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REDUCED BASIS TECHNIQUES FOR NONLINEAR CONSERVATION LAWS

T. Taddei1, S. Perotto2 and A. Quarteroni2, 3

Abstract. In this paper we present a new reduced basis technique for parametrized nonlinear scalar
conservation laws in presence of shocks. The essential ingredients are an efficient algorithm to approx-
imate the shock curve, a procedure to detect the smooth components of the solution at the two sides
of the shock, and a suitable interpolation strategy to reconstruct such smooth components during the
online stage. The approach we propose is based on some theoretical properties of the solution to the
problem. Some numerical examples prove the effectiveness of the proposed strategy.

Résumé. Une nouvelle technique de bases réduites est introduite pour lois de conservation scalaires
non linéaires en présence d’ondes de choc. Cette technique repose sur un algorithme efficace pour
approximer l’onde de choc, une procédure pour détecter les composantes régulières de la solution
des deux côtés du choc et une stratégie d’interpolation approprié pour reconstruire ces composantes
réguliers pendant l’étape en ligne (online). L’approche que nous proposons est basée sur certaines
propriétés de la solution du problème. L’efficacité de la stratégie proposée est prouvée travers la
solution de plusieurs exemples numériques.
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1. Introduction and motivations

The Reduced Basis (RB) method is a Model Order Reduction (MOR) strategy for parametric Partial Differ-
ential Equations (PDEs), which is designed to be particularly effective for both a real time and a many-query
context.

Given the compact set D ⊂ RP of the parameters and the parametric PDE L(u(µ),µ) = 0 with µ ∈ D, the
main goal of the RB approach is to provide a rapid and reliable approximation to the solution manifold M ∶=
{u(µ) ∶ µ ∈ D} through a low dimensional space WRB

N . The approach is based on three distinct components:

● Rapidly convergent approximations: effective sampling strategies for the construction of the subspaces
{WRB

N }N are obtained through suitable optimality criteria. Then, a convenient reduced problem, which
is efficiently solvable, is introduced.
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● Rigorous a posteriori error estimations: the reliability of the reduced solution is assessed through an
a posteriori error estimator. The estimate of the RB approximation error has to be obtained via an
inexpensive (i.e., independent of the computational mesh), rigorous (i.e., the estimation has to constitute
an upper bound for the actual error) and possibly effective (i.e., the ratio of the error bound to the true
error is reasonably close to one) way.

● Efficient computational offline/online procedures: the global algorithm is divided into two stages: in
the former, performed once, the generation of the RB approximation and the computation and storing
of all the structures needed for the reduced problem are addressed; in the latter, repeated many times,
only the solution of the reduced equation and the error estimation are computed.

Since being first proposed and analyzed in 1970s (see, e.g., [11,25,28]), during the last decade much effort has
been devoted to develop this methodology for certain classes of parametric PDEs; rigorous a posteriori error
estimation procedures and effective sampling strategies have made the RB method an extremely attractive
approach, especially in the case of elliptic and parabolic problems (see, e.g., [23, 27,31]).

This paper is related to the application of the RB method to one dimensional scalar conservation laws
depending on a set of parameters, µ ∈ D ⊂ RP , of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u(µ) + ∂

∂x
f(u(µ),µ) = 0 (t, x) ∈ ΩT,(a,b)

u(µ,0, x) = u0(µ, x) x ∈ (a, b)
(1)

completed with either periodic or inflow boundary conditions, where ΩT,(a,b) = (0, T ) × (a, b). The flux f(⋅,µ) ∈
C2(R) is assumed to be uniformly convex (or uniformly concave) in the first argument (i.e., ∣f ′′(x,µ)∣ ≥ Θ > 0
for any x ∈ R and for any µ ∈ D), whilst the initial datum u0(µ) ∶ (a, b) → R is assumed to be bounded.

Few papers are available in the literature dealing with MOR strategies for parametric hyperbolic problems:
in [7] the so-called Gauss-Newton with approximated tensors (GNAT) method is applied to the parametric
inviscid Burgers’ equation, whilst in [9, 16] the RB method has been suitably extended to linear and nonlinear
hyperbolic problems. The main idea in these latter two papers can be thus summarized.

Given δ = (∆t, h), let {tk = k∆t}
k=0,⋯,K ⊂ [0, T ] be a time partition of the time window [0, T ] and let

Xh, Yh ⊂ L2(a, b) be two truth spaces (for instance, the ones induced by a finite element or finite volume
discretization) equipped with the inner product (⋅, ⋅)⋆. A generic numerical scheme for problem (1) can be
written in the following form:

find uδ(µ) = {ukδ(µ)}
k
∈ [Xh]K+1 such that

⎧⎪⎪⎨⎪⎪⎩

(Lδ(uδ(µ),µ, k), v)⋆ = 0,

(u0
h(µ) − u0(µ), v)⋆ = 0,

(2)

for any v ∈ Yh and k = 0,⋯,K, where Lδ is the discrete operator induced by the selected numerical scheme. Then,
at each time step tk, the reduction strategy leads, on the one hand, to project equation (2) onto corresponding
reduced basis spaces (e.g., XRB

h ⊂ Xh and Y RBh ⊂ Yh) and, on the other hand, to approximate the discrete
operator Lδ through a discrete operator LRBδ , which guarantees an efficient offline/online decomposition.

As we will see in the next section, both the projection of the equation and the interpolation of the discrete
operator are particularly problematic when applied to hyperbolic problems. This is the reason why in this
work we propose a different approach that, on the one hand, is specifically tailored to an efficient treatment
of the shocks and, on the other hand, does not require any approximation of the discrete operator. In more
details, first we identify the smooth components of the solution through a domain partition strategy; then,
instead of projecting the equation onto a low dimensional subspace, we exploit the method of characteristics
(see, e.g., [10]) to efficiently compute the point-wise values of the solution at a certain number of properly
selected points. Finally, we reconstruct the entire solution through a suitable interpolation.

