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Abstract

We present a reduced basis technique for long-time integration of parametrized
incompressible turbulent flows. The new contributions are threefold. First, we
propose a constrained Galerkin formulation that corrects the standard Galerkin
statement by incorporating prior information about the long-time attractor.
For explicit and semi-implicit time discretizations, our statement reads as a con-
strained quadratic programming problem where the objective function is the Eu-
clidean norm of the error in the reduced Galerkin (algebraic) formulation, while
the constraints correspond to bounds for the maximum and minimum value of
the coefficients of the N -term expansion. Second, we propose an a posteriori
error indicator, which corresponds to the dual norm of the residual associated
with the time-averaged momentum equation. We demonstrate that the error
indicator is highly-correlated with the error in mean flow prediction, and can
be efficiently computed through an offline/online strategy. Third, we propose
a Greedy algorithm for the construction of an approximation space/procedure
valid over a range of parameters; the Greedy is informed by the a posteriori
error indicator developed in this paper. We illustrate our approach and we
demonstrate its effectiveness by studying the dependence of a two-dimensional
turbulent lid-driven cavity flow on the Reynolds number.
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1. Introduction

For turbulent flows, estimation of the entire solution trajectory through a
low-dimensional Reduced Order Model (ROM) is infeasible due to the slow decay
of the Kolmogorov N -width, and due to the sensitivity of the dynamical system
to perturbations. Nevertheless, it might still be possible to estimate various
moments of the solution associated to a Direct Numerical Simulation (DNS).
The goal of this work is to develop a Reduced Basis (RB) technique for long-
time integration of turbulent flows. Our equations of interest are the unsteady
incompressible Navier-Stokes equations for high-Reynolds number flows with
no-slip boundary conditions:

∂tu+ (u · ∇)u− 1
Re∆u+∇p = f in Ω× R+,

∇ · u = 0 in Ω× R+,

u = g on ∂Ω× R+,

u = u0 on Ω× {0},

(1)

where Ω ⊂ Rd, and f, g, u0 are suitable fields. We denote by µ ∈ P ⊂ RP the
set of parameters associated with the equations.

We consider two separate problems: the solution reproduction problem, and
the parametric problem. In the solution reproduction problem, given the veloc-
ity DNS data {u(tks ;µ)}Kk=1, and possibly the pressure DNS data {p(tks ;µ)}Kk=1,
at the sampling times {tks }Kk=1 ⊂ R+, we wish to construct a ROM that ap-
proximates — in a sense that will be defined soon — the original DNS data
for the same value of the parameter µ. In the parametric problem, we wish
to construct a ROM that approximates the DNS data for all values of µ in a
prescribed parameter range P ⊂ RP . For the parametric problem, we wish to
control the offline costs associated with the construction of the reduced space:
this implicates a Greedy (rather than POD) strategy in parameter. Although
the solution reproduction problem might be of limited interest in practice, it
represents the first step towards the development of a ROM for the parametric
problem.

Following [1], we quantify the accuracy of the ROM by computing the error

in the long-time average 〈u〉(x) := limT→∞
1
T

∫ T
0
u(x, t) dt, and the error in the

turbulent kinetic energy TKE(t) = 1
2

∫
Ω
‖u(x, t)−〈u〉(x)‖22 dx where ‖ · ‖2 is the

Euclidean norm. We remark that, at present, there is no universally-accepted
notion of ROM accuracy for turbulent flows. In [2], the authors evaluate different
ROMs based on five different criteria: the kinetic energy spectrum, the mean
velocity components, the Reynolds stresses, the root mean square values of the
velocity fluctuations, and the time evaluations of the POD coefficients. In [3],
the authors consider just the time evaluations and the power spectra of selected
POD coefficients. From an engineering perspective, the definition of accuracy is
entirely determined by the particular quantity of interest we wish to predict: for
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this reason, we envision that for several applications accurate estimates of the
long-time averages and possibly of the turbulent kinetic energy might suffice.

The most popular approach for the solution reproduction problem is the so-
called POD-Galerkin method [4, 5, 6, 7]: first, we generate a reduced space Zu =
{ζn}Nn=1 for the velocity field by applying the Proper Orthogonal Decomposition
(POD, [8, 9, 10]) in the L2 inner product; then, we estimate the velocity field

for each time-step t1g, . . . , t
J
g as ûj(·) =

∑N
n=1 a

j
n ζn(·) where the coefficients

aj = [aj1, . . . , a
j
N ] are computed by projecting the momentum equation onto

the space Zu. Since all DNS data for the velocity are divergence-free, it is
straighforward to verify that POD modes ζ1, . . . , ζN are divergence-free, and so
is the ROM solution.

As observed by several authors, ROMs based on L2 POD-Galerkin are prone
to instabilities [11, 12, 13]. This can be explained through a physical argument.
In the limit of high-Reynolds numbers, large-scale flow features are broken down
into smaller and smaller scales until the scales are fine enough that viscous forces
can dissipate their energy ([14]). This implies that small-scale modes have sig-
nificant influence on the dynamics. POD modes based on the L2 inner product
are biased toward large, high-energy scales: since large scales are not endowed
with the natural energy dissipation tendency of the smaller lower-energy vis-
cous scales, this leads to instabilities and/or large errors in the estimate of the
turbulent kinetic energy.

To address the issue of stability, several strategies have been proposed: (i) in-
cluding dissipation via a closure model, (ii) modifying the POD basis by includ-
ing functions that resolve a range of scales, (iii) employing a minimum residual
formulation, (iv) employing stabilizing inner products, (v) calibration methods,
and (vi) generating the reduced space through Dynamic Mode Decomposition.
Below, we briefly describe each strategy, and we provide some references; we
remark that most of the works presented below are restricted to either laminar
flows or short-time integration; therefore, they do not directly address the prob-
lem of interest (the long-time integration of fully-turbulent flows). We also recall
that other topics are treated in the literature: in particular, Noack et al. [15]
proposed to incorporate pressure in the ROM for cases with other than no-slip
boundary conditions. For the problem considered in this paper, the discussion
of [15] is not relevant, and is here omitted.

(i) Starting with the pioneering work in [16], several authors have proposed to
include dissipation through the vehicle of a closure model. A first class of
models is designed and motivated by analogy with Large Eddy Simulation
(see [17] for an introduction to LES): in this respect, Couplet et al. ([18])
and Noack et al. ([19, section 4.2]) provide theoretical and numerical evi-
dence that the energy transfer among L2-based POD modes is similar to
the energy transfer among Fourier modes, and for this reason LES ideas
based on the energy cascade concept might be promising for POD-ROMs.
Closure models belonging to this class are inspired by detailed analyses of
the physical reasons of the fragility of POD models — mode deformation
[13], departures from energy preservation of quadratic terms [3], and need
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for nonlinear eddy viscosity [20]. We remark that in [18, 19, 3, 20] the
POD space is built for the fluctuating field uf = u− 〈u〉 for a fixed value
of the parameters (solution reproduction problem) based on the L2 in-
ner product: for this reason, it appears difficult to rigorously apply these
ideas in the parametric setting in which we must combine modes associated
with different parameters. Another class of closure models is based on the
extension of stabilization techniques originally introduced in the Finite
Element or Spectral framework: two notable examples are the Spectral
Vanishing Viscosity Model (SVVM, [21], see also [22]) originally presented
by Tadmor in [23] for spectral discretization of nonlinear conservation laws
for controlling high-wave number oscillations, and the SUPG stabilization
discussed in [24]. Östh et al. [20] and Cordier et al. [3] consider a non-
linear extension of the SVVM for a high-Reynolds number incompressible
flow over an Ahmed body, and for a compressible 2D isothermal mixing
layer, respectively. We refer to [2] for a numerical comparison of four
closure models for incompressible Navier-Stokes equations: the mixing-
length model, the Smagorinsky model, the variational multiscale model,
and the dynamic subgrid-scale model. We further refer to [25] for another
POD closure model based on approximate deconvolution, and we refer to
[26] for a numerical comparison of several closure models for the Burgers’
equation. Finally, we mention the nonlinear Galerkin method proposed
by Marion and Temam in [27], and applied to the simulation of turbulent
flows in [28]. As the above-mentioned variational multiscale method, this
approach corrects the standard Galerkin model by exploiting the separa-
tion between large-scale and small-scale modes. The nonlinear Galerkin
method has been applied in the model reduction framework in [29].

(ii) Another approach is based on including in the POD basis functions that
resolve a range of scales. Bergmann et al. in [30] (see also [31]) proposed
to augment the original POD basis with a second POD performed on the
residuals of the momentum equation (and of the mass equation in case
pressure is modelled by the ROM); on the other hand, Balajewicz and
Dowell proposed a Greedy technique to include in the basis random linear
combinations of low-energy POD modes associated with the L2 inner
product.

(iii) Minimum residual formulation was first introduced in the reduced ba-
sis framework in [32] for linear noncoercive problems, and then extended
to fluid problems in [33, 34, 11, 35]. Given the reduced space Zu for
velocity (and possibly the reduced space Zp for pressure), after having
discretized the equation in time, the latter approach computes the solu-
tion in Zu (or Zu × Zp) that minimizes a suitable dual residual at each
time-step. We remark that for problems with quadratic nonlinearities
minimum residual ROMs require O(N4) storage and the online cost for
each time-step is O(N4) for semi-implicit/explicit time-discretizations —
as opposed to O(N3) for standard POD-Galerkin ROMs. For this reason,
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hyper-reduction techniques are employed to reduce the online cost and the
memory constraints ([33, 34, 11]).

(iv) Iollo et al. in [36] proposed to employ the H1 inner product rather than
the more standard L2 inner product to generate the POD modes. This
choice is motivated by dynamic considerations: since small-scale modes
have relatively large H1 norm compared to their L2 norm, and recalling
that small scales are responsible for energy dissipation, the use of the
H1 inner product leads to a more dissipative reduced order model. We
remark that several other authors proposed to not employ the standard
L2 inner product ([37, 38, 39]); however, their choices were not motivated
by long-time stability considerations.

(v) If we denote by ȧ = F(a) the ROM for the coefficients of the POD expan-
sion, calibration techniques aim to identify the model F based on data. To
provide a concrete point of reference, Couplet et al. [40] proposed to cali-
brate the coefficients of F based on DNS data, under the assumption that
F is a polynomial of degree 2 in a. In recent years, calibration methods
have received significant attention in the Fluid Mechanics literature, par-
ticularly for system identification based on experimental data; we refer to
[41] for a thorough review. We also refer to [42] for a recent application of
related ideas in the MOR context. We observe that the ROM F depends
on the particular POD basis selected; for large values of N (dimension of
the POD space), calibration might require a substantial number of DNS
snapshots. Furthermore, calibration requires dense (in time) DNS data.

(vi) Dynamic Mode Decomposition (DMD) was first proposed by Schmid in
[43]; as shown by Rowley et al. in [44] DMD can be interpreted as an
algorithm for finding the Koopman modes associated with the nonlinear
discrete dynamical system obtained from the discretization of the Navier-
Stokes equations. Although several authors have proven the effectiveness
of DMD for the extraction of physically-relevant time scales and their
associated spatial structures ([44, 43, 45]), the work by Alla and Kutz
[46] represents one of the few examples of application of DMD within the
Galerkin framework.

Despite these advances, the solution reproduction problem remains an open
issue, particularly for turbulent flows. By performing a detailed analysis of the
performance of the POD-Galerkin approach, we empirically demonstrate that
in the case of turbulent flows POD-Galerkin ROMs might exhibit other spurious
effects such as false stable steady flows. This demonstrates the need for a more
fundamental correction to the POD-Galerkin formulation. We remark that a
similar issue has been observed in [21] by Sirisup and Karniadakis for long-time
integration of a POD-Galerkin ROM for a laminar flow past a cylinder, and —
in a different context — by Curry et al. in [47] for highly-truncated spectral
approximations to turbulent flows.

