Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

Tommaso Taddei

Université Pierre et Marie Curie Laboratoire Jacques-Louis Lions

Recent developments in numerical methods for model reduction Paris

November 7, 2016

Acknowledgements

Collaborators:

Anthony T Patera; James D Penn; Masayuki Yano.

Sponsors:

Air Force Office of Scientific Research (AFOSR);
Office of Naval Research (ONR).

An example: a microtruss

A target application: monitoring of ship loaders ${ }^{1}$

Objective: monitor the integrity of a ship loader during the operations

${ }^{1}$ Photo credit: www.directindustry.com

Our example: the microtruss system

Our example: the microtruss system

Our example: the microtruss system

Goal: detect the presence of added mass on top of block $(1,4)$ and block $(4,4)$

Apparatus: voice coil actuator; camera\&stroboscope
Input: x_{2}-displacement at prescribed frequencies $\left\{f^{q}\right\}$;
Exp data: x_{2}-displacement of blocks' centers $\left\{c_{i, j}^{\exp }\left(t^{\ell}, f^{q}\right)\right\}$.
Data reduction:
$c_{i, j}^{\exp }\left(t^{\ell}, f^{q}\right) \approx \bar{A}_{i, j}^{\exp }\left(f^{q}\right) \cos \left(2 \pi f^{q} t^{\ell}+\bar{\phi}_{i, j}^{\exp }\left(f^{q}\right)\right)$
Exp outputs: $A_{i, j}^{\exp }\left(f^{q}\right):=\frac{A_{\text {nom }}}{\overline{A_{2,1}}\left(f^{q}\right)} \bar{A}_{i, j}^{\exp }\left(f^{q}\right)$.

Definition of the QOI: damage function

$$
\begin{gathered}
\text { Define } s_{L}=1+\frac{V_{\text {eeft }}}{V_{\text {nom }}}, \text { and } \\
s_{R}:=1+\frac{V_{\text {Kifht }}}{V_{\text {nom }}} . \\
\text { Define } y=\bar{f} \text { dam }\left(s_{L}, s_{R}\right),
\end{gathered}
$$

damage

$$
y= \begin{cases}1 & s_{L}, s_{R} \leq 1.5, \\ 2 & s_{L}>1.5, s_{R} \leq 1.5, \\ 3 & s_{L} \leq 1.5, s_{R}>1.5, \\ 4 & s_{L}, s_{R}>1.5 .\end{cases}
$$

The QOI y is the state of damage associated with the structure.

Definition of the QOI: damage function

Engineering objective

Generate a decision rule g that maps experimental outputs

$$
\left\{A_{i, j}^{\exp }\left(f^{q} ; C\right)\right\}_{i, j, q}
$$

to the appropriate configuration state of damage

$$
y=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1,2,3,4\} ;
$$

for any given system configuration $\mathcal{C}=\left(s_{L}, s_{R}, \ldots\right)$.
Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012

Engineering objective

Generate a decision rule g that maps experimental outputs

$$
\left\{A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right)\right\}_{i, j, q}
$$

to the appropriate configuration state of damage

$$
y=\bar{f} \mathrm{dam}\left(s_{L}, s_{R}\right) \in\{1,2,3,4\} ;
$$

for any given system configuration $\mathcal{C}=\left(s_{L}, s_{R}, \ldots\right)$.
Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012

Mathematical formulation

Mathematical best-knowledge (bk) model
Set
$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate
$A_{i, j}^{\exp }\left(f^{q} ; C\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j), and $u^{b \mathrm{bk}}\left(\because f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:

μ incomplete representation of C;
$\mathcal{G}_{\text {elast-helmhotz }}$ bk-parametrized mathematical model.

Mathematical best-knowledge (bk) model

Set
$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate
$A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j), and $u^{\mathrm{bk}}\left(\because ; f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:

μ incomplete representation of $C_{\text {; }}$
$\mathcal{G}_{\text {elast-helmhotz }}$ bk-parametrized mathematical model.

