Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

Tommaso Taddei

Université Pierre et Marie Curie Laboratoire Jacques-Louis Lions

Recent developments in numerical methods for model reduction Paris

November 7, 2016

Collaborators:

Anthony T Patera; James D Penn; Masayuki Yano.

Sponsors:

Air Force Office of Scientific Research (AFOSR); Office of Naval Research (ONR).

An example: a microtruss

A target application: monitoring of ship loaders¹

Objective: monitor the integrity of a ship loader during the operations

¹Photo credit: www.directindustry.com

Our example: the microtruss system

Our example: the microtruss system

Goal: detect the presence of added mass on top of block (1, 4) and block (4, 4)

Apparatus: voice coil actuator; camera&stroboscope

Input: x₂-displacement at prescribed frequencies $\{f^q\}$; Exp data: x₂-displacement of blocks' centers $\{c_{i,i}^{exp}(t^{\ell}, f^q)\}$.

Data reduction: $c_{i,j}^{\exp}(t^{\ell}, f^{q}) \approx \overline{A}_{i,j}^{\exp}(f^{q}) \cos\left(2\pi f^{q} t^{\ell} + \overline{\phi}_{i,j}^{\exp}(f^{q})\right)$ *Exp outputs:* $A_{i,j}^{\exp}(f^{q}) := \frac{A_{nom}}{\overline{A}_{2,1}^{\exp}(f^{q})} \overline{A}_{i,j}^{\exp}(f^{q}).$

Definition of the QOI: damage function

Define
$$s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}$$
, and
 $s_R := 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}$.
Define $y = \overline{f}^{\text{dam}}(s_L, s_R)$,
 $y = \begin{cases} 1 & s_L, s_R \leq 1.5, \\ 2 & s_L > 1.5, s_R \leq 1.5, \\ 3 & s_L \leq 1.5, s_R > 1.5, \\ 4 & s_L, s_R > 1.5. \end{cases}$

The QOI *y* is the **state of damage** associated with the structure.

Definition of the QOI: damage function

Engineering objective

Generate a *decision rule* g that maps experimental outputs $\{A_{i,j}^{\exp}(f^q; C)\}_{i,j,q}$

to the appropriate configuration state of damage $y = \overline{f}^{\text{dam}}(s_L, s_R) \in \{1, 2, 3, 4\};$ for any given system configuration $\mathcal{C} = (s_L, s_R, \ldots).$

Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?

Level II: where is damage located?

C Farrar, K Worden, 2012

Generate a *decision rule g* that maps experimental outputs $\{A_{i,j}^{\exp}(f^q; C)\}_{i,j,q}$

to the appropriate configuration state of damage $y = \overline{f}^{\text{dam}}(s_L, s_R) \in \{1, 2, 3, 4\};$ for any given system configuration $\mathcal{C} = (s_L, s_R, \ldots).$

for any given system configuration $C = (s_L, s_R, \ldots)$.

Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?

Level II: where is damage located?

C Farrar, K Worden, 2012

Mathematical formulation

Mathematical best-knowledge (bk) model

Set $\mathcal{C} = \left(\mu := [\mathbf{s}_L = 1 + \frac{V_{\text{left}}}{V_{\text{row}}}, \mathbf{s}_R = 1 + \frac{V_{\text{right}}}{V_{\text{row}}}, \alpha, \beta, E], \dots\right),$ α, β Rayleigh-damping coefficients, and where *E* Young's modulus.

Estimate

$$\mathcal{A}_{i,j}^{ ext{exp}}(f^q;\mathcal{C}) pprox \mathcal{A}_{i,j}^{ ext{bk}}(f^q;\mu) := \mathcal{A}_{ ext{nom}} \left| rac{|u_2^{ ext{bk}}(x_{i,j};f^q,\mu)|}{|u_2^{ ext{bk}}(x_{2,1};f^q,\mu)|}
ight|$$

where $x_{i,i}$ is the center of block (i, j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{\text{elast-helmhotz}}(u^{\text{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\text{elast-helmhotz}}$ bk-parametrized mathematical model. \Box

Mathematical best-knowledge (bk) model

Set $\mathcal{C} = \left(\mu := [\mathbf{s}_L = 1 + \frac{V_{\text{left}}}{V_{\text{row}}}, \mathbf{s}_R = 1 + \frac{V_{\text{right}}}{V_{\text{row}}}, \alpha, \beta, E], \dots\right),$ α, β Rayleigh-damping coefficients, and where *E* Young's modulus.