Our idea is to some extent related to two MOR techniques that have been proposed recently to deal with
nonlinear evolution PDEs. In [13] a MOR strategy based on approximations of Lax-Pairs has been introduced to
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deal with a certain class of nonlinear problems, while in [26] the so-called “method of freezing” has been applied
to decompose the solution into a group and a shape component. As the two above mentioned approaches, our
approach is based on the definition of suitable nonlinear approximations to follow the propagating front of the
solution, moving from the mathematical analysis of the specific properties of the problem of interest.

The outline of the paper is as follows. In Section 2 we briefly analyze problem (1) and its resolution by
reminding some notable results. In Section 3 we introduce the domain partition strategy and we prove a
result, extremely useful for the successive interpolation approach. Motivated by this analysis, in Section 4 we
introduce the main tools of our method and, finally, in Section 5 some numerical results are presented to assess
the proposed strategy. An a posteriori error estimation for the problem at hand is addressed in Appendix A.

2. The analytical setting of the problem

We briefly remind some properties of the solution to problem (1). We refer to [1, 10] for an exhaustive
overview of this topic. For simplicity, we consider problem (1) on ΩT,∞ ≡ (0, T ) × (−∞,∞). Throughout the
paper, we use standard notation to denote the Lebesgue and Sobolev function spaces and the corresponding
norms and seminorms ( [10]).

First, we provide a suitable definition of integral solution to problem (see, e.g., [10]).

Definition 2.1. If u0(µ) ∈ L∞(R), u(µ) ∈ L∞(ΩT,∞) is said to be a distributional solution to (1) if

∫
ΩT,∞

(u(µ)∂v
∂t

+ f(u(µ),µ)∂v
∂x

) dxdt + ∫
R
u0(µ)v∣t=0 dx = 0, (3)

for all v ∈ C1
0((−∞, T )×R). Furthermore, if f(⋅,µ) is uniformly convex, u(µ) ∈ L∞(ΩT,∞) is said to be entropic

if there exists a constant C(µ) ≥ 0 such that the function u(µ) satisfies the inequality:

u(µ, t, x + z) − u(µ, t, x) ≤ C(µ)
t

z (4a)

for almost every x ∈ R and t, z ∈ R+. Similarly, if f(⋅,µ) is uniformly concave, u(µ) ∈ L∞(ΩT,∞) is said to be
entropic if there exists a constant C(µ) ≥ 0 such that the function u(µ) satisfies the inequality:

u(µ, t, x − z) − u(µ, t, x) ≤ C(µ)
t

z (4b)

for almost every x ∈ R and t, z ∈ R+.

Now we introduce two function spaces particularly relevant to study the solution to (3). We refer to [2] for
further details and comments.

Definition 2.2. Let ω ⊂ Rd be an open set and let u ∈ L1(ω). Then, u is a function with bounded variation in
ω if the distributional derivative of u can be represented by a finite Radon measure in ω, i.e.,

∫
ω
u
∂φ

∂xi
dx = −∫

ω
φdDiu ∀φ ∈ C1

0(ω), (5)

for some Rd-valued measure Du = (D1u,⋯,Ddu) in ω. The vector space of all the functions with bounded
variation in ω is denoted by BV (ω). Similarly, u ∈ BVloc(ω) if u ∈ BV (ω′) for all ω′ ⊂⊂ ω.

Definition 2.3. A function w ∈ BV (ω) is a special function with bounded variation, if it can be written as
w = ws+wj , where ws ∈W 1,1(ω) is the smooth part of w while wj is such thatDwj is a (d−1)-rectifiable measure1.

1For more details about the topological structure of the discontinuity set of wj , we refer to [2].
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The set of the special functions with bounded variation is denoted by SBV (ω). Similarly, u ∈ SBVloc(ω) if
u ∈ SBV (ω′) for all ω′ ⊂⊂ ω.

In the sequel, we refer to ws and wj as to the smooth and the jump component of w, respectively. Next
theorem collects four important results.

Theorem 2.4. Let u(µ) be the entropy solution to problem (3).

● Let xs(µ) ∶ (t0, t1) ⊂ (0, T ) → R be a curve of discontinuity for u(µ) (a so-called shock) and let uleft(µ, t)
and uright(µ, t) denote the limit of the integral solution from the left and from the right, respectively.
Then, the following identity (known as the Rankine-Hugoniot condition) holds (see, e.g., [10]):

ẋs(µ, t) =
f(uright(µ, t),µ) − f(uleft(µ, t),µ)

uright(µ, t) − uleft(µ, t)
∀ t ∈ (t0, t1). (6)

● Let f(⋅,µ) ∈ C2(R) be a locally uniformly convex function. Then, there exists at most a countable subset
S ⊂ (0, T ) such that, for all τ ∈ R ∖ S, it holds:

u(µ, τ) ∈ SBVloc(R). (7)

As a consequence u(µ) ∈ SBVloc(ΩT,∞). ( [1]).
● Let u0(µ) ∈ L∞(R) ∩BV (R), then the following maximum principle holds :

∥u(µ, t)∥L∞(R) ≤ ∥u0(µ)∥L∞(R). (8)

See [6].
● Let uε(µ) be the entropic distributional solution to the problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
uε(µ) + ∂

∂x
fε(uε(µ),µ) = 0 (t, x) ∈ ΩT,∞

uε(µ,0, x) = u0(µ, x) x ∈ R,
(9)

for a suitable flux fε ∈ C1(R). Then, the following estimate holds ( [8]):

∥u(µ, t) − uε(µ, t)∥L1(R) ≤ ∥u0(µ)∥BV (R)∥f ′(⋅,µ) − f ′ε(⋅,µ)∥L∞(R)t ∀ t ∈ (0, T ), (10)

where ∥u0(µ)∥BV (R) = sup{∫R u0(µ)divφdx ∶ φ ∈ C1
0(R), with ∥φ∥L∞(R) ≤ 1}.

