi_{m}\}_{m}$ satisfy unisolvency condition. Then, PBDW solution solves: $\min_{\substack{(z,\eta)\in\mathcal{Z}_{N}\times\mathcal{X}}} \xi |||\eta|||^{2} + V_{M}(\mathcal{L}(z+\eta) - \mathbf{y})$ where $|||u|||^{2} = ||\mathcal{I}_{M}(u)||^{2}_{\mathcal{X}} + ||u - \mathcal{I}_{M}(u)||^{2}_{\mathcal{X}}$ is an equivalent norm for \mathcal{X} .

Variational approach: choose $(\mathcal{X}, \|\cdot\|_{\mathcal{X}}) \Rightarrow \mathcal{U}_{M}$; User-defined approach: choose $\mathcal{U}_{M} \Rightarrow (\mathcal{X}, \|\|\cdot\|)$. link with kernel methods for regression

A priori error analysis

Preliminaries

Suppose $y_m = \ell_m^o(u^{\text{true}}) + \epsilon_m, \quad m = 1, ..., M$, where $\epsilon_m \stackrel{\text{iid}}{\sim} (0, \sigma^2)$ (homoscedastic noise).

Introduce $u_{\xi=0}^{\text{opt}}$ PBDW solution for $\xi \to 0^+$ fed with perfect observations.

Define $(\mathbb{L}_{\eta})_{m,m'} = \ell_m^o(\psi_{m'})$, and introduce $\mathbf{u} = \begin{bmatrix} \boldsymbol{\alpha} \\ \tilde{\boldsymbol{\eta}} = \mathbb{L}_{\eta}^{-T} \boldsymbol{\eta} \end{bmatrix} \leftrightarrow u = \sum_{n=1}^{N} \alpha_n \zeta_n + \sum_{m=1}^{M} \eta_m \psi_m.$ $u_{\xi}^{\star} \in \mathcal{X} \leftrightarrow \mathbf{u}_{\xi}^{\star} \in \mathbb{R}^{N+M},$ $u_{\xi=0}^{\text{opt}} \in \mathcal{X} \leftrightarrow \mathbf{u}_{\xi=0}^{\text{opt}} \in \mathbb{R}^{N+M}.$

Introduce
$$(\mathbb{L}_{\eta})_{m,m'} = \ell_m^o(\psi_{m'})$$
, and

$$\mathbb{A}(\xi) = \begin{bmatrix} \xi M \mathbb{I} + \mathbb{L}_{\eta} \mathbb{L}_{\eta}^T & \mathbb{L}_z \\ \mathbb{L}_z^T & 0 \end{bmatrix} \text{ with } \begin{array}{l} (\mathbb{L}_z)_{m,n} = \ell_m^o(\zeta_n) \\ y_m^{\text{true}} = \ell_m^o(u^{\text{true}}) \end{array},$$

Then, we find

$$\mathbb{A}(\xi) \mathbf{u}_{\xi}^{\star} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}, \quad \mathbb{A}(\xi = 0) \mathbf{u}_{\xi=0}^{\text{opt}} = \begin{bmatrix} \mathbf{y}^{\text{true}} \\ \mathbf{0} \end{bmatrix}$$

Error analysis for perfect measurements

Introduce the inf-sup constant $\beta_{N,M} = \inf_{z \in \mathcal{Z}_N} \sup_{v \in \mathcal{U}_M} \frac{((z,v))}{||z|| ||v|||}$, and the Lebesgue constant $\|\mathcal{I}_M\|_{\mathcal{L}(\mathcal{X})} = \sup_{v \in \mathcal{X}} \frac{\|\mathcal{I}_M(v)\|_{\mathcal{X}}}{\|v\|_{\mathcal{V}}}.$ $(=1 \text{ for } \mathcal{U}_M = \operatorname{span}\{R_{\mathcal{X}}\ell_m^o\}_m)$ Then.

$$\|u^{\text{true}} - u_{\xi=0}^{\text{opt}}\|_{\mathcal{X}} \leq \frac{\sqrt{4+6}\|\mathcal{I}_{M}\|_{\mathcal{L}(\mathcal{X})}^{2}}{\beta_{N,M}} \times \inf_{\substack{z \in \mathcal{Z}_{N} \ q \in \mathcal{U}_{M} \cap \mathcal{Z}_{N}^{\perp,\|\cdot\|}}} \|u^{\text{true}} - z - q\|_{\mathcal{X}}.$$