Estimate

$$\mathcal{A}^{ ext{exp}}_{i,j}(f^q;\mathcal{C})pprox \mathcal{A}^{ ext{bk}}_{i,j}(f^q;\mu):=\mathcal{A}_{ ext{nom}}rac{|u^{ ext{bk}}_2(\mathsf{x}_{i,j};f^q,\mu)|}{|u^{ ext{bk}}_2(\mathsf{x}_{2,1};f^q,\mu)|}$$

where $x_{i,i}$ is the center of block (i, j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{\text{elast-helmhotz}}(u^{\text{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\text{elast-helmhotz}}$ bk-parametrized mathematical model. \Box

Mathematical best-knowledge (bk) model

Set $\mathcal{C} = \left(\mu := [\mathbf{s}_{L} = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, \mathbf{s}_{R} = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E], \dots \right),$ where α, β Rayleigh-damping coefficients, and E Young's modulus.

Estimate

$$\mathcal{A}_{i,j}^{\mathrm{exp}}(f^{q};\mathcal{C}) \approx \mathcal{A}_{i,j}^{\mathrm{bk}}(f^{q};\mu) := \mathcal{A}_{\mathrm{nom}} \frac{|u_{2}^{\mathrm{bk}}(x_{i,j};f^{q},\mu)|}{|u_{2}^{\mathrm{bk}}(x_{2,1};f^{q},\mu)|}$$

where $x_{i,j}$ is the center of block (i, j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{ ext{elast-helmhotz}}(u^{ ext{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\text{elast-helmhotz}}$ bk-parametrized mathematical model.

Define the **feature map** $\mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q$ that takes as input the experimental (or bk) outputs $\{A_{i,i}^{\bullet}(f^{q};\star)\}_{i,i,q}, (\bullet = \exp, \operatorname{bk}, \star = \mathcal{C}, \mu)$ and returns the *Q* features $\mathbf{z}^{\bullet}(\star) = \mathcal{F}(\{A_{i,i}^{\bullet}(f^{q};\star)\}_{i,i,q}) \in \mathbb{R}^{Q}$ $\mathcal{F}: \mathbb{R}^{16Q_f} \rightarrow \mathbb{R}^Q$ should be chosen such that $z^{\bullet}(\star)$ is sensitive to the expected damage; $z^{\bullet}(\star)$ is insensitive to noise.

Mathematical objective

Given the features $\mathbf{z}^{bk}(\mu) = \mathcal{F}(\{A_{i,j}^{bk}(f^q;\mu)\}_{i,j,q}) \in \mathbb{R}^Q$, we seek $g : \mathbb{R}^Q \to \{1, \dots, 4\}$ that minimizes

 $R^{\mathrm{bk}}(g) = \int_{\mathcal{P}^{\mathrm{bk}}} \mathbbm{1}\left(g(\mathbf{z}^{\mathrm{bk}}(\mu)) \neq f^{\mathrm{dam}}(\mu)\right) w^{\mathrm{bk}}(\mu) \, d\mu,$

where

 $\mu = [\mathbf{s}_L, \mathbf{s}_R, \alpha, \beta, E] \in \mathcal{P}^{bk} \text{ anticipated configuration;}$ $\mathcal{P}^{bk} \text{ anticipated configuration set;}$ $\mu \mapsto f^{dam}(\mu) = \overline{f}^{dam}(\mathbf{s}_L, \mathbf{s}_R) \in \{1, \dots, 4\} \text{ damage;}$ $\mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q \text{ feature map (to be defined);}$ $\mu \mapsto w^{bk}(\mu) \text{ user-defined weight } (\leftrightarrow P_{w^{bk}}).$

Mathematical objective

Given the features $\mathbf{z}^{bk}(\mu) = \mathcal{F}(\{A_{i,j}^{bk}(f^q;\mu)\}_{i,j,q}) \in \mathbb{R}^Q$, we seek $g : \mathbb{R}^Q \to \{1, \dots, 4\}$ that minimizes

