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An example: a microtruss




A target application: monitoring of ship loaders!

Objective: monitor the integrity of a ship loader during
the operations

'Photo credit: www.directindustry.com



Our example: the microtruss system
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Our example: the microtruss system

Goal: detect the presence of added mass on top of

block (1.4) and block (4,4)
Apparatus: voice coil actuator; camera&stroboscope

Input: x>-displacement at prescribed frequencies {7 7};
Exp data: x,-displacement of blocks' centers {c /(¢ f7)}.

Data reduction:
exp/ ./ ACXP /¢ —eXp
P (t, £9) ~ Ar T (F9) cos (27Tf‘7t + R (F ))

A ( —€eXP
Exp outputs: AV (F7) = 7 A P(F9).



Definition of the QOl: damage function

Define s, — 1 + \y' and

11 ght

SR - 1 + \/H DIN
Define y — (5, s),

Si,SR < 1.5,
sg > 1.5, sp < 1.5
s; < 1.5, sp > 1.5,
S|, SR > 1.5.

<
I
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The QOI y is the state of damage associated with the
structure.
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Engineering objective

Generate a decision rule g that maps experimental outputs
{AT(F5C) g

to the appropriate configuration state of damage
y = flam(g sp) € {1,2,3,4};

for any given system configuration C = (s, 5. .. .).

Perspective: objective of Structural Health Monitoring

(SHM)
Level I: is the structure damaged?
Level Il: where is damage located?

C Farrar, K Worden, 2012



Engineering objective

Generate a decision rule g that maps experimental outputs
{A(F5C) g
to the appropriate configuration state of damage
y = fda’m(SL7 SR) ~ {1./ 2,3, 4};
for any given system configuration C = (s, 5. .. .).
Perspective: objective of Structural Health Monitoring
(SHM)
Level I: is the structure damaged?
Level Il: where is damage located?

C Farrar, K Worden, 2012



Mathematical formulation




Mathematical best-knowledge (bk) model

Set

C=(p=[sp=1+4 Y sg =14 T o 5 F] .. .),

where a, 3 Raylelgh damping coefﬁcients, and
E Young's modulus.

Estimate

where is the center of block - and

solves the parametrized PDE:
+ BC
Interpretation:
incomplete representation of
bk-parametrized mathematical model.



Mathematical best-knowledge (bk) model

Set

C = (,u =[5 =1+ V‘e“ srR=1+ “ght ,[)’7E]7...),

where «, /7 Rayleigh-damping coefﬁcients, and
E Young's modulus.

Estimate

bk
ex . ~ ADbk . L (
ATP(£9,C) m APS(F%; 11) = Ao

|ug™(xij; £, )]
|3 (3,1 £9, 1))
where x; ; is the center of block (/. /), and u""(-; 79, 1)
solves the parametrized PDE:

gelast—hehnhotz(ubk(fqv M)y fq; M) =0 + BC
Interpretation:

incomplete representation of
bk-parametrized mathematical model.



Mathematical best-knowledge (bk) model

Set

C=(p=[sp=1+4 Y sg =14 T o 5 F] .. .),

where a, 3 Raylelgh damping coefﬁcients, and
E Young's modulus.

Estimate

|up* (x5 £9, 1)

|3 (3,1 £9, 1))
where x; ; is the center of block (/. /), and u""(-; 79, 1)
solves the parametrized PDE:

gelast—hehnhotz(ubk(fqv M), fq; /L) =0 + BC
Interpretation:

exp .  aAbk ) o
Ai,jI (fq' C) ~ Ai,j(fqr ,u) T Anom

/1 incomplete representation of (;
Gelasthelmhot, bk-parametrized mathematical model.



Feature extraction

Define the feature map 7 - R'°Y — RY that
takes as input the experimental (or bk) outputs

{A,:j(fq; *)}iJ,q: (' = exp, bk, x = C, M)
and returns the () features

z'(x) = F({A;(F: %) }ijq) € RY

R RY should be chosen such that
7" () is sensitive to the expected damage;

7" () is insensitive to noise.

10



Mathematical objective

Given the features 2" (1) — F({A (9 1) }i,4) € RY,
we seek g - RY — [1.. .. 4]} that minimizes

Rbk fpkk < bk(ﬂ)) fdam(:“)) ka(ﬂ) du,

where
anticipated configuration;
anticipated configuration set;
damage;
feature map (to be defined);
user-defined weight ( ).

11



Mathematical objective

Given the features 2" (1) — F({A (9 1) }i,4) € RY,
we seek g RY {1, ... 4} that minimizes

Rbk fpkk < )) # fdun(/I)> ka(u) d,u,

where
1= |5, 55, 0. 3. E] € P anticipated configuration;
PP anticipated configuration set;
s P () = (s sp) @ (1, 4} damage;
F R RY feature map (to be defined);
11 w (/1) user-defined weight (<+ FP,..).

