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Objective

Develop a model order reduction procedure for

the parametrized unsteady Navier-Stokes equations

in the turbulent regime.

We wish to efficiently and accurately estimate QOIs
associated with the velocity field

u(µ) = u(x , t;µ), x ∈ Ω ⊂ Rd ,
t ∈ (0,∞),
µ ∈ P ⊂ RP

in the limit of many queries.
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Efficient and accurate ROMs for turbulence

Efficiency: measured wrt the FOM in terms of
memory requirements;
computational time.

Accuracy: measured wrt the FOM in terms of

the long-time averaged flow 〈u〉 = lim
T→∞

1
T

∫ T

0
u(t) dt,

the TKE1 TKE(t) =
1
2

∫
Ω

‖u(x , t)− 〈u〉(x)‖22 dx .
For chaotic flows, prediction of the instantaneous velocity
is out of reach.

1More precisely, we shall estimate the moments of the TKE.
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The parametric problem: the offline/online paradigm

We seek an estimate of u(µ) of the form:

û(x , t;µ) =
N∑

n=1

an(t, µ)ζn(x) for all µ ∈ P .

Offline stage: expensive, performed once
given {u(·, tk , µ`)}k ,`, {tk}Kk=1 ⊂ (0,T ), {µ`}L`=1 ⊂ P ,

generate the reduced space Zu = span{ζn}Nn=1, and
formulate the Reduced Order Model

Online stage: inexpensive, performed many times
given µ ∈ P ,

estimate the coefficients {an(t;µ)}Nn=1 for t > 0.
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A simplified task: solution reproduction problem (P = {µ̄})

We seek an estimate of u(µ̄) s.t. û(x , t) =
N∑

n=1

an(t)ζn(x)

Offline stage:
given {u(·, tk , µ̄)}Kk=1,

generate the reduced space Zu = span{ζn}Nn=1, and
formulate the Reduced Order Model

Online stage:
query the ROM for the same µ = µ̄ to estimate
{an(t)}Nn=1 for t > 0.

Limited practical interest, but
key intermediate step toward the development of the ROM
formulation.
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Outline of the talk

1. A model lid-driven cavity problem

2. Solution reproduction problem

Galerkin ROM
constrained Galerkin ROM

3. Parametric problem

a posteriori error estimation
POD-hGreedy
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A model lid-driven cavity problem
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A lid-driven cavity problem2

Consider the problem:
∂tu + (u · ∇)u − 1

Re
∆u +∇p = 0 Ω× R+

∇ · u = 0 Ω× R+

u|∂Ω = g , u(0) = 0

Ω
Ω = (−1, 1)2

Re ∈ P = [15000, 25000]
(turbulent regime)

g = 0g = 0

g = 0

g = (1− x2
1 )2e1

2Model problem considered in Balajewicz, Dowell, Nonlinear Dyn (2012).
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Weak formulation for the lifted equations (ů := u − Rg)

Given Rg s.t. Rg |∂Ω = g , ∇ · Rg ≡ 0, find (ů, p) s.t.
〈∂t ů(t), v〉? +

1
Re

∫
Ω

∇(ů(t) + Rg) : ∇v dx

+c(ů(t) + Rg , ů(t) + Rg , v) + b(v , p(t)) = 0

b(ů(t), q) = 0 ∀ v ∈ V , q ∈ Q, a.e. t > 0.

where V = [H1
0 (Ω)]2, Q = {q ∈ L2(Ω) :

∫
Ω q = 0}, and

c(w , v , z) =

∫
Ω

(w · ∇)v · z dx , b(v , q) =−
∫

Ω

(∇ · v)q dx .

Choice for the lift: Rg = Stokes solution

The choice Rg = 〈u〉 is not suitable for the parametric case.
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High-fidelity model: SEM in Nek5000

We rely on the spectral element solver Nek5000 to
generate the DNS data.

We refer to nek5000.mcs.anl.gov for details concerning
the software.

Simulations were performed by Dr. Lambert Fick (Texas
A&M) at Argonne National Lab.