To our knowledge, there are very few works that systematically address the
parametric problem. Ma and Karniadakis ([6]), Galletti et al. ([7]), and Stabile
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et al. ([48]) developed a reduced order model based on POD-Galerkin for the
flow past a cylinder for a wide range of Reynolds numbers in the laminar regime.
In these papers, the authors use DNS data for pre-selected Reynolds numbers
to generate reduced spaces for velocity ([6, 7]), and for velocity and pressure
([48]). The choice of the parameters for which the DNS data are computed is
performed a priori. Non-adaptive explorations of the parameter space typically
require a large number of offline evaluations of the Full Order Model (FOM);
for this reason, they might not be practical in our context.

The goal of this work is to develop a Model Order Reduction (MOR) pro-
cedure for the parametrized incompressible Navier-Stokes equations. The three
key pieces of our MOR technique are (i) a reduced formulation for the computa-
tion of the reduced-order solution, (ii) an a posteriori indicator for the error in
the prediction of the mean flow, and (iii) a H1-POD-hGreedy strategy for the
construction of the reduced space informed by the above-mentioned a posteriori
indicator.

(i) Our reduced formulation is based on a constrained Galerkin formulation.
The approach is designed to correct the standard Galerkin formulation,
especially for moderate values of N . For explicit and semi-implicit time
discretizations the formulation reads as a quadratic programming prob-
lem where the objective function corresponds to the Euclidean norm of
the error in the reduced Galerkin (algebraic) formulation, while the con-
straints correspond to bounds for the maximum and minimum value of
the coefficients {ajn}Nn=1 ⊂ R of the expansion. We discuss an actionable
procedure to estimate the lower and upper bounds associated with each
coefficient of the reduced expansion based on DNS data.

(ii) Our error indicator corresponds to the dual norm of the residual associated
with the time-averaged momentum equation. Time-averaging is here mo-
tivated by the chaotic behavior in time of the velocity field. We verify that
the error indicator can be efficiently computed through an offline/online
strategy; furthermore, we numerically demonstrate that the indicator is
highly-correlated with the error in the mean flow prediction: therefore,
it is well-suited to drive the Greedy procedure for the generation of the
ROM.

(iii) As in the seminal work by Haasdonk and Ohlberger [49], our POD- hGreedy
algorithm combines POD in time with Greedy in parameter. The proce-
dure is a simplified version of the h-type Greedy proposed in [50]. Given
µ1 ∈ P, we generate the DNS data for µ1, we apply POD — based on the
H1 inner product — to generate the reduced space Zu

1 , we build the POD-
ROM, and we evaluate the error indicator ∆u

1(µ) for all µ ∈ Ptrain ⊂ P.
Then, we select µ2 that maximizes the error estimate ∆u

1 over the train-
ing set Ptrain. During the second iteration, we perform the same steps as
before for µ2 (generation of DNS data, POD, construction of the ROM,
estimate of the error). Finally, we select µ3 that maximizes ∆u

1,2(µ) :=

min{∆u
1(µ),∆u

2(µ)} over Ptrain. We then proceed to generate µ4, . . . , µL.
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At the end of the offline stage, the procedure produces L different ROMs;
during the online stage, given a new value of µ ∈ P, we first evaluate the
ROMs associated with the ncand nearest anchor points, and then we select
the ROM that minimizes the error indicator.

We observe that in this work we restrict ourselves to linear approximation spaces
Zu that do not depend on time: this greatly simplifies the implementation,
and reduces the memory constraints for long-time integration. We refer to
[51, 52, 53] for MOR strategies based on nonlinear approximation spaces for
unsteady problems. On the other hand, we refer to [54, 55] for space-time
approximations of linear and nonlinear parabolic problems.

The idea of employing a constrained formulation is new in the MOR frame-
work for turbulent flows. For system identification, Colin et al. [56] proposed a
Galerkin model with constraints on the maximum and minimum value attained
by the POD coefficients for a tumor growth model; for steady-state data assimi-
lation, Argaud et al. [57] proposed a similar constrained formulation. As in our
work, the constraints in [56, 57] provide further information about the solution
manifold; however, while in our work the constraints are designed to compen-
sate for the effect of the unmodelled dynamics and ultimately improve long-time
stability, in [56, 57], constraints are designed to limit the effect of data scarcity
and/or experimental noise. Related constrained formulations with different sets
of constraints have also been proposed in [58] for system identification, and in
[59] for the reduction of unsteady PDEs.

As for calibration techniques and POD-Galerkin closure models, DNS data
are here used twice: first, to build the space Zu; second, to estimate the hyper-
parameters of the ROM. However, while the hyper-parameters of calibrated
ROMs and closure models are associated with the dynamic response of the
reduced system and admit a dynamical interpretation (e.g., a set of eddy vis-
cosities associated with different modes, [20]), the hyper-parameters of our con-
strained formulation (the lower and upper bounds for the coefficients of the
expansion) are directly associated with the solution manifold. As a result, the
latter can be tuned directly through sparse DNS data, for an arbitrary reduced
space Zu, without having to evaluate the ROM for several tentative candidates
(solution matching). This feature of the approach greatly simplifies the imple-
mentation of the method, and in practice reduces the offline costs. We remark
that in [20] the authors propose a method to tune linear and nonlinear eddy
viscosity models based on a modal power balance that does not require solu-
tion matching; however, the approach is restricted to L2 POD spaces for the
fluctuating field.

Another important feature — which we demonstrate empirically in section
3.2.2 — of our constrained ROM is that the box constraints do not necessarily
lead to a reduction of the TKE. This is in contrast with POD closure models,
which effectively add dissipation to the reduced system.

The time-averaged error indicator is also new. In [49], the authors employ a
residual estimator that measures the error in the entire trajectory: for turbulent
flows, this metric is not appropriate due to the chaotic nature of the dynamical
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system. This explains the importance of our new error indicator for the problem
at hand.

The POD-Greedy algorithm was first proposed in [49], and then analyzed in
[60]. The algorithm in [49] combines data from different parameters to generate
a single reduced space for the entire parameter space P. On the other hand,
in our approach we build a reduced space for each of them. Recalling the defi-
nitions of [50], the algorithm of [49] corresponds to a POD-pGreedy, while our
approach corresponds to a POD-hGreedy. For turbulent flows, we empirically
show in AppendixF that combining modes associated with different values of the
parameters might lead to poor performance. On the other hand, h-refinement
leads to more accurate and stable ROMs.

We finally remark that the objective of this paper is to develop a projection-
based intrusive ROM. Several authors have observed that the use of intrusive
ROMs might be cumbersome, particularly for industrial applications. For this
reason, non-intrusive approaches based on interpolation or regression (see, e.g.,
[61, 62, 63]) have been proposed for the estimate of (time-averaged) quantities of
interest. Although non-intrusive approaches are significantly less expensive to
evaluate and easier to integrate with existing DNS codes, they typically require
a larger amount of offline data compared to projection-based ROMs, particu-
larly for high-dimensional parameterizations and/or when parameter changes
induce a bifurcation or a substantial change in the form of the attractor. Fur-
thermore, non-intrusive approaches are typically restricted to the estimate of
steady quantities of interest.

The paper is organized as follows. In section 2, we introduce the model
problem considered in this work. In section 3, we consider the solution repro-
duction problem. First, we consider the POD-Galerkin approach: we introduce
the formulation, and we assess the numerical performance. Then, we present
our constrained POD-Galerkin approach: as in the previous case, we discuss the
formulation, and then we numerically assess the performance. In section 4, we
consider the parametric problem: first, we present the POD-hGreedy approach;
second, we discuss how to adapt the constrained Galerkin formulation to the
parametric setting; third, we propose the time-averaged error indicator; and
fourth, we present the numerical assessment. In section 5, we offer some con-
cluding remarks, and we discuss potential extensions of the current approach.
A number of appendices provide further analysis and numerical investigations:
in AppendixA we provide an analysis of the model problem considered; in Ap-
pendixB we discuss the selection of the sampling times {tks }Kk=1; in AppendixC
we propose a suitable definition of stability for ROMs; in AppendixD, we de-
rive a bound for the maximum norm of the increment at each time step for the
solution to the constrained Galerkin ROM; in AppendixE we investigate the
robustness of the constrained formulation proposed in this paper; in AppendixF
we illustrate the problem of p-refinement for the parametric case; in AppendixG
we describe the offline/online strategy employed to compute the error indicator;
and in AppendixH we provide computational timings associated with the overall
procedure. Figure 1 summarizes the key elements of the present work.
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ROM for parameterized turbulent flows

Solution reproduction problem
inherently high-dimensional dynamics
chaotic behavior
several spurious behaviors for truncated approxs

Reduced target: ROM for long-term statistics (〈u〉, TKE)

Constrained formulation: section 3.2

Parametric problem no reliable a posteriori estimators
detailed parameter explorations are unfeasible

Error indicators: section 4.3

POD-hGreedy for parameter sampling: section 4.1

Figure 1: Conceptual flow chart of the paper. Challenges for the solution reproduction problem
are a subset of the challenges for the parametric problem.
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2. A lid-driven cavity problem

We consider the following unsteady lid-driven cavity problem:

∂tu+ (u · ∇)u− ν(Re)∆u+∇p = 0 in Ω× R+,

∇ · u = 0 in Ω× R+,

u = g(x) on Γtop × R+,

u = 0 on ∂Ω \ Γtop × R+,

u = 0 on Ω× {0},

(2a)

where the velocity u : Ω × R+ → R2 is a two-dimensional vector field, the
pressure p : Ω × R+ → R is a scalar field, ν(Re) = 1

Re , Ω = (−1, 1)2, Γtop =
{x ∈ Ω̄ : x2 = 1}, the Dirichlet datum is given by

g(x) =

[
(1− x2

1)2

0

]
, (2b)

and the Laplacian ∆ should be interpreted as component-wise. We remark that
in (2) time is non-dimensionalized by the convective scaling (i.e., dimensional
boxside half-length divided by dimensional maximum lid velocity). The prob-
lem corresponds to a isothermal, incompressible, two-dimensional flow inside a
square cavity driven by a prescribed lid velocity. The problem is a well-known
prototypical example used to validate numerical schemes and reduced order
models ([1, 64, 65, 66, 67, 68]); unlike in the more standard lid-driven cavity
problem with g(x) = [1, 0], here we regularize the singularity near the upper
corners of the cavity.

In this paper, we study the dependence of the flow on the Reynolds num-
ber, that is µ = Re. It is well-known ([66]) that the flow exhibits a long-time
unsteady but stationary solution for Re > Rec ([66]); here stationarity implies
that all statistics are invariant under a shift in time ([69]). Since we are inter-
ested in long-time unsteady flows, we here consider Re ∈ P = [ReLB,ReUB] =
[15000, 25000]: for all values of Re in P the flow is asymptotically statistically
stationary. Balajewicz and Dowell considered the same problem — for a single
value of Re — in [1]; we remark that they define the viscosity as ν(Re) = 2

Re ,
and they consider the case Re = 30000.

In view of the development of the ROM for (2) it is convenient to consider
the lifted equations. If we denote by Rg the two-dimensional vector field defined
as the solution to the following Stokes problem:

−∆Rg +∇λ = 0 in Ω,

∇ ·Rg = 0 in Ω,

Rg = g on Γtop,

Rg = 0 on ∂Ω \ Γtop,

(3a)
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we can define the lifted velocity solution ů = u−Rg as the solution to:

∂tů+ ((̊u+Rg) · ∇) (̊u+Rg)− 1
Re∆ (̊u+Rg) +∇p = 0 in Ω× R+,

∇ · ů = 0 in Ω× R+,

ů = 0 on ∂Ω× R+,

ů(t = 0) = −Rg on Ω× {0}.