Error analysis for imperfect measurements

$$\begin{aligned} \mathbf{Bias:} & \left\| \mathbb{E} \left[\mathbf{u}_{\xi}^{\star} \right] - \mathbf{u}_{\xi=0}^{\text{opt}} \right\|_{2} \leq C_{\xi} \| \widetilde{\boldsymbol{\eta}}_{\xi=0}^{\text{opt}} \|_{2} \\ \mathbf{MSE:} & \mathbb{E} \left[\| \mathbf{u}_{\xi}^{\star} - \mathbf{u}_{\xi=0}^{\text{opt}} \|_{2}^{2} \right] \leq C_{\xi}^{2} \| \widetilde{\boldsymbol{\eta}}_{\xi=0}^{\text{opt}} \|_{2}^{2} + D_{\xi} \sigma^{2}, \\ C_{\xi} &= \frac{\xi M}{s_{\min}(\mathbb{A}(\xi))}, \ D_{\xi} = \operatorname{tr} \left(\mathbb{A}(\xi)^{-1} \Sigma \mathbb{A}(\xi)^{-T} \right), \ \Sigma = \begin{bmatrix} \mathbb{I} & 0 \\ 0 & 0 \end{bmatrix} \\ & C_{\xi} \uparrow \xi, \text{ and } D_{\xi} \downarrow \xi. \end{aligned}$$

Error analysis for imperfect measurements

Bias:
$$\left\| \mathbb{E} \left[\mathbf{u}_{\xi}^{\star} \right] - \mathbf{u}_{\xi=0}^{\text{opt}} \right\|_{2} \leq C_{\xi} \| \widetilde{\boldsymbol{\eta}}_{\xi=0}^{\text{opt}} \|_{2}$$

MSE: $\mathbb{E} \left[\| \mathbf{u}_{\xi}^{\star} - \mathbf{u}_{\xi=0}^{\text{opt}} \|_{2}^{2} \right] \leq C_{\xi}^{2} \| \widetilde{\boldsymbol{\eta}}_{\xi=0}^{\text{opt}} \|_{2}^{2} + D_{\xi} \sigma^{2},$
 $C_{\xi} = \frac{\xi M}{s_{\min}(\mathbb{A}(\xi))}, D_{\xi} = \operatorname{tr} \left(\mathbb{A}(\xi)^{-1} \Sigma \mathbb{A}(\xi)^{-T} \right), \Sigma = \begin{bmatrix} \mathbb{I} & 0 \\ 0 & 0 \end{bmatrix}$
 $C_{\xi} \uparrow \xi, \text{ and } D_{\xi} \downarrow \xi.$
 $\Rightarrow \xi^{\text{opt}} \text{ is a monotonic increasing function of}$
 σ meas, inacc.

Adaptivity in ξ key to guarantee accurate estimates.

The optimal ξ minimizes the upper bound for the MSE.

 $\frac{\widetilde{\boldsymbol{\eta}}_{\ell=0}^{\text{opt}}}{\|\widetilde{\boldsymbol{\eta}}_{\ell=0}^{\text{opt}}\|_2} = \frac{1}{\text{model inacc.}}$

Holdout validation (Kohavi et al., 1995)

Introduce a set of I out-of-sample measurements $(\bar{\ell}_1^o, \bar{y}_1), \dots, (\bar{\ell}_l^o, \bar{y}_l) \Rightarrow (\mathcal{L}_l, \bar{\mathbf{y}})$ and $\Xi_{\text{train}} = \{\xi_1, \dots, \xi_Q\} \subset \mathbb{R}_+.$ Solve $\mathbb{A}(\xi_q) \mathbf{u}_{\xi_q}^{\star} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}, q = 1, \dots, Q.$ Return the estimate $\mathbf{u}_{\xi^{\star}}^{\star}$ such that