Deville, Fischer, Mund, Cambridge University Press (2002).
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Solution reproduction problem

A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin
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Galerkin ROM (semi-implicit time integration)

Given Zu := span{ζn}Nn=1 ⊂ Vdiv = {v ∈ V : ∇ · v = 0},
and {t j = j∆t}Jj=0, find {ûj}j ⊂ Zu such that(

ûj+1 − ûj

∆t
, v

)
L2(Ω)

+
1

Re

∫
Ω

∇(ûj+1 + Rg) : ∇v dx

+c(ûj + Rg , û
j+1 + Rg , v) = 0 ∀ v ∈ Zu, j = 0, 1, . . . ;

The space Zu is built through the DNS data {ůk = u(tk)
−Rg}Kk=1 ⊂ Vdiv using POD.
We consider the following choice of the inner product (·, ·):

(w , v) =
∫

Ω ∇w : ∇v dx H1 − POD

Iollo, Lanteri, Désidéri, Theor Comp Fluid Dyn (2000).
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Galerkin ROM: algebraic formulation (semi-implicit in time)

The coefficients aj = [aj1, . . . , a
j
N ] (↔ {ûj}j) solve

A(aj) aj+1 = F(aj) j = 0, 1, . . . , (û· =
∑

n a
·
nζn)

where A : RN → RN,N , and F : RN → RN are

Am,n(w) =
1

∆t

∫
Ω

ζn · ζm dx +
1

Re

∫
Ω

∇ζn : ∇ζm dx

+c(Rg , ζn, ζm) +
N∑
i=1

wi c(ζi , ζn, ζm)

Fm(w) =
N∑

n=1

wn

(
1

∆t

∫
Ω

ζn · ζm dx − c(ζn,Rg , ζm)

)
− 1

Re

∫
Ω

∇Rg : ∇ζm dx
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Computational summary (POD-Galerkin)

Offline stage:
Compute DNS data {uk = u(·, tk)}Kk=1, t

k = T0 + k

T0 = 500, K = 500
Use POD to build the space Zu = span{ζn}Nn=1

Define A : RN → RN,N , and F : RN → RN

Online stage:
Solve the discrete dynamical system:
A(aj)aj+1 = F(aj), j = 0, . . . , J − 1

Online memory requirements: O(N3).
Online cost: O(N3J).
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POD eigenvalues (Re = 15000)

POD eigenvalues {λN}N decay slowly with N .

uk := u(·, tk)
tk := 500 + k ,
k = 1, . . . ,K = 500

ζ1 ≈ C (〈u〉 − Rg) ⇒ no contribution to
fluctuating field∑N

k ′=2 λk ′∑K
k=2 λk

=


16.5% N = 2
73.1% N = 20
79.7% N = 30
87.0% N = 50 17



Numerical results (Re = 15000): performance (I)

Rel. error in 〈u〉 Mean TKE

We observe several spurious effects for moderate N :
false stable steady flows,
overly unstable flows...

For N & 50, accuracy improves.
18



Numerical results (Re = 15000): performance (II)

Moments of {an}n (ů(·, t) =
∞∑
n=1

an(t)ζn): N = 20

E (an, {tk}) =
1
K

K∑
k=1

an(tk),

V (an, {tk}) =
1

K − 1

K∑
k=1

(
an(tk)− E (an, {tk})

)2
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Numerical results (Re = 15000): performance (II)
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∞∑
n=1

an(t)ζn): N = 60

E (an, {tk}) =
1
K

K∑
k=1

an(tk),

V (an, {tk}) =
1

K − 1

K∑
k=1

(
an(tk)− E (an, {tk})

)2

19



Comments

POD-Galerkin approach does not provide an adequate
approximation of the long-time system dynamics,
particularly for moderate N .

We observe several spurious effects
false stable steady flows,
overly unstable flows...

This behavior is similar to the one observed for
highly-truncated spectral approximations to turbulent
flows.

Curry, Herring, Loncaric, Orszag, J Fluid Mech (1984).
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Solution reproduction problem

A first attempt: POD-Galerkin
Our proposal: POD-constrained Galerkin
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cGalerkin formulation (semi-implicit in time)

We propose the following ROM (cGalerkin):
aj+1 := arg min

w∈RN
‖A(aj)w − F(aj)‖22,

subject toαn ≤ wn ≤ βn, n = 1, . . . ,N .
A and F are the matrix-valued and vector-valued functions
introduced for the Galerkin ROM.