11



Computational approach

12



Simulation-Based Classification

Offline stage: (before operations)
iid

1. Generate ;/f.... /M7= Pp

2. Generate D) = {z" (™). £ (™)}

3. gyl = Supervised—Learning—alg(Dk};)

ka
M
m=1

Online stage: (during operations)

1. Acquire the new outputs

2. Compute
3. Return the label

Taddei, Penn, Yano, Patera, 2016.
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Simulation-Based Classification

Offline stage: (before operations)
jid
1. Generate ;' ... )M 7P
2. Generate D) = {z" (™). £ (™)}

3. gyl = Supervised—Learning—alg(Dk};)

M
m=1

Online stage: (during operations)
1. Acquire the new outputs {A"(F% ()}, .

2. Compute 27 = F(A"(F9,0)).
3. Return the label g;,(Z°7).

Taddei, Penn, Yano, Patera, 2016.
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Simulation-Based Classification

Related works: Farrar et al. (based on experiments);
Basudhar, Missoum:;
Willcox et al.

Opportunities:no need to estimate /1 = [s,. s5p, o, . E]
(which includes nuisance variables o, 3, E)

non-intrusive approach
(it requires only forward solves)

Challenge: generation of 1}/
Exploit pMOR (¢ parametric def of damage) to
generate

14



Simulation-Based Classification

Related works: Farrar et al. (based on experiments);
Basudhar, Missoum:;
Willcox et al.

Opportunities:no need to estimate /1 = [s,. s5p, o, . E]
(which includes nuisance variables o, 3, E)

non-intrusive approach
(it requires only forward solves)

Challenge: generation of 1}/
— Exploit pMOR (> parametric def of damage) to
generate D).

14



Perspectives: a ship loader model?

Cost to build D)) — M < Q; x cost persimulation

FE model (=~ 5 10° dofs)
‘;q) cost per simulation ~~ 43/
" M =10* Qf = 10 = 8years

ROM model (PR-scRBE)
cost per simulation ~ 5"
M = 10* Qf = 10 = 6 days

— pMOR enables the use of mathematical models in the

simulation-based framework.

2Simulations are performed by Akselos S.A. using PR-scRBE.
15



Simulation-Based Classification with pMOR

Offline stage: (before operations)
iid

1. Generate ;' . M~~~ p

2.a Construct a ROM for ;1 & PP v 295( 1)
2.b Use the ROM to generate the dataset 1}/
3. [gy] = Supervised-Learning-alg(Dky)

ka

pMOR is employed only in the generation of the dataset;

It VI is sufficiently large, the cost of 2.a is negligible
compared to the cost of 2.b (many-query context).

16



Simulation-Based Classification with pMOR

Offline stage: (before operations)
iid

1. Generate /', ... )M 7P,

2.a Construct a ROM for 1 PP v 25 )
2.b Use the ROM to generate the dataset 1)}
3. lgy] = Supervised—Learning—alg(D‘A’;)

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible
compared to the cost of 2.b (many-query context).

16



Application to the microtruss problem

17



Choice of PPk

We choose upper bounds for s,. sz a priori.

We choose lower and upper bounds for v, 7. £ using
textbook values and a preliminary experiment for
S| = SR = 1.

15

—min AP -~ min ¢b
exp
o Ay

10 ——max Alf}‘l 1

20 46 66 80
f (Hz)
(explanation: min AYS = min, (11, 5 e A (0. 1))




Choices of the features

Introduce
YA A?li()JrAbk()
and define 2 (1) = [25(F % ). o 205(F9 ).

joint
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Choices of the features: motivation

Rationale: 7, detects asymmetry in the structure;
7, detects added mass on corners.
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Classification procedure

Given z, ", 2,7,

Level 1: distinguish between {1.4}, {2} and {3} based

onz, "

Level 2: if Level 1 returns {1.4}, distinguish between
{1} and {4} based on z,".

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees,
NMC3.

3Implementation is based on off-the-shelf Matlab functions.
21



Classification procedure

Given z, ", 2,7,

Level 1: distinguish between {14}, {2} and {3} based
onz, "

Level 2: if Level 1 returns {1.4}, distinguish between
{1} and {4} based on z,".

From the learning perspective,
Level 1 corresponds to a 3way classification problem:;
Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees,
NMC3.

3Implementation is based on off-the-shelf Matlab functions.
21



Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state ubk(f; w), f €Zs, u € Pbk

Use the ROM to compute (17, /") AYS(£9; 1) for
m=1... Mandg=1 ... 0 (= MQf PDE solves).

Computational summary:

Finite Element (FE): dof,
for each PDE query;

Reduced Basis (RB): 20 dof, pre-processing cost
for each PDE query

RB is advantageous if
(we consider ).