Some comments are in order. Condition (6) provides a characterization of the shock curve; in addition, by
combining (6) and (8), we easily deduce that each shock curve is Lipschitz-continuous. Moreover, since xs(µ)
depends on the solution behaviour in a neighbourhood of this curve, we expect to find a way to compute the
shock without knowing the whole solution.

Theorem 2.4 also shows why two crucial components of the classical RB approach (the approximation of
the differential operator and the projection onto a Lagrangian subspace of the linear space generated by the
parametric manifold) are extremely problematic for the problem at hand. In particular, inequality (10) shows
that it is crucial to provide a strict approximation of the flux f(⋅,µ) with respect to the seminorm ∣ ⋅ ∣1,∞, being
∣v∣1,∞ = ∥v′∥L∞(R), to make negligible the difference between the solutions u(µ) and uε(µ). For this reason,
the interpolation of the operator ( [9]) may lead to very long affine expansion of the differential operator; as
a consequence, the computational gain that can be achieved online is limited. Concerning the projection step,
thanks to (7), we can rewrite the solution manifold in the following way:

M= {u(µ) = us(µ) + uj(µ) ∶ us(µ) ∈W 1,1
loc (ΩT,∞) and uj(µ) =

∞
∑
i=1

γi(µ)χωi(µ)}, (11)
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where χω ∶ ΩT,∞ → {0,1} is the indicator function of the open set ω and {γi(µ)}∞i=1 ⊂ R. Thus, due to its
intrinsic structure, the manifold M might not be suited to be approximated through Lagrangian subspaces
( [27]). The following example is meant to show this issue.

Example 2.5. Let us consider the manifold

Mw = {w(µ) ∈ L2(−5,5) ∶ µ ∈ [0,1]} , where w(µ,x) = { 0 x ≤ µ
1 x > µ, (12)

and let WN = span{w(µj) ∶ µj ∈ [0,1], j = 1, . . . ,N} be the associated N -dimensional Lagrangian approximation
space. Then, if µj < µj+1 for all j, we have

inf
v∈WN

∥w(µ) − v∥L2(−5,5) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

((µ − µj)(µj+1 − µ)
µj+1 − µj

)
1
2

if ∃ j ∈ {1, . . . ,N − 1} ∶ µj ≤ µ ≤ µj+1

min{∣µ − µ1∣
1
2 , ∣µ − µN ∣ 12 } if µ ∈ [0, µ1) ∪ (µN ,1].

(13)

In particular, the optimal N -dimensional Lagrangian subspace is given by

W ⋆
N = arg inf

WN

⎛
⎝

sup
µ∈[0,1]

inf
v∈WN

∥w(µ) − v∥L2(−5,5)
⎞
⎠

= span {w(µj) ∶ µj =
4j − 3

4N − 2
, j = 1, . . . ,N},

(14a)

and

sup
µ∈[0,1]

inf
v∈W ⋆

N

∥w(µ) − v∥L2(−5,5) =
1√

4N − 2
, (14b)

i.e., the optimal convergence rate associated with Lagrangian subspaces is linear with respect to 1/
√
N .

We observe that the reduced space WN can be obtained by applying other data compression strategies,
such as the Proper Orthogonal Decomposition (POD) (see, e.g., [15, 33]), which has already been applied to
non-smooth manifolds ( [7]). To build the POD basis associated with the manifold (12), we define the matrix
C ∈ Rntrain×ntrain such that Ci,j = 1

ntrain
(w(µj),w(µi))L2(0,1), with {µj}ntrainj=1 ⊂ [0,1] and ntrain ∈ N. Then, we

consider the eigenproblem CΨl = λlΨl where we assume λl ≥ λl+1, l = 1, . . . , ntrain −1. The n-dimensional POD
space is thus given by:

Xn
ntrain ∶= span{ξPOD,ntrainl =

ntrain

∑
i=1

Ψl
iw(µi) ∶ l = 1, . . . , n ≤ ntrain} . (15)

It is straightforward to observe that Xntrain
ntrain = span{w(µj)}ntrainj=1 . Therefore, because of (14b), we can deduce

that:

sup
µ∈[0,1]

inf
v∈Xnntrain

∥w(µ) − v∥L2(−5,5) ≥
1√

4ntrain − 2
, ∀n ∈ {1, . . . , ntrain}. (16)

As a consequence, the number ntrain of snapshots to be selected to guarantee a sufficient accuracy could become
extremely large, making the offline computational effort really prohibitive.

3. A decoupling strategy

Goal of this section is to provide a new theoretical criterion to tackle hyperbolic problems in the presence
of shocks. The leading idea we follow is to properly introduce a partition of the domain induced by the same
shock so that the restriction of the solution to each subdomain is regular.
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Let a, b ∈ R, such that a < b. We denote by u(µ) the (unique) entropy solution to the following problem:

∫
ΩT,(a,b)

(u(µ)∂v
∂t

+ f(u(µ),µ)∂v
∂x

) dxdt + ∫
b

a
u0(µ)v(0, x)dx = 0 (17)

for all v ∈ C1
0((−∞, T ) × (a, b)), completed with suitable boundary conditions2.