If aj+1
Gal := A(aj)−1 F(aj) satisfies the constraints,

cGalerkin = Galerkin.
For semi-implicit and explicit time discretizations,
cGalerkin corresponds to a convex quadratic
programming problem, which can be solved using an
interior point method.

22



cGalerkin formulation (semi-implicit in time)

We propose the following ROM (cGalerkin):
aj+1 := arg min

w∈RN
‖A(aj)w − F(aj)‖22,

subject toαn ≤ wn ≤ βn, n = 1, . . . ,N .
A and F are the matrix-valued and vector-valued functions
introduced for the Galerkin ROM.

If aj+1
Gal := A(aj)−1 F(aj) satisfies the constraints,

cGalerkin = Galerkin.
For semi-implicit and explicit time discretizations,
cGalerkin corresponds to a convex quadratic
programming problem, which can be solved using an
interior point method.

22



Estimates of {αn}n and {βn}n

αn and βn are lower and upper bounds for3

an(t) := (ů(t) = u(t)− Rg , ζn).
Given the snapshots {uk}Kk=1, we set {αn}n and {βn}n as
αn = mu

n − ε(Mu
n −mu

n), βn = Mu
n + ε(Mu

n −mu
n);

where ε = 0.014, and
mu

n := min
k=1,...,K

(ůk , ζn)V , Mu
n := max

k=1,...,K
(ůk , ζn)V .

The hyper-parameters {αn}n and {βn}n of cGalerkin
admit a simple interpretation, and
can be easily tuned based on sparse DNS data.

3NOTE 1: (ζm, ζn) = δm,n
4NOTE 2: {tk}k sampling times, {t j}j time grid, K � J. 23
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Computational summary (constrained POD-Galerkin)

Offline stage:
Compute DNS data {uk = u(·, tk)}Kk=1

Use POD to build the space Zu = span{ζn}Nn=1

Define A : RN → RN,N , and F : RN → RN

Define {αn}n and {βn}n based on the DNS data {ůk}k
Online stage:
Solve the discrete dynamical system:
aj+1 = arg min

w∈RN
‖A(aj)w − F(aj)‖22, s.t. αn ≤ wn ≤ βn

Online memory requirements: O(N3).
Online cost: O(N3 Jpure︸︷︷︸

Gal. solves

+ κN3︸︷︷︸
cost QP

(J − Jpure)).
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Numerical results (Re = 15000): performance (I)

Rel. error in 〈u〉 Mean TKE

The constrained Galerkin formulation consistently
underestimates the TKE.

For N & 40, aj+1 = aj+1
Gal for roughly 90% time steps.
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Numerical results (Re = 15000): performance (II)

Galerkin constrained Galerkin

For some values of N , 〈TKEcGal〉 > 〈TKEGal〉. For some
other values 〈TKEcGal〉 < 〈TKEGal〉.
⇒ cGalerkin does not add artificial viscosity to

Galerkin.
26



Numerical results (Re = 15000): performance (III)

Moments of {an}n (ů(·, t) =
∞∑
n=1

an(t)ζn): N = 20

E (an, {tk}) =
1
K

K∑
k=1

an(tk),

V (an, {tk}) =
1

K − 1

K∑
k=1

(
an(tk)− E (an, {tk})

)2

27



Numerical results (Re = 15000): performance (III)

Moments of {an}n (ů(·, t) =
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Numerical results (Re = 15000): performance (III)
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Behavior of the turbulent kinetic energy (N = 20)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 8.6 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 5.5 · 10−9.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Behavior of the turbulent kinetic energy (N = 40)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 9.4 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 1.7 · 10−7.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Behavior of the turbulent kinetic energy (N = 60)

〈TKE〉 = 9.4 · 10−4,

〈T̂KE〉 = 7.65 · 10−4;

V(TKE) = 8.5 · 10−8;

V(T̂KE) = 5.8 · 10−8.

Prediction of instantaneous TKE is out of reach.