(3b)
Then, if we introduce the spaces V := [H1

0 (Ω)]2, and Q = {q ∈ L2(Ω) :
∫

Ω
q dx =

0}, we can define the weak form associated with (3): find (̊u, p) ∈ V × Q such
that for a.e. t > 0
〈∂tů(t), v〉? + 1

Re (̊u(t) +Rg, v)V + c(̊u(t) +Rg, ů(t) +Rg, v) + b(v, p(t)) = 0

∀ v ∈ V,

b(̊u(t), q) = 0 ∀ q ∈ Q,
(4a)

where V = {v ∈ L2
loc(R+;V ) : ∂tv ∈ L2

loc(R+;V ′)}, Q = L2
loc(R+;Q), 〈·, ·〉?

denotes the pairing between V ′ and V which (for our smoothness assumptions
and numerical approximations) can be evaluated in terms of the pivot space L2,
(w, v)V =

∫
Ω
∇w : ∇v dx is the inner product associated with V , and

c(w, u, v) =

∫
Ω

(w · ∇)u · v dx, b(v, q) = −
∫

Ω

(∇ · v)q dx. (4b)

We resort to a QM − QM−2 spectral element ([70]) discretization in space,
and to an explicit three-step Adams-Bashforth (AB3)/ implicit two-step Adams-
Moulton (AM2) discretization in time. DNS simulations are performed using the
open-source software nek5000 ([71]). We refer to the spectral element literature
(see, e.g., [72, 73, 74, 75]) for further details about the spectral element method
and its implementation for fluid dynamics problems. More in detail, we consider
a 16 by 16 structured quadrilateral mesh, we consider M = 8, and we resort to
an equispaced time grid {tjg = j∆t}Jj=0, with1 ∆t = 2 · 10−3. The number of
spatial degrees of freedom for velocity is equal to N = 25538. We estimate the
long-time averaged velocity field as2:

〈u〉g =
∆t

T − T0

J∑
j=J0+1

uj , (5)

where T0 = 500, T = tJg , and J0 is such that tJ0g = T0 = 500. Consequently, we

1 The time step is required to ensure stability of the run and maintain CFL ∼ 0.5− 0.6.
2In the current implementation, 〈u〉g is computed inside the time integration loop of the

Full Order Model.
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estimate the instantaneous turbulent kinetic energy as

TKEj :=
1

2

∫
Ω

‖uj − 〈u〉g‖22 dx. (6)

We refer to (5) and (6) as truth approximations of mean flow and instantaneous
TKE. In AppendixA, we provide a detailed analysis of the solution to the lid-
driven cavity problem (2).

In order to generate (and, later, assess) the ROM, we collect data at the
sampling times {tks = T0 + ∆tsk}Kk=1 with ∆ts = 1. We observe that {tks }Kk=1 ⊂
{tjg}Jj=J0 , and K � J : this is dictated by memory constraints. We further
observe that we do not collect data in the transient region: this is motivated by
the fact that we are here ultimately interested in the long-time dynamics. In the
remainder of the paper, we use the subscript “s” to indicate the sampling times,
and the subscript “g” to indicate the time discretization. Furthermore, we use
the symbol 〈·〉s to indicate time averages performed based on the sampling times,
and the symbol 〈·〉g to indicate time averages performed based on the time grid
{tjg}Jj=J0 . In particular, we define the truth estimate of the mean TKE as

〈TKE〉s =
1

2K

K∑
k=1

‖uk − 〈u〉g‖2L2(Ω). (7)

In AppendixB, we comment on the choice of ∆ts and K.

3. The solution reproduction problem

In this section, we propose a MOR procedure for the solution reproduction
problem. As explained in the introduction, the solution reproduction prob-
lem is of limited practical interest; however, it represents a key intermediate
step towards the development of a MOR procedure for the parametric prob-
lem. Algorithm 1 outlines the general offline/online paradigm for the solution
reproduction problem. We recall that the offline stage is expected to be expen-
sive and is performed once, while the online stage should be inexpensive and is
performed many times — this distinction is of little relevance here, but will be
crucial in section 4 for the parametric problem.

As anticipated in section 2, we here generate a ROM for the lifted velocity
field ů = u−Rg, where Rg is the solution to the Stokes problem (3a). Reduction
of the lifted equations is preferable from the MOR perspective since it greatly
simplifies the imposition of essential (Dirichlet) inhomogenous boundary condi-
tions. We observe that in the Fluid Mechanics literature many authors consider
Rg = 〈u〉g; however, the latter choice of the lift cannot be extended to the
parametric case.

This section is organized as follows. In section 3.1, we present the POD-
Galerkin ROM. We first introduce the formulation, we review Proper Orthogo-
nal Decomposition for the generation of the reduced space, and then we present
numerical results that highlight the limitations of the approach. In section 3.2,
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we present the constrained POD-Galerkin ROM proposed in this paper. As for
POD-Galerkin, we first present and motivate the mathematical statement, and
then we present a number of numerical results to motivate the approach.

Algorithm 1 Offline/online paradigm for the solution reproduction problem

Task: find an estimate of ů = ů(x, t) of the form û(x, t) =
∑N
n=1 an(t) ζn(x).

Offline stage

1: Generate the DNS data {ůk := ů(tks )}Kk=1 ⊂ V .

2: Generate the reduced space Zu = span{ζn}Nn=1.

3: Formulate the Reduced Order Model.

Online stage

1: Estimate the coefficients {ajn = an(tjg)}Nn=1 for j = 0, 1, . . . , J .

2: Compute the QOIs (e.g., mean flow, TKE,...)

3.1. The POD-Galerkin ROM

3.1.1. The Galerkin formulation

Given the reduced space Zu = span{ζn}Nn=1 ⊂ Vdiv = {v ∈ V : ∇ · v = 0},
we seek û ∈ VN := H1

loc(R+;Zu) such that
d

dt
(û(t), v)L2(Ω) +

1

Re
(û(t) +Rg, v)V + c(û(t) +Rg, û(t) +Rg, v) = 0

∀ v ∈ Zu,

û(0) = −ΠL2

ZuRg,

(8)

where ΠL2

Zu : [L2(Ω)]2 → Zu is the L2(Ω)-projection operator on Zu, and
(·, ·)L2(Ω) is the L2(Ω) inner product. If we employ a semi-implicit time dis-
cretization, we obtain:(

ûj+1 − ûj

∆t
, v

)
L2(Ω)

+
1

Re
(ûj+1 +Rg, v)V + c(ûj +Rg, û

j+1 +Rg, v) = 0

∀ v ∈ Zu, j = 0, 1, . . . ,
(9)

where ∆t = tj+1
g − tjg. We remark that the time scheme is not the same used by

nek5000. The Galerkin formulation (9) leads to the following algebraic system
for the coefficients {aj}Jj=0 of the N -term expansion:

A(aj ; Re) aj+1 = F(aj ; Re), j = 0, 1, . . . , (10a)
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where A(aj ; Re) := A1 + 1
ReA2 + C(aj), F(aj ; Re) := Eaj − 1

ReG, with

(A1)m,n =
1

∆t
(ζn, ζm)L2(Ω) + c(Rg, ζn, ζm), (A2)m,n = (ζn, ζm)V ,

(C(w))m,n =
∑N
i=1 wi c(ζi, ζn, ζm),

(10b)

and

Gm = (Rg, ζm)V , (E)m,n =
1

∆t
(ζn, ζm)L2(Ω) − c(ζn, Rg, ζm). (10c)

We observe that the Galerkin model for the velocity field does not contain the
pressure field. This follows from (i) the fact that the ROM is derived from the
weak form of the equations, (ii) the particular boundary conditions prescribed,
and (iii) the absence of parameters in the form b(·, ·). We have indeed that for
certain choices of the boundary conditions the ROM should be obtained from
the strong form of the Navier-Stokes equations: in this respect, we recall that in
[15] a Galerkin ROM is derived from the strong form for a laminar flow problem
with convective boundary condition ([76]) at the outflow. In the parametric case
it is possible to derive a ROM that does not contain the pressure field if the form
b(·, ·) in (4) is parameter-independent; otherwise, it is not possible in general
to generate a space Zu such that b(z, ·) ≡ 0 for all z ∈ Zu and for all values
of the parameters. Since the bilinear form b(·, ·) in (3) does not depend on the
Reynolds number, we will be able in section 4 to generate a ROM for the velocity
only. We remark that the case of parametrized b form corresponds to the case of
geometric parametrizations, which is of particular interest for applications. A
potential strategy to handle this issue is to resort to the Piola’s transform (see
[77]). We refer to a future work for a detailed discussion of this case. We also
refer to the Reduced Basis literature ([78, 79, 80, 81]) for a thorough discussion
about fluid problems in parametrized domains for low-to-moderate Reynolds
number flows.

The algebraic formulation (10) is the starting point for the development of
the offline/online decomposition. The matrices A1, A2, E, the third-order tensor
C and the vector G are pre-computed during the offline stage. Therefore, during
the online stage, the method only requires O(N3) storage, and the online cost
is O(N3J). Provided that N is much smaller than the spatial mesh-size N ,
the Galerkin ROM is significantly less expensive and less memory-demanding
than the FOM. Other choices of the time discretization lead to similar reduced
systems that allow the same offline/online decomposition. The flow chart in
Figure 2 summarizes the offline development of the POD-Galerkin ROM.

3.1.2. Construction of the reduced space: Proper Orthogonal Decomposition

We employ Proper Orthogonal Decomposition (POD, [8, 9, 82]) to generate
the reduced space Zu. Below we briefly review the numerical strategy — known
as method of snapshots ([82]) — employed for the computation of the POD
modes. We refer to [83] for a review of the theoretical results concerning the
optimality properties of POD.
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Figure 2: Flow chart of the POD-Galerkin process

Given the snapshot set {ůk}Kk=1, we assemble the Gramian U ∈ RK,K Uk,k′ =

(̊uk, ůk
′
)? where (·, ·)? is a suitable inner product that will be introduced soon;

then, we compute the first N eigenmodes of the symmetric matrix U:

Uζn = λn ζn, λ1 ≥ . . . ≥ λK ≥ 0; (11a)

finally, we define the POD modes as

ζn :=

K∑
k=1

(ζn)k ů
k, n = 1, . . . , N. (11b)

It is easy to show that ζ1, . . . , ζN can be chosen to be orthogonal in the (·, ·)?-
inner product; for stability reasons, we also orthonormalize the POD modes so
that (ζn, ζn′)? = δn,n′ , n, n′ = 1, . . . , N . In AppendixB, we discuss the choice of
the sampling times {tks }k, and we propose a numerical technique to assess the
accuracy of the POD space for the full trajectory.

In this work, we employ the H1
0 (Ω) inner product:

(w, v)? = (w, v)V =

∫
Ω

∇w : ∇v dx. (12)

As explained in the introduction, this choice is motivated by dynamic considera-
tions. Since small-scale modes have relatively large H1 norm compared to their
L2 norm, and recalling that small scales are responsible for energy dissipation,
the use of the H1

0 inner product leads to a more dissipative reduced order model
([36]).

3.1.3. Performance of the POD-Galerkin ROM

We assess the numerical performance of the POD-Galerkin ROM presented
in this section. We here consider the lid-driven cavity problem (2) for Re =
15000. We consider the time grid3 {tjg = ∆tj}Jj=0 with ∆t = 5 · 10−3 and J =

2·105 (T = tJg = 103), and we acquire the snapshots {ůk = ů(tks )}Kk=1 where tks =
500 + k and K = 500. The truth long-time averaged velocity field 〈u〉g and the

3 We emphasize that we consider a larger time step compared to the one employed in the
DNS solver, ∆t > ∆tFOM = 2 · 10−3. In our experience, refinement of the time grid does not
substantially influence performance of the ROM.
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mean truth TKE are estimated through (5) and (7), respectively. Assembling
and integration of the Reduced Order Model are performed in Matlab [84].

