A nonlinear Model Order Reduction procedure for hyperbolic problems

Angelo Iollo, <u>Tommaso Taddei</u> INRIA, MEMPHIS Team SIAM CSE 2019

Spokane, February 27th 2019

Institut de Mathématiques de Bordeaux

Objective

Develop a Model Order Reduction (MOR) procedure for hyperbolic stationary equations

in the presence of parameter-dependent shocks.

Example

Failure of linear MOR strategies

Linear Reduced Order Models (ROMs) rely on *N*-term linear expansions to approximate *u*:

 $u(x,\mu) \approx \widehat{u}_N(x,\mu) = Z_N(x)\alpha(\mu), \qquad Z_N = [\zeta_1,\ldots,\zeta_N]$ If $u(x,\mu) = \operatorname{sign}(x-\mu)$,

 $\sup_{\mu\in\mathcal{P}}\inf_{(Z_N,\alpha)}\|u(\cdot;\mu)-Z_N(\cdot)\alpha\|_{L^2(\Omega)}=\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$

for Lagrangian spaces (i.e., $Z_N = [u(\mu^1), \dots, u(\mu^N)]$).

Linear ROMs are ill-suited for travelling fronts.

Taddei, Perotto, Quarteroni, 2015.

Recipe: given $\mu \in \mathcal{P}$,

- 1. define the reduced operator $Z_{N,\mu} : \mathbb{R}^N \to L^2(\Omega)$;
- 2. determine the approximation $\widehat{u}_N(\mu) = Z_{N,\mu}(\alpha(\mu))$ using a projection method.
- Selected references:
 - Manifold learning
 - Amsallem, Farhat, 2008; Lee, Carlberg, 2018¹.
 - "Transported/transformed snapshot" methods Nair, Balajewicz, 2017; Welper, 2017.

hp-in-parameter adaptive refinement Eftang et al., 2010; Peherstorfer, Willcox, 2015.

¹Here, the authors consider $\widehat{u}_N(x,\mu) = g(x; \alpha(\mu))$

Lagrangian approaches to nonlinear MOR

Recipe: given $\mu \in \mathcal{P}$,

- 1. define a bijective mapping $\Phi_{\mu}: \Omega \to \Omega$;
- 2. determine the approximation $\widetilde{u}_N(\cdot; \mu) = \widetilde{Z}_N \alpha(\mu)$ of $\widetilde{u}(\mu) := u(\mu) \circ \Phi_{\mu}$ using a projection method. Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015; Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

Lagrangian approaches to nonlinear MOR

Recipe: given $\mu \in \mathcal{P}$,

- 1. define a bijective mapping $\Phi_{\mu}: \Omega \to \Omega$;
- 2. determine the approximation $\widetilde{u}_N(\cdot; \mu) = \widetilde{Z}_N \alpha(\mu)$ of $\widetilde{u}(\mu) := u(\mu) \circ \Phi_\mu$ using a projection method. Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015; Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

Example $u(x,\mu) = \operatorname{sign} (x - \mu), x \in \Omega = (0,1).$ If we choose $\Phi_{\mu}(X) = \begin{cases} 2\mu X & X < \frac{1}{2} \\ \mu + (1 - \mu)(2X - 1) & X \ge \frac{1}{2} \end{cases}$,

the mapped field is μ -independent.

$$\widetilde{u}(X,\mu) = \operatorname{sign}(2X-1).$$

Lagrangian approaches: offline/online decomposition²

Offline stage: (performed once)

- 1. compute $u(\mu^1), \ldots, u(\mu^{n_{\text{train}}})$ using a FE/FV solver;
- 2. define the mapping Φ_{μ} for all $\mu \in \mathcal{P}$;
- 3. define the ROM for $\tilde{u} = u \circ \Phi$. ROM: $\mu \mapsto \tilde{u}_N(\mu) = \tilde{Z}_N \alpha(\mu)$

Online stage: (performed for any new $\bar{\mu} \in \mathcal{P}$)

- 1. query the ROM to compute $\tilde{u}_N(\bar{\mu})$;
- 2. (if needed) compute $\widehat{u}_N(\overline{\mu}) = \widetilde{u}_N(\overline{\mu}) \circ \Phi_{\overline{\mu}}^{-1}$.