To develop our strategy we need the following three assumptions:

(H1) both x = a and x = b are inflow boundaries for all t > 0, that is, f ′(u(µ, t, a),µ) > 0, f ′(u(µ, t, b),µ) < 0
( [19]);

(H2) u(µ) ∈ SBV (ΩT,(a,b)) and it has only one shock xs(µ) ∈W 1,∞(t⋆(µ), T ) such that a+δ ≤ xs(µ, t) ≤ b−δ
for some δ > 0, where t⋆(µ) ∈ (0, T ) denotes the shock starting time;

(H3) we assign the following boundary conditions

u(µ, t, a) = ξa(µ, t), u(µ, t, b) = ξb(µ, t) ∀ t ∈ (0, T )

at a and b, respectively, where ξa(µ), ξb(µ) ∈ W 1,1(0, T ). Furthermore, we assume that u0(µ) ∈
W 1,1(a, b) and that ξa(µ,0) = u0(µ, a) as well as ξb(µ,0) = u0(µ, b) to guarantee the continuity of the
solution in (0, a) and (0, b). Since W 1,1(I) ⊂ C(Ī) with I ⊂ R (see, e.g., [32]), we have that all these
functions are also continuous up to the boundary.

Thanks to assumptions (H1) and (H2), we can rewrite problem (17) as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
ΩT,(a,b)

(u(µ)∂v
∂t

+ f(u(µ),µ)∂v
∂x

) dxdt + ∫
b

a
u0(µ)v(0, x)dx = 0,

u(µ, t, a) = ξa(µ, t) u(µ, t, b) = ξb(µ, t), ∀ t ∈ (0, T ),
(18)

for all v ∈ C1
0((−∞, T ) × (a, b)). Now let us consider the following space-time partition induced by the shock

xs(µ) (see Figure 1, left for an example):

Ω1(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t < t⋆(µ)} ,

Ω2(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t > t⋆(µ), x < xs(µ, t)} ,

Ω3(µ) = {(t, x) ∈ ΩT,(a,b) ∶ t > t⋆(µ), x > xs(µ, t)} .
(19)

We observe that the restriction of the solution u(µ) to each space-time subdomain Ωi(µ) is regular, i.e.,
u(µ)∣Ωi(µ) ∈W 1,1(Ωi(µ)), for i = 1,2,3. With a view to the application of the proposed MOR strategy, we aim
at referring each solution restriction to a parameter-independent domain. For this purpose, we introduce the
maps Ti(µ) ∶ ΩT,(a,b) → Ωi(µ), for i = 1,2,3, given by

T1(µ, t, x) =
⎡⎢⎢⎢⎢⎢⎣

t⋆(µ)
T

t

T 1
x (µ, t, x)

⎤⎥⎥⎥⎥⎥⎦
, T2(µ, t, x) =

⎡⎢⎢⎢⎢⎢⎣

τ(µ, t)

a + xs(µ, τ(µ, t)) − a
b − a (x − a)

⎤⎥⎥⎥⎥⎥⎦
,

T3(µ, t, x) =
⎡⎢⎢⎢⎢⎢⎣

τ(µ, t)

xs(µ, τ(µ, t)) +
b − xs(µ, τ(µ, t))

b − a (x − a)

⎤⎥⎥⎥⎥⎥⎦
,

(20)

2We refer to [3] for a thorough discussion about boundary conditions for first order quasilinear equations.
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respectively, with:

T 1
x (µ, t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a + 2

b − a (γ (µ, t
⋆(µ)
T

t) − a)(x − a) x < a + b
2

γ(µ, t) + 2

b − a (b − γ (µ, t
⋆(µ)
T

t))(x − a + b
2

) x ≥ a + b
2

,

(21)

where τ(µ, t) = t⋆(µ) + T−t⋆(µ)
T

t, and

γ(µ, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + ε + f ′(u0(µ, a),µ)t if a + ε + f ′(u0(µ, a),µ)t ≥ γ̂(µ, t)

γ̂(µ, t) if a + ε + f ′(u0(µ, a),µ)t < γ̂(µ, t) < b − ε + f ′(u0(µ, b),µ)t

b − ε + f ′(u0(µ, b),µ)t if b − ε + f ′(u0(µ, b),µ)t ≤ γ̂(µ, t)
(22)

being γ̂(µ, t) = xs(µ, t⋆(µ)) + ẋs(µ, t⋆(µ)) (t − t⋆(µ)) and ε > 0. Thanks to hypothesis (H2), the maps Ti(µ)
are Lipschitz and bijective for i = 1,2,3. Then, by construction

ui(µ) ∶= u(µ) ○Ti(µ) ∈W 1,1(ΩT,(a,b)) for i = 1,2,3. (23)

Notice that functions ui(µ) correspond to the restrictions u(µ)∣Ωi(µ) introduced above even though they are
referred to a parameter independent configuration.

We observe that u1(µ) is not continuous up to the boundary. More precisely, it is not continuous in (T, a+b
2

).
However, by construction this point is independent of the parameter µ ∈ D.

This is why we expect that the convergence of the optimal Lagrangian space associated with the manifold
{u1(µ) ∶ µ ∈ D} is enough fast to motivate the proposed reduced order strategy.