Our results suggest that estimation of TKE moments is
achievable.
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Sensitivity analysis wrt ε (Re = 15000,N = 40)

ε enters in the definition of the bounds αn and βn:
αn = mu

n − ε(Mu
n −mu

n), βn = Mu
n + ε(Mu

n −mu
n);

Rel. error in 〈u〉 Mean TKE % aj+1 = aj+1
Gal

Interpretation: as N increases, the Galerkin model
becomes more and more accurate, and box constraints
become less and less important.
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Parametric problem

Error estimation
POD - hGreedy

30



POD-Greedy approach for the parametric problem

Offline stage:

Select Re?1, . . . ,Re?L in a Greedy fashion based on an error
indicator ∆u

Challenge 1: error estimation

Use snapshots {uk ,` = u(·, tk ,Re?`)} to generate the
reduced space Zu

Challenge 2: combination of modes
from different regimes

Build the ROM associated with the reduced space Zu

Haasdonk, Ohlberger, M2AN, (2008).
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Challenge 1: error estimation

Error estimators for evolution problems are based on
energy estimates, or

Haasdonk, Ohlberger, 2008
Grepl, Patera, 2005

BRR theory and space-time formulations.
Urban, Patera, 2014

Yano, 2014

These estimators bound the error in the full trajectory
⇒ inappropriate for turbulent flows.
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Challenge 2: combination of modes from different regimes

Re = 15000, t = 501, 600, 700

Re = 20000, t = 1252, 1266, 1344

Combining modes associated with different regimes lead to
poor performance.
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Parametric problem

Error estimation
POD - hGreedy
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Our proposal: time-averaged error indicator

Given {w j}j ⊂ Vdiv, define the residuals

e j(Re) =
w j+1 − w j

∆t
− 1

Re
∆(w j+1 + Rg)

+(w j + Rg) · ∇(w j+1 + Rg)

Then, define the time-averaged residual for all v ∈ Vdiv:

〈R〉({w j}j ; v ; Re) =
1

J − J0

J−1∑
j=J0

〈e j(Re), v〉V ′
div×Vdiv,

and the error indicator
∆u({w j}j ; Re) = ‖〈R〉({w j}j ; ·; Re)‖V ′

div
.
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Comments

If J − J0 →∞, 〈R〉 converges to the discretized residual
of RANS

Intuition: ∆u correlated to error in mean flow prediction.

∆u admits an offline/online decomposition, which requires

O(N2) Stokes’ solves offline
large storage cost if N2 > K ;

O(N4 + N2J) online computational cost
negligible computational cost compared to O(N3J).
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Evaluation of the error indicator

Test: generate ROMs for Re = 15000, 17000, 25000;
evaluate ∆u and the relative H1 error for
Re = 15000, 16000, . . . , 25000.

Error estimator is good indicator but poor quantitative
agreement with true error.

for 10/11 Re, the same ROM minimizes both the
relative error and ∆u.
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Parametric problem

Error estimation
POD - hGreedy
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POD - hGreedy: online stage (incomplete sketch)

Proposal:
given the three ROMs for Re = 15000, 17000, 25000,
for a new value of the Reynolds number,

select the ROM that minimizes the error indicator

The relative error is less than 13% for all values of the
Reynolds number considered.
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Comments

The hGreedy partitions the parameter domain P to deal
with different behaviors.

The hGreedy requires the solution to ncand (= 3 in this
case) ROMs during the online stage.

The anchor points Re =15000, 17000, 25000 can be
chosen in a Greedy fashion based on the error indicator.

Eftang, Knezevic, Patera, Math Comput Model Dyn Syst, (2011).
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Conclusions
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Challenges

Turbulent flows present several challenges.

Slow decay of the POD eigenvalues λN ;

reduce the goal of MOR 〈u〉,TKE

Several spurious behaviors

constrained formulation

Poor effectivity of traditional error indicators

time-avg residual indicator

Difficulty in combining modes from different regimes

hGreedy
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Thank you for your
attention!

For more information,
Fick, Maday, Patera, Taddei, A Reduced Basis Technique for Long-
Time Unsteady Turbulent Flows

available on Arxiv, and ResearchGate
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