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MOR for hyperbolic problems

Develop a Model Order Reduction (MOR) procedure for
hyperbolic stationary equations

in the presence of parameter-dependent shocks.

Example

u(x;
( -'LL) u(x, p) = sign (x — p),

[ 0o x x € Q:=(0,1)
{

)
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Failure of linear MOR strategies

Linear Reduced Order Models (ROMs) rely on /V-term
linear expansions to approximate u:

u(x, p) = un(x, 1) = Zn(x)oe(p), Zy =[G, Cw]
If u(x, 1) = sign(x — p),

1
sup inf |lu(; ) — Zy()allizioy = O | —
sup inf [l 10~ Zu(rlete) = O ()
for Lagrangian spaces (i.e., Zy = [u(p). ... u(p))).

Linear ROMs are ill-suited for travelling fronts.

Taddei, Perotto, Quarteroni, 2015.



Eulerian approaches to nonlinear MOR

Recipe: given ;1 & P,
1. define the reduced operator /) , : RN — [2(Q);
2. determine the approximation uy(/) = Zy , (ex(/1))
using a projection method.

Selected references:
Manifold learning
Amsallem, Farhat, 2008; Lee, Carlberg, 2018!.

"Transported/transformed snapshot" methods
Nair, Balajewicz, 2017; Welper, 2017.

hp-in-parameter adaptive refinement
Eftang et al., 2010; Peherstorfer, Willcox, 2015.

1Here, the authors consider iy(x, /1) = g(x; (1))




Lagrangian approaches to nonlinear MOR

Recipe: given ;1 & P,
1. define a bijective mapping ¢, : 2 — (;
2. determine the approximation (- 1) = Zn o)
of u(/1) = u(j) o ®, using a projection method.
Selected references:

lollo, Lombardi, 2014; Ohlberger, Rave, 2015;
Cagniart et al., 2017; Mojgani, Balajewicz, 2017.



Lagrangian approaches to nonlinear MOR

Recipe: given ;1 & P,
1. define a bijective mapping ¢, : 2 — (;
2. determine the approximation (- 1) = Zn o)
of u(/1) = u(j) o ®, using a projection method.
Selected references:
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Example u(x. 1) = sign(x — ). x e Q= (0 1).
2uX X <
p+(1—p)2X -1) X >
the mapped field is /i-independent.

u(X, p) = sign(2X — 1),

If we choose ©, (X)) — {

N[N =



Lagrangian approaches: offline/online decomposition?

Offline stage: (performed once)
1. compute u(/t), .. ., u( g using a FE/FV solver;
2. define the mapping ©, for all /1 € 7;
3. define the ROM for i1 = v o ©. N
ROM: = iin(p) = Znvex(p)
Online stage: (performed for any new /1 € 77)
1. query the ROM to compute y(/1);
2. (if needed) compute uy(j1) = up(ji) o <D/§1.

>Mojgani, Balajewicz have proposed to simultaneously learn the mapping and
the coefficients during the online stage.
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Overview of the talk

Refined goal: develop a general registration algorithm
for the construction of ®, for Lagrangian approaches.

Agenda of the talk:
1. Registration algorithm.

2. Application to a linear advection-reaction problem.

3. Conclusions and perspectives.

General = independent of the underlying PDE model.



Registration algorithm




Desiderata for @,

Well-posedness

Projection is performed in the mapped configuration.
Therefore, for all /o € 77, the map ©, should satisfy

®,(Q2) =Q, Ju(X)=|VP.(X)] >0, XeQ.

Efficiency
The map @, should be designed such that the manifold

M = {i(p) = u(p) o ¢, peP}
is "more favorable" than® M — {u(y) - e P}
for linear approximation methods.

3This notion should be formalized by means of the introduction of a
Kolmogorov /V-width.
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Overall strategy

4

Ntrain

Inputs: snapshots { v = u(;/")}]"4", reference* ii.
Output: mapping @, : 0 — ) for all 1 € 7.
1. Determine a family of mappings {V(-;a)}, nuv for
the domain (;

2. choose V(-;a") using u” and i;
— {uk, ak} e
3. learna: P — R based on {/" a"} ]
regression problem

4. set &, — V(- a(u)).

*Here, i is set equal to u(ji), where i — - 5~ /"
.



Family of mappings {W(-;a)}a: a theoretical result®

Let ©) be diffeomorphic to © — {x = RY - f(x) < 0}
where f is convex.

Let - Q) — RY O O satisfy
(i) e CHQ;RY);
(i) infxeqJ(X ) IVo(X)| > 0;
(X

(iii) dist (®(X),00) = 0 for all X € 0.
ie. ®(00Q) C 002

Then, @ is a bijection from (2 into itself.

A~

Examples: O — (0.1)7, O = 5,(0). ..

®We thank Pierre Mounoud (University of Bordeaux) for fruitful discussions.
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Family of mappings {V(-; a)}a: implications for Q = (0, 1)?

Consider W(X;a) = X + Z amom(X), with

m(X)-e1 =0 ()11{X1f0 1}, m=1,.... M,

©
em(X)-ea=0 on{X,=0,1}, m=1,..., M.
(i) holds for a = a = W(-; a) is bijective + W(;a) = (.
I X (2) ¢ x? = o(X©?)
x (1)

Q (D Q ® (1) — q>(X(1))

\
L4
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Family of mappings {V(-; a)}a: implications for Q = (0, 1)?

Consider W(X;a) = X + Z amom(X), with

©m(X) - elfO()n{leOl} m=1..., M,
om(X)-ea=0 on{X,=0,1}, m=1,..., M.
(i) holds for a = a = W(-; a) is bijective + W(;a) = (.

In our implementation, we resort to a tensorized
polynomial expansion.