On the other hand, hypotheses (H1) and (H3) allow us to introduce the following partition of the space time
domain ΩT,(a,b):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(µ) = {(t, x) ∈ ΩT,(a,b) ∶ x < a + f ′(u0(µ, a),µ)t} ∩ (Ω1(µ) ∪Ω2(µ)) ,

R2(µ) = {(t, x) ∈ ΩT,(a,b) ∶ a + f ′(u0(µ, a),µ)t < x < b + f ′(u0(µ, b),µ)t, t ≤ t⋆(µ)} ,

∪{(t, x) ∈ ΩT,(a,b) ∶ a + f ′(u0(µ, a),µ)t < x < max{xs(µ, t), b + f ′(u0(µ, b),µ)t} , t > t⋆(µ)} ,

R3(µ) = {(t, x) ∈ ΩT,(a,b) ∶ x > b + f ′(u0(µ, b),µ)t} ∩ (Ω1(µ) ∪Ω3(µ)) .
(24)

Figure 1 shows the difference between the two partitions. While partition {Ωi(µ)}3
i=1 is induced by the shock

equation and identifies a number of regions where the solution restrictions are regular, partition {Ri(µ)}3
i=1 is

induced by the boundary conditions and drives the application of the method of characteristics performed in
Proposition 3.1.

We are now ready to state the main result of this paper. We first introduce some notation. We denote
by T it (µ) and T ix(µ) the t-component and the x-component of the map Ti(µ), respectively, for i = 1,2,3.
Furthermore, we refer to Gi(µ) as to the inverse map of Ti(µ), while Ji(µ) ∶= det∇Ti(µ) denotes the Jacobian
of the map Ti(µ), with i = 1,2,3.

Proposition 3.1. Let us consider the entropy solution u(µ) to (17). If the hypotheses (H1)-(H3) are verified,
the following statements hold:



8 T. Taddei, S. Perotto, A. Quarteroni

t⋆(µ)

Ω1(µ)

Ω2(µ) Ω3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)
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@
@@

R2(µ)

R1(µ) R3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)

Figure 1. Example of the partitions (19) (left) and (24) (right); the dotted line (left) represents
the shock curve; the continuous lines (right) represent the characteristics issuing from (0, a)
and (0, b)

● the restrictions u1(µ), u2(µ), u3(µ) ∈W 1,1(ΩT,(a,b)) defined in (23) solve the following problems:

∫
ΩT,(a,b)

([ui(µ), f(ui(µ))]∇Gi(µ)∇v) Ji(µ)dxdt + ∫
b

a
u0,i(µ)Ji(µ)∣t=0v∣t=0 dx = 0, (25a)

for all v ∈ C1
0((−∞, T ) × (a, b)), where

u0,i(µ, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u0(µ, T 1
x (µ,0, x)) if i = 1

u1 (µ,G1(µ, T 2
t (µ,0, x), T 2

x (µ,0, x))) if i = 2

u1 (µ,G1(µ, T 3
t (µ,0, x), T 3

x (µ,0, x))) if i = 3

(25b)

completed with the following boundary conditions:

u1(µ, t, a) = ξa (µ, T 1
t (µ, t, a)) , u1(µ, t, b) = ξb (µ, T 1

t (µ, t, b)) ;

u2(µ, t, a) = ξa (µ, T 2
t (µ, t, a)) ; u3(µ, t, b) = ξb (µ, T 3

t (µ, t, b)) ,
(25c)

for t ∈ (0, T );
● if (t, x) ∈ Ri(µ) for some i = 1,2,3, the pointwise value of the entropy solution u(µ, t, x) solves the

following nonlinear equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(µ, t, x) − ξa (µ, t −
x − a

f ′(u(µ, t, x),µ)) = 0 if (t, x) ∈ R1(µ)

u(µ, t, x) − u0 (µ, x − f ′(u(µ, t, x),µ)t) = 0 if (t, x) ∈ R2(µ)

u(µ, t, x) − ξb (µ, t −
x − b

f ′(u(µ, t, x),µ)) = 0 if (t, x) ∈ R3(µ)

(26)

Proof. The first statement essentially follows from (18) and (23) and by applying the change of variable in
(20)-(22).

Thus, let us focus on the second statement of the proposition. We start from region R2(µ). First, we
introduce the characteristic lines, which are, generally, defined by

xξ(µ, t) = ξ + f ′(u0(µ, ξ),µ)t,
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where ξ ∈ (a, b) is the so-called foot of the characteristics. Then, we introduce ξ1 = inf{ξ ∈ [a, b] ∶ xξ(µ, t⋆(µ)) =
xs(µ, t⋆(µ))} and ξ2 = sup{ξ ∈ [a, b] ∶ xξ(µ, t⋆(µ)) = xs(µ, t⋆(µ))}. Starting from such definitions, we subdivide
R2(µ) into three subregions, i.e., R21(µ), R22(µ), R23(µ), such that

R21(µ) = {(t, x) ∈ R2(µ) ∶ x < x⋆21(µ, t)} ,

R22(µ) = {(t, x) ∈ R2(µ) ∶ t < t⋆(µ), xξ1(µ, t) < x < xξ2(µ, t)} ,

R23(µ) = {(t, x) ∈ R2(µ) ∶ x > x⋆23(µ, t)} ,
(27)

with

x⋆21(µ, t) =
⎧⎪⎪⎨⎪⎪⎩

xξ1(µ, t) if t < t⋆(µ)

xs(µ, t) if t ≥ t⋆(µ)
x⋆23(µ, t) =

⎧⎪⎪⎨⎪⎪⎩

xξ2(µ, t) if t < t⋆(µ)

xs(µ, t) if t ≥ t⋆(µ),
(see Figure 2 for an example). We observe that u(µ) ∈W 1,1(R2i(µ)) for i = 1,2,3.

Let (t̄, x̄) ∈ R21(µ). In order to prove (26), we consider the backward problem

∂

∂s
u(µ) − ∂

∂x
f(u(µ),µ) = 0,

where s = t̄ − t. If we introduce the characteristic lines for this problem, we obtain:

xbackx̄ (µ, s) = x̄ − f ′(u(µ, t̄, x̄),µ)s.