 $^{^2{\}rm Mojgani},$ Balajewicz have proposed to simultaneously learn the mapping and the coefficients during the online stage.

Lagrangian approaches: offline/online decomposition²

Offline stage: (performed once)

- 1. compute $u(\mu^1), \ldots, u(\mu^{n_{\text{train}}})$ using a FE/FV solver;
- 2. define the mapping Φ_{μ} for all $\mu \in \mathcal{P}$;
- 3. define the ROM for $\tilde{u} = u \circ \Phi$. ROM: $\mu \mapsto \tilde{u}_N(\mu) = \tilde{Z}_N \alpha(\mu)$

Online stage: (performed for any new $\bar{\mu} \in \mathcal{P}$)

- 1. query the ROM to compute $\tilde{u}_N(\bar{\mu})$;
- 2. (if needed) compute $\widehat{u}_N(\overline{\mu}) = \widetilde{u}_N(\overline{\mu}) \circ \Phi_{\overline{\mu}}^{-1}$.

 $^{^2{\}rm Mojgani},$ Balajewicz have proposed to simultaneously learn the mapping and the coefficients during the online stage.

Refined goal: develop a *general* registration algorithm for the construction of Φ_{μ} for Lagrangian approaches.

Agenda of the talk:

- 1. Registration algorithm.
- 2. Application to a linear advection-reaction problem.
- 3. Conclusions and perspectives.

General = independent of the underlying PDE model.

Registration algorithm

Well-posedness

Projection is performed in the mapped configuration. Therefore, for all $\mu \in \mathcal{P}$, the map Φ_{μ} should satisfy

$$\Phi_\mu(\Omega)=\Omega, \; \mathfrak{J}_\mu(X)=ig|
abla \Phi_\mu(X)ig|>0, \;\; X\in\Omega.$$

Efficiency

The map Φ_{μ} should be designed such that the manifold $\widetilde{\mathcal{M}} = \{\widetilde{u}(\mu) = u(\mu) \circ \Phi_{\mu} : \mu \in \mathcal{P}\}$

is "more favorable" than³ $\mathcal{M} = \{u(\mu) : \mu \in \mathcal{P}\}$ for linear approximation methods.

³This notion should be formalized by means of the introduction of a Kolmogorov N-width.

Inputs: snapshots $\{u^k = u(\mu^k)\}_{k=1}^{n_{\text{train}}}$, reference⁴ \bar{u} . **Output:** mapping $\Phi_{\mu} : \Omega \to \Omega$ for all $\mu \in \mathcal{P}$.

- 1. Determine a family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a} \in \mathbb{R}^M}$ for the domain Ω ;
- 2. choose $\Psi(\cdot; \mathbf{a}^k)$ using u^k and \overline{u} ;

 $ightarrow \{\mu^k, \mathbf{a}^k\}_{k=1}^{n_{ ext{train}}}$

3. learn $\mathbf{a}: \mathcal{P} \to \mathbb{R}^M$ based on $\{\mu^k, \mathbf{a}^k\}_{k=1}^{n_{\text{train}}}$; regression problem

4. set
$$\Phi_{\mu} = \Psi(\cdot; \mathbf{a}(\mu)).$$

⁴Here, \bar{u} is set equal to $u(\bar{\mu})$, where $\bar{\mu} = \frac{1}{n_{\text{train}}} \sum_{k} \mu^{k}$.

Family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$: a theoretical result⁵

Let Ω be diffeomorphic to $\widehat{\Omega} = \{x \in \mathbb{R}^d : f(x) < 0\}$ where f is convex.