Mathematical best-knowledge (bk) model

Set
$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate

$$
A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}
$$

where $x_{i, j}$ is the center of block (i, j), and $u^{\mathrm{bk}}\left(\because ; f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:

μ incomplete representation of C;
$\mathcal{G}_{\text {elast-helmhotz }}$ bk-parametrized mathematical model.

Feature extraction

Define the feature map $\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ that takes as input the experimental (or bk) outputs

$$
\left\{A_{i, j}^{0}\left(f^{q} ; \star\right)\right\}_{i, j, q},(\cdot=\exp , \text { bk, } \star=\mathcal{C}, \mu)
$$

and returns the Q features

$$
z^{\bullet}(\star)=\mathcal{F}\left(\left\{A_{i, j}^{\bullet}\left(f^{q} ; \star\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}
$$

$\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ should be chosen such that $z^{\circ}(\star)$ is sensitive to the expected damage; $z^{\circ}(*)$ is insensitive to noise.

Mathematical objective

Given the features $\mathrm{z}^{\mathrm{bk}}(\mu)=\mathcal{F}\left(\left\{A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}$, we seek $g: \mathbb{R}^{Q} \rightarrow\{1, \ldots, 4\}$ that minimizes
$R^{\mathrm{bk}}(g)=\int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}\left(g\left(\mathrm{z}^{\mathrm{bk}}(\mu)\right) \neq f^{\mathrm{dam}}(\mu)\right) w^{\mathrm{bk}}(\mu) d \mu$,
where
$\mu=\left[S_{L}, s_{R}, \alpha, \beta, E\right] \in \mathcal{P}^{\mathrm{bk}}$ anticipated configuration; $\mathcal{P}^{\mathrm{bk}}$ anticipated configuration set;
$\mu \mapsto f^{\mathrm{dam}}(\mu)=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1, \ldots, 4\}$ damage;
$\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ feature map (to be defined);
$\mu \mapsto w^{\mathrm{bk}}(\mu)$ user-defined weight ($\left.\leftrightarrow P_{w^{\mathrm{bk}}}\right)$.

Mathematical objective

Given the features $z^{\mathrm{bk}}(\mu)=\mathcal{F}\left(\left\{A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}$, we seek $g: \mathbb{R}^{Q} \rightarrow\{1, \ldots, 4\}$ that minimizes
$R^{\mathrm{bk}}(g)=\int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}\left(g\left(\mathrm{z}^{\mathrm{bk}}(\mu)\right) \neq f^{\mathrm{dam}}(\mu)\right) w^{\mathrm{bk}}(\mu) d \mu$,
where
$\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right] \in \mathcal{P}^{\mathrm{bk}}$ anticipated configuration;
$\mathcal{P}^{\mathrm{bk}}$ anticipated configuration set;
$\mu \mapsto f^{\operatorname{dam}}(\mu)=\bar{f}^{\operatorname{dam}}\left(s_{L}, s_{R}\right) \in\{1, \ldots, 4\}$ damage;
$\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ feature map (to be defined);
$\mu \mapsto w^{\mathrm{bk}}(\mu)$ user-defined weight $\left(\leftrightarrow P_{w^{\mathrm{bk}}}\right)$.

Computational approach

Simulation-Based Classification

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {IId }} P_{w^{\text {bk }}}$
2. Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{z^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$
3. $\left[g_{M}^{*}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{b k}\right)$

Online stage: (during operations)

1. Acquire the new outputs $\left\{A_{i, j}^{\exp }\left(f^{q} ; \bar{C}\right)\right\}_{i, j, q}$.
2. Compute $\bar{z}^{\exp }=\mathcal{F}\left(A_{i, j}^{\exp }\left(f^{q} ; \bar{C}\right)\right)$.
3. Return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$.

Taddei, Penn, Yano, Patera, 2016.

Simulation-Based Classification

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {iid }} P_{w^{\text {bk }}}$
2. Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{z^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$
3. $\left[g_{M}^{*}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{b k}\right)$

Online stage: (during operations)

1. Acquire the new outputs $\left\{A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right\}_{i, j, q}$.
2. Compute $\bar{z}^{\exp }=\mathcal{F}\left(A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right)$.
3. Return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$.