For s > 0, xbackx̄ cannot hit the shock as this would violate the Lax entropy condition. Since characteristics do
not intersect each other in R21(µ), we finally obtain xbackx̄ (µ, s) ≥ xa(µ, t̄ − s), and xbackx̄ (µ, s) ≤ x⋆21(µ, t̄ − s).
Therefore, recalling that the solution is constant along the characteristic lines, we have

u(µ, t̄, x̄) = u(µ, t̄, xbackx̄ (µ, t̄)) = u0(µ, x̄ − f ′(u(µ, t̄, x̄),µ)t̄),

which proves (26) for (t, x) ∈ R21(µ). Subregions R22(µ) and R23(µ) as well as regions R1(µ) and R3(µ) can
be dealt in a similar way. �

#
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#
#
#
#
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#
#
#
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�

l
l

l
l

l
l
l

l
l

l
l
l

l
l
l

l
l
ll

R21(µ) R22(µ) R23(µ)

R1(µ) R3(µ)
xs(µ)

(0, a) (0, b)

(T,a) (T, b)

(0, ξ1) (0, ξ2)

Figure 2. Example of partition {R2i(µ)}3
i=1. The continuous lines represent the characteris-

tics starting from a, ξ1, ξ2 and b.

The importance of Proposition 3.1 is twofold. First of all, if we know the shock equation xs(µ), we are
able to decouple the starting problem (18) into three subproblems whose solutions coincide with the smooth
components of u(µ). Moreover, due to the regularity of the manifolds associated with each component, we
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can approximate these components through a linear combination of a small number of corresponding elements
properly selected.

As a second consequence, equation (26) allows us the computation of point-wise values of the entropy solution
u(µ) without knowing the whole solution but just via the functions ξa and ξb and the initial datum u0.

Moving from these remarks, we have settled the decoupling strategy for the shock detection in such a way:

● in the offline stage we compute an approximation uδ(µj) for u(µj) for some (properly selected) values
of the parameter µj ∈ D with j = 1,⋯,N , and for a certain space-time discretization δ = (∆t, h). Then,
we approximate xs(µj) and we compute the components ui(µj) via (23), i.e., via the maps Ti(µj), for
i = 1,2,3. Now, let

WRB
i,N ∶= span{ui(µj) ∶ j = 1,⋯,N}

denote the reduced space associated with the i-th component ui(µ) and with the N parameters µj .

Finally, for each space WRB
i,N , we define a set of points (ti,j , xi,j) and a corresponding suitable basis

{qi,j} for j = 1,⋯,N and i = 1,2,3;

● in the online stage, for any new value of the parameter µ ∈ D, we first reconstruct the shock {xs(µ, t) ∶
t ∈ (t⋆(µ), T )} and then we compute the solution u(µ) in the mapped nodes:

(t̃i,j(µ), x̃i,j(µ)) ∶= Ti(µ)(ti,j , xi,j) i = 1,2,3, j = 1,⋯,N. (28)

Then, for each ui(µ), we reconstruct a corresponding approximation uRBi (µ) ∈WRB
i,N through an inter-

polation procedure where the nonlinear equation (26) is solved through the Newton method. In this
way, we are not obliged to solve any reduced variational problem. As a consequence, we do not need to
approximate the differential operator.

The operative details about the steps in the offline and online stages will be provided in the next section.
Concerning hypotheses (H1)-(H3), we remark that the a priori knowledge of the equation of the shock curves
(hypothesis H2) is necessary for the definition of the maps (20) and, consequently, of the smooth problems (25).
On the other hand, assumptions (H1) and (H3) lead to the nonlinear equation (26), which represents a relevant
simplification of the general Hopf-Lax formula (see [1, Theorem 2.3]).

4. A practical approach

In this section we focus on the solution to the model problem (18). The following ingredients are essential:

i) an efficient algorithm to estimate xs(µ, ⋅) in the offline and in the online stages;
ii) for a given numerical approximation uδ(µ) of u(µ) and a numerical approximation xs,δ(µ) of xs(µ), a

procedure to identify the three components of the solution ui(µ) for i = 1,2,3;
iii) a criterion to properly select the interpolation points (ti,j , xi,j) and the bases {qi,j}, for i = 1,2,3 and

j = 1, . . . ,N .

Before dealing with these issues, we introduce the truth solver adopted to discretize the hyperbolic equation
and some useful notation.

We use a finite volume conservative scheme where boundary conditions are treated through the ghost point
technique ( [19, 20]). Given the space-time domain ΩT,(a,b), we consider the uniform space-time mesh (tk, xl),
for k = 0,⋯,K and l = 1,⋯,N , such that xl = a+(l−1)h, tk = k∆t with h = b−a

N−1
and ∆t = T

K
, with δ = (∆t, h) the

space-time mesh size. For the problem at hand, the generic finite volume conservative method can be written
as:

uk+1
δ,l (µ) = ukδ,l(µ) − ∆t

h
( F (ukδ,l−p(µ), . . . , ukδ,l+q(µ),µ)

−F (ukδ,l−p−1(µ), . . . , ukδ,l+q−1(µ),µ)),
(29)
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where the solution {ukδ,l(µ)}k,l is an approximation to the average value of the exact solution in the l-th cell

and at time tk, i.e., ukδ,l(µ) ≃ 1
h ∫

xl+h2
xl−h2

u(µ, tk, x)dx, while F (µ) denotes the numerical flux. Throughout this

work we use the Lax-Friedrichs and the Godunov monotone fluxes ( [19]).

