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Objective
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MOR for hyperbolic problems

Develop a Model Order Reduction (MOR) procedure for
hyperbolic stationary equations

in the presence of parameter-dependent shocks.

Example

u(x ;µ)

xµ

u(x , µ) = sign (x − µ),

x ∈ Ω := (0, 1)

µ ∈ P =
[1
3 ,

2
3

]
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Failure of linear MOR strategies

Linear Reduced Order Models (ROMs) rely on N-term
linear expansions to approximate u:

u(x , µ) ≈ ûN(x , µ) = ZN(x)α(µ), ZN = [ζ1, . . . , ζN ]

If u(x , µ) = sign(x − µ),

sup
µ∈P

inf
(ZN ,α)

‖u(·;µ)− ZN(·)α‖L2(Ω) = O
(

1√
N

)
for Lagrangian spaces (i.e., ZN =

[
u(µ1), . . . , u(µN)

]
).

Linear ROMs are ill-suited for travelling fronts.

Taddei, Perotto, Quarteroni, 2015.
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Eulerian approaches to nonlinear MOR

Recipe: given µ ∈ P ,
1. define the reduced operator ZN,µ : RN → L2(Ω);
2. determine the approximation ûN(µ) = ZN,µ (α(µ))

using a projection method.
Selected references:
Manifold learning

Amsallem, Farhat, 2008; Lee, Carlberg, 20181.

"Transported/transformed snapshot" methods
Nair, Balajewicz, 2017; Welper, 2017.

hp-in-parameter adaptive refinement
Eftang et al., 2010; Peherstorfer, Willcox, 2015.

1Here, the authors consider ûN(x , µ) = g(x ;α(µ))
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Lagrangian approaches to nonlinear MOR

Recipe: given µ ∈ P ,
1. define a bijective mapping Φµ : Ω→ Ω;
2. determine the approximation ũN(·;µ) = Z̃N α(µ)

of ũ(µ) := u(µ) ◦ Φµ using a projection method.
Selected references:

Iollo, Lombardi, 2014; Ohlberger, Rave, 2015;
Cagniart et al., 2017; Mojgani, Balajewicz, 2017.

Example u(x , µ) = sign (x − µ) , x ∈ Ω = (0, 1).

If we choose Φµ(X ) =

{
2µX X < 1

2
µ + (1− µ)(2X − 1) X ≥ 1

2
,

the mapped field is µ-independent.
ũ(X , µ) = sign(2X − 1).
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Lagrangian approaches: offline/online decomposition2

Offline stage: (performed once)

1. compute u(µ1), . . . , u(µntrain) using a FE/FV solver;

2. define the mapping Φµ for all µ ∈ P ;
3. define the ROM for ũ = u ◦ Φ.

ROM: µ 7→ ũN(µ) = Z̃Nα(µ)

Online stage: (performed for any new µ̄ ∈ P)
1. query the ROM to compute ũN(µ̄);

2. (if needed) compute ûN(µ̄) = ũN(µ̄) ◦ Φ−1µ̄ .

2Mojgani, Balajewicz have proposed to simultaneously learn the mapping and
the coefficients during the online stage.
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Overview of the talk

Refined goal: develop a general registration algorithm
for the construction of Φµ for Lagrangian approaches.

Agenda of the talk:

1. Registration algorithm.

2. Application to a linear advection-reaction problem.

3. Conclusions and perspectives.

General = independent of the underlying PDE model.
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Registration algorithm
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Desiderata for Φµ

Well-posedness
Projection is performed in the mapped configuration.
Therefore, for all µ ∈ P , the map Φµ should satisfy

Φµ(Ω) = Ω, Jµ(X ) =
∣∣∇Φµ(X )

∣∣ > 0, X ∈ Ω.

Efficiency
The map Φµ should be designed such that the manifold

M̃ = {ũ(µ) = u(µ) ◦ Φµ : µ ∈ P}
is "more favorable" than3 M = {u(µ) : µ ∈ P}
for linear approximation methods.

3This notion should be formalized by means of the introduction of a
Kolmogorov N-width.
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Overall strategy

Inputs: snapshots {uk = u(µk)}ntrain
k=1 , reference

4 ū.

Output: mapping Φµ : Ω→ Ω for all µ ∈ P .
1. Determine a family of mappings {Ψ(·; a)}a∈RM for

the domain Ω;

2. choose Ψ(·; ak) using uk and ū;
→ {µk , ak}ntrain

k=1

3. learn a : P → RM based on {µk , ak}ntrain
k=1 ;

regression problem

4. set Φµ = Ψ(·; a(µ)).

4Here, ū is set equal to u(µ̄), where µ̄ = 1
ntrain

∑
k µ

k .
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Family of mappings {Ψ(·; a)}a: a theoretical result5

Let Ω be diffeomorphic to Ω̂ = {x ∈ Rd : f (x) < 0}
where f is convex.

Let Φ : Ω′ → Rd , Ω ⊂⊂ Ω′, satisfy

(i) Φ ∈ C 1(Ω′;Rd);

(ii) infX∈Ω J(X ) = |∇Φ(X )| > 0;

(iii) dist (Φ(X ), ∂Ω) = 0 for all X ∈ ∂Ω.
i.e. Φ(∂Ω) ⊂ ∂Ω

Then, Φ is a bijection from Ω into itself.

Examples: Ω̂ = (0, 1)d , Ω̂ = B1(0), . . .