 $\xi^{\star} = \arg\min_{\xi \in \Xi_{\text{train}}} \widehat{MSE}(I) := \frac{1}{I} \|\mathcal{L}_{I}(u_{\xi_{q}}^{\star}) - \bar{\mathbf{y}}\|_{2}^{2}.$

Holdout validation (Kohavi et al., 1995)

Introduce a set of / out-of-sample measurements $(\bar{\ell}_1^o, \bar{y}_1), \ldots, (\bar{\ell}_l^o, \bar{y}_l) \Rightarrow (\mathcal{L}_l, \bar{\mathbf{v}})$ and $\Xi_{\text{train}} = \{\xi_1, \ldots, \xi_O\} \subset \mathbb{R}_+$. Solve $\mathbb{A}(\xi_q) \mathbf{u}_{\xi_q}^{\star} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$, $q = 1, \dots, Q$. Return the estimate $u_{c\star}^{\star}$ such that $\xi^{\star} = \arg\min_{\boldsymbol{\xi} \in \exists_{toric}} \widehat{MSE}(I) := \frac{1}{I} \|\mathcal{L}_{I}(\boldsymbol{u}_{\boldsymbol{\xi}_{q}}^{\star}) - \bar{\mathbf{y}}\|_{2}^{2}.$

If $\bar{\ell}_i^o = \ell(\cdot, x_i^o, r_w)$ with $x_i^o \stackrel{\text{iid}}{\sim} \text{Uniform}(\Omega)$, then ξ^* approximately minimizes the L^2 error.

Taddei, 2017; Taddei, Penn, Patera, 2017.

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

An acoustic model problem

Let $u_g(\mu)$ be the solution to $\begin{cases} -(1+\epsilon\mu\mathrm{i})\,\Delta u_g(\mu) - \mu^2\,u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g \quad \mathrm{in}\,\Omega\\ \partial_n u_g(\mu) = 0 \quad \mathrm{on}\,\partial\,\Omega \end{cases}$ where $\Omega = (0, 1)^2$, $\epsilon = 10^{-2}$. Bk model: $u^{bk}(\mu) = u_{g_0}(\mu), \ \mu \in \mathcal{P}^{bk} = [2, 10], \ g_0 \equiv 0.$ True state: $u^{\text{true}} = u_{\bar{e}}(\mu^{\text{true}}),$ $\mu^{\text{true}} \in \mathcal{P}^{\text{bk}}, \ \overline{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)).$
An acoustic model problem

Let $u_{\sigma}(\mu)$ be the solution to $\begin{cases} -(1+\epsilon\mu\mathrm{i})\,\Delta u_g(\mu) - \mu^2\,u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g \quad \mathrm{in}\,\Omega\\ \partial_n u_g(\mu) = 0 \quad \mathrm{on}\,\partial\,\Omega \end{cases}$ where $\Omega = (0, 1)^2$, $\epsilon = 10^{-2}$. Bk model: $u^{bk}(\mu) = u_{g_0}(\mu), \ \mu \in \mathcal{P}^{bk} = [2, 10], \ g_0 \equiv 0.$ True state: $u^{\text{true}} = u_{\overline{e}}(\mu^{\text{true}}),$ $\mu^{\text{true}} \in \mathcal{P}^{\breve{b}\breve{k}} \ \bar{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)).$ **Observations:** $\{y_m = \text{Gauss}(u^{\text{true}}; x_m^o, r_w) + \epsilon_m\}_{m=1}^M$. Gauss $(v; \bar{x}, r_{w}) = C(x_{m}^{o}) \int_{\Omega} e^{-\frac{1}{2r_{w}^{2}} \|x - \bar{x}\|_{2}^{2}} v(x) dx$

Centers: $\{x_m^o\}_m$ deterministic (SGreedy+approx), **Choice of** ξ : holdout validation $\{x_i^{o}\}_i$ drawn randomly (uniform), I = M/2; **Background:** $\{\mathcal{Z}_N\}_N$ generated using the weak-Greedy algorithm; Update space: $\{\psi_m(\cdot) = \phi_i(\|\cdot - x_m^o\|_2)\}_m, i = 1, 2$ $\phi_1(r) = (1-r)^4_{\perp}(4r+1)$, csRBF $\phi_2(r) = \frac{1}{(1+r^2)^2}$ (inverse-multiquadrics)

G Rozza, DBP Huynh, AT Patera, 2008; H Wendland, 2004.