4.1. The shock capturing algorithm

Let us introduce the following quantities, which collect the information related to the shock:

Λ(µ, t) ∶= (t, xs(µ, t), uleft(µ, t), uright(µ, t)), Λ(µ) ∶= {Λ(µ, t) ∶ t ≥ t⋆(µ)} ,

Λδ(µ, t) ∶= (t, xs,δ(µ, t), uleft,δ(µ, t), uright,δ(µ, t)), Λδ(µ) ∶= {Λδ(µ, t) ∶ t ≥ t⋆δ(µ)} , (30)

with uleft(µ, t) and uright(µ, t) as in Theorem 2.4. Aim of this section is to define two procedures (one for the
offline stage and one for the online stage) to reconstruct Λ(µ). For this purpose, we subdivide each procedure
into two different phases:

● the computation of Λ(µ, t⋆(µ));
● the reconstruction of the whole shock Λ(µ).

We emphasize that these two phases characterize both the offline and the online stages.

Computation of the shock starting point

We adopt a different approach to identify the shock starting point in the offline and in the online stages.
In practice, a shock is a region (here called artificial boundary layer) where the solution exhibits a strong -
i.e., larger than a certain constant H > 0 - gradient. Thus, we can reasonably assume that xs(µ, t) is located
inside the high-derivative region and it exactly coincides with the maximum of the derivative. In particular,
if the shock is not originated at t = 0, we expect that the maximum of the derivative gradually grows before
stabilizing at a certain large value. This remark justifies why, in the offline stage, to estimate t⋆(µ) we essentially
check whether such a high derivative region does exists and, in this case, if the maximum of the derivative is
monotonically increasing in time.

In more details, let Mk
∇(µ) denote the maximum of the first order discrete spatial derivative3 {Dlu

k
δ(µ)}Nl=1

associated with the discrete values {ukδ,l(µ)}k,l. The approximation for the shock starting point is thus defined
as

t⋆δ(µ) ∶= k⋆(µ)∆t, xs,δ(µ, t⋆δ(µ)) ∶= xlk⋆∇ (µ) (31a)

with

k⋆(µ) ∶= min

⎧⎪⎪⎨⎪⎪⎩
k ∈ {0,⋯,K} ∶ Mk

∇(µ) > ctest
Ntest

Ntest

∑
p=1

Mp+k
∇ (µ), Mk

∇(µ) >H
⎫⎪⎪⎬⎪⎪⎭
,

lk
⋆

∇ (µ) ∶= arg max
l

∣Dlu
k⋆(µ)
δ (µ)∣,

(31b)

and where ctest ∈ (0,1) and Ntest ∈ N are introduced to properly tune the oscillatory behaviour in time of the
maximum of the spatial derivative. To compute uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)), we solve the nonlinear
equation (26), with (t, x) = (t⋆δ(µ), xs,δ(µ, t⋆δ(µ))) via the Newton method. Since the solution to the nonlinear
equation is not unique (by construction we have at least two solutions, see Proposition 3.1), we need to properly
initialize the Newton scheme. The initial guesses are built by means of the values {ukδ,l(µ)}k,l as

uguessleft,δ(µ) ∶= uk
δ,lk

⋆
∇ (µ)−∆

uguessright,δ(µ) ∶= uk
δ,lk

⋆
∇ (µ)+∆

(32)

where ∆ ∈ N is a properly chosen index that takes into account the thickness of the artificial boundary layer.

3In this work the discrete spatial derivative is simply computed via a centered finite difference method. We refer to [29] for
further details.
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The previous strategy is computationally too expensive for the online stage. As a consequence, at the end
of the offline stage, we construct a polynomial approximation for the shock starting point and for the left- and
right-solution limits by using the precomputed values for µj ∈ D, with j = 1, . . . ,N . In the online stage, for any
new parameter µ ∈ D, we approximate Λ(µ, t⋆(µ)) through the respective polynomials built offline and finally
we solve (26) to correct the approximation of uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)).

Reconstruction of the entire shock curve

Let us now turn to the second phase, where the entire shock curve (together with the left and right solution
values) are recovered.

The two ingredients of the method here proposed for this purpose are:

● the Rankine Hugoniot condition (6);
● the characteristic equation (26).

Given the values Λδ(µ, tk), we compute xs,δ(µ, tk+1) through an explicit discretization of the ODE (6) and then

we evaluate uleft,δ(µ, tk+1) and uright,δ(µ, tk+1) directly by solving the nonlinear equation (26). We observe
that this method is independent of the spatial mesh size h and so it can be adopted both in offline and in online
stages.

Entire procedure

Algorithm 1 itemizes the whole procedure proposed for the shock capture, by distinguishing the offline from
the online phases.

The proposed method essentially depends on four constants: H > 0, used to identify the high derivative
region; ∆ measuring the extension of the artificial boundary layer; ctest and Ntest characterizing the criterion
to select k⋆(µ). A rigorous selection of these parameters is far from the purpose of this paper. We simply
perform a numerical tuning of these constants during the numerical validation. We can state that the choice
of H and ∆t can be relatively rough: H is required only to start the shock detection procedure, whereas ∆ is
employed simply to set the initial guesses (32) for the Newton algorithm. Finally, we have numerically shown
that definitions (31) are not particularly sensitive to the values ctest and Ntest. In Algorithm 1 with notation
u = Newton(ustart, tu, xu,µu) we mean that we evaluate the solution u to (26) at (t, x,µ) = (tu, xu,µu) via the
Newton method, starting from the initial guess ustart.

4.2. Smooth-jump decomposition

We now explain how to decompose the numerical solution uδ(µ) into its three smooth components uδ i(µ),
for i = 1,2,3, during the offline stage. For this purpose, we essentially exploit (23), i.e., the maps Ti(µ).