22



Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state t/""(f: 1), f < Tr, 1 © P,

Use the ROM to compute (17, /") AYS(£9; 1) for
m=1....Mandg=1 ... 0 (= MQ; PDE solves).

Computational summary:

Finite Element (FE): 14670 dof,
~ 0.18[s] for each PDE query;

Reduced Basis (RB): 20 dof, pre-processing cost ~ 24|s|,
~ 4.4 10 °[s] for each PDE query.

— RB is advantageous if M@ ~ 180
(we consider VQ; ~ 107).

22



Results (synthetic data)

Test: generate a dataset DYk K =10* Q@ = 0.

Then,

1. use M points for learning, K — M for testing;
2. average over 100 partitions learning/testing.

107!

.
* == S
* & T
*x e ™
— * 8 \’\‘
*E * » ‘-\
=102 —ova-SVM ° WY
& + decision tree * oo
o KNN *
* ANN
—NMC
103 : ‘
10" 102 108

Memo:

RY(g) =0

— no mistakes.
RY(g) =1

= always wrong.

Strong dependenj\ée on M = importance of pMOR. ”s



Results (experimental data)

Test: consider )" (as before), and
15 = 5 x 3 exp datapoints. Then,

microtrusses trials

1. use M — 7-10° synthetic datapoints for learning;

2. use 3 - 107 synth datapoints and all 15 exp points*
for testing.

bk-risk exp risk ( )

ova-SVM
decision tree
kNN ( )
ANN (10 layers)
NMC

#We average over 100 learning/testing partitions of the synthetic dataset.

24



Results (experimental data)

Test: consider )" (as before), and

15 = 5 x 3 exp datapoints. Then,
microtrusses trials

1. use M — 7-10° synthetic datapoints for learning;
2. use 3 - 107 synth datapoints and all 15 exp points*

for testing.
bk-risk R"(g) | exp risk (5 x 3)
ova-SVM 0.0059 0.2093
decision tree 0.0072 0.4000
kNN (k = 5) 0.0050 0
ANN (10 layers) 0.0026 0.6000
NMC 0.0661 0

#We average over 100 learning/testing partitions of the synthetic dataset.

24



Summary and perspectives

25



We propose a MOR approach to Simulation-Based
Classification for the estimate of discrete-valued QOls.

The approach exploits

1. pMOR procedures for rapid generation of datasets;
2. ML algorithms for the construction of the classifier.

26



Towards the application to real problems

Challenges
Parametrization of damage
damage is a local phenomenon,
— component-based pMOR
Choice of features
automated feature identification®.

®In collaboration with Prof. D Bertsimas, C Pawlowski (MIT). 27



hank you for your
attention!

Please visit for further information

28
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Backup slides
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Error analysis

Comparison with a model-based approach
Mathematical model

Choice of the features

Explanation of the Table
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Error analysis

Comparison with a model-based approach
Mathematical model

Choice of the features

Explanation of the Table
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Preliminaries

Define C = (11.¢), £ ¢ RP
£ accounts for unmodeled physics, geometry uncertainty...

Write experimental features as
Z()Xp(,lt,f) _ Zbk(,u) i 5Z(ILL, 5)’

Introduce the experimental risk R“7(g) —

[ B, [£00(g(@ () + 62). £ ()] w* ()
Pbk

where s, , is the probability distribution of 0z(/. -).

31



Main result

Define the c-uncertainty indicator £ — E"(g ¢ /1) as

b _ { 0if g(2%(1)) = g(2"(1) + 62), V |6z < €

1 otherwise.

Then, if ,

nominal

performance robustness to data uncertainty

32



Main result

Define the c-uncertainty indicator £ — E"(g ¢ /1) as

b _ { 0if g(2" (1)) = g(2" (1) + 62), ¥ [[5z||» < e

1 otherwise.

Then, if Py, ([0z(p)]> < ebk) =1V pu e PPk,

R2(g) < R™g) + / E™(g. €™, p1) w™ () du.
R/_/ 7)bk

g

nominal

performance robustness to data uncertainty

32



Comments

Sensitivity to data uncertainty might lead to poor
performance on experimental data

Given estimates for ",
we can explicitly bound RV (g) for any g;
we can properly robustify the learning procedure.

Ben-Tal, El Ghaoui, Nemirovski, 2009

Bertsimas, Brown, Caramanis, 2011

33
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@ Comparison with a model-based approach
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The two paradigms

Simulation-(Data-) based approach
Farrar et al, ..., this talk

Offline: Generate D)) = {Z"5(;™). Foum ()M,
Build g;, based on D}
Online: Given z™, return the label g;,(z7)

Model-based approach
Friswell&Mottershead

Online: Estimate the parameter /1" s.t. 277 ~ z"(17)
Return 9% (7)

Goal: compare performance of SBC with a representative
model-based approach.

