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An example: a microtruss
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A target application: monitoring of ship loaders1

Objective: monitor the integrity of a ship loader during
the operations

1Photo credit: www.directindustry.com
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Our example: the microtruss system
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Our example: the microtruss system

Goal: detect the presence of added mass on top of
block (1, 4) and block (4, 4)

Apparatus: voice coil actuator; camera&stroboscope

Input: x2-displacement at prescribed frequencies {f q};
Exp data: x2-displacement of blocks’ centers {cexp

i ,j (t`, f q)}.

Data reduction:
cexp
i ,j (t`, f q) ≈ A

exp
i ,j (f q) cos

(
2πf q t` + φ

exp
i ,j (f q)

)
Exp outputs: Aexp

i ,j (f q) :=
Anom

A
exp
2,1 (f q)

A
exp
i ,j (f q).
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Definition of the QOI: damage function

Define sL = 1 + Vleft
Vnom

, and

sR := 1 +
Vright
Vnom

.

Define y = f̄ dam(sL, sR),

y =


1 sL, sR ≤ 1.5,
2 sL > 1.5, sR ≤ 1.5,
3 sL ≤ 1.5, sR > 1.5,
4 sL, sR > 1.5.

The QOI y is the state of damage associated with the
structure.
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Definition of the QOI: damage function
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Engineering objective

Generate a decision rule g that maps experimental outputs
{Aexp

i ,j (f q; C)}i ,j ,q
to the appropriate configuration state of damage

y = f̄ dam(sL, sR) ∈ {1, 2, 3, 4};
for any given system configuration C = (sL, sR , . . .).

Perspective: objective of Structural Health Monitoring
(SHM)
Level I: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012
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Mathematical formulation
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Mathematical best-knowledge (bk) model

Set
C =

(
µ := [sL = 1 + Vleft

Vnom
, sR = 1 +

Vright
Vnom

, α, β,E ], . . .
)
,

where α, β Rayleigh-damping coefficients, and
E Young’s modulus.

Estimate

Aexp
i ,j (f q; C) ≈ Abk

i ,j (f
q;µ) := Anom

|ubk
2 (xi ,j ; f

q, µ)|
|ubk

2 (x2,1; f q, µ)|
where xi ,j is the center of block (i , j), and ubk(·; f q, µ)
solves the parametrized PDE:

Gelast−helmhotz
(
ubk(f q, µ); f q;µ

)
= 0 + BC

Interpretation:
µ incomplete representation of C;
Gelast−helmhotz bk-parametrized mathematical model. 9
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Feature extraction

Define the feature map F : R16Qf → RQ that
takes as input the experimental (or bk) outputs

{A·i ,j(f q; ?)}i ,j ,q, (· = exp, bk, ? = C, µ)

and returns the Q features

z·(?) = F({A·i ,j(f q; ?)}i ,j ,q) ∈ RQ

F : R16Qf → RQ should be chosen such that
z·(?) is sensitive to the expected damage;

z·(?) is insensitive to noise.

10



Mathematical objective

Given the features zbk(µ) = F({Abk
i ,j (f

q;µ)}i ,j ,q) ∈ RQ ,
we seek g : RQ → {1, . . . , 4} that minimizes

Rbk(g) =
∫
Pbk 1

(
g(zbk(µ)) 6= f dam(µ)

)
wbk(µ) dµ,

where
µ = [sL, sR , α, β,E ] ∈ Pbk anticipated configuration;
Pbk anticipated configuration set;
µ 7→ f dam(µ) = f̄ dam(sL, sR) ∈ {1, . . . , 4} damage;
F : R16Qf → RQ feature map (to be defined);
µ 7→ wbk(µ) user-defined weight (↔ Pwbk).
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Computational approach
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Simulation-Based Classification

Offline stage: (before operations)

1. Generate µ1, . . . , µM
iid︷︸︸︷∼ Pwbk

2. Generate Dbk
M =

{
zbk(µm), f dam(µm)

}M
m=1

3. [g ?M ] = Supervised-Learning-alg(Dbk
M )

Online stage: (during operations)

1. Acquire the new outputs {Aexp
i ,j (f q; C)}i ,j ,q.

2. Compute z̄exp = F(Aexp
i ,j (f q; C)).

3. Return the label g ?M(z̄exp).

Taddei, Penn, Yano, Patera, 2016.
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Simulation-Based Classification

Related works: Farrar et al. (based on experiments);
Basudhar, Missoum;
Willcox et al.