Details (II): measurement noise

Observations:
$$y_m = \ell_m^o(u^{\text{true}}) + \epsilon_m, \ \epsilon_m = \epsilon_m^{\text{re}} + i\epsilon_m^{\text{im}}, \ \epsilon_m^{\text{re}} \stackrel{\text{id}}{\sim} \mathcal{N}(0, \sigma_{\text{re}}^2), \quad \epsilon_m^{\text{im}} \stackrel{\text{id}}{\sim} \mathcal{N}(0, \sigma_{\text{im}}^2); \ \sigma_{\text{re}} = \frac{1}{\text{SNR}} \times \text{std} \left(\{ \Re \left(\ell_m^o(u^{\text{true}}) \right) \}_{m=1}^M \right); \ \sigma_{\text{im}} = \frac{1}{\text{SNR}} \times \text{std} \left(\{ \Im \left(\ell_m^o(u^{\text{true}}) \right) \}_{m=1}^M \right). \end{cases}$$

Details (II): measure of performance

$$egin{split} \mathcal{E}_{ ext{avg}}^{ ext{rel}} &= rac{1}{|\mathcal{P}_{ ext{train}}^{ ext{bk}}|} \; \sum_{\mu \in \mathcal{P}_{ ext{train}}^{ ext{bk}}} \; rac{\|u^{ ext{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^2(\Omega)}}{\|u^{ ext{true}}(\mu)\|_{L^2(\Omega)}}, \end{split}$$

 $\mathcal{P}_{\text{train}}^{\text{bk}} \subset [2, 10], |\mathcal{P}_{\text{train}}^{\text{bk}}| = 10.$

If SNR < ∞ (noisy measurements), computations of $\|u^{\text{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^{2}(\Omega)}$ are averaged over K = 35 trials.

Visualization ($N = 6, M = 25, \mu^{\text{true}} = 8.28, r_{\text{w}} = 0.01$)

1. Background approximation: compute z_{ε}^{\star} .

Update space is built using inverse multiquadrics.

 Z_{ξ}^{\star} can be computed directly by assembling the Schur's complement associated with $\mathbb{A}(\xi)$: this leads to a two-step procedure for the computation of the PBDW estimate. 28

Visualization $(\textit{N}=6,\textit{M}=25,\mu^{ ext{true}}=8.28,\textit{r}_{ ext{w}}=0.01)$

2. Correction: compute $\eta_{\mathcal{E}}^{\star}$.

Update space is built using inverse multiquadrics.

 z_{ξ}^{\star} can be computed directly by assembling the Schur's complement associated with $\mathbb{A}(\xi)$: this leads to a two-step procedure for the computation of the PBDW estimate.

Visualization (
$$N = 6, M = 25, \mu^{ ext{true}} = 8.28, r_{ ext{w}} = 0.01$$
)

3. Final estimate: compute $u_{\varepsilon}^{\star} = z_{\varepsilon}^{\star} + \eta_{\varepsilon}^{\star}$.

Update space is built using inverse multiquadrics.

 Z_{ξ}^{\star} can be computed directly by assembling the Schur's complement associated with $\mathbb{A}(\xi)$: this leads to a two-step procedure for the computation of the PBDW estimate.

N convergence (SNR = ∞ , $r_w = 0.05$)

If $u^{\text{true}} \in \mathcal{M}^{\text{bk}}$, we observe exponential convergence in N; if $u^{\text{true}} \notin \mathcal{M}^{\text{bk}}$, increasing N does not asymptotically improve accuracy.

M convergence: $(SNR = \infty, N = 6)$

Use of inverse-multiquadrics significantly improves performance, particularly for small values of $r_{\rm w}$.

M convergence: (SNR $< \infty$, *N* = 4, *r*_w = 0.01)

Use of inverse-multiquadrics significantly improves performance also for noisy measurements.

Interpretation of the hyper-parameter ξ : $u^{ ext{true}} \in \mathcal{M}^{ ext{bk}}$

Details: M = 100, I = 50, N = 5, $r_w = 0.01$, update based on inverse multiquadrics.