Figure 3(a) shows the behavior of the eigenvalues {λn}Kn=1. The first eigen-
mode is roughly proportional to 〈u〉g − Rg; provided that the estimate of the
coefficients is accurate, it does not contribute to the fluctuating field. Therefore,
we can identify the ratio

rN =

∑N
n=2 λn∑K
n=2 λn

as the portion of H1
0 energy of the fluctuating field associated with the reduced

POD space of dimension N . We find that rN = 0.165 for N = 2, rN = 0.731 for
N = 20, rN = 0.797 for N = 30, and rN = 0.87 for N = 50. We observe that
the decay with N is rather slow; this suggests that accurate estimates of the
entire system dynamics are out of reach for fully turbulent flows. Figure 3(b)
shows the behavior with N of the relative error in the mean flow prediction:

E0
N =

‖〈u− û〉g‖L2(Ω)

‖〈u〉g‖L2(Ω)
, E1

N =
‖〈u− û〉g‖H1

0 (Ω)

‖〈u〉g‖H1
0 (Ω)

;

while Figure 3(c) shows the behavior with N of the mean TKE predicted by the

ROM: 〈T̂KE〉s. We observe that for small values of N , we predict a false stable
steady flow, while for moderate values of N we substantially overestimate the
TKE. Finally, for N & 50 we observe a slow convergence of the Galerkin ROM
to the mean values (5) and (7).

(a) (b) (c)

Figure 3: The solution reproduction problem; POD-Galerkin. Figure (a): POD eigenvalues.
Figure (b): behavior of the relative L2 and H1 errors in mean flow prediction with N . Figure

(c): TKE prediction 〈T̂KE〉s vs. truth estimate (7) for multiple values of N . (Re = 15000).

Figure 4 shows the behavior for different values of N of the sample mean
and sample variance of the coefficients {ajn}j :

〈an〉s =
1

K

K∑
k=1

an(tks ), Vs(an) =
1

K − 1

K∑
k=1

(
an(tks )− 〈an〉s

)2
,

for the FOM and for the POD Galerkin ROM (POD-Gal). Figure 5 shows the
behavior of the TKE as a function of time for three values of N ; predictions
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of first and second order moments — based on sampling times — are reported
in the caption of the Figure. Results are consistent with the results in Figure
3. For small-to-moderate values of N , we observe several spurious behaviors,
namely convergence to false stable steady flows, and overly unstable flows. As
N increases, the accuracy of the Galerkin ROM appears to increase.

(a) N = 20 (b) N = 40 (c) N = 60

(d) N = 20 (e) N = 40 (f) N = 60

Figure 4: The solution reproduction problem; POD-Galerkin. Behavior of the sample mean
and sample variance of the coefficients {ajn}j . (Re = 15000).

(a) N = 20 (b) N = 40 (c) N = 60

Figure 5: The solution reproduction problem; POD-Galerkin. TKE prediction vs. truth

estimate (6) as a function of time for three values of N . 〈T̂KE〉s = 3.8 · 10−4 (N = 20),

3.5 ·10−3 (N = 40), 1.1 ·10−3 (N = 60). Vs(T̂KE) = 8.8 ·10−8 (N = 20), 6.5 ·10−6 (N = 40),
1.9 · 10−7 (N = 60). (〈TKE〉s = 9.4 · 10−4, Vs(TKE) = 8.5 · 10−8) (Re = 15000).

Interestingly, the behavior of the ROM observed here is qualitatively similar
to the one observed for highly-truncated spectral approximations to turbulent
flows ([47]). We argue that the need for large reduced spaces might greatly
reduce the benefit of Model Reduction: if the value of N required to obtain
sufficiently accurate results is too large, the resulting ROM might not lead to
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significant computational speed-ups, and might also not be beneficial in terms of
memory. This observation motivates the correction to the Galerkin formulation
proposed in the next section. We finally remark that the results shown in this
section suggest the need for a pragmatic definition of long-time stability: we
address this issue in AppendixC.

3.2. The constrained POD-Galerkin formulation

3.2.1. Formulation

Given the reduced space Zu = span{ζn}Nn=1 ⊂ Vdiv, and the time grid
{tjg}Jj=0, we seek the coefficients {aj}Jj=0 ⊂ RN such that

aj+1 := arg min
a∈RN

‖A(aj ; Re)a−F(aj ; Re)‖22, s.t. αn ≤ an ≤ βn, n = 1, . . . , N ;

(13)
where {αn}Nn=1 and {βn}Nn=1 are suitable hyper-parameters that will be spec-
ified later, and A(·; Re), F(·; Re) are defined in (10). Formulation (13) reads
as a constrained quadratic programming problem where the objective function
corresponds to the Euclidean norm of the error in the reduced Galerkin formula-
tion, while the constraints impose that each coefficient of the N -term expansion
remains in the interval [αn, βn], n = 1, . . . , N . We refer to (13) as constrained
(POD-)Galerkin formulation.

The hyper-parameters {αn}n and {βn}n are designed to compensate for the
effects of the unmodelled physics by embedding in the ROM formulation infor-
mation about the variation in time of the coefficients {ajn}j , for n = 1, . . . , N .
We observe that the solution coefficients {aj}j associated with (13) belong to
the region [α1, β1] × . . . × [αN , βN ] for all j: if maxn |αn|,maxn |βn| < ∞, the
reduced solution is guaranteed to be bounded for all time steps. We further
observe that, for each value of n, if we introduce the projection4 of the lifted
field on the n-th POD mode at time tjg, aFOM,j

n := (̊uj , ζn)V , we can interpret αn
and βn as lower and upper bounds for the sequence {aFOM,j

n }Jj=J0 , where J0 > 0
is introduced in (5) to discard the transient dynamics. The hyper-parameters
αn and βn are not directly related to the POD eigenvalues λn: the latter are
— up to a multiplicative constant — estimates of the squared `2-norm of the

coefficients, λn =
∑
k

(
aFOM,k
n

)2 ≈ K
J

∑
j

(
aFOM,j
n

)2
.

Based on the interpretation of the hyper-parameters, we propose to estimate
{αn}Nn=1 and {βn}Nn=1 based on the sample minima and the sample maxima
associated with the snapshots {ůk}Kk=1:

αn := mu
n − ε∆u

n, βn := Mu
n + ε∆u

n, (14a)

where mu
n and Mu

n are sample minimum and sample maximum associated with
the projection of the lifted field on the n-th POD mode,

mu
n = min

k
aFOM,k
n := (̊uk, ζn)V , Mu

n = max
k

aFOM,k
n ; (14b)

4We assume here that the POD eigenmodes {ζn}Nn=1 are orthonormalized.
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∆u
n is the sample estimate of the difference between maximum and minimum,

∆u
n := Mu

n −mu
n; (14c)

and the constant ε > 0 takes into account the fact that sample minima and sam-
ple maxima in (14b) are upper and lower bounds for the true minima and true
maxima, respectively. We emphasize that in our framework K � J ; therefore,
{aFOM,k
n }Kk=1 should be interpreted as a (deterministic) sample from the pop-

ulation {aFOM,j
n }Jj=J0 . Given the special features of the learning task at hand

— the estimation of minima and maxima of a population — we expect that we
can estimate the hyper-parameters based on sparse DNS data (i.e., data that
are not dense in any specific region of the time interval).

Accurate estimates of the hyper-parameters of the formulation based on
sparse DNS data represent an important feature of our constrained formulation.
As observed by many authors, low-frequency features of the turbulent flow —
which largely contribute to long-time flow averages — are well-represented by
the snapshots {ůk}Kk=1 and consequently by the POD space only if the sampling
times {tks }Kk=1 are not clustered in any specific region of the time interval. This
implies that both the ingredients of the ROM — the space Zu and the hyper-
parameters {αn}n and {βn}n — require the same sampling strategy for the
construction of the snapshot set. Therefore, the same dataset used to generate
the POD space is well-suited to estimate the hyper-parameters of the ROM. This
observation allows us to limit the size K of the snapshot set, and ultimately leads
to a reduction of the offline memory cost.

Unlike the standard POD-Galerkin ROM, we here use DNS data twice: first,
to build the space Zu; second, to estimate the hyper-parameters {αn}Nn=1 and
{βn}Nn=1. Furthermore, while POD-Galerkin is independent of the particular
basis ζ1, . . . , ζN chosen for Zu, the box constraints in (10) depend on the choice
of the basis. We emphasize that by choosing {ζn}n as basis of Zu we explicitly
incorporate (prior) information about the decay of the POD coefficients directly
in the formulation. Figure 6 shows the flow chart associated with the offline
development of the constrained POD-Galerkin ROM (compare with Figure 2).

We observe that if the solution to Galerkin ROM (10) — aj+1
Gal = A(aj ; Re)−1

F(aj ; Re) — satisfies the box constraints in (13), then aj+1 = aj+1
Gal . Therefore,

our constrained formulation corrects the Galerkin formulation only if aj+1
Gal does

not satisfy the prescribed bounds. This represents the main difference between
our approach and the other stabilized ROMs proposed in the literature and
briefly mentioned in the introduction: rather than introducing artificial dissipa-
tion in the Galerkin model, we exploit prior information about the attractor to
correct the ROM.

We finally comment on time discretization. In this work, we employ the
first-order semi-implicit time-discretization introduced in (9). However, the ap-
proach can be trivially extended to other time discretizations: first, we derive
the discrete Galerkin ROM from (8), then we substitute the resulting algebraic
formulation in the objective function of (13). For explicit and semi-implicit
single-step time integrators, the resulting constrained formulation corresponds
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Figure 6: Flow chart of the constrained POD-Galerkin process

to a quadratic programming problem, which can be solved using interior-point
methods (see, e.g., [85]). For fully-implicit single-step methods, the constrained
formulation reads as a nonlinear constrained optimization problem, which again
can be solved using interior-point methods or sequential quadratic programming.
We envision that the extension to multistep methods might require some ad-
ditional care since the solution is not guaranteed to be smooth in time when
the constraints are active. A thorough analysis of different time integrators is
beyond the scope of this paper: here, we remark that for single-step methods
there exists ∆t? > 0 such that for all ∆t ≤ ∆t? we have

‖aj+1 − aj‖2 ≤ C∆t, (15)

where C depends on the Reynolds number, {ζn}n, {αn}n, {βn}n and Rg. We
defer the proof to AppendixD.

3.2.2. Performance of the constrained POD-Galerkin ROM

We present numerical results for Re = 15000. Time grid {tjg}Jj=0 and sam-

pling times {tks }Kk=1 are the same considered for POD-Galerkin, if not specified
otherwise. As for the previous test the ROM is implemented in Matlab; the
quadratic programming problem is solved using the routine quadprog based on
an interior-point algorithm. We here set ε = 0.01 in (14).

Figure 7(a) shows the behavior of the relative L2 and H1 errors in the
mean flow prediction with N , while Figure 7(b) shows the behavior of the mean
predicted TKE with N . We observe that the constrained formulation leads
to a substantial improvement in performance compared to the standard POD-
Galerkin method (cf. Figures 3(b) and 3(c)): for N & 40 the relative error
in the mean is less than 2%, while the predicted mean TKE is bounded from
above by 〈TKE〉s for all values of N . Furthermore, we observe that the TKE
of our constrained Galerkin formulation is larger than the one predicted by the
Galerkin ROM for certain values of N , and is smaller for other values of N :
this empirically proves that our approach does not necessarily add dissipation
to the Galerkin ROM. Finally, we observe a distinctly non-monotonic behavior
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around N = 18, which corresponds to a change in the temporal dynamics of
the reduced system from chaotic (N = 18) to quasiperiodic (N = 20): since for
N ≈ 20 the flow is still extremely under-resolved, the constrained ROM does
not provide a stable (with N) representation of the dynamics.

In Figure 8, we repeat the tests of Figure 7 for ∆t′ = 0.5∆t = 2.5 · 10−3.
We observe that results are consistent with the results shown in Figure 7: this
provides empirical evidence for the stability of our constrained formulation un-
der time-step refinement. Figure 9 shows the behavior of the sample mean and
sample variance of the coefficients {ajn}j for three different values of N . Also
in this case, we observe a substantial improvement in performance compared to
POD-Galerkin, particularly for high modes. Finally, Figure 10 shows the be-
havior of the TKE as a function of time for three values of N . We observe that
for N = 40 and N = 60 the predicted TKE is in good qualitative agreement
with (6); in addition, predictions of first- and second-order moments (reported
in the caption) are accurate. In AppendixE, we present additional results to
demonstrate the efficiency of the constrained formulation, and also the robust-
ness with respect to the choice of ε; furthermore, in AppendixH we discuss in
detail the computational cost of the procedure.