Opportunities:no need to estimate µ = [sL, sR , α, β,E ]
(which includes nuisance variables α, β,E )
non-intrusive approach

(it requires only forward solves)

Challenge: generation of Dbk
M

⇒ Exploit pMOR (↔ parametric def of damage) to
generate Dbk

M .
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Perspectives: a ship loader model2

Cost to build Dbk
M = M × Qf × cost per simulation

FE model (≈ 5 · 106 dofs)
cost per simulation ≈ 43′

M = 104,Qf = 10⇒ 8 years

ROM model (PR-scRBE)
cost per simulation ≈ 5′′

M = 104,Qf = 10⇒ 6 days

⇒ pMOR enables the use of mathematical models in the
simulation-based framework.

2Simulations are performed by Akselos S.A. using PR-scRBE.
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Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate µ1, . . . , µM
iid︷︸︸︷∼ Pwbk

2.a Construct a ROM for µ ∈ Pbk 7→ zbk(µ)

2.b Use the ROM to generate the dataset Dbk
M

3. [g ?M ] = Supervised-Learning-alg(Dbk
M )

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible
compared to the cost of 2.b (many-query context).
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Application to the microtruss problem
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Choice of Pbk

We choose upper bounds for sL, sR a priori.

We choose lower and upper bounds for α, β,E using
textbook values and a preliminary experiment for
sL = sR = 1.

20 40 60 80

f (Hz)

0

5

10

15

minAbk
1,1

A
exp
1,1

maxAbk
1,1

20 40 60 80

f (Hz)

0

1

2

3

4

minφbk
1,1

φ
exp
1,1

maxφbk
1,1

(explanation: minAbk
1,1 = minµ=(1,1,α,β,E )∈Pbk Abk

1,1(µ, f ))
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Choices of the features

Introduce

zbk
1 (·) =

Abk
1,4(·)

Abk
4,4(·)

, zbk
2 (·) =

Abk
2,4(·) + Abk

3,4(·)
Abk
1,1(·) + Abk

4,1(·)
.

and define zbk
` (µ) = [zbk

` (f 1;µ), . . . , zbk
` (f Qf ;µ)].
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Choices of the features: motivation

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.

20



Classification procedure

Given zexp
1 , zexp

2 ,
Level 1: distinguish between {1, 4}, {2} and {3} based

on zexp
1 ;

Level 2: if Level 1 returns {1, 4}, distinguish between
{1} and {4} based on zexp

2 .

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees,
NMC3.

3Implementation is based on off-the-shelf Matlab functions.
21
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Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state ubk(f ;µ), f ∈ If , µ ∈ Pbk,

Use the ROM to compute (f q, µm) 7→ Abk
i ,j (f

q;µm) for
m = 1, . . . ,M and q = 1, . . . ,Qf (= MQf PDE solves).

Computational summary:
Finite Element (FE): 14670 dof,

≈ 0.18[s] for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24[s],

≈ 4.4 · 10−3[s] for each PDE query.

⇒ RB is advantageous if MQf & 180
(we consider MQf ≈ 105).
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Results (synthetic data)

Test: generate a dataset Dbk
K , K = 104, Qf = 9.

Then,
1. use M points for learning, K −M for testing;
2. average over 100 partitions learning/testing.