Interpretation of the hyper-parameter ξ : $u^{ ext{true}}
ot\in \mathcal{M}^{ ext{bk}}$

Details: M = 100, I = 50, N = 5, $r_w = 0.01$, update based on inverse multiquadrics.

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

A Fluid Mechanics problem

Let $(u, p) = (u_{\varphi}(\text{Re}), p_{\varphi}(\text{Re}))$ be the solution to $(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \sigma_{\mathrm{Re}}(\mathbf{u}, \mathbf{p}) = 0$ $\nabla \cdot \mu = 0$ $\sigma_{\rm Re}(u, p)n = 0$ on $\Gamma_{\rm out}$ $u|_{\Gamma_{in}} = g e_1, \quad u|_{\Gamma_{hom}} = 0$ Bk model: $g(x_2) = 4(1 - x_2)x_2$, Re \in [50, 350]. True state: $g(x_2) = 4(1 - x_2)x_2(1 + 0.1\sin(2\pi x_2))$, **Observations:** $y_m = C(x_m^o) \int_{\Omega} e^{-\frac{1}{2r_w^2} \|x - x_m^o\|_2^2} u^{\text{true}}(x) dx$. $=:\ell_m^o(u^{\text{true}})=\text{Gauss}(u^{\text{true}};x_m^o,r_w)$

Centers: $\{x_m^o\}_m$ deterministic (SGreedy+approx),

- Choice of $\xi: \xi \to 0^+$
- **Background:** $\{\mathcal{Z}_N\}_N$ generated using POD
- Update space: $\{\psi_{2m-i}(\cdot) = R_{\mathcal{X}} \text{Gauss}(\cdot \cdot e_i, x_m^o, R_w)\}_{m=1,...,M, i=1,2},$ $\mathcal{X} = \{v \in [H^1(\Omega)]^2 : \nabla \cdot v = 0, v|_{\Gamma_{\text{hom}}} = 0\}$ $\|\cdot\|_{\mathcal{X}} = \|\nabla \cdot\|_{L^2(\Omega)}.$

 $\psi_1, \ldots, \psi_{2M}$ are divergence-free and satisfy homogeneous conditions on $\Gamma_{\text{hom}} = \partial \Omega \setminus (\Gamma_{\text{in}} \cup \Gamma_{\text{out}}).$

M- convergence: (SNR = ∞ , N = 5, $r_{\rm w}$ = 0.01)

Increasing $R_{\rm w}$ leads to an improvement in accuracy.

Localized state estimation: $\Omega \subset \Omega^{\rm bk}$

MethodologyNumerical results

Localized state estimation: $\Omega \subset \Omega^{\rm bk}$

MethodologyNumerical results

Objective: estimate the state in a subregion Ω of the original domain $\Omega^{\rm pb}$.

¹Photo credits: www.comsol.com

Localization strategy (Taddei & Patera, SISC, accepted)

Strategy: restrict computations to Ω^{bk} , $\Omega \subset \Omega^{bk} \subset \Omega^{pb}$. uncertainty in global inputs \Rightarrow uncertainty at port Γ^{in} . Solution manifold

$$\mathcal{M}^{\mathrm{bk}} = \left\{ u_g^{\mathrm{bk}}(\mu) |_{\Omega} : \underbrace{\mu \in \mathcal{P}^{\mathrm{bk}}}_{\text{parameters}} \underbrace{g \in \mathcal{T} = \mathcal{T}(\Gamma^{\mathrm{in}})}_{\text{boundary conditions}} \right\}$$

Localization strategy (Taddei & Patera, SISC, accepted)

Strategy: restrict computations to Ω^{bk} , $\Omega \subset \Omega^{bk} \subset \Omega^{pb}$. uncertainty in global inputs \Rightarrow uncertainty at port Γ^{in} . Solution manifold

$$\mathcal{M}^{\mathrm{bk}} = \left\{ u_g^{\mathrm{bk}}(\mu) |_{\Omega} : \underbrace{\mu \in \mathcal{P}^{\mathrm{bk}}}_{\text{parameters}} \underbrace{g \in \mathcal{T} = \mathcal{T}(\Gamma^{\mathrm{in}})}_{\text{boundary conditions}} \right\}$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_N to approximate \mathcal{M}^{bk} **Fundamental question:** is the manifold reducible? (\leftrightarrow evanescence); **Challenge:** $\mathcal{P}^{bk} \times \mathcal{T}$ is infinite-dimensional.