35



The two paradigms

Simulation-(Data-) based approach
Farrar et al, ..., this talk

Offline: Generate D)) = {Z"5(;™). Foum ()M,
Build g;, based on D}
Online: Given z™, return the label g;,(z7)

Model-based approach
Friswell&Mottershead

Online: Estimate the parameter /1" s.t. 277 ~ z"(17)
Return 9% (7)

Goal: compare performance of SBC with a representative
model-based approach.
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The approach considered

Formulation: we seek ;/* © 7" that minimizes
J(n) = [z25() = 27113 + [1z3°(1) — 257113

Computational strategy:
SQP, gradient estimated based on FD (fmincon®);

4 1Cs (one for each region );

Reduced Basis method to speed up calculations.

5Matlab R2016a
36



The approach considered

Formulation: we seek ;/* © " that minimizes
J) = (254 0) — 22018 + 284 (n) — 2573

Computational strategy:
SQP, gradient estimated based on FD (fmincon®);

4 |Cs (one for each region 7" (1) — [y - F4% (1) — w});

Reduced Basis method to speed up calculations.

6Matlab R2016a
36



Synthetic data: (40 samples) <" — 0.

Real data:

y=1|y

I
WD

0
2
0
1

olololol ||

<=~~~
I

Ol o O O ||
D O] O Of ||

Computational cost (for a single IC):
30 — 50 SQP iterations

300 — 500 evaluations of the objective
(2700 — 4500 PDE solves)

37



Comments

The model-based approach considered
returns an estimate’ of the full vector /;

performs poorly on real data
—- sensitive to model error;

requires many online PDE solves
= no real-time response.
Simulation-based approaches are preferable if we do not
need to estimate

"Bayesian methods might also provide credible regions for the estimate /i.
38



Comments

The model-based approach considered
returns an estimate’ of the full vector /;

performs poorly on real data
—- sensitive to model error;

requires many online PDE solves
= no real-time response.
Simulation-based approaches are preferable if we do not
need to estimate /..

"Bayesian methods might also provide credible regions for the estimate /i.
38
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Mathematical best-knowledge (bk) model (1)
Set C = (p:= [s1, sr, v, B, E],...),

where «, 7 Rayleigh-damping coefficients, and
E Young's modulus.

Define the reference domain

a1 ]
|

Assumptions: depths of blocks and masses are uniform;
width of the blocks is known exactly.

40



Mathematical best-knowledge (bk) model (1)
Set C = (p:= [s1, sr, v, B, E],...),

where «, 7 Rayleigh-damping coefficients, and
E Young's modulus.

Define the reference domain 2. = O 1) CQs(s,) U Qo(sp).

s, hI (st (23(sr) TsR h
:::::::)52:4:::::::::: :::_______)_(?fl: _____
hI Ql Q1

Assumptions: depths of blocks and masses are uniform;
width of the blocks is known exactly.



Mathematical best-knowledge (bk) model (11)

Define the bk time-harmonic displacement t/"*(-; F9 /1) as
G(F9; u)uPs(-; F9, 1) =0 in Qs + BC
where G(19; 1) <+ linear damped elastodynamics .

Given  estimate

where is the center of block

41



Mathematical best-knowledge (bk) model (11)

Define the bk time-harmonic displacement t/"*(-; F9 /1) as
G(F9; u)uPs(-; F9, 1) =0 in Qs + BC
where G(19; 1) <+ linear damped elastodynamics .

Given C = (/1. ..), estimate
bk(.. .. fa M)‘
AP fq;c ~ At)k fq;,u = Anom ‘UQ (XIJ, :
o (PO AU ) = oo TG o)

where x; ; is the center of block (/. /).

41
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Choices of the features

Introduce
YA A?li()JrAbk()
and define 2 (1) = [25(F % ). o 205(F9 ).
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Feature visualization: and

Rationale: 7, detects asymmetry in the structure;
z, detects added mass on corners.

y=1 "

-8

b

w

=
o % u =
- % m =
= = =
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Feature visualization:

Rationale: 7, detects asymmetry in the structure;
detects added mass on corners.

25¢
+ y=1,4(bk)
o y=2(bk)
* y=3(bk)
2+ o y=1,4(exp)

44



Feature visualization:

Rationale: detects asymmetry in the structure;
7, detects added mass on corners.
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@ Explanation of the Table
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Explanation of the table

For /= 1.....100
Partition the dataset 1) into D}, and D),
Train the learning algorithm based on Dbl‘

Test the learning algorithm based on Dbl‘ — RPk
Test the learning algorithm based on DeXp — RP
EndFor

bk __ 100 pbk
Return R" — 100 Yoo R

exp __ 1 100 pexp
Return R°V — (5> R,

46
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