 $R^{\mathrm{bk}}(g) = \int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}(g(\mathbf{z}^{\mathrm{bk}}(\mu)) \neq f^{\mathrm{dam}}(\mu)) w^{\mathrm{bk}}(\mu) d\mu,$

where

$$\begin{split} \mu &= [s_L, s_R, \alpha, \beta, E] \in \mathcal{P}^{\mathrm{bk}} \text{ anticipated configuration}; \\ \mathcal{P}^{\mathrm{bk}} \text{ anticipated configuration set}; \\ \mu &\mapsto f^{\mathrm{dam}}(\mu) = \bar{f}^{\mathrm{dam}}(s_L, s_R) \in \{1, \dots, 4\} \text{ damage}; \\ \mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q \text{ feature map (to be defined)}; \\ \mu &\mapsto w^{\mathrm{bk}}(\mu) \text{ user-defined weight } (\leftrightarrow P_{w^{\mathrm{bk}}}). \end{split}$$

Computational approach

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \frown P_{w^{bk}}$
- 2. Generate $\mathcal{D}_M^{\mathrm{bk}} = \{\mathbf{z}^{\mathrm{bk}}(\mu^m), f^{\mathrm{dam}}(\mu^m)\}_{m=1}^M$
- 3. $[g^{\star}_{M}] = ext{Supervised-Learning-alg}(\mathcal{D}^{ ext{bk}}_{M})$

Online stage: (during operations)

- 1. Acquire the new outputs $\{A_{i,i}^{\exp}(f^q; \overline{C})\}_{i,j,q}$.
- 2. Compute $\overline{\mathbf{z}}^{\exp} = \mathcal{F}(\mathcal{A}_{i,j}^{\exp}(f^q; \overline{\mathcal{C}})).$
- 3. Return the label $g_M^{\star}(\bar{z}^{exp})$.

Taddei, Penn, Yano, Patera, 2016.

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \frown P_{w^{bk}}$
- 2. Generate $\mathcal{D}_{M}^{\mathrm{bk}} = \left\{ \mathbf{z}^{\mathrm{bk}}(\mu^{m}), f^{\mathrm{dam}}(\mu^{m}) \right\}_{m=1}^{M}$

iid

- 3. $[g^{\star}_{M}] = ext{Supervised-Learning-alg}(\mathcal{D}^{ ext{bk}}_{M})$
- Online stage: (during operations)
 - 1. Acquire the new outputs $\{A_{i,i}^{\exp}(f^q; \overline{C})\}_{i,j,q}$.
 - 2. Compute $\overline{\mathbf{z}}^{\exp} = \mathcal{F}(\mathcal{A}_{i,j}^{\exp}(f^q; \overline{\mathcal{C}})).$
 - 3. Return the label $g_M^{\star}(\bar{z}^{exp})$.

Taddei, Penn, Yano, Patera, 2016.

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E) non-intrusive approach (it requires only forward solves)

Challenge: generation of \mathcal{D}_{M}^{bk}

 $\Rightarrow \mathsf{Exploit pMOR} (\leftrightarrow \mathsf{parametric def of damage}) \mathsf{to}$ generate $\mathcal{D}^{\mathrm{bk}}_{\mathcal{M}}$.

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E) non-intrusive approach (it requires only forward solves)

Challenge: generation of \mathcal{D}_{M}^{bk} \Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate \mathcal{D}_{M}^{bk} .

Cost to build $\mathcal{D}_M^{\mathrm{bk}} = M \times Q_f \times \operatorname{cost} \operatorname{per simulation}$

FE model ($\approx 5 \cdot 10^6$ dofs) cost per simulation $\approx 43'$ $M = 10^4, Q_f = 10 \Rightarrow 8$ years **BOM model** (PR-scRBE)

ROM model (PR-scRBE) cost per simulation $\approx 5''$ $M = 10^4$, $Q_f = 10 \Rightarrow 6$ days

⇒ pMOR enables the use of mathematical models in the simulation-based framework.

²Simulations are performed by Akselos S.A. using PR-scRBE.

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \frown P_{w^{bk}}$
- 2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathsf{z}^{\mathrm{bk}}(\mu)$
- 2.b Use the ROM to generate the dataset $\mathcal{D}_M^{\rm bk}$
- 3. $[g^{\star}_{M}] = \text{Supervised-Learning-alg}(\mathcal{D}^{\mathrm{bk}}_{M})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (many-query context).