Taddei, Penn, Yano, Patera, 2016.

Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities:no need to estimate $\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right]$
(which includes nuisance variables α, β, E)
non-intrusive approach
(it requires only forward solves)
Challenge: generation of $\mathcal{D}_{M}^{\mathrm{bk}}$
\Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate $\mathcal{D}_{M}^{\mathrm{bk}}$.

Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities:no need to estimate $\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right]$
(which includes nuisance variables α, β, E)
non-intrusive approach
(it requires only forward solves)
Challenge: generation of $\mathcal{D}_{M}^{\mathrm{bk}}$
\Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate $\mathcal{D}_{M}^{\mathrm{bk}}$.

Perspectives: a ship loader model ${ }^{2}$

Cost to build $\mathcal{D}_{M}^{\mathrm{bk}}=M \times Q_{f} \times$ cost per simulation

FE model ($\approx 5 \cdot 10^{6}$ dofs)

cost per simulation $\approx 43^{\prime}$ $M=10^{4}, Q_{f}=10 \Rightarrow 8$ years

ROM model (PR-scRBE) cost per simulation $\approx 5^{\prime \prime}$ $M=10^{4}, Q_{f}=10 \Rightarrow 6$ days
\Rightarrow pMOR enables the use of mathematical models in the simulation-based framework.
${ }^{2}$ Simulations are performed by Akselos S.A. using PR-scRBE.

Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \sim P_{w^{b k}}$
2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathrm{z}^{\mathrm{bk}}(\mu)$
2.b Use the ROM to generate the dataset $\mathcal{D}_{M}^{b \mathrm{kk}}$
2. $\left[g_{M}^{*}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{\text {bk }}\right)$
pMOR is employed only in the generation of the dataset;
If M is sufficiently large, the cost of 2 .a is negligible compared to the cost of 2.b (many-query context).

Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {iid }} P_{w^{\mathrm{bk}}}$
2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathrm{z}^{\mathrm{bk}}(\mu)$
2.b Use the ROM to generate the dataset $\mathcal{D}_{M}^{b \mathrm{kk}}$
2. $\left[g_{M}^{*}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{\text {bk }}\right)$
pMOR is employed only in the generation of the dataset;
If M is sufficiently large, the cost of $2 . a$ is negligible compared to the cost of $2 . b$ (many-query context).

Application to the microtruss problem

Choice of $\mathcal{P}^{b k}$

We choose upper bounds for s_{L}, s_{R} a priori.
We choose lower and upper bounds for α, β, E using textbook values and a preliminary experiment for

$$
s_{L}=s_{R}=1
$$

(explanation: $\min A_{1,1}^{\mathrm{bk}}=\min _{\mu=(1,1, \alpha, \beta, E) \in \mathcal{P}^{\mathrm{bk}}} A_{1,1}^{\mathrm{bk}}(\mu, f)$)

Choices of the features

Introduce

$$
z_{1}^{\mathrm{bk}}(\cdot)=\frac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, z_{2}^{\mathrm{bk}}(\cdot)=\frac{A_{2,4}^{\mathrm{bk}}(\cdot)+A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot)+A_{4,1}^{\mathrm{bk}}(\cdot)}
$$

and define $z_{\ell}^{\mathrm{bk}}(\mu)=\left[z_{\ell}^{\mathrm{bk}}\left(f^{1} ; \mu\right), \ldots, z_{\ell}^{\mathrm{bk}}\left(f^{Q_{f}} ; \mu\right)\right]$.

Choices of the features: motivation

Rationale: z_{1} detects asymmetry in the structure; z_{2} detects added mass on corners.

Classification procedure

Given $z_{1}^{\exp }, z_{2}^{\exp }$,
Level 1: distinguish between $\{1,4\},\{2\}$ and $\{3\}$ based on $z_{1}^{\exp }$;
Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on $z_{2}^{\exp }$.