(a) (b)

Figure 7: The solution reproduction problem; constrained POD-Galerkin. Figure (a): be-
havior of the relative L2 and H1 errors in mean flow prediction with N . Figure (b): TKE

prediction 〈T̂KE〉s vs. truth estimate (7) for multiple values of N . (Re = 15000, ε = 0.01).

(a) (b)

Figure 8: The solution reproduction problem; constrained POD-Galerkin for a finer time grid.
Figure (a): behavior of the relative L2 and H1 errors in mean flow prediction with N . Figure

(b): TKE prediction 〈T̂KE〉s vs. truth estimate (7) for multiple values of N . (Re = 15000,
ε = 0.01, ∆t = 2.5 · 10−3).
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(a) N = 20 (b) N = 40 (c) N = 60

(d) N = 20 (e) N = 40 (f) N = 60

Figure 9: The solution reproduction problem; constrained POD-Galerkin. Behavior of the
sample mean and sample variance of the coefficients {ajn}j . (Re = 15000, ε = 0.01).

(a) N = 20 (b) N = 40 (c) N = 60

Figure 10: The solution reproduction problem; constrained POD-Galerkin. TKE prediction

vs. truth estimate (6) as a function of time for three values of N . 〈T̂KE〉s = 8.6 · 10−4

(N = 20), 9.4 ·10−4 (N = 40), 7.7 ·10−4 (N = 60). Vs(T̂KE) = 5.5 ·10−9 (N = 20), 1.7 ·10−7

(N = 40), 5.8 · 10−8 (N = 60). (〈TKE〉s = 9.4 · 10−4, Vs(TKE) = 8.5 · 10−8) (Re = 15000,
ε = 0.01).

4. The parametric problem

We consider the extension of our MOR approach to the parametric con-
text. For the purpose of exposition, we focus our discussion on the lid-driven
cavity problem presented in section 2: we wish to estimate the solution to
(2) for Re ∈ P = [15000, 25000]. In view of the h-refinement, we intro-

duce the partition of P, I1, . . . , IM such that
⋃M
m=1 Im = P, Im ∩ Im′ = ∅.

We seek an estimate of the lifted velocity field ů = ů(x, t; Re) of the form

û(x, t; Re) =
∑N
n=1 a

m
n (t; Re)ζmn (x) for all Re ∈ Im. The approach can be

trivially extended to other parametric problems that do not involve geometric
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variations; as already mentioned in section 3, the extension to the latter case
is beyond the scope of the present work. Algorithm 2 summarizes the general
offline/online paradigm for the parametric problem. We highlight that, for the
sake of generality, in Algorithm 2 we distinguish between L (number of offline
solves) and M (number of reduced spaces). However, in this work we consider
the case L = M .

In order to tackle the parametric problem outlined above, we should ad-
dress two challenges: first, we should extend the constrained formulation to the
parametric case; second, we should develop a Greedy strategy for the proper
selection of the parameters Re?1, . . . ,Re?L, and the partition {Im}m. We empha-
size that a proper selection of the parameters reduces the number of offline full
order solves, and is thus crucial for the feasibility of the approach. In order to
address the first challenge, we propose an actionable procedure for the selection
of the hyper-parameters {αn}n and {βn}n associated with the constrained for-
mulation (13) in the parametric case. On the other hand, the Greedy approach
relies on an inexpensive error indicator, which corresponds to the dual norm of
the residual associated with the time-averaged momentum equation.

Algorithm 2 Offline/online paradigm for the parametric problem

Task: find an estimate of the lifted velocity field ů = ů(x, t; Re) of the form

û(x, t; Re) =
∑N
n=1 a

m
n (t; Re)ζmn (x) for all Re ∈ Im, m = 1, . . . ,M .

Offline stage

1: Generate the DNS data {ůk(Re`
?) := ů(tks ; Re?` )}Kk=1 ⊂ V , and

Re?1, . . . ,Re?L ∈ P.

2: Generate the partition {Im}m of P, and the reduced spaces Zu
m =

span{ζmn }Nn=1, m = 1, . . . ,M .

3: Formulate the Reduced Order Models for each subregion.

Online stage

1: Given Re ∈ P, find m ∈ {1, . . . ,M} such that Re ∈ Im.
2: Estimate the coefficients {am,jn (Re) = amn (tjg; Re)}Nn=1 for j = 0, 1, . . . , J .

3: Compute the QOIs (e.g., mean flow, TKE,...).

The section is organized as follows. In section 4.1 we present the POD-
hGreedy approach, in section 4.2 we present the ROM formulation, and we
discuss the choice of the hyper-parameters {αn}n and {βn}n. Then, in section
4.3 we propose the time-averaged error indicator. Finally, in section 4.4, we
present the numerical results for the lid-driven cavity problem.
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4.1. POD-Greedy algorithm

We first present the POD-hGreedy algorithm for the construction of the re-
duced spaces {Zu

m}Mm=1, and the partition {Im}Mm=1 of P, based on the results of
L FOM simulations associated with the parameters Re?1, . . . ,Re?L. The approach
is a simplified version of the h-refinement procedure for parabolic problems pro-
posed in [50]. In particular, we here consider L = M : this implies that each
reduced space Zu

` is based on the POD of a single full-order solve.
In view of the presentation of the algorithm, we introduce the discretized

parameter space Ptrain = {Rei}ntrain
i=1 , Re1 ≤ . . . ≤ Rentrain

, the integers L and
N , which fix the maximum number of offline solves and the size of the reduced
space Zu, the integer ncand < L, which is the number of ROM evaluations
performed online for a given value of the parameters, and the a posteriori error
indicator ∆u :

⊗J
j=0 V ×P → R+. The error indicator takes as input a sequence

{wj}Jj=0 ⊂ V and the value of the parameter, and returns an estimate of the
error in the prediction of the mean flow; we formally present the indicator in
section 4.3. We further introduce the functions

[{ζn}Nn=1] = PODV (S, N) ; [{ůk(Re)}Kk=1] = DNS-solver
(
Re, {tks }Kk=1

)
;

[{ûj(Re)}Jj=0] = ROM-solver (Re,Zu) .

PODV takes as input the set of snapshots S = {wi}|S|i=1 and an integer N > 0,
and returns the orthonormalized first N POD eigenmodes (see section 3.1.2); on
the other hand, DNS-solver takes as input the value of the Reynolds number
and the sampling times {tks }Kk=1, and returns the instantaneous velocity at times
{tks }Kk=1; finally, ROM-solver takes as input the value of the Reynolds number

and the reduced space Zu, and returns the ROM solution ûj =
∑N
n=1 a

j
nζn for

each time step of the grid {tjg}Jj=0. Algorithm 3 presents the computational
procedure for both offline and online stage. With some abuse of notation, we
use ∆u

` (·) to refer to the error estimate associated with the `-th model.
Algorithm 3 combines a POD in time with a Greedy in parameter. As

explained in the introduction, Greedy techniques are crucial to allow efficient
parameter explorations at an affordable offline computational cost. We empha-
size that our approach is different from the POD-Greedy strategy proposed in
[49]: rather than building L different reduced spaces, the authors of [49] combine
data from different parameters to generate a single reduced space.

We also remark that our definition of the partition — see Algorithm 3, Online
stage — can be formally expressed as follows:

I` = {Re ∈ P : ` ∈ I(Re), ∆u
` (Re) < ∆u

`′(Re), `′ ∈ I(Re), `′ 6= `} , (16)

where I(Re) ⊂ {1, . . . , L} is the set of indices associated with the ncand nearest
anchor points to Re.

4.2. Constrained Galerkin formulation

Given the reduced spaces {Zu
` = span{ζ`n}Nn=1}L`=1, we consider the con-

strained Galerkin formulation proposed in section 3: given Re ∈ P, and the
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time grid {tjg}Jj=0, the `-th ROM seeks the coefficients {aj`}Jj=0 ⊂ RN such that

aj+1
` := arg min

a∈RN
‖A`(aj ; Re)a− F`(a

j ; Re)‖22, s.t. α`n(Re) ≤ an ≤ β`n(Re),

n = 1, . . . , N ;
(17)

where A` and F` can be computed by exploiting (10) for the reduced space
Zu
` , and the constraints {α`n}n,` and {β`n}n,` are based on the DNS data for

the anchor point Re?` . In greater detail, given ` ∈ {1, . . . , L}, assuming that
ζ`1, . . . , ζ

`
N are orthonormal in V , we define {α`n}n and {β`n}n such that

α`n := mu
n,` − ε∆u

n,`, β`n := Mu
n,` + ε∆u

n,`, (18a)

Algorithm 3 POD-hGreedy algorithm for the construction of {Zu
` , I`}`

Offline stage: [{Zu
` }L`=1] = Offline (Ptrain, N, L,∆

u, {tks }Kk=1).
Inputs: Ptrain = {Rei}ntrain

i=1 = discretized parameter space, N = dimension of each
reduced space, L = maximum number of offline solves, ∆u = error indicator, {tks }Kk=1 =
sampling times.
Output: {(Zu

` ,Re?`}L`=1 = reduced space/anchor point pairs.

1: Re?1 = rand(Ptrain)

2: for ` = 1, . . . , L do
3: [{ůk(Re?` )}Kk=1] = DNS-solver

(
Re?` , {tks }Kk=1

)
4: [{ζ`n}Nn=1] = PODV

(
{ůk(Re?` )}Kk=1, N

)
5: Define Zu

` = span{ζ`n}Nn=1, build the ROM structures (cf. sections 3.1.1
and 4.3).

6: for i = 1, . . . , ntrain do
7: [{ûj`(Rei)}Jj=0] = ROM-solver (Rei,Zu

` );
8: Compute the error estimate ∆u

` (Rei)
9: end for

10: Re?`+1 = arg maxRe∈Ptrain
min`′=1,...,` ∆u

`′(Re).
11: end for

Online stage: [{ûj}j ] = Online ({(Zu
` ,Re?`}L`=1,∆

u, ncand,Re).
Inputs: {(Zu

` ,Re?`}L`=1 = reduced space/anchor point pairs, ncand = online ROM
evaluations, Re = input parameter.
Output: {ûj}j = solution estimate.

1: Find the ncand nearest anchors to Re: Re?(1), . . . ,Re?(ncand)

2: for i = 1, . . . , ncand do

3: [{ûj(i)}
J
j=0] = ROM-solver

(
Re,Zu

(i)

)
4: Compute the error estimate ∆u

(i)(Re)
5: end for
6: Return {ûj = ûj(i?)}j , where i? is the minimizer of {∆u

(i)(Re)}i.
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where

mu
n,` := min

k
aFOM,k
n,` , Mu

n,` := max
k

aFOM,k
n,` , ∆u

n,` := Mu
n,` −mu

n,`, (18b)

and aFOM,k
n,` := (̊uk(Re?` ), ζ

`
n)V . The offline/online decomposition is equivalent

to the one described in section 3.1.1. We omit the details.
We observe that our choices of α`n and β`n correspond to a constant approx-

imation of the functions

mFOM,u
n,` (Re) := min

j=J0,...,J

(
ůj(Re), ζ`n

)
V
, MFOM,u

n,` (Re) := max
j=J0,...,J

(
ůj(Re), ζ`n

)
V

;

(19)
where I` ⊂ P is defined in (16). We observe that the piece-wise constant

approximations of mFOM,u
n,` and MFOM,u

n,` are justified by our Greedy algorithm,
which adaptively determines the partition of P based on the error indicator.
For practical parametrizations, and practical values of L (i.e., number of offline

solves) we expect that accurate estimates of mFOM,u
n,` and MFOM,u

n,` over P might
be out of reach. Therefore, we here effectively rely on (i) the robustness of our
constrained approach to perturbations in the value of the hyper-parameters,
and (ii) the weak sensitivity of the functions mROM,u

n,` and MROM,u
n,` with respect

to the parameter. For the lid-driven cavity problem considered in this work, we
provide numerical evidence to support these two assumptions in AppendixE.