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \curvearrowright P_{w^{bk}}$
- 2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathsf{z}^{\mathrm{bk}}(\mu)$
- 2.b Use the ROM to generate the dataset $\mathcal{D}_M^{\rm bk}$
- 3. $[g^{\star}_{M}] = \text{Supervised-Learning-alg}(\mathcal{D}^{\mathrm{bk}}_{M})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (many-query context).

Application to the microtruss problem

Choice of $\mathcal{P}^{\mathrm{bk}}$

We choose upper bounds for s_L , s_R a priori.

We choose lower and upper bounds for α, β, E using textbook values and a preliminary experiment for $s_L = s_R = 1$.

Choices of the features

Introduce

$$\begin{aligned} z_1^{\rm bk}(\cdot) &= \frac{A_{1,4}^{\rm bk}(\cdot)}{A_{4,4}^{\rm bk}(\cdot)}, \ z_2^{\rm bk}(\cdot) &= \frac{A_{2,4}^{\rm bk}(\cdot) + A_{3,4}^{\rm bk}(\cdot)}{A_{1,1}^{\rm bk}(\cdot) + A_{4,1}^{\rm bk}(\cdot)}.\\ \text{and define } \mathbf{z}_{\ell}^{\rm bk}(\mu) &= [z_{\ell}^{\rm bk}(f^1;\mu), \dots, z_{\ell}^{\rm bk}(f^{Q_f};\mu)]. \end{aligned}$$

Choices of the features: motivation

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

Given $\boldsymbol{z}_1^{\mathrm{exp}}$, $\boldsymbol{z}_2^{\mathrm{exp}}$,

Level 1: distinguish between {1,4}, {2} and {3} based on z_1^{exp} ;

Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on z_2^{exp} .

From the learning perspective,

Level 1 corresponds to a 3way classification problem; Level 2 corresponds to a 2way classification problem.

 $\label{eq:algorithms used: SVM, ANN, kNN, decision trees, \\ NMC^3.$

³Implementation is based on off-the-shelf Matlab functions.

Given \mathbf{z}_1^{\exp} , \mathbf{z}_2^{\exp} ,

Level 1: distinguish between {1,4}, {2} and {3} based on z_1^{exp} ;

Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on z_2^{exp} .

From the learning perspective,

Level 1 corresponds to a 3way classification problem; Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees, NMC³.

³Implementation is based on off-the-shelf Matlab functions.

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential): Build a ROM for the state $u^{bk}(f; \mu)$, $f \in \mathcal{I}_f$, $\mu \in \mathcal{P}^{bk}$, Use the ROM to compute $(f^q, \mu^m) \mapsto A_{i,i}^{\text{bk}}(f^q; \mu^m)$ for $m = 1, \ldots, M$ and $q = 1, \ldots, Q_f$ (= MQ_f PDE solves). **Computational summary:** Finite Element (FE): 14670 dof, ≈ 0.18 s for each PDE query; Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24 [s], $\approx 4.4 \cdot 10^{-3}$ [s] for each PDE query. \Rightarrow RB is advantageous if $MQ_f \ge 180$

(we consider $MQ_f \approx 10^5$).

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential): Build a ROM for the state $u^{bk}(f; \mu)$, $f \in \mathcal{I}_f$, $\mu \in \mathcal{P}^{bk}$, Use the ROM to compute $(f^q, \mu^m) \mapsto A_{i,i}^{bk}(f^q; \mu^m)$ for $m = 1, \ldots, M$ and $q = 1, \ldots, Q_f$ (= MQ_f PDE solves). **Computational summary:** Finite Element (FE): 14670 dof, ≈ 0.18 [s] for each PDE query; Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24 [s], $\approx 4.4 \cdot 10^{-3}$ [s] for each PDE query. \Rightarrow RB is advantageous if $MQ_f \ge 180$

(we consider $MQ_f \approx 10^5$).

Results (synthetic data)

Test: generate a dataset $\mathcal{D}_{K}^{\text{bk}}$, $K = 10^{4}$, $Q_{f} = 9$. Then,

use M points for learning, K - M for testing; 1. 2. average over 100 partitions learning/testing. 10^{-1} Memo: $R^{\mathrm{bk}}(g) = 0$ \Rightarrow no mistakes. $R^{\mathrm{bk}}(g_M^\star)$ ----ova-SVM
decision tree
kNN $R^{\mathrm{bk}}(g) = 1$ \Rightarrow always wrong. * ANN -NMC 10^{2} 10^{3} 10^{4} 10^{1} MStrong dependence on $M \Rightarrow$ importance of pMOR.