10
1

10
2

10
3

10
4

M

10
-3

10
-2

10
-1

R
b
k
(g

⋆ M
)

ova-SVM

decision tree

kNN

ANN

NMC

Memo:
Rbk(g) = 0
⇒ no mistakes.

Rbk(g) = 1
⇒ always wrong.

Strong dependence on M ⇒ importance of pMOR.
23



Results (experimental data)

Test: consider Dbk
K (as before), and

15 = 5︸︷︷︸
microtrusses

× 3︸︷︷︸
trials

exp datapoints. Then,

1. use M = 7 · 103 synthetic datapoints for learning;
2. use 3 · 103 synth datapoints and all 15 exp points4

for testing.
bk-risk Rbk(g) exp risk (5× 3)

ova-SVM 0.0059 0.2093
decision tree 0.0072 0.4000
kNN (k = 5) 0.0050 0
ANN (10 layers) 0.0026 0.6000
NMC 0.0661 0

4We average over 100 learning/testing partitions of the synthetic dataset.
24



Results (experimental data)

Test: consider Dbk
K (as before), and

15 = 5︸︷︷︸
microtrusses

× 3︸︷︷︸
trials

exp datapoints. Then,

1. use M = 7 · 103 synthetic datapoints for learning;
2. use 3 · 103 synth datapoints and all 15 exp points4

for testing.
bk-risk Rbk(g) exp risk (5× 3)

ova-SVM 0.0059 0.2093
decision tree 0.0072 0.4000
kNN (k = 5) 0.0050 0
ANN (10 layers) 0.0026 0.6000
NMC 0.0661 0

4We average over 100 learning/testing partitions of the synthetic dataset.
24



Summary and perspectives

25



Summary

We propose a MOR approach to Simulation-Based
Classification for the estimate of discrete-valued QOIs.

The approach exploits

1. pMOR procedures for rapid generation of datasets;
2. ML algorithms for the construction of the classifier.

26



Towards the application to real problems

Challenges
Parametrization of damage

damage is a local phenomenon,
⇒ component-based pMOR

Choice of features
automated feature identification5.

5In collaboration with Prof. D Bertsimas, C Pawlowski (MIT). 27



Thank you for your
attention!

Please visit augustine.mit.edu for further information

28
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Preliminaries

Define C = (µ, ξ), ξ ∈ RD

ξ accounts for unmodeled physics, geometry uncertainty...

Write experimental features as
zexp(µ, ξ) = zbk(µ) + δz(µ, ξ),

Introduce the experimental risk Rexp(g) =∫
Pbk

Eδz∼Pδz,µ
[
L(0,1)(g(zbk(µ) + δz), f dam(µ))

]
wbk(µ)dµ,

where Pδz,µ is the probability distribution of δz(µ, ·).
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Main result

Define the ε-uncertainty indicator E bk = E bk(g , ε, µ) as

E bk =

{
0 if g(zbk(µ)) = g(zbk(µ) + δz), ∀ ‖δz‖2 ≤ ε;

1 otherwise.

Then, if Pδz,µ(‖δz(µ)‖2 ≤ εbk) = 1 ∀µ ∈ Pbk,

Rexp(g) ≤ Rbk(g)︸ ︷︷ ︸
nominal

performance

+

∫
Pbk

E bk(g , εbk, µ)wbk(µ) dµ.︸ ︷︷ ︸
robustness to data uncertainty
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Comments

Sensitivity to data uncertainty might lead to poor
performance on experimental data

Given estimates for εbk,
we can explicitly bound Rexp(g) for any g ;
we can properly robustify the learning procedure.

Ben-Tal, El Ghaoui, Nemirovski, 2009

Bertsimas, Brown, Caramanis, 2011
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The two paradigms

Simulation-(Data-) based approach
Farrar et al, . . . , this talk

Offline: Generate Dbk
M = {zbk(µm), f dam(µm)}Mm=1

Build g ?M based on Dbk
M

Online: Given z̄exp, return the label g ?M(z̄exp)

Model-based approach
Friswell&Mottershead

Online: Estimate the parameter µ? s.t. z̄exp ≈ zbk(µ?)