41

A model problem in Acoustics

The red region is associated with a volumetric acoustic source.

A model problem in Acoustics

We consider the bk mathematical model: $\begin{cases} -(1+\epsilon i)\Delta u_{g}(\mu) - \mu^{2}u_{g}(\mu) = 0 & \text{in } \Omega^{bk}; \\ \partial_{n}u_{g}(\mu) = 0 & \text{on } \partial\Omega^{bl} \\ u_{g}(\mu) = g & \text{on } \Gamma^{\text{in}}. \end{cases}$ on $\partial \Omega^{\mathrm{bk}} \setminus \Gamma^{\mathrm{in}}$; while the true field satisfies (i = 1, 2) $\begin{cases} -(1+\epsilon i)\Delta u_{j}^{\text{true}}(\mu) - \mu^{2}u_{j}^{\text{true}}(\mu) = f & \text{in } \Omega^{\text{pb},j};\\ \partial_{n}u_{j}^{\text{true}}(\mu) = 0 & \text{on } \partial \Omega^{\text{pb},}\\ u_{j}^{\text{true}}(\mu) = h^{\text{true}} & \text{on } \Gamma \cdot \end{cases}$ on $\partial \Omega^{\mathrm{pb},j} \setminus \Gamma$:

Note that $u_1^{\text{true}}, u_2^{\text{true}} \in \mathcal{M}^{\text{bk}}$.

 $\mathcal{P}^{\mathrm{bk}} = \{ \bar{\mu} \}$: transfer eigenproblem (Pinkus, 1985)

Define $\mathcal{T} = H^{1/2}(\Gamma^{\text{in}}), \mathcal{Y} = H^1(\Omega)$, and

 $A:\mathcal{T}\to\mathcal{Y}$ s.t. $u_g(\bar{\mu})|_{\Omega}=A(g)$

Transfer eigenpb: $(A(\phi_n), A(g))_{\mathcal{Y}} = \lambda_n(\phi_n, g)_{\mathcal{T}} \quad \forall g$

 $\mathcal{P}^{\mathrm{bk}} = \{\bar{\mu}\}$: transfer eigenproblem (Pinkus, 1985)

Define $\mathcal{T} = H^{1/2}(\Gamma^{\text{in}}), \mathcal{Y} = H^1(\Omega)$, and $A: \mathcal{T} \to \mathcal{Y} \text{ s.t. } u_{g}(\bar{\mu})|_{\Omega} = A(g)$ **Transfer eigenpb:** $(A(\phi_n), A(g))_{\mathcal{Y}} = \lambda_n(\phi_n, g)_{\mathcal{T}} \quad \forall g$ **Proposition:** if A is compact, $\mathcal{Z}_{M}^{\text{te}} = \text{span}\{A(\phi_{n})\}_{n}$ (transfer eigenspace) minimizes the N-width: $d_N(A) := \inf_{Z_N \subset \mathcal{Y}, \dim(Z_N) = N} \sup_{g \in \mathcal{T}} \frac{\|A(g) - \prod_{Z_N}^{\mathcal{Y}} A(g)\|_{\mathcal{Y}}}{\|g\|_{\mathcal{T}}}$ furthermore, $d_N(A) = \sqrt{\lambda_{N+1}}$.

The map A is compact for a broad class of linear elliptic PDEs (Helmholtz, elastodynamics, Stokes (velocity),...)