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2way classification problem.
Algorithms used: SVM, ANN, kNN, decision trees,

$$
\mathrm{NMC}^{3} .
$$

${ }^{3}$ Implementation is based on off-the-shelf Matlab functions.

Classification procedure

Given $z_{1}^{\exp }, z_{2}^{\exp }$,
Level 1: distinguish between $\{1,4\},\{2\}$ and $\{3\}$ based on $\mathrm{z}_{1}^{\exp }$;
Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on $z_{2}^{\exp }$.

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2 way classification problem.
Algorithms used: SVM, ANN, kNN, decision trees, $N M C^{3}$.
${ }^{3}$ Implementation is based on off-the-shelf Matlab functions.

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):

Build a ROM for the state $u^{\mathrm{bk}}(f ; \mu), f \in \mathcal{I}_{f}, \mu \in \mathcal{P}^{\mathrm{bk}}$,
Use the ROM to compute $\left(f^{q}, \mu^{m}\right) \mapsto A_{i, j}^{b k}\left(f^{q} ; \mu^{m}\right)$ for $m=1, \ldots, M$ and $q=1, \ldots, Q_{f}\left(=M Q_{f}\right.$ PDE solves $)$.

Computational summary:

Finite Element (FE): 14670 dof,
$\approx 0.18[\mathrm{~s}]$ for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost $\approx 24[\mathrm{~s}]$, $\approx 4.4 \cdot 10^{-3}[\mathrm{~s}]$ for each PDE query.
$\Rightarrow R B$ is advantageous if $M Q_{f} \geq 180$
(we consider $M Q_{f} \approx 10^{5}$).

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state $u^{\mathrm{bk}}(f ; \mu), f \in \mathcal{I}_{f}, \mu \in \mathcal{P}^{\mathrm{bk}}$,
Use the ROM to compute $\left(f^{q}, \mu^{m}\right) \mapsto A_{i, j}^{b k}\left(f^{q} ; \mu^{m}\right)$ for $m=1, \ldots, M$ and $q=1, \ldots, Q_{f}\left(=M Q_{f}\right.$ PDE solves $)$.

Computational summary:

Finite Element (FE): 14670 dof, $\approx 0.18[\mathrm{~s}]$ for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost $\approx 24[\mathrm{~s}]$, $\approx 4.4 \cdot 10^{-3}[\mathrm{~s}]$ for each PDE query.
$\Rightarrow R B$ is advantageous if $M Q_{f} \gtrsim 180$
(we consider $M Q_{f} \approx 10^{5}$).

Results (synthetic data)

Test: generate a dataset $\mathcal{D}_{K}^{b k}, K=10^{4}, Q_{f}=9$.
Then,

1. use M points for learning, $K-M$ for testing;
2. average over 100 partitions learning/testing.

Memo:

$R^{\mathrm{bk}}(\mathrm{g})=0$
\Rightarrow no mistakes.
$R^{b k}(g)=1$
\Rightarrow always wrong.

Strong dependence on $M \Rightarrow$ importance of pMOR.

Results (experimental data)

Test: consider $\mathcal{D}_{K}^{\mathrm{bk}}$ (as before), and $15=\underbrace{5}_{\text {microtrusses }} \times \underbrace{3}_{\text {trials }} \exp$ datapoints. Then,

1. use $M=7 \cdot 10^{3}$ synthetic datapoints for learning;
2. use $3 \cdot 10^{3}$ synth datapoints and all 15 exp points ${ }^{4}$ for testing.

	bk-risk $R^{\text {bk }}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN $(k=5)$	0.0050	0
ANN (10 layers)	0.0026	0.6000
NMC	0.0661	0

${ }^{4}$ We average over 100 learning/testing partitions of the synthetic dataset.

Results (experimental data)

Test: consider $\mathcal{D}_{K}^{\mathrm{bk}}$ (as before), and $15=\underbrace{5}_{\text {microtrusses }} \times \underbrace{3}_{\text {trials }} \exp$ datapoints. Then,

1. use $M=7 \cdot 10^{3}$ synthetic datapoints for learning;
2. use $3 \cdot 10^{3}$ synth datapoints and all 15 exp points ${ }^{4}$ for testing.

	bk-risk $R^{\text {bk }}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN $(\mathrm{k}=5)$	0.0050	0
ANN $(10$ layers $)$	0.0026	0.6000
NMC	0.0661	0

${ }^{4}$ We average over 100 learning/testing partitions of the synthetic dataset.