Let $\Phi : \Omega' \to \mathbb{R}^d$, $\Omega \subset \subset \Omega'$, satisfy

(i)
$$\Phi \in C^1(\Omega'; \mathbb{R}^d);$$

(ii) $\inf_{X \in \Omega} \mathfrak{J}(X) = |\nabla \Phi(X)| > 0;$

(iii) dist $(\Phi(X), \partial \Omega) = 0$ for all $X \in \partial \Omega$. i.e. $\Phi(\partial \Omega) \subset \partial \Omega$

Then, Φ is a bijection from Ω into itself.

Examples: $\widehat{\Omega} = (0, 1)^d$, $\widehat{\Omega} = \mathcal{B}_1(0), \ldots$

⁵We thank Pierre Mounoud (University of Bordeaux) for fruitful discussions.

Family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$: implications for $\Omega = (0, 1)^2$

Consider
$$\Psi(X; \mathbf{a}) = X + \sum_{m=1}^{M} a_m \varphi_m(X)$$
, with
 $\varphi_m(X) \cdot \mathbf{e}_1 = 0 \text{ on } \{X_1 = 0, 1\}, \ m = 1, \dots, M;$
 $\varphi_m(X) \cdot \mathbf{e}_2 = 0 \text{ on } \{X_2 = 0, 1\}, \ m = 1, \dots, M.$
(ii) holds for $\mathbf{a} = \bar{\mathbf{a}} \Rightarrow \Psi(\cdot; \bar{\mathbf{a}})$ is bijective $+ \Psi(\Omega; \bar{\mathbf{a}}) = \Omega$.

Family of mappings $\{\Psi(\cdot; \mathbf{a})\}_{\mathbf{a}}$: implications for $\Omega = (0, 1)^2$

Consider
$$\Psi(X; \mathbf{a}) = X + \sum_{m=1}^{M} a_m \varphi_m(X)$$
, with

 $\varphi_m(X) \cdot \mathbf{e}_1 = 0 \text{ on } \{X_1 = 0, 1\}, \ m = 1, \dots, M;$

 $\varphi_m(X) \cdot \mathbf{e}_2 = 0 \text{ on } \{X_2 = 0, 1\}, \ m = 1, \dots, M.$

(ii) holds for $\mathbf{a} = \mathbf{\bar{a}} \Rightarrow \Psi(\cdot; \mathbf{\bar{a}})$ is bijective $+ \Psi(\Omega; \mathbf{\bar{a}}) = \Omega$.

In our implementation, we resort to a tensorized polynomial expansion.

 $\varphi_1(X) = \ell_0(X_1)\ell_0(X_2)X_1(1-X_1)\begin{bmatrix} 1\\0 \end{bmatrix}, \dots$ $\varphi_M(X) = \ell_p(X_1)\ell_p(X_2)X_2(1-X_2)\begin{bmatrix} 0\\1 \end{bmatrix}.$

 ℓ_i = Legendre polynomial of degree i_{13}

Registration algorithm for $(u^k, \bar{u}) \rightarrow \mathbf{a}^k$

Find
$$\mathbf{a}^{k}$$
 to minimize

$$\min_{\mathbf{a}} \int_{\Omega} \|u^{k}(\Psi(X; \mathbf{a})) - \bar{u}(X)\|_{2}^{2} dX + \xi \left|\Psi(\cdot; \mathbf{a})\right|_{H^{2}(\Omega)}^{2}$$
s.t. $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{\mathbf{a}}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{\mathbf{a}}(X) - 1/\epsilon}{C_{\exp}}\right) dX \leq \delta$

Non-convex nonlinear optimization problem.

Solver: Matlab 2018b fmincon (interior-point).

Initial condition: $\mathbf{a}^1 = \mathbf{0}$, $\mathbf{a}^k = \mathbf{a}^{k-1}$.