Results (experimental data)

	bk-risk $R^{ m bk}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN (k = 5)	0.0050	0
ANN (10 layers)	0.0026	0.6000
NMC	0.0661	0

⁴We average over 100 learning/testing partitions of the synthetic dataset.

Results (experimental data)

	bk-risk $R^{ m bk}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN (<mark>k = 5</mark>)	0.0050	0
ANN (10 layers)	0.0026	0.6000
NMC	0.0661	0

⁴We average over 100 learning/testing partitions of the synthetic dataset.

Summary and perspectives

We propose a MOR approach to Simulation-Based Classification for the estimate of discrete-valued QOIs.

The approach exploits

1. pMOR procedures for rapid generation of datasets;

2. ML algorithms for the construction of the classifier.

Challenges

Parametrization of damage damage is a local phenomenon,

 \Rightarrow component-based pMOR

Choice of features

automated feature identification⁵.

⁵In collaboration with Prof. D Bertsimas, C Pawlowski (MIT).

Thank you for your attention!

Please visit augustine.mit.edu for further information

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Backup slides

• Error analysis

- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Define $\mathcal{C} = (\mu, \xi), \ \xi \in \mathbb{R}^D$

 ξ accounts for unmodeled physics, geometry uncertainty...

Write experimental features as $\mathbf{z}^{\exp}(\mu, \xi) = \mathbf{z}^{\mathrm{bk}}(\mu) + \delta \mathbf{z}(\mu, \xi)$,

Introduce the experimental risk $R^{\exp}(g) =$

 $\int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{E}_{\delta \mathbf{z} \sim P_{\delta \mathbf{z}, \mu}} \big[\mathcal{L}^{(0,1)}(g(\mathbf{z}^{\mathrm{bk}}(\mu) + \delta \mathbf{z}), f^{\mathrm{dam}}(\mu)) \big] w^{\mathrm{bk}}(\mu) d\mu,$

where $P_{\delta z,\mu}$ is the probability distribution of $\delta z(\mu, \cdot)$.

Define the ϵ -uncertainty indicator $E^{bk} = E^{bk}(g, \epsilon, \mu)$ as $E^{bk} = \begin{cases} 0 \text{ if } g(\mathbf{z}^{bk}(\mu)) = g(\mathbf{z}^{bk}(\mu) + \delta \mathbf{z}), \ \forall \|\delta \mathbf{z}\|_2 \le \epsilon; \\ 1 \text{ otherwise.} \end{cases}$

Then, if $P_{\delta \mathbf{z},\mu}(\|\delta \mathbf{z}(\mu)\|_2 \leq \epsilon^{\mathrm{bk}}) = 1 \ \forall \ \mu \in \mathcal{P}^{\mathrm{bk}}$,

$$R^{\exp}(g) \leq \underbrace{R^{\mathrm{bk}}(g)}_{\text{nominal performance}} + \underbrace{\int_{\mathcal{P}^{\mathrm{bk}}} E^{\mathrm{bk}}(g, \epsilon^{\mathrm{bk}}, \mu) w^{\mathrm{bk}}(\mu) d\mu}_{\text{robustness to data uncertainty}}$$

Define the ϵ -uncertainty indicator $E^{bk} = E^{bk}(g, \epsilon, \mu)$ as $E^{bk} = \begin{cases} 0 \text{ if } g(\mathbf{z}^{bk}(\mu)) = g(\mathbf{z}^{bk}(\mu) + \delta \mathbf{z}), \ \forall \|\delta \mathbf{z}\|_2 \leq \epsilon; \\ 1 \text{ otherwise.} \end{cases}$

Then, if $P_{\delta \mathbf{z},\mu}(\|\delta \mathbf{z}(\mu)\|_2 \leq \epsilon^{\mathrm{bk}}) = 1 \ \forall \, \mu \in \mathcal{P}^{\mathrm{bk}}$,

$$R^{\exp}(g) \leq \underbrace{R^{\mathrm{bk}}(g)}_{\text{nominal performance}} + \underbrace{\int_{\mathcal{P}^{\mathrm{bk}}} E^{\mathrm{bk}}(g, \epsilon^{\mathrm{bk}}, \mu) \, w^{\mathrm{bk}}(\mu) \, d\mu}_{\text{robustness to data uncertainty}}$$

Sensitivity to data uncertainty might lead to poor performance on experimental data

Given estimates for ϵ^{bk} , we can explicitly bound $R^{exp}(g)$ for any g; we can properly **robustify** the learning procedure.