Summary and perspectives

We propose a MOR approach to Simulation-Based Classification for the estimate of discrete-valued QOIs.

The approach exploits

1. pMOR procedures for rapid generation of datasets;
2. ML algorithms for the construction of the classifier.

Towards the application to real problems

Challenges

Parametrization of damage
damage is a local phenomenon,
\Rightarrow component-based pMOR
Choice of features
automated feature identification ${ }^{5}$.

${ }^{5}$ In collaboration with Prof. D Bertsimas, C Pawlowski (MIT).

Thank you for your attention!

Please visit augustine.mit. edu for further information

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Preliminaries

Define $\mathcal{C}=(\mu, \xi), \xi \in \mathbb{R}^{D}$

ξ accounts for unmodeled physics, geometry uncertainty...
Write experimental features as

$$
z^{\exp }(\mu, \xi)=z^{\mathrm{bk}}(\mu)+\delta z(\mu, \xi)
$$

Introduce the experimental risk $R^{\exp }(g)=$
$\int_{\text {pow }}$

$$
\mathbb{E}_{\delta \mathbf{z} \sim P_{\delta z, \mu}}\left[\mathcal{L}^{(0,1)}\left(g\left(\mathbf{z}^{\mathrm{bk}}(\mu)+\delta \mathbf{z}\right), f^{\mathrm{dam}}(\mu)\right)\right] w^{\mathrm{bk}}(\mu) d \mu,
$$

where $P_{\delta \mathbf{z}, \mu}$ is the probability distribution of $\delta \mathbf{z}(\mu, \cdot)$.

Main result

Define the ϵ-uncertainty indicator $E^{\mathrm{bk}}=E^{\mathrm{bk}}(g, \epsilon, \mu)$ as
$E^{\mathrm{bk}}=\left\{\begin{array}{l}0 \text { if } g\left(\mathbf{z}^{\mathrm{bk}}(\mu)\right)=g\left(\mathbf{z}^{\mathrm{bk}}(\mu)+\delta \mathbf{z}\right), \forall\|\delta \mathbf{z}\|_{2} \leq \epsilon ; \\ 1 \text { otherwise. }\end{array}\right.$
Then, if $P_{\delta \mathrm{z}, \mu}\left(\|\delta \mathrm{z}(\mu)\|_{2} \leq \epsilon^{\mathrm{bk}}\right)=1 \forall \mu \in \mathcal{P}^{\mathrm{bk}}$,

Main result

Define the ϵ-uncertainty indicator $E^{\mathrm{bk}}=E^{\mathrm{bk}}(g, \epsilon, \mu)$ as
$E^{\mathrm{bk}}=\left\{\begin{array}{l}0 \text { if } g\left(\mathbf{z}^{\mathrm{bk}}(\mu)\right)=g\left(\mathbf{z}^{\mathrm{bk}}(\mu)+\delta \mathbf{z}\right), \forall\|\delta \mathbf{z}\|_{2} \leq \epsilon ; \\ 1 \text { otherwise. }\end{array}\right.$
Then, if $P_{\delta \mathbf{z}, \mu}\left(\|\delta \mathbf{z}(\mu)\|_{2} \leq \epsilon^{\mathrm{bk}}\right)=1 \forall \mu \in \mathcal{P}^{\mathrm{bk}}$,
$R^{\exp }(g) \leq \underbrace{R^{\mathrm{bk}}(g)}_{\begin{array}{c}\text { nominal } \\ \text { performance }\end{array}}+\underbrace{\int_{\text {pbk }} E^{\mathrm{bk}}\left(g, \epsilon^{\mathrm{bk}}, \mu\right) w^{\mathrm{bk}}(\mu) d \mu .}_{\text {robustness to data uncertainty }}$

Comments

Sensitivity to data uncertainty might lead to poor performance on experimental data

Given estimates for ϵ^{bk},
we can explicitly bound $R^{\exp }(g)$ for any g; we can properly robustify the learning procedure.