4.3. A time-averaged error indicator

Given the sequence {wj}Jj=0 ⊂ V and Re ∈ P, we define the discrete time-

averaged residual 〈R〉 :
⊗J

j=0 V × Vdiv × P → R associated with (9):

〈R〉
(
{wj}Jj=0, v; Re

)
=

∆t

T − T0

J−1∑
j=J0

e(ûj , ûj+1,Re) (20a)

where T = tJg , T0 = tJ0g , and

e(ûj , ûj+1,Re) :=

(
ûj+1 − ûj

∆t
, v

)
L2(Ω)

+
1

Re
(ûj+1 +Rg, v)V

+c(ûj +Rg, û
j+1 +Rg, v), j = J0, . . . , J − 1

(20b)

Then, we define the error indicator ∆u :
⊗J

j=0 V × P → R+ as follows:

∆u
(
{wj}Jj=0; Re

)
:=
∥∥〈R〉 ({wj}Jj=0, ·; Re

) ∥∥
V ′
div

(21)

where ‖ · ‖V ′
div

denotes the norm of the dual space V ′div.

In our numerical tests, as in (5), we consider J0 such that tJ0g = T0 = 500:
this choice is designed to limit the effect of the transient dynamics. It is easy to
verify that the solution to the FOM for any initial condition — provided that
the same time discretization is employed — satisfies ∆u ≡ 0. This implies that
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two sequences {wj}Jj=0, {w̃j}Jj=0 ⊂ V satisfying ∆u ≡ 0 might be far from each

other at each time step (i.e., ‖w̃j − wj‖V is large for any j ≥ 0). However,
for sufficiently large values of J , we expect ∆u to be highly-correlated with
the error in the mean flow prediction; for this reason, we can exploit ∆u to
guide the Greedy algorithm presented in section 4.1. We empirically investigate
the correlation between ∆u and the error in the mean flow prediction in the
numerical experiments at the end of the section. A theoretical justification of
the error indicator is beyond the scope of the present work.

The error indicator ∆u can be computed efficiently for sequences in Zu ex-
ploiting an offline/online computational decomposition; the procedure is stan-
dard in the Reduced Basis literature, and is reported in AppendixG.

Remark 4.1. We do not expect that the residual indicator (21) is in good quan-
titative agreement with the error in mean flow prediction ‖〈u−û〉g‖V . More pre-
cisely, if we define the effectivity η := ∆u

‖〈u−û〉g‖V of the residual error indicator,

we do not expect that η is close to one.
In order to obtain a quantitative estimate of the error of the ROM anchored

in Re?, we can consider the corrected estimator

∆u,corr(Re; Re?) :=
1

η(Re?)
∆u(Re), (22)

where ∆u(Re) is the error indicator associated with the ROM anchored in Re?,
and η(Re?) is the effectivity evaluated at Re = Re?. Note that the computation
of η(Re?) does not require any additional call to the DNS solver.

4.4. Numerical results

Figure 11 shows the results of the application of Algorithm 3 for the con-
struction of the ROM for the parametric problem. In order to assess perfor-
mance, we generate DNS data for tjg ∈ {0, . . . , 1500}, {tks = 500 + k}K=1000

k=1 for
Re = 15000, 16000, . . . , 25000 (ntrain = 11 datapoints). Then, we apply Algo-
rithm 3 with Re?1 = 15000, N = 80, and ε = 0.05. We perform L = 3 iterations
of the Greedy procedure. Figure 11(a) shows the behavior of ∆u with Re for
the three iterations, while Figure 11(b) shows the behavior of the relative H1

error in mean flow prediction with Re. The black continuous line denotes the
performance of the reduced model which minimizes the error indicator, and thus
is selected by the Greedy procedure (cf. Algorithm 3, ncand = 2). We observe
that the maximum relative error decreases at each iteration, and it is roughly
13% after the third iteration.

Results of Figure 11 show the importance of the error indicator ∆u in (21) to
select the parameters Re2 and Re3, and also motivate the choice of the partition
{I`}` in (16): after the third iteration, for 10 out of 11 values of the Reynolds
number, the reduced model that minimizes the error indicator (over all models)
is the same that minimizes the true error. On the other hand, we observe
that the indicator is in poor quantitative agreement with the true error: Figure
12(a) shows that the effectivity η of the error indicator is O(10−3) for all three
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(a) (b)

Figure 11: The parametric problem; performance of POD-hGreedy. Figure (a): behavior
of ∆u with Re for three iterations. Figure (b): behavior of the relative H1 error in mean
flow prediction with Re for three iterations; the black line (est) shows the performance of
the reduced model which minimizes the error indicator (and thus is selected by the Greedy
procedure). (ε = 0.05, N = 80,Re1 = 15000,Re2 = 25000,Re3 = 17000).

reduced order models and for all values of the Reynolds numbers considered.
However, Figure 12(b) shows that the correction proposed in Remark 4.1 leads
to an indicator that is in reasonable quantitative agreement with the error in
mean flow prediction.

(a) (b)

Figure 12: The parametric problem; error estimator. Figure (a): behavior of the effectivity
η of the error indicator ∆u (21) for the three ROMs. Figure (b): behavior of the effectivity
ηcorr of the corrected error indicator ∆u,corr (22) for the three ROMs.

Figure 13 shows the behavior of the TKE prediction (T̂KE) and of the truth
estimate (6) for three values of the Reynolds number, Re =16000, 20000, 23000,
which have not been selected by the Greedy procedure. Here, predictions are
based on the ROM after three iterations of Algorithm 2. For Re = 16000, we
observe significantly larger spikes for the ROM than for the FOM. These spikes,
which are associated with eddies that are ejected into the core region — see
AppendixA for further details — are observed in the DNS data for Re ≥ 17000:
since the ROM used for Re = 16000 is built using DNS data associated with
Re = 17000, modes associated with this flow feature enter in the reduced space
and ultimately make the ROM more prone to show this instability. On a positive
note, comparing the results of Figure 13(a) and Figure 13(b), we observe that
the spikes are significantly more pronounced for Re = 20000 even if the reduced
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space and the box constraints employed are the same: this empirically shows
that our ROM is sensitive to changes in the Reynolds number.

(a) Re = 16000 (b) Re = 20000 (c) Re = 23000

Figure 13: The parametric problem; TKE prediction (T̂KE) vs. truth estimate (6) as a func-
tion of time for three values of the Reynolds number. (ε = 0.05, N = 80, Re1 = 15000,Re2 =
25000,Re3 = 17000). Predictions for Re1 and Re2 rely on the ROM anchored in Re? = 17000,
while predictions for Re3 rely on the ROM anchored in Re? = 25000.

5. Conclusions

In this paper, we present a Reduced Basis technique for long-time integra-
tion of turbulent flows. The three contributions of this work are (i) a con-
strained Galerkin formulation that corrects the Galerkin statement by incor-
porating prior information about the long-time attactor, (ii) an inexpensive
time-averaged indicator for the error in mean flow prediction, and (iii) a POD-
hGreedy technique for the construction of the ROM. In order to assess per-
formance, we apply our approach to a lid-driven cavity problem parametrized
with respect to the Reynolds number: first, we consider the solution reproduc-
tion problem (non-predictive case) to demonstrate the effectivity of our new
constrained formulation; second, we consider the parametric problem (predic-
tive case) to validate our error indicator, and more broadly the POD-Greedy
procedure.

Our constrained Galerkin formulation is able to accurately predict mean
flow and also the TKE. The error indicator, even if it is not corroborated by
a firm theoretical analysis, is found to be highly-correlated with the error in
the prediction of the mean flow; hence, it is naturally suited to drive the offline
Greedy.

In this paper, we also highlight a number of challenges, which are particu-
larly relevant for turbulent flows, and that should be taken into consideration in
the design of MOR strategies for turbulent flows: first, the slow convergence of
the Kolmogorov N -width suggested by Figure 3(a) which prevents us from ac-
curately representing the full dynamics; second, the difficulty to combine modes
associated with different parameters (cf. AppendixF); third, the large offline
costs both in terms of computational time and required storage. In this pa-
per, we propose to address the first challenge by reducing our goal : rather than
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trying to estimate the full trajectory, we develop a ROM uniquely for the pre-
diction of first and second moments of the long-time dynamics. Furthermore,
we propose to address the second challenge by resorting to an h-refinement in
parameter. On the other hand, we here postulate that the snapshot set {uk}Kk=1

is rich enough to accurately estimate the first N POD modes associated with
the full trajectory {ůj}Jj=J0 , and also that it is possible to compute and store

the Riesz representers ξ̃1, . . . , ξ̃M , M = N2 + 3N + 2, for residual calculations.
In AppendixB, we review a computational strategy to assess a posteriori the
representativity of our snapshot set; on the other hand, we refer to a future
work for the development of computational strategies to reduce the offline costs
related to residual calculations.

We finally outline a number of potential next steps that we wish to pursue
in the future.

• Constrained formulation Our constrained formulation minimizes the `2 er-
ror in the reduced Galerkin statement subject to lower and upper bounds
for the coefficients of the N -term expansion. We wish to consider other
choices both for the objective functions and for the constraints. In par-
ticular, we wish to minimize the residual in a suitable dual norm, and
we wish to design other constraints to take into account the properties of
the attractor. Furthermore, we also wish to consider the post-processing
rectification method proposed in [86] to improve the accuracy of the mean
flow. Finally, we wish to consider alternative strategies for writing the
nonlinear term in the momentum equation, and also for imposing strong
boundary conditions.

• hp-Greedy In AppendixF, we discuss the limitation of the traditional POD-
(p)Greedy algorithm. However, in order to tackle complex parametriza-
tions, we envision that the h-refinement strategy proposed in this paper
might require an unfeasible number of offline simulations. This is why
we wish to consider more advanced sampling strategies that combine h-
refinement and p-refinement.

• Extension to more challenging problems We wish to consider geometry
variations, which are particularly relevant for applications. As explained
in the body of the paper, this might be accomplished by resorting to
the Piola transform, or by considering a two-field (velocity and pressure)
formulation. Furthermore, we wish to apply our approach to transient
problems: in order to face this task, we envision that time-dependent
constraints should be considered, and also the time-averaged error indi-
cator should be modified based on the particular quantity of interest we
wish to predict. Finally, we wish to apply our approach to the reduction
of LES/URANS flow simulations. This would substantially increase the
range of engineering applications we can tackle with our method.
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AppendixA. Analysis of the solution to the lid-driven cavity problem

Figure A.14 shows the velocity streamlines for three different times for
Re = 15000, while Figure A.15 shows the velocity streamlines for several times
for Re = 20000: for the latter value of the Reynolds number, we observe the
presence of vortices along the edges and in the center of the cavity. We remark
that the same behavior has been observed by Cazemier et al. in [65] (cf. Fig-
ure 3, page 1687). This rare behavior makes estimates of long-time averages
particularly difficult, especially for the TKE. Figure A.16 shows the behavior
of the turbulent kinetic energy TKE with time for three values of the Reynolds
number. We observe that for sufficiently large values of the Reynolds number
we have significant peaks in the TKE. These peaks correspond to eddies that
are ejected into the core region and cross the cavity.

(a) t = 501 (b) t = 600 (c) t = 700

Figure A.14: A lid-driven cavity problem. Velocity streamlines for Re = 15000.

(a) t = 1252 (b) t = 1266 (c) t = 1276

(d) t = 1286 (e) t = 1320 (f) t = 1344

Figure A.15: A lid-driven cavity problem. Velocity streamlines for Re = 20000 for several
time steps.
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(a) Re = 15000 (b) Re = 20000 (c) Re = 25000

Figure A.16: A lid-driven cavity problem. Behavior of the turbulent kinetic energy TKE with
time for three values of the Reynolds number.