5We thank Pierre Mounoud (University of Bordeaux) for fruitful discussions.
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Family of mappings {Ψ(·; a)}a: implications for Ω = (0, 1)2

Consider Ψ(X ; a) = X +
M∑

m=1

amϕm(X ), with

ϕm(X ) · e1 = 0 on {X1 = 0, 1}, m = 1, . . . ,M ;

ϕm(X ) · e2 = 0 on {X2 = 0, 1}, m = 1, . . . ,M .

(ii) holds for a = ā ⇒ Ψ(·; ā) is bijective + Ψ(Ω; ā) = Ω.

Ω ΩΦ
X (1)

x (1) = Φ(X (1))

X (2) x (2) = Φ(X (2))
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(ii) holds for a = ā ⇒ Ψ(·; ā) is bijective + Ψ(Ω; ā) = Ω.

In our implementation, we resort to a tensorized
polynomial expansion.

ϕ1(X ) = `0(X1)`0(X2)X1(1− X1)

[
1
0

]
, . . .

ϕM(X ) = `p(X1)`p(X2)X2(1− X2)

[
0
1

]
.

`i = Legendre polynomial of degree i 13



Registration algorithm for (uk , ū)→ ak

Find ak to minimize

min
a

∫
Ω

‖uk(Ψ(X ; a))− ū(X )‖22dX + ξ
∣∣Ψ(·; a)

∣∣2
H2(Ω)

s.t.
∫

Ω

exp
(
ε− Ja(X )

Cexp

)
+ exp

(
Ja(X )− 1/ε

Cexp

)
dX ≤ δ

Non-convex nonlinear optimization problem.

Solver: Matlab 2018b fmincon (interior-point).

Initial condition: a1 = 0, ak = ak−1.

We reorder µ1, . . . , µntrain so that
µk+1 = argminµ∈{µk′}ntrain

k′=k+1
‖µk − µk ′‖2.
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Registration algorithm for (uk , ū)→ ak : interpretation∫
Ω

‖uk(Ψ(X ; a))− ū(X )‖22dX measures the "distance"

between uk and ū in the mapped configuration;

ξ
∣∣Ψ(·; a)

∣∣2
H2(Ω)

is a regularization term to bound gradient
and Hessian of Ψ(·; a);

the constraint∫
Ω

exp
(
ε− Ja(X )

Cexp

)
+ exp

(
Ja(X )− 1/ε

Cexp

)
dX ≤ δ

imposes weakly that Ja(X ) ∈ [ε, 1/ε] for all X ∈ Ω.

The statement depends on ξ, ε,Cexp, δ:
Here, we set ξ = 10−3, ε = 0.1,Cexp = 0.005, δ = 1.
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Generalization: {µk , ak}k ⇒ a : P → RM

We proceed as follows.
1. POD reduction: a ≈ UΦar, UT

ΦUΦ = 1, ar ∈ RMr,
Mr < M .

2. RBF approximation: {µk , akr }k ⇒ ar : P → RMr.

POD reduction: POD leads to a significant reduction
in terms of online costs and reduces the dependence on
the preliminary choice of M .

Drawback of RBF regression: there is no guarantee
that

min
X∈Ω,µ∈P

Jµ(X ) > 0

Current effort focuses on the development of constrained
regression procedures.
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Application to a linear transport problem
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Steady advection-reaction problem

Consider the problem σµ u(µ) +∇ · (cµ u(µ)) = fµ in Ω

u(µ) = uD,µ on Γin,µ

where Γin,µ = {x ∈ ∂Ω : cµ · n < 0}, and
cµ = [cos(µ1), sin(µ1)], σµ = 1 + µ2 e

x1+x2,

fµ = 1 + x1x2, uD,µ = 4 arctan (µ3 (x2 − 1/2) ) x2(1− x2)

µ1 ∈
[
− π

10 ,
π
10

]
, µ2 ∈ [0.3, 0.7], µ3 ∈ [60, 100].

The problem is discretized using a Q2 DG discretization
with Local Lax-Friedrichs flux.

65790 dofs.
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Mapped configuration; reduced formulation

Offline computations are based on ntrain = 250 snapshots.

Reduced operator Z̃N built using POD.

Reduced formulation: Galerkin.

Hyper-reduction based on POD with EIM point selection.
[Barrault et al., 2004], [Grepl et al., 2007]

Mapping based on Q6 tensorized polynomials (M = 72).

Remark: ũ(µ) satisfies an AR problem with

σ̃µ = Jµ σµ, c̃µ = Jµ∇Φ−1µ cµ, f̃µ = Jµ fµ, ũD,µ = uD,µ.
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Visualization of the solution field: µ = [−π/10, 0.3, 60]

The mapping Φµ reduces the sensitivity of the solution to
changes in µ1.

cµ = [cos(µ1), sin(µ2)];

µ̄ = [0, 0.5, 80].

(a) u(µ) (b) ū
20
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Behavior of the POD eigenvalues

Decay rate is nearly the same for both registered and
unregistered configurations, but
we have (λreg

n /λreg
1 )/(λunreg

n /λunreg
1 ) = O(102).
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Performance of the Reduced Basis ROM

Relative error is computed based on ntest = 20 parameters,
in the physical configuration.
The nonlinear ROM is approximately 4 times more
accurate than the linear ROM.
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Conclusions and perspectives
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Summary

We propose a general registration procedure for
Lagrangian approaches to nonlinear MOR.

General = independent of the underlying PDE model.

Preliminary results suggest the effectiveness of the
approach compared to linear ROMs.

Several challenges need to be addressed.

Definition of the reference field. ↔ clustering

Reduction of offline costs ↔ greedy sampling
↔ hierarchy of models at training stage

Bernard, Iollo, Riffaud, 2018.
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Thank you for your
attention!
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