Ben-Tal, El Ghaoui, Nemirovski, 2009
Bertsimas, Brown, Caramanis, 2011

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

The two paradigms

Simulation-(Data-) based approach
Farrar et al, this talk
Offline: Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{\mathbf{z}^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$ Build g_{M}^{\star} based on $\mathcal{D}_{M}^{b \mathrm{k}}$
Online: Given $\bar{z}^{\exp }$, return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$
Model-based approach
Friswell\&Mottershead
Online: Estimate the parameter μ^{\star} s.t. $\bar{z}^{\exp } \approx z^{\mathrm{bk}}\left(\mu^{\star}\right)$ Return $f^{\text {dam }}\left(\mu^{\star}\right)$

Goal: compare performance of SBC with a representative model-based approach.

The two paradigms

Simulation-(Data-) based approach
Farrar et al, this talk
Offline: Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{z^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$ Build g_{M}^{\star} based on $\mathcal{D}_{M}^{b k}$
Online: Given $\bar{z}^{\exp }$, return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$
Model-based approach
Friswell\&Mottershead
Online: Estimate the parameter μ^{\star} s.t. $\bar{z}^{\exp } \approx z^{\mathrm{bk}}\left(\mu^{\star}\right)$ Return $f^{\text {dam }}\left(\mu^{\star}\right)$

Goal: compare performance of SBC with a representative model-based approach.

Formulation: we seek $\mu^{\star} \in \mathcal{P}^{b k}$ that minimizes

$$
J(\mu):=\left\|\mathbf{z}_{1}^{\mathrm{bk}}(\mu)-\overline{\mathbf{z}}_{1}^{\exp }\right\|_{2}^{2}+\left\|\mathbf{z}_{2}^{\mathrm{bk}}(\mu)-\overline{\mathbf{z}}_{2}^{\exp }\right\|_{2}^{2}
$$

Computational strategy:
SQP, gradient estimated based on FD (fmincon ${ }^{6}$);
4 ICs (one for each region $\mathcal{P}^{\mathrm{bk}}(\kappa)=\left\{\mu: f^{\mathrm{dam}}(\mu)=\kappa\right\}$);
Reduced Basis method to speed up calculations.

The approach considered

Formulation: we seek $\mu^{\star} \in \mathcal{P}^{b k}$ that minimizes
$J(\mu):=\left\|z_{1}^{\mathrm{bk}}(\mu)-\bar{z}_{1}^{\exp }\right\|_{2}^{2}+\left\|\mathbf{z}_{2}^{\mathrm{bk}}(\mu)-\overline{\mathbf{z}}_{2}^{\exp }\right\|_{2}^{2}$
Computational strategy:
SQP, gradient estimated based on FD (fmincon ${ }^{6}$);
4 ICs (one for each region $\mathcal{P}^{\mathrm{bk}}(\kappa)=\left\{\mu: f^{\mathrm{dam}}(\mu)=\kappa\right\}$);
Reduced Basis method to speed up calculations.

Results

Synthetic data: (40 samples) $R^{\mathrm{bk}}=0$.

Real data:

	$y=1$	$y=2$	$y=3$	$y=4$
$\hat{y}=1$	0	0	0	0
$\hat{y}=2$	2	0	0	0
$\hat{y}=3$	0	0	6	0
$\hat{y}=4$	1	0	0	6

Computational cost (for a single IC):
$30-50$ SQP iterations
$300-500$ evaluations of the objective

$$
\text { (2700 - } 4500 \text { PDE solves) }
$$

Comments

The model-based approach considered returns an estimate ${ }^{7}$ of the full vector μ; performs poorly on real data
\Rightarrow sensitive to model error;
requires many online PDE solves
\Rightarrow no real-time response.

Simulation-based approaches are preferable if we do not need to estimate μ.