Return f dam(µ?)

Goal: compare performance of SBC with a representative
model-based approach.
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The approach considered

Formulation: we seek µ? ∈ Pbk that minimizes
J(µ) := ‖zbk

1 (µ)− z̄exp
1 ‖

2
2 + ‖zbk

2 (µ)− z̄exp
2 ‖

2
2

Computational strategy:
SQP, gradient estimated based on FD (fmincon6);

4 ICs (one for each region Pbk(κ) = {µ : f dam(µ) = κ});

Reduced Basis method to speed up calculations.

6Matlab R2016a
36
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Results

Synthetic data: (40 samples) Rbk = 0.

Real data:

y = 1 y = 2 y = 3 y = 4
ŷ = 1 0 0 0 0
ŷ = 2 2 0 0 0
ŷ = 3 0 0 6 0
ŷ = 4 1 0 0 6

Computational cost (for a single IC):
30− 50 SQP iterations
300− 500 evaluations of the objective

(2700− 4500 PDE solves)
37



Comments

The model-based approach considered
returns an estimate7 of the full vector µ;
performs poorly on real data

⇒ sensitive to model error;
requires many online PDE solves

⇒ no real-time response.
Simulation-based approaches are preferable if we do not
need to estimate µ.

7Bayesian methods might also provide credible regions for the estimate µ.
38
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Mathematical best-knowledge (bk) model (I)

Set C =
(
µ := [sL, sR , α, β,E ], . . .

)
,

where α, β Rayleigh-damping coefficients, and
E Young’s modulus.

Define the reference domain Ωs = Ω1 ∪ Ω2(sL) ∪ Ω2(sR).

Ω1

Ω2(sL)sL h

h

x1,4

Ω1

Ω3(sR) sR hx4,4

Assumptions: depths of blocks and masses are uniform;
width of the blocks is known exactly.
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Mathematical best-knowledge (bk) model (II)

Define the bk time-harmonic displacement ubk(·; f q, µ) as

G(f q;µ)ubk(·; f q, µ) = 0 in Ωs + BC

where G(f q;µ)↔ linear damped elastodynamics .

Given C = (µ, . . .), estimate

Aexp
i ,j (f q; C) ≈ Abk

i ,j (f
q;µ) := Anom

|ubk
2 (xi ,j ; f

q, µ)|
|ubk

2 (x2,1; f q, µ)|
where xi ,j is the center of block (i , j).
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Choices of the features

Introduce

zbk
1 (·) =

Abk
1,4(·)

Abk
4,4(·)

, zbk
2 (·) =

Abk
2,4(·) + Abk

3,4(·)
Abk
1,1(·) + Abk

4,1(·)
.

and define zbk
` (µ) = [zbk

` (f 1;µ), . . . , zbk
` (f Qf ;µ)].
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Feature visualization: z1 and z2

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.
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Feature visualization: z1

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.

f (Hz)
20 30 40 50 60 70 80

0.5

1

1.5

2

2.5
y=1,4(bk)
y=2(bk)
y=3(bk)
y=1,4(exp)
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Feature visualization: z2

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.

f (Hz)
20 30 40 50 60 70 80

0

0.5

1

1.5
y=1(bk)
y=4(bk)
y=1(exp)
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Choice of the features
Explanation of the Table
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Explanation of the table

For i = 1, . . . , 100
Partition the dataset Dbk

K into Dbk
M and Dbk

K−M
Train the learning algorithm based on Dbk

M

Test the learning algorithm based on Dbk
K−M → Rbk

i

Test the learning algorithm based on Dexp
15 → Rexp

i

EndFor

Return Rbk = 1
100

∑100
i=1 R

bk
i

Return Rexp = 1
100

∑100
i=1 R

exp
i
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