Figure A.17 shows the behavior with time of the first and second components
of the velocity field at three spatial locations for Re = 15000 and Re = 25000.
We observe that for t & T0 = 500 the effects of the transient dynamics are
negligible. Figure A.18 shows the autocorrelation factors associated with the
time series {ui(xprobe

` , tj ,Re)}Jj=J0 for i, ` = 1, 2 and for Re = 15000, 25000. We

here define the autocorrelation factors for a time sequence {yj}Jj=0 as follows:

ρg(τ = κ∆t) =

1

J − κ− J0 + 1

J−κ∑
j=J0

(
yj − 〈y〉g

) (
yj+κ − 〈y〉g

)
〈(y − 〈y〉g)

2〉g
.

We observe that the autocorrelation factor decreases as τ increases, and is
roughly 0.8 for τ = 1, for all probes considered.

(a) (b) Re = 15000, xprobe1 (c) Re = 15000, xprobe2 (d) Re = 15000, xprobe3

(e) (f) Re = 25000, xprobe1 (g) Re = 25000, xprobe2 (h) Re = 25000, xprobe3

Figure A.17: A lid-driven cavity problem. Behavior of the velocity components at three spatial

locations, for two values of Re (xprobe1 = [0,−0.8], xprobe2 = [0,−0.95], xprobe3 = [0.8, 0]).
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(a) Re = 15103, xprobe1 (b) Re = 15103, xprobe2

(c) Re = 25103, xprobe1 (d) Re = 25103, xprobe2

Figure A.18: A lid-driven cavity problem. Behavior of the autocorrelation for the velocity com-

ponents at two spatial locations, for two values of Re (xprobe1 = [0,−0.8], xprobe2 = [0,−0.95]).

AppendixB. A posteriori assessment of the POD accuracy

As explained in the main body of the paper, POD relies on a snapshot set
{ůk}Kk=1 to generate a N -dimensional approximation space for the full trajectory
{ůj}Jj=J0 in the limit J →∞. The snapshot set is associated with the sampling

times {tks := T0 +∆tsk}Kk=1, where T0 = tJ0g , K is the cardinality of the snapshot
set, and ∆ts is the sampling period.

The choices of ∆ts and K are a trade-off between (i) information content
of the snapshot set, and (ii) computational resources. The snapshot set should
be rich enough to accurately estimate the first N POD modes associated with
the full trajectory {ůj}Jj=J0 in the limit J →∞. On the other hand, it is well-
known that POD suffers from (i) the quadratic growth in K in computational
complexity for computing the Gramian, and for computing the symmetric eigen-
decomposition; and (ii) the memory requirements related to the storage of the
snapshots, which scale linearly with K. Furthermore, by increasing ∆ts and
K, we ultimately increase the number of time steps performed by the spectral
element solver — which is given by J = (T0 + ∆tsK) /∆t.

In this Appendix, we propose a cross-validation (CV, see, e.g., [87] and [88,
Chapter 7.10]) strategy to estimate the `2-averaged projection error associated
with the POD reduced space over the full-trajectory,

E({ůj}Jj=J0 ,Z
u) =

1

J + 1− J0

J∑
j=J0

‖ůj −ΠV
Zu ůj‖2V .
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Estimates of this quantity might be employed to decide whether or not to acquire
new snapshots and/or to increase the dimension N of the reduced space. On the
other hand, evaluations of the autocorrelation factor introduced in AppendixA
can be used to assess a posteriori the amount of redundancy in the snapshot
set.

Since in our setting the snapshots are correlated in time (cf. AppendixA), we
here rely on the h-block variant proposed in [89] (see also [90]). The approach
relies on the assumption that the snapshot set is associated with a stationary
process: under this assumption, the covariance matrix between ůj and ůj+κ

is only a function of κ, and approaches 0 as κ → ∞. The key idea of h-
block CV is to reduce the training set by removing the h observations preceding
and following the observation in the test set. In AppendixB.1, we adapt the
computational procedure discussed in [89] to the particular learning task of
interest; then, in AppendixB.2, we apply the procedure to the case Re = 15000
to support our choice K = 500.

Before proceeding with the presentation of the methodology, we remark that,
in the statistics literature, several authors have proposed validation techniques
to assess the accuracy of POD (or, equivalently, PCA and Karhunen-Loéve)
spaces. We refer to [91, Chapter 6] and to the references therein for a number
of different proposals. We further recall the work by Chowdhary and Najm
[92] that relies on a Bayesian framework to account for inaccuracies due to
limited sample size. The approaches presented in [91, 92] aim at generating
confidence (credible) regions for the estimate of the POD modes; on the other
hand, we are here primarily interested in assessing the out-of-sample accuracy
of the N -dimensional POD reduced space Zu for the full trajectory {ůj}Jj=J0 .
For completeness, we also recall that several authors ([93, 94]) have proposed
and analyzed hierarchical POD approaches to reduce the size K of the snapshot
set, without significantly compromising the accuracy of the POD space.

AppendixB.1. h-block Cross-Validation

Algorithm 4 summarizes the computational procedure for the estimation of
the `2-averaged projection error E({ůj}Jj=J0 ,Z

u). We observe that for h = 0 the
procedure reduces to Leave-One-Out-Cross-Validation (LOOCV). We further
observe that the approach requires the assembling of the Gramian matrix U,
and then the solution to K dense eigenvalue problems of size K − 2h − 1: for
the particular problem at hand, the computational cost associated with the
procedure is negligible compared to the computational cost associated with the
solution to the FOM. Finally, we emphasize that the procedure relies on the
input parameter h. We here propose to choose h based on the analysis of the
autocorrelation factor: recalling the results presented in AppendixA, we consider
h = 4

∆ts
= 4.
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Algorithm 4 h-block Cross-Validation

[Ê ] = hblock-CV ({ůk}Kk=1, h,N)
Inputs: {ůk}Kk=1 = snapshot set, h = correlation parameter, N = size of the POD
space.
Output: Ê = CV estimate of E({ů}Jj=J0

,Zu).

1: for k = 1, . . . ,K do

2: [Zu,(k) := span{ζ(k)
n }Nn=1] = PODV

(
{ů1, . . . , ůk−h−1, ůk+h+1, . . . , ůK}Kk=1, N

)
3: end for
4: Compute the CV estimate Ê as Ê = 1

K

∑K
k=1 ‖ůk −ΠV

Zu,(k) ů
k‖2V .

AppendixB.2. Results for Re = 15000

Figure B.19 shows the behavior of Ê for different values of N for the snapshot
set {ůk}Kk=1 associated with {tks = 500+k}K=500

k=1 , and Re = 15000. We compare
results with the in-sample estimate

E in =
1

K

K∑
k=1

‖ůk −ΠV
Zu ůk‖2V ,

and the out-of-sample estimate

Eout =
1

K

2K∑
k=K+1

‖ůk −ΠV
Zu ůk‖2V ,

where {ůk}2Kk=K+1 are associated with the sampling times {tks = 500+k}2Kk=K+1.

For visualization purposes, we normalize Ê , E in, and Eout by E in(N = 1): for

N = 60, Ê ≈ 15% × E in(N = 1), E in ≈ 10% × E in(N = 1), and Eout ≈
17% × E in(N = 1). We observe that Ê is a more accurate estimate of Eout

compared to the in-sample estimate E in.

Figure B.19: A Cross-Validation procedure for the a posteriori assessment of the POD ac-
curacy. Behavior of E in, Ê, and Eout with N . All quantities are normalized by E in(N = 1)
(K = 500, h = 2, Re = 15000).

AppendixC. On the definition of ROM stability

Based on the results of section 3, we could take a pragmatic view of the
long-time ROM stability. Given the reduced space Zu ⊂ Vdiv, we define the
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best-fit errors associated with mean flow and TKE:

eopt
1 :=

‖〈̊u〉g −ΠV
Zu 〈̊u〉g‖V

‖〈u〉g‖V
, eopt

2 :=
|〈TKE〉s − 〈TKEopt(·;Zu)〉s|

〈TKE〉s
,

where ΠV
Zu denotes the projection operator associated with the V inner product

on the subspace Zu, and TKEopt(t;Zu) = 1
2

∫
Ω
‖ΠL2

Zu (̊u(t) − 〈̊u〉g)‖22 dx. Then,
we define the effective stability constants as the ratios between the optimal mean
error and the actual error:

m(Zu) :=
‖〈̊u〉g − 〈û〉g‖V
‖〈u〉g‖V eopt

1

, σ(Zu) :=
|〈TKE〉s − 〈T̂KE〉s|
〈TKE〉seopt

2

. (C.1)

The stability constants m and σ can be used to quantitatively measure the
stability of the ROM. We observe that, in the limit T → ∞, our definition of
long-time stability for ROMs is independent of transient dynamics. We further
observe that a ROM of dimension N is stable if and only if mean and variance
of the time coefficients {ajn}j are correctly estimated for n = 1, . . . , N . We
finally remark that our definition of stability is close to the one proposed in [1];
however, while the definition in [1] is tailored to L2 POD spaces and Rg = 〈u〉g,
our definition applies to any reduced space and to any choice of the lift.

Figure C.20 shows the behavior of m(Zu) and σ(Zu) defined in (C.1) for
POD-Galerkin and constrained POD-Galerkin for Re = 15000: our constrained
POD-Galerkin ROM is more stable — according to the definition given in this
Appendix — than the standard Galerkin ROM.

(a) (b)

Figure C.20: The solution reproduction problem; behavior of m(Zu) and σ(Zu) (C.1) for
POD-Galerkin and constrained POD-Galerkin (Re = 15000, ε = 0.01).

AppendixD. Proof of (15)

In view of the proof, we introduce Mn,n′ = (ζn, ζn′)L2(Ω), and Ã(w; Re) =

A(w; Re)− 1
∆tM, F̃(w; Re) = F(w; Re)− 1

∆tMw, where A and F are introduced

in (10). We remark that Ã, F̃ do not depend on ∆t and are smooth functions
of w and Re.
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We first restate (13) as a constrained optimization statement for the incre-
ment δa := a− aj

min
δa∈RN

‖
(

1

∆t
M + Ãj

)
δa− F̃j‖22, s.t. α̃jn ≤ δan ≤ β̃jn, (D.1)

where α̃jn = αn − ajn, β̃jn = βn − ajn and Ãj = Ã(aj ; Re), F̃j = F̃(aj ; Re). Since
aj is admissible for (13), we find that δa = 0 is admissible for (D.1). Therefore,
the solution to (D.1) δaj+1 = aj+1 − aj satisfies:

‖
(

1

∆t
M + Ãj

)
δaj+1 − F̃j‖22 ≤ ‖F̃j‖22.

The latter implies:

‖
(

1

∆t
M + Ãj

)
δaj+1‖22 ≤ 2F̃Tj

(
1

∆t
M + Ãj

)
δaj+1 ≤ 2‖F̃j‖22+

1

2
‖
(

1

∆t
M + Ãj

)
δaj+1‖22;

where in the last step we used the Young’s inequality 2ab ≤ a2

ε + εb2 for ε = 1
2 .

Exploiting the inverse triangular inequality, we then find

2‖F̃j‖2 ≥
1

∆t
‖Mδaj+1‖2 − ‖Ãjδaj+1‖2 ≥

(
1

∆t
λmin(M)− σmax(Ãj)

)
‖δaj+1‖2,

where λmin(M) is the minimum eigenvalue of the mass matrix M, and σmax(Ãj)
is the maximum singular value of Ãj . In conclusion, we obtain:

‖δaj+1‖2 ≤ Cj(∆t) ∆t; Cj(∆t) =
2‖F̃j‖2

(λmin(M)−∆tσmax(Ãj))
.

Since {aj}j is bounded for all j and Ã, F̃ are smooth functions, there exist C > 0
and ∆t? > 0 such that Cj(∆t) ≤ C for all ∆t ≤ ∆t?. Thesis follows.