Ben-Tal, El Ghaoui, Nemirovski, 2009 Bertsimas, Brown, Caramanis, 2011

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Simulation-(Data-) based approach Farrar et al, ..., this talk Offline: Generate $\mathcal{D}_{M}^{\mathrm{bk}} = \{\mathbf{z}^{\mathrm{bk}}(\mu^{m}), f^{\mathrm{dam}}(\mu^{m})\}_{m=1}^{M}$ Build g_{M}^{\star} based on $\mathcal{D}_{M}^{\mathrm{bk}}$ Online: Given $\bar{\mathbf{z}}^{\mathrm{exp}}$, return the label $g_{M}^{\star}(\bar{\mathbf{z}}^{\mathrm{exp}})$

Model-based approach

Friswell&Mottershead

Online: Estimate the parameter μ^* s.t. $\bar{z}^{exp} \approx z^{bk}(\mu^*)$ Return $f^{dam}(\mu^*)$

Goal: compare performance of SBC with a representative model-based approach.

Simulation-(Data-) based approach Farrar et al, ..., this talk Offline: Generate $\mathcal{D}_{M}^{\mathrm{bk}} = \{\mathbf{z}^{\mathrm{bk}}(\mu^{m}), f^{\mathrm{dam}}(\mu^{m})\}_{m=1}^{M}$ Build g_{M}^{\star} based on $\mathcal{D}_{M}^{\mathrm{bk}}$ Online: Given $\bar{\mathbf{z}}^{\mathrm{exp}}$, return the label $g_{M}^{\star}(\bar{\mathbf{z}}^{\mathrm{exp}})$

Model-based approach

Friswell&Mottershead

Online: Estimate the parameter μ^* s.t. $\bar{z}^{exp} \approx z^{bk}(\mu^*)$ Return $f^{dam}(\mu^*)$

Goal: compare performance of SBC with a representative model-based approach.

Formulation: we seek $\mu^* \in \mathcal{P}^{bk}$ that minimizes $J(\mu) := \|\mathbf{z}_1^{bk}(\mu) - \bar{\mathbf{z}}_1^{exp}\|_2^2 + \|\mathbf{z}_2^{bk}(\mu) - \bar{\mathbf{z}}_2^{exp}\|_2^2$

Computational strategy: SQP, gradient estimated based on FD (fmincon⁶); 4 ICs (one for each region $\mathcal{P}^{\mathrm{bk}}(\kappa) = \{\mu : f^{\mathrm{dam}}(\mu) = \kappa\}$);

Reduced Basis method to speed up calculations.

Formulation: we seek $\mu^* \in \mathcal{P}^{bk}$ that minimizes $J(\mu) := \|\mathbf{z}_1^{bk}(\mu) - \bar{\mathbf{z}}_1^{exp}\|_2^2 + \|\mathbf{z}_2^{bk}(\mu) - \bar{\mathbf{z}}_2^{exp}\|_2^2$

Computational strategy: SQP, gradient estimated based on FD (fmincon⁶); 4 ICs (one for each region $\mathcal{P}^{\mathrm{bk}}(\kappa) = \{\mu : f^{\mathrm{dam}}(\mu) = \kappa\}$);

Reduced Basis method to speed up calculations.

Results

Synthetic data: (40 samples) $R^{bk} = 0$.

Real data:

Computational cost (for a single IC):

30 - 50 SQP iterations 300 - 500 evaluations of the objective (2700 - 4500 PDE solves) The model-based approach considered returns an estimate⁷ of the full vector μ ; performs poorly on real data \Rightarrow sensitive to model error; requires many online PDE solves \Rightarrow no real-time response. Simulation-based approaches are preferable if we do not need to estimate μ .

⁷Bayesian methods might also provide credible regions for the estimate μ .

The model-based approach considered returns an estimate⁷ of the full vector μ ; performs poorly on real data \Rightarrow sensitive to model error; requires many online PDE solves \Rightarrow no real-time response. Simulation-based approaches are preferable if we do not need to estimate μ .

⁷Bayesian methods might also provide credible regions for the estimate μ .