Practical computation of the Transfer Eigenspace

Introduce $\mathcal{T}_{\mathcal{N}_{in}} = \operatorname{span}\{g_i\}_{i=1}^{\mathcal{N}_{in}}$. Estimate $\{(\phi_n, \lambda_n)\}_n$ as $\bar{\phi}_n = \sum_{i=1}^{\mathcal{N}_{in}} (\bar{\phi}_n)_i g_i$, where $\mathbb{U}\bar{\phi}_n = \bar{\lambda}_n \mathbb{T}\bar{\phi}_n$; $\mathbb{U}_{i,i'} = (\mathcal{A}(g_i), \mathcal{A}(g_{i'}))_{\mathcal{Y}}, \mathbb{T}_{i,i'} = (g_i, g_{i'})_{\mathcal{T}}$

²Randomization techniques can be used to reduce offline costs; see Buhr & Smetana, *Randomized Local Model Order Reduction*, SISC, accepted.

Practical computation of the Transfer Eigenspace

Introduce $\mathcal{T}_{\mathcal{N}_{in}} = \operatorname{span}\{g_i\}_{i=1}^{\mathcal{N}_{in}}$. Estimate $\{(\phi_n, \lambda_n)\}_n$ as $\bar{\phi}_n = \sum (\bar{\phi}_n)_i g_i$, where $\mathbb{U}\bar{\phi}_n = \bar{\lambda}_n \mathbb{T}\bar{\phi}_n$; $\mathbb{U}_{i,i'} = (\mathcal{A}(g_i), \mathcal{A}(g_{i'}))_{\mathcal{Y}}, \ \mathbb{T}_{i,i'} = (g_i, g_{i'})_{\mathcal{T}}$ If $\mathbb{T} = \mathbb{1}$ (i.e., $\{g_i\}_i$ orthonormal in \mathcal{T}) \Rightarrow TE = POD $\frac{\|A(g) - \Pi^{\mathcal{Y}}_{\overline{\mathcal{Z}}_{N}^{\mathrm{te}}}A(g)\|_{\mathcal{Y}}}{\|g\|_{\mathcal{T}}} \leq \|A\|_{\mathcal{L}(\mathcal{T}_{\mathcal{N}_{\mathrm{in}}}^{\perp},\mathcal{Y})} \frac{\|\Pi^{\mathcal{T}}_{\mathcal{T}_{\mathcal{N}_{\mathrm{in}}}^{\perp}}g\|_{\mathcal{T}}}{\|g\|_{\mathcal{T}}} + \sqrt{2}$

 $\mathcal{T}_{\mathcal{N}_{in}}$ should be chosen to reduce $\|A\|_{\mathcal{L}(\mathcal{T}_{\mathcal{N}_{in}}^{\perp},\mathcal{Y})}$. Here, we choose polynomials².

²Randomization techniques can be used to reduce offline costs; see Buhr & Smetana, *Randomized Local Model Order Reduction*, SISC, accepted.

$\mathcal{P}^{bk} \neq \{\bar{\mu}\}$: transfer eigenproblem + POD

Given $\mu^1, \ldots, \mu^{n_{\text{train}}} \in \mathcal{P}^{\text{bk}}$, compute $\mathcal{Z}_N^{\text{te}}(\mu^i) = \text{span}\{A(\phi_n^i; \mu^i)\}_{n=1}^N$ Apply POD to $\{A(\phi_n^i; \mu^i)\}_{i=1,\ldots,n_{\text{train}}, n=1,\ldots,N}$ $\mathcal{P}^{bk} \neq \{\bar{\mu}\}$: transfer eigenproblem + POD

Given $\mu^1, \ldots, \mu^{n_{\text{train}}} \in \mathcal{P}^{\text{bk}}$, compute $\mathcal{Z}_N^{\text{te}}(\mu^i) = \text{span}\{A(\phi_n^i; \mu^i)\}_{n=1}^N$ Apply POD to $\{A(\phi_n^i; \mu^i)\}_{i=1,\ldots,n_{\text{train}},n=1,\ldots,N}$

The approach can be seen as a Hierarchical Approximate POD.

 $\{\phi_n^i\}_{i=1,\ldots,n_{\text{train}},n=1,\ldots,N} \text{ should satisfy } \|\phi_n^i\|_{\mathcal{T}} = 1.$ The approach is affordable only for moderate values of $n_{\text{train}} \ (\Rightarrow \text{ low-dimensional parameterizations}).$

Himpe, Leibner, Rave, *Hierarchical Approximate Proper Orthogonal Decomposition*, Arxiv, 2016.