21(X) = Lo(X0)l6(X0) Xa (1 — X1) [ : ]

o) = L0000 - %) | § |

/; = Legendre polynomial of degree / 5



k

Registration algorithm for (u*, 7) — a

Find 2" to minimize

o - , 2
min /Q lu (w(X;a)) — AX)|3dX + € |[W(-1a)| 5

- — Ja(X Ja(X) —1/¢ )
S.T./ exp w + exp 1a(X) /€ dX <9
JQ chp C(‘xp

Non-convex nonlinear optimization problem.

Solver: Matlab 2018b fmincon (interior-point).

Initial condition: a' — 0, a* — a" .

We reorder /', ... ;1" so that
k1 _ oo i | k _ K

T = arg ming gy e | — 1|2

14



k

Registration algorithm for (u*, 7) — a

. Interpretation

/ [ (W(X:a)) — 0(X)|5dX  measures the "distance"
Ja

between 1/ and i in the mapped configuration;

£ ‘\U(q a)ﬁﬂ(ﬂ) is a regularization term to bound gradient
and Hessian of V(- a);

the constraint

’ — Ja(X Ja(X) —1 i
/Q exp (ch\f)> + exp (d ( C)(\X]) /€> dX < 0

imposes weakly that J,(X) < [¢, 1/¢] for all X Q.

15



K. interpretation

Registration algorithm for (u*, 7) — a

/ [ (W(X:a)) — 0(X)|5dX  measures the "distance"
Ja

between 1/ and i in the mapped configuration;

£ ‘\U(q a)ﬁﬂ(ﬂ) is a regularization term to bound gradient
and Hessian of V(- a);

the constraint

’ — Ja(X Ja(X) —1 i
/Q exp (ch\f)> + exp (d ( C)(\X]) /€> dX < 0

imposes weakly that J,(X) < [¢, 1/¢] for all X Q.

The statement depends on &. ¢, C.. ). 0:
Here, we set & — 10 . ¢ — 0.1, Cexp = 0.005,0 = 1.

15



Generalization: {u* a*}, =a: P — RM

We proceed as follows.
1. POD reduction: a ~ Uga,, U Us = 1, a, ¢ RV,
M, < M.

2. RBF approximation: {;/. a"}, = a, P — RV

16



Generalization: {u* a*}, =a: P — RM

We proceed as follows.
1. POD reduction: a ~ Uga,, U Us = 1, a, ¢ RV,
M, < M.

2. RBF approximation: {;/. a"}, = a, P — RV

POD reduction: POD leads to a significant reduction
in terms of online costs and reduces the dependence on
the preliminary choice of M.

Drawback of RBF regression: there is no guarantee
that

X%@L?{’P JW(X) -0

Current effort focuses on the development of constrained
regression procedures. 1%



Application to a linear transport problem

J
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Steady advection-reaction problem

Consider the problem
o u(l) + V- (e, u(u)) = £, inQ
u(p) = up,, on Fin
where [, , = {x ¢ 00 ¢, n <0}, and
c, = [cos(u1),sin(p1)], o, =14 pp e,
fu =1+ x1x0, up, =4arctan(uz (x2 —1/2)) x(1 — x2)
m € |—%, 7], 12 €[0.3, 0.7), 3 € [60, 100].

The problem is discretized using a Q2 DG discretization
with Local Lax-Friedrichs flux.

65790 dofs.

18



Mapped configuration; reduced formulation

Offline computations are based on n,,.;, — 250 snapshots.
Reduced operator ./ built using POD.
Reduced formulation: Galerkin.

Hyper-reduction based on POD with EIM point selection.
[Barrault et al., 2004], [Grepl et al., 2007]

Mapping based on Q6 tensorized polynomials (V= 72).

Remark: /() satisfies an AR problem with

. - ~ - ~1 > - ~
O =YuOu, Cu=Iypu VCD/, Cus f// = Ju f//- up,,, = Up,u-

19



Visualization of the solution field: p = [—7/10,0.3,60]

The mapping @, reduces the sensitivity of the solution to

changes in //;.

1
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¢, = [cos(pu), sin(p2)];
i =[0,0.5,80].
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Visualization of the solution field: p = [—7/10, 0.3, 60]

The mapping @, reduces the sensitivity of the solution to
changes in //;.

c, = [cos(p1),sin(p2)];

i = [0,0.5,80].

0 0.5 1 0 0.5 1
(a) ‘7(/1) (b) u
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Behavior of the POD eigenvalues

Decay rate is nearly the same for both registered and
unregistered configurations, but

we have (A[7 /A7) /(A8 /A7) = O(107).

10°

—-registered
—-unregistered

N 21



Performance of the Reduced Basis ROM

Relative error is computed based on 7., — 20 parameters,
in the physical configuration.

The nonlinear ROM is approximately 4 times more
accurate than the linear ROM.

10°
0l
8 o T *\*N‘***
H s e
3107 Sos,
L"\]q -6
-3
10 —o-registered
—unregistered
-4 .
10
10° 10

N
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Conclusions and perspectives

23



We propose a general registration procedure for
Lagrangian approaches to nonlinear MOR.

General = independent of the underlying PDE model.

Preliminary results suggest the effectiveness of the
approach compared to linear ROMs.

24



We propose a general registration procedure for
Lagrangian approaches to nonlinear MOR.

General = independent of the underlying PDE model.

Preliminary results suggest the effectiveness of the
approach compared to linear ROMs.

Several challenges need to be addressed.
Definition of the reference field. ¢ clustering

Reduction of offline costs <> greedy sampling
<> hierarchy of models at training stage

Bernard, lollo, Riffaud, 2018.
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Thank you for your
attention!
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