We reorder
$$\mu^1, \dots, \mu^{n_{\text{train}}}$$
 so that
 $\mu^{k+1} = \arg \min_{\mu \in \{\mu^{k'}\}_{k'=k+1}^{n_{\text{train}}}} \|\mu^k - \mu^{k'}\|_2$

Registration algorithm for $(u^k, \bar{u}) \to \mathbf{a}^k$: interpretation $\int_{\Omega} \|u^k(\Psi(X; \mathbf{a})) - \bar{u}(X)\|_2^2 dX \quad \text{measures the "distance"}$

 J_{Ω} between u^k and \bar{u} in the mapped configuration; $\xi |\Psi(\cdot; \mathbf{a})|^2_{H^2(\Omega)}$ is a regularization term to bound gradient and Hessian of $\Psi(\cdot; \mathbf{a})$;

the constraint

 $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{\mathbf{a}}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{\mathbf{a}}(X) - 1/\epsilon}{C_{\exp}}\right) dX \leq \delta$ imposes weakly that $\mathfrak{J}_{\mathbf{a}}(X) \in [\epsilon, 1/\epsilon]$ for all $X \in \Omega$. Registration algorithm for $(u^k,ar{u}) o \mathbf{a}^k$: interpretation

 $\int_{\Omega} \|u^{k}(\Psi(X; \mathbf{a})) - \bar{u}(X)\|_{2}^{2} dX \quad \text{measures the "distance"}$ between u^{k} and \bar{u} in the mapped configuration; $\xi |\Psi(\cdot; \mathbf{a})|_{H^{2}(\Omega)}^{2}$ is a regularization term to bound gradient and Hessian of $\Psi(\cdot; \mathbf{a})$;

the constraint

 $\int_{\Omega} \exp\left(\frac{\epsilon - \mathfrak{J}_{\mathbf{a}}(X)}{C_{\exp}}\right) + \exp\left(\frac{\mathfrak{J}_{\mathbf{a}}(X) - 1/\epsilon}{C_{\exp}}\right) \, dX \leq \delta$ imposes weakly that $\mathfrak{J}_{\mathbf{a}}(X) \in [\epsilon, 1/\epsilon]$ for all $X \in \Omega$.

The statement depends on $\xi, \epsilon, C_{exp}, \delta$:

Here, we set $\xi = 10^{-3}, \epsilon = 0.1, C_{exp} = 0.005, \delta = 1.$

Generalization: $\{\mu^k, \mathbf{a}^k\}_k \Rightarrow \mathbf{a} : \mathcal{P} \to \mathbb{R}^M$

We proceed as follows.

1. POD reduction: $\mathbf{a} \approx \mathbf{U}_{\Phi} \mathbf{a}_{r}, \ \mathbf{U}_{\Phi}^{T} \mathbf{U}_{\Phi} = \mathbb{1}, \ \mathbf{a}_{r} \in \mathbb{R}^{M_{r}}, \ M_{r} < M_{r}$

2. RBF approximation: $\{\mu^k, \mathbf{a}_{\mathbf{r}}^k\}_k \Rightarrow \mathbf{a}_{\mathbf{r}} : \mathcal{P} \to \mathbb{R}^{M_{\mathbf{r}}}$.

Generalization: $\{\mu^k, \mathbf{a}^k\}_k \Rightarrow \mathbf{a} : \mathcal{P} \to \mathbb{R}^M$

We proceed as follows.

1. POD reduction: $\mathbf{a} \approx \mathbf{U}_{\Phi} \mathbf{a}_{r}, \ \mathbf{U}_{\Phi}^{T} \mathbf{U}_{\Phi} = \mathbb{1}, \ \mathbf{a}_{r} \in \mathbb{R}^{M_{r}},$ $M_{r} < M.$

2. RBF approximation: $\{\mu^k, \mathbf{a}_{\mathbf{r}}^k\}_k \Rightarrow \mathbf{a}_{\mathbf{r}} : \mathcal{P} \to \mathbb{R}^{M_{\mathbf{r}}}$.

POD reduction: POD leads to a significant reduction in terms of online costs and reduces the dependence on the preliminary choice of M.

Drawback of RBF regression: there is no guarantee that

 $\min_{X\in\Omega,\mu\in\mathcal{P}}\,\mathfrak{J}_{\mu}(X)>0$

Current effort focuses on the development of constrained regression procedures.