Localized state estimation: $\Omega \subset \Omega^{\rm bk}$

- Methodology
- Numerical results

Preliminaries

Observations: $y_m = \text{Gauss}(u^{\text{true}}; x_m^o, r_w)$ Update space: $\{\psi_m(\cdot) = \phi(2 \| \cdot -x_m^o \|_2)\}_{m=1}^M$ $\phi(r) = \frac{1}{(1+r^2)^2} \text{ (inverse multiquadrics)}$ Port space: $\mathcal{T}_{\mathcal{N}_{\text{in}}} = \text{span}\{\mathcal{L}_n\}_{n=1}^{\mathcal{N}_{\text{in}}}, \qquad \mathcal{N}_{\text{in}} = 20$ $\mathcal{L}_n n\text{-th}$ Legendre polynomial on Γ^{in}

Preliminaries

Observations: $y_m = \text{Gauss}(u^{\text{true}}; x_m^o, r_w)$ Update space: $\{\psi_m(\cdot) = \phi(2 \| \cdot -x_m^o \|_2)\}_{m=1}^M$ $\phi(r) = \frac{1}{(1+r^2)^2} \text{ (inverse multiquadrics)}$ Port space: $\mathcal{T}_{\mathcal{N}_{\text{in}}} = \text{span}\{\mathcal{L}_n\}_{n=1}^{\mathcal{N}_{\text{in}}}, \qquad \mathcal{N}_{\text{in}} = 20$ $\mathcal{L}_n n\text{-th}$ Legendre polynomial on Γ^{in}

We choose observation centers using SGreedy+approx.

We measure performance by computing the averaged relative L^2 error.

 $h^{\text{true}}(x_2) = \sin(k\pi x_2), \ k = 1, 2, 3.$

M convergence: $\mathcal{P}^{\mathrm{bk}} = \{ \bar{\mu} = 2 \}$ (SNR = $\infty, r_{\mathrm{w}} = 0.02$)

For $\overline{\mu} = 2$, solution to the transfer eigenproblem generates fast-converging approximation spaces for the problem at hand.

M convergence: $\mathcal{P}^{\mathrm{bk}} = [2, \overline{4}]$ (SNR = $\infty, r_{\mathrm{w}} = 0.02$)

Test: we consider equispaced $\mu^1, \ldots, \mu^{n_{\text{train}}}$ in \mathcal{P}^{bk} for training, $n_{\text{train}} = 11$ randomly-chosen $\mu^1, \ldots, \mu^{n_{\text{test}}} \in \mathcal{P}^{\text{bk}}$ for testing,

 $n_{\text{test}} = 5.$

Summary and perspectives

PBDW is a MOR approach for the efficient integration of parametrized mathematical models, and experimental observations for state estimation.
PBDW is a MOR approach for the efficient integration of parametrized mathematical models, and experimental observations

for state estimation.

MOR allows the efficient treatment of parametrized mathematical models.

User-defined updates provide the PBDW formulation with additional flexibility.

A priori analysis clarifies the role of several elements of the formulation.

PBDW is restricted to deterministic backgrounds, stationary processes, and fixed domains.

Possible extensions include

probabilistic backgrounds,

 $\mu \sim \mathbb{P}_{\mu}(\mathcal{P}^{\mathrm{bk}}) \Rightarrow \boldsymbol{\alpha} \sim \mathbb{P}_{\alpha}(\mathbb{R}^{N})$

time-dependent problems,

space-time recovery based on sparse measurements,

estimation in movable domains,

e.g., internal flows subjected to geometric uncertainty.

Thank you for your attention!

Backup slides

Scattered data approximation with RBFs³

- 1. Choose the PD RBF $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$
- 2. Characterize the properties of $\mathcal{X} = \mathcal{N}_{\Phi}$ for analysis.

Similarity: infinite-dimensional formulation used only for analysis.

Key difference: $\mathcal{X} = \mathcal{N}_{\Phi}$ and its inner product do **not** depend on x_1^o, \ldots, x_M^o .

³PBDW and RBF scattered data approximation are equivalent for $\mathcal{Z}_N = \emptyset, \{\ell_m^o = \delta_{x_m^o}\}_{m=1}^M$.