AppendixE. Robustness of the constrained formulation

In this Appendix, we present a number of numerical results that provide
further insights about the constrained formulation proposed in this paper. In
greater detail, we study the activation rate of the box constraints, the depen-
dence of the solution to the choice of ε, and the behavior of mFOM,u

n and MFOM,u
n

defined in (19) with respect to the Reynolds number Re.
In Figure E.21, we study the behavior of the activation rate of each box

constraint for two values of N for Re = 15000, {tks = 500 + k}K=500
k=1 . In greater

detail, we count how many times the n-th component of the solution to Galerkin
satisfies the prescribed constraints:

#Galn :=
1

J − J0

J∑
j=J0+1

1

(
(ajGal)n ∈ [αn, βn]

)
, n = 1, . . . , N.
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We observe that the behavior with n of #Galn is irregular, and strongly depends
on N . This suggests that selecting a priori the active constraints might be
impractical. In Figure E.22, we study the behavior of the relative error in the

mean flow prediction, the behavior of the TKE prediction 〈T̂KE〉s versus the
truth estimate (7), and the behavior of the activation rate of the box constraints

#Gal :=
1

J − J0

J∑
j=J0+1

1

(
(ajGal)n ∈ [αn, βn], n = 1, . . . , N

)
,

with respect to ε, for two values of N . We observe that for ε . ε̄ = 0.1 results do
not seem to depend on the value of ε. This provides evidence that the current
approach is robust with respect to the choice of ε. We further observe that
for all values of ε considered #Gal(N = 40) & 0.85 and #Gal(N = 60) & 0.90.
Therefore, our constrained formulation corrects the original formulation only for
10−15% time steps. For this reason, we envision that efficient implementations
of the constrained ROM might be nearly as inexpensive as the Galerkin ROM.
We further observe that #Gal increases as N increases: this can be explained
by observing that the POD-Galerkin ROM becomes more and more accurate as
N increases, and thus requires less corrections.

(a) N = 40 (b) N = 60

Figure E.21: The solution reproduction problem; activity of the box constraints for two values
of N . (Re = 15000, ε = 0.01).

Figure E.23 investigates the behavior of mFOM,u
n and MFOM,u

n defined in (19)
with respect to the Reynolds number Re. For this test, we consider the POD
space associated with Re = 20000 and the sampling times {tks = 500+k}K=1000

k=1 ,
and we show results for n = 1, . . . , 12. Results suggest that the sensitivity of
mFOM,u
n and MFOM,u

n with Re are relatively modest if compared to MFOM,u
n −

mFOM,u
n .

AppendixF. On the problem of p-refinement

We here illustrate the major issue associated with the combination of POD
modes associated with different values of the parameter. We here simulate the
application of the first two iterations of the POD-pGreedy algorithm as proposed
in [49]. In more detail, we consider the following test.
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(a) N = 40 (b) N = 40 (c) N = 40

(d) N = 60 (e) N = 60 (f) N = 60

Figure E.22: The solution reproduction problem; sensitivity with respect to ε for constrained
POD-Galerkin for two values of N . Figures (a) and (d): behavior of the relative L2 and H1

errors. Figures (b) and (e): TKE prediction 〈T̂KE〉s vs. truth estimate (7). Figures (c) and
(f): percentage of pure Galerkin solves. (Re = 15000).

Figure E.23: The parametric problem; behavior of mFOM,u
n (Re) and MFOM,u

n (Re) with Re.
The POD space is generated from the DNS data for Re = 20000.
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1. Generate DNS data for Re = 20000, and use them to build the N1 = 60-
dimensional POD space.

2. Generate DNS data for Re = 15000, and build the N2 = 60-dimensional
POD space for the set of snapshots {(I−ΠV

Zu )̊uk(Re = 15000)}Kk=1.

3. Define Zu = span{ζn}N1+N2
n=1 where ζ1, . . . , ζN1

are associated with Step 1
and ζN1+1, . . . , ζN2 are associated with Step 2.

4. Perform a convergence study in N for Re = 15000 and Re = 20000 for
both pure Galerkin and constrained Galerkin (ε = 0.01).

We consider here T0 = 500 and T = 1500, {tks = 500 + k}K=1000
k=1 . We recall

that for Re = 15000 (cf. section 3) we were able to obtain accurate ROMs for
N & 40 both in terms of mean flow prediction and TKE.

Figures F.24 and F.25 show the results of this test for the constrained-
Galerkin ROM. Figures F.24(a) and (c) show the behavior of the relative error
in mean flow prediction for the constrained formulation, for Re = 15000 and
Re = 20000, respectively. We here compute lower and upper bounds {αn}n and
{βn}n using (14) with ε = 0.01. Figures F.24(b) and (d) show the behavior of
the mean TKE for the same values of the Reynolds number. Similarly, Figures
F.25(a) and (b) show the behavior of the TKE in time for N = 120. Finally,
Figures F.26 (a) and (b) show the behavior of the TKE in time for N = 120 for
the unconstrained formulation. Results — especially for Re = 15000 — show
the key issue of combining modes associated with different parameters. For
N2 = 60 (and N1 +N2 = 120), the error in mean flow prediction is roughly 10%,
and we also significantly overestimate the mean and the peaks of the TKE. As
expected, these issues are even more severe for the unconstrained formulation:
the behavior with time of the TKE predicted by the unconstrained ROM is
roughly the same for the two values of the Reynolds number considered.

We offer a physical explanation for the poor performance of POD-pGreedy.
As observed in AppendixA, for sufficiently large values of Re eddies are ejected
into the core region of the cavity. This instability is observed for Re = 20000,
but is not observed for Re = 15000. As a result, the ejection of the eddies into
the core region of the cavity is well-represented by the POD space associated
with Re = 20000, and then, by construction, by the final reduced space Zu.
The presence of modes associated with the core eddies makes the ROM more
prone to show this instability even for values of the Reynolds number at which
the full-order solution does not show it.

AppendixG. Offline/online computational decomposition for the resid-
ual indicator

We here describe the offline/online computational decomposition for the
computation of the residual error indicator introduced in this paper. We omit
the subscript ` associated with the partition of the parameter domain to simplify
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(a) Re = 15000 (b) Re = 15000

(c) Re = 20000 (d) Re = 20000

Figure F.24: The parametric problem; on the problems of p-refinement. Performance of
constrained Galerkin (ε = 0.01, N1 = 60, N2 = 60).

(a) Re = 15000, N = 120 (b) Re = 20000, N = 120

Figure F.25: The parametric problem; on the problems of p-refinement. Behavior of the TKE
with time for constrained Galerkin (ε = 0.01, N1 = 60, N2 = 60).

(a) Re = 15000, N = 120 (b) Re = 20000, N = 120

Figure F.26: The parametric problem; on the problems of p-refinement. Behavior of the TKE
with time for unconstrained Galerkin (N1 = 60, N2 = 60).
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notation. We first introduce the Riesz representers:

(ξm
n , v)V = (ζn, v)L2(Ω), (ξa

n, v)V = (ζn, v)V , (ξcg
n , v)V = c(Rg, ζn, v),

(ξc
m,n, v)V = c(ζn, ζm, v), (ξmg

n , v)V = c(ζn, Rg, v), (ξf
1, v)V = (Rg, v)V ,

(ξf
2, v)V = c(Rg, Rg, v),

(G.1)
for n = 1, . . . , N and for all v ∈ Vdiv. Then, it is easy to verify that, if wj =∑N
n=1 a

j
nζn for j = 0, . . . , J , we can rewrite 〈R〉 as follows:

〈R〉
(
{wj}Jj=0, v; Re

)
=

( N∑
n=1

(
ξm
n

(
aJn − aJ0n
T − T0

)
+ ξa

n

(
1

Re
ā+
n

)
+ ξcg

n ā
+
n

+

N∑
m=1

ξc
m,nc̄m,n + ξmg

n ā−n

)
, v
)
V

+
1

Re
(ξf

1, v)V + (ξf
2, v)V ;

(G.2a)
where

ā+
n =

∆t

T − T0

J∑
j=J0+1

ajn, ā−n =
∆t

T − T0

J−1∑
j=J0

ajn, c̄m,n =
∆t

T − T0

J−1∑
j=J0

aj+1
m ajn.

(G.2b)

Equation (G.2) can be rewritten as 〈R〉
(
{wj}Jj=0, v; Re

)
=
∑M
m=1 Θi({aj}j ; Re)ξ̃m

where M = N2 + 3N + 2 and

[ξ̃1, . . . , ξ̃M ] = [ξm
1 , . . . , ξ

m
N , ξ

a
1 , . . . , ξ

a
N , ξ

cg
1 , . . . , ξ

cg
N ,

ξc
1,1, . . . , ξ

c
N,N , ξ

mg
1 , . . . , ξmg

N , ξf
1, ξ

f
2]

[Θ1, . . . ,ΘM ] =
[aJ1 − aJ01

T − T0
, . . . ,

aJN − a
J0
N

T − T0
,
ā+

1

Re
, . . . ,

ā+
N

Re
, ā+

1 , . . . , ā
+
N ,

c̄1,1, . . . , c̄N,N , ā
−
1 , . . . , ā

−
N ,

1

Re
, 1
]
.

Therefore, recalling the Riesz representation theorem, we find

∆u({wj}j ; Re) =
√

ΘTΣoffΘ, Θ = Θ({aj}j ; Re), (G.3)

where Σoff
i,i′ = (ξ̃i, ξ̃i′)V . Equation (G.3) clarifies the offline/online decompo-

sition: during the offline stage, we compute the Riesz representers (G.1) —
this corresponds to the solution to M Stokes problems — and we assemble the
matrix Σoff ; during the online stage, we compute the vector Θ and we exploit
(G.3) to compute the error estimator ∆u. We observe that the online cost is
O(N2J + N4): provided that N � J the cost associated with the computa-
tion of the error indicator is negligible compared to the cost of computing the
solution to the time-integration scheme, O(N3J).
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DNS + snapshot acquisition (∆t = 2 · 10−3, K = 500, Re = 15000) 4950.46 s (SC)

POD space construction: solution to (11) (N = 60, K = 500) 0.92 s

construction of Galerkin structures (10b) (N = 60) 21.25 s

POD-Gal: online evaluation of (10a) (N = 60) 34.90 s

constrained POD-Gal: online evaluation of (13) (N = 60, ε = 0.01) 209.02 s

error estimation: offline computation of Σoff (G.3) (N = 80) 935.26 s

error estimation: online computation of ∆u (G.3) (N = 80) 12.77 s

Table H.1: Representative computational times. Evolutionary MOR algorithms are evaluated
up to T = 1000, for ∆t = 5 · 10−3 and Re = 15000. DNS calculations are performed on a
supercomputer (SC), MOR calculations are performed on a Desktop computer.

AppendixH. Computational timings

We comment on the computational cost of the procedure. DNS simulations,
which rely on the CFD software nek5000, are performed on a supercomputer
at Argonne National Lab5: the cost of a single DNS simulation (elapsed time)
for ∆t = 2 · 10−3 and T = 1000, is 4950.46 s. Details concerning the numeri-
cal scheme and the discretization are provided in section 2. On the other hand,
ROM computations, implemented in Matlab2016a, are performed using a Desk-
top computer (RAM 16GB 800 MHz, Processor Intel Xeon 3.60GHz, 8 cores).

Table H.1 lists the computational cost of the offline and online procedures:
all Matlab routines are run in serial (i.e., no parallelism). We observe that the
speed-up of the constrained POD-Galerkin approach is equal to6 4950.46/209.02 =
23.68 for N = 60, T = 1000, and ∆t = 5 · 10−3. Note here we equate cost to
wall-clock time, however clearly in actual practice a supercomputer second is
much more costly in resources than a desktop second. Figure H.27 shows the
online costs for POD-Galerkin and constrained POD-Galerkin. We observe that
the behavior of the computational cost of the constrained formulation is non-
monotonic in N : the reason is that as N increases the number of pure Galerkin
solves increases.
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Figure H.27: Online costs for POD-Galerkin and constrained POD-Galerkin (Re = 15000,
T = 1000, ε = 0.01, ∆t = 5 · 10−3).
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