Backup slides

- Error analysis
- Comparison with a model-based approach

Mathematical model

- Choice of the features
- Explanation of the Table

Mathematical best-knowledge (bk) model (I)

Set $C = (\mu := [s_L, s_R, \alpha, \beta, E], \dots)$,

where α, β Rayleigh-damping coefficients, and *E* Young's modulus.

Define the reference domain $\Omega_s = \Omega_1 \cup \Omega_2(s_L) \cup \Omega_2(s_R)$.

Mathematical best-knowledge (bk) model (I)

Set
$$\mathcal{C} = (\mu := [s_L, s_R, \alpha, \beta, E], \dots)$$
,

where α, β Rayleigh-damping coefficients, and *E* Young's modulus.

Define the reference domain $\Omega_s = \Omega_1 \cup \Omega_2(s_L) \cup \Omega_2(s_R)$.

Define the bk time-harmonic displacement $u^{\mathrm{bk}}(\cdot; f^q, \mu)$ as

 $\mathcal{G}(f^q;\mu)u^{\mathrm{bk}}(\cdot;f^q,\mu)=0$ in $\Omega_s+\mathsf{BC}$

where $\mathcal{G}(f^q; \mu) \leftrightarrow$ linear damped elastodynamics .

Given $C = (\mu, ...)$, estimate $A_{i,j}^{\exp}(f^q; C) \approx A_{i,j}^{bk}(f^q; \mu) := A_{nom} \frac{|u_2^{bk}(x_{i,j}; f^q, \mu)|}{|u_2^{bk}(x_{2,1}; f^q, \mu)|}$ where $x_{i,j}$ is the center of block (i, j). Define the bk time-harmonic displacement $u^{\mathrm{bk}}(\cdot; f^q, \mu)$ as

 $\mathcal{G}(f^q;\mu)u^{\mathrm{bk}}(\cdot;f^q,\mu) = 0$ in $\Omega_s + \mathsf{BC}$

where $\mathcal{G}(f^q; \mu) \leftrightarrow$ linear damped elastodynamics .

Given $C = (\mu, ...)$, estimate $A_{i,j}^{\exp}(f^q; C) \approx A_{i,j}^{\mathrm{bk}}(f^q; \mu) := A_{\mathrm{nom}} \frac{|u_2^{\mathrm{bk}}(x_{i,j}; f^q, \mu)|}{|u_2^{\mathrm{bk}}(x_{2,1}; f^q, \mu)|}$ where $x_{i,j}$ is the center of block (i, j).

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

Choices of the features

Introduce

$$z_{1}^{\mathrm{bk}}(\cdot) = \frac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, \ z_{2}^{\mathrm{bk}}(\cdot) = \frac{A_{2,4}^{\mathrm{bk}}(\cdot) + A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot) + A_{4,1}^{\mathrm{bk}}(\cdot)}.$$

and define $\mathbf{z}_{\ell}^{\mathrm{bk}}(\mu) = [z_{\ell}^{\mathrm{bk}}(f^{1};\mu), \dots, z_{\ell}^{\mathrm{bk}}(f^{Q_{f}};\mu)].$

Feature visualization: z_1 and z_2

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

Feature visualization: z_1

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

44

Feature visualization: z_2

Rationale: z_1^{-} detects asymmetry in the structure; z_2^{-} detects added mass on corners.

44

Backup slides

- Error analysis
- Comparison with a model-based approach
- Mathematical model
- Choice of the features
- Explanation of the Table

For i = 1, ..., 100

Partition the dataset $\mathcal{D}_{K}^{\mathrm{bk}}$ into $\mathcal{D}_{M}^{\mathrm{bk}}$ and $\mathcal{D}_{K-M}^{\mathrm{bk}}$ Train the learning algorithm based on $\mathcal{D}_{M}^{\mathrm{bk}}$ Test the learning algorithm based on $\mathcal{D}_{K-M}^{\mathrm{bk}}$ Test the learning algorithm based on $\mathcal{D}_{15}^{\mathrm{exp}}$ EndFor

Return $R^{\text{bk}} = \frac{1}{100} \sum_{i=1}^{100} R_i^{\text{bk}}$ Return $R^{\text{exp}} = \frac{1}{100} \sum_{i=1}^{100} R_i^{\text{exp}}$ $\rightarrow R_i^{\mathrm{bk}}$

 $\rightarrow R_i^{\exp}$