Application to a linear transport problem

Steady advection-reaction problem

Consider the problem $\begin{cases} \sigma_{\mu} u(\mu) + \nabla \cdot (\mathbf{c}_{\mu} u(\mu)) = f_{\mu} & \text{in } \Omega \\ u(\mu) = u_{\mathrm{D},\mu} & \text{on } \Gamma_{\mathrm{i}} \end{cases}$ on $\Gamma_{in,\mu}$ where $\Gamma_{\text{in},\mu} = \{ x \in \partial \Omega : \mathbf{c}_{\mu} \cdot \mathbf{n} < 0 \}$, and $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_1)], \quad \sigma_{\mu} = 1 + \mu_2 \, e^{x_1 + x_2},$ $f_{\mu} = 1 + x_1 x_2, \quad u_{\mathrm{D},\mu} = 4 \arctan\left(\mu_3 \left(x_2 - 1/2
ight)
ight) x_2 (1 - x_2)$ $\mu_1 \in \left[-\frac{\pi}{10}, \frac{\pi}{10}\right], \ \mu_2 \in [0.3, \ 0.7], \ \mu_3 \in [60, \ 100].$

The problem is discretized using a Q2 DG discretization with Local Lax-Friedrichs flux.

65790 dofs.

Offline computations are based on $n_{\text{train}} = 250$ snapshots. Reduced operator \tilde{Z}_N built using POD.

Reduced formulation: Galerkin.

Hyper-reduction based on POD with EIM point selection. [Barrault et al., 2004], [Grepl et al., 2007]

Mapping based on Q6 tensorized polynomials (M = 72).

Remark: $\tilde{u}(\mu)$ satisfies an AR problem with

 $\tilde{\sigma}_{\mu} = \mathfrak{J}_{\mu} \, \sigma_{\mu}, \quad \widetilde{\mathbf{c}}_{\mu} = \mathfrak{J}_{\mu} \, \nabla \Phi_{\mu}^{-1} \, \mathbf{c}_{\mu}, \quad \tilde{f}_{\mu} = \mathfrak{J}_{\mu} \, f_{\mu}, \quad \tilde{u}_{\mathrm{D},\mu} = u_{\mathrm{D},\mu}.$

Visualization of the solution field: $\mu = [-\pi/10, 0.3, 60]$

The mapping Φ_{μ} reduces the sensitivity of the solution to changes in μ_1 .

 $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_2)];$ $\bar{\mu} = [0, 0.5, 80].$

Visualization of the solution field: $\mu = [-\pi/10, 0.3, 60]$

The mapping Φ_{μ} reduces the sensitivity of the solution to changes in μ_1 .

 $\mathbf{c}_{\mu} = [\cos(\mu_1), \sin(\mu_2)];$ $\bar{\mu} = [0, 0.5, 80].$

Behavior of the POD eigenvalues

Decay rate is nearly the same for both registered and unregistered configurations, **but**

we have $(\lambda_n^{\text{reg}}/\lambda_1^{\text{reg}})/(\lambda_n^{\text{unreg}}/\lambda_1^{\text{unreg}}) = \mathcal{O}(10^2).$

Performance of the Reduced Basis ROM

Relative error is computed based on $n_{\text{test}} = 20$ parameters, in the physical configuration.

The nonlinear ROM is approximately 4 times more accurate than the linear ROM.

Conclusions and perspectives

Summary

We propose a *general* registration procedure for Lagrangian approaches to nonlinear MOR.

General = independent of the underlying PDE model.

Preliminary results suggest the effectiveness of the approach compared to linear ROMs.

Summary

We propose a *general* registration procedure for Lagrangian approaches to nonlinear MOR.

General = independent of the underlying PDE model.

Preliminary results suggest the effectiveness of the approach compared to linear ROMs.

Several challenges need to be addressed.

Definition of the reference field. \leftrightarrow clusteringReduction of offline costs \leftrightarrow greedy sampling

 $\leftrightarrow \text{ hierarchy of models at training stage}$

Bernard, Iollo, Riffaud, 2018.

Thank you for your attention!