Due to the intrinsic numerical viscosity of the adopted discretization scheme, we perform a pre-processing of
uδ(µ) before applying (23). More precisely, let us consider the set of spatial indices {lks}Kk=0, given by

lks ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

arg min
l∈{1,...,N}

∣γδ(µ, tk) − xl∣ k < k⋆(µ)

arg min
l∈{1,...,N}

∣xs,δ(µ, tk) − xl∣ k ≥ k⋆(µ),
(33)

where γδ(µ, tk) is a truth approximation of γ(µ, tk) defined in (22). We modify the solution values close to the
shock so that ukδ,lks−1(µ) ≃ uleft,δ(µ, tk) and ukδ,lks

(µ) ≃ uright,δ(µ, tk). By doing so, the effect of the numerical

viscosity is significantly mitigated and possible instabilities in the empirical interpolation strategy related to
the fluctuations of the smooth components close to the shock are avoided.

In addition, we introduce a computational strategy that allows us to map a function defined on a certain
(space-time) partition to a different one. Let us focus on the spatial grid. We consider two couples of indices

(l1a, l1b) and (l2a, l2b) with 1 ≤ lpa < lpb ≤ N for p = 1,2. Let vh ∈ Rl
1
b−l

1
a+1 be the vector collecting the values

vh,l ∶= 1
h ∫

x
l1a+l−

1
2

x
l1a+l−

3
2

v (x) dx of a real valued function v defined on (xl1a , xl1b) for l = 1, . . . , l1b − l1a + 1. The mapping
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Algorithm 1 Shock capturing procedure

1. Approximation of Λ(µ, t⋆(µ))
Offline stage:
[Λδ(µ, t⋆(µ))] = shock capturing offline step1 (uδ(µ),H,∆,Ntest, ctest)

Compute [Mk
∇(µ), lk∇(µ)] = max

l=1,⋯,N
∣Dlu

k
δ(µ)∣, for each k = 1,⋯,K.

Compute t⋆δ(µ) and xs,δ(µ, t⋆δ(µ)) through (31).
Compute the rough approximations for the left-and right-solutions uguessleft,δ(µ) and uguessright,δ(µ) through (32).

Compute the left and right solutions:

uleft,δ(µ, t⋆δ(µ)) = Newton(uguessleft,δ(µ), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ),

uright,δ(µ, t⋆δ(µ)) = Newton(uguessright,δ(µ), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ).

Online stage:
[Λδ(µ, t⋆(µ))] = shock capturing online step1 (µ)

Compute Λδ(µ, t⋆δ(µ)) through the pre-computed polynomial approximations.

Adjust the approximations of the left-and right-solutions:

uleft,δ(µ, t⋆δ(µ)) = Newton(uleft,δ(µ, t⋆δ(µ)), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ)

uright,δ(µ, t⋆δ(µ)) = Newton(uright,δ(µ, t⋆δ(µ)), t⋆δ(µ), xs,δ(µ, t⋆δ(µ)),µ)

2. Reconstruction of the shock curve for t > t⋆(µ)
[Λδ(µ)] = shock capturing step2 (Λδ(µ, t⋆(µ)))

for k = ⌊ t
⋆
δ(µ)
∆t

⌋,⋯,K − 1

xs,δ(µ, tk+1) = xs,δ(µ, tk) +∆t
f(uright,δ(µ, tk),µ) − f(uleft,δ(µ, tk),µ)

uright,δ(µ, tk) − uleft,δ(µ, tk)

uleft,δ(µ, tk+1) = Newton(uleft,δ(µ, tk), tk+1, xs,δ(µ, tk+1),µ)

uright,δ(µ, tk+1) = Newton(uright,δ(µ, tk), tk+1, xs,δ(µ, tk+1),µ)
end for

of v onto the new interval (xl2a , xl2b) leads us to introduce the new vector ṽh ∈ Rl
2
b−l

2
a+1 with components

ṽh,l ∶=
1

h
∫

x
l2a+l−

1
2

x
l2a+l−

3
2

v
⎛
⎝
xl1a +

xl1
b
− xl1a

xl2
b
− xl2a

(y − xl2a)
⎞
⎠
dy, for l = 1, . . . , l1b − l1a + 1. (34)

Throughout this paper we refer to the algorithm that approximates ṽh for any given vh and any two cou-
ples of indices (lpa, lpb), p = 1,2, via the command ṽh = FV mapping(vh, l1a, l1b , l2a, l2b). We approximate (34)
through a three point quadrature rule (see, e.g., [29]) according to which the pointwise values of v are recon-
structed through linear interpolation. More precisely, for each interval (xl2a+l−3/2, xl2a+l−1/2), we approximate

v (xl1a +
x
l1
b
−xl1a

x
l2
b
−xl2a

(yj − xl2a)) for each yj = xl2a+l−3/2 + h/2(j − 1), j = 1,2,3, using a piecewise linear approximation

based on the values from {vh,l}l (treated as pointwise evaluations) that are associated with the two closest
centers of the mesh.

With obvious modifications, the same approach can be applied to the time partition.
Algorithm 2 summarizes the smooth-jump decomposition procedure.
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Algorithm 2 Smooth-Jump decomposition
[uδ 1(µ), uδ 2(µ).uδ 3(µ)] = smooth-jump decomposition(uδ(µ),Λδ(µ),∆)

Preprocessing

for k = k⋆(µ), . . . ,K
Compute lks through (33).

lkleft = arg min
l∈{lks−∆,...,lks}

∣uleft,δ(µ, tk) − ukδ,l(µ)∣,

lkright = arg min
l∈{lks ,...,lks+∆}

∣uright,δ(µ, tk) − ukδ,l(µ)∣

uδ,l(µ) = { uleft,l(µ, tk) l = lkleft, . . . , lks − 1

uright,l(µ, tk) l = lks , . . . , lkright
end for

Reconstruction

Space scaling
for k = 1,⋯, k⋆(µ) − 