[^0]
Comments

The model-based approach considered returns an estimate ${ }^{7}$ of the full vector μ; performs poorly on real data
\Rightarrow sensitive to model error;
requires many online PDE solves
\Rightarrow no real-time response.
Simulation-based approaches are preferable if we do not need to estimate μ.
${ }^{7}$ Bayesian methods might also provide credible regions for the estimate μ.

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Mathematical best-knowledge (bk) model (I)
Set $\mathcal{C}=\left(\mu:=\left[s_{L}, s_{R}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.

Define the reference domain $\Omega_{s}=\Omega_{1} \cup \Omega_{2}\left(s_{L}\right) \cup \Omega_{2}\left(s_{R}\right)$.

Assumptions: depths of blocks and masses are uniform; width of the blocks is known exactly.

Mathematical best-knowledge (bk) model (I)

Set $\mathcal{C}=\left(\mu:=\left[s_{L}, s_{R}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.

Define the reference domain $\Omega_{s}=\Omega_{1} \cup \Omega_{2}\left(s_{L}\right) \cup \Omega_{2}\left(s_{R}\right)$.

Assumptions: depths of blocks and masses are uniform; width of the blocks is known exactly.

Mathematical best-knowledge (bk) model (II)

Define the bk time-harmonic displacement $u^{\mathrm{bk}}\left(\cdot ; f^{q}, \mu\right)$ as

$$
\mathcal{G}\left(f^{q} ; \mu\right) u^{\mathrm{bk}}\left(\because ; f^{q}, \mu\right)=0 \text { in } \Omega_{s}+\mathrm{BC}
$$

where $\mathcal{G}\left(f^{q} ; \mu\right) \leftrightarrow$ linear damped elastodynamics.
Given $C=(\mu, \ldots)$, estimate
$A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j).

Mathematical best-knowledge (bk) model (II)

Define the bk time-harmonic displacement $u^{\mathrm{bk}}\left(\cdot ; f^{q}, \mu\right)$ as

$$
\mathcal{G}\left(f^{q} ; \mu\right) u^{\mathrm{bk}}\left(\because ; f^{q}, \mu\right)=0 \text { in } \Omega_{s}+\mathrm{BC}
$$

where $\mathcal{G}\left(f^{q} ; \mu\right) \leftrightarrow$ linear damped elastodynamics.
Given $\mathcal{C}=(\mu, \ldots)$, estimate
$A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j).

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Choices of the features

Introduce

$$
z_{1}^{\mathrm{bk}}(\cdot)=\frac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, z_{2}^{\mathrm{bk}}(\cdot)=\frac{A_{2,4}^{\mathrm{bk}}(\cdot)+A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot)+A_{4,1}^{\mathrm{bk}}(\cdot)}
$$

and define $z_{\ell}^{\mathrm{bk}}(\mu)=\left[z_{\ell}^{\mathrm{bk}}\left(f^{1} ; \mu\right), \ldots, z_{\ell}^{\mathrm{bk}}\left(f^{Q_{f}} ; \mu\right)\right]$.

Feature visualization: z_{1} and z_{2}

Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Feature visualization:

Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Feature visualization:

Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Explanation of the table

For $i=1, \ldots, 100$
Partition the dataset D_{K}^{bk} into $\mathcal{D}_{M}^{\mathrm{bk}}$ and $\mathcal{D}_{K}^{\mathrm{bk}}-M$
Train the learning algorithm based on $\mathcal{D}_{M}^{\text {bk }}$
Test the learning algorithm based on $\mathcal{D}_{K-M}^{b k}$
Test the learning algorithm based on $\mathcal{D}_{15}^{\exp }$

EndFor
Return $R^{\mathrm{bk}}=\frac{1}{100} \sum_{i=1}^{100} R_{i}^{\mathrm{bk}}$
Return $R^{\exp }=\frac{1}{100} \sum_{i=1}^{100} R_{i}^{\exp }$

[^0]: ${ }^{7}$ Bayesian methods might also provide credible regions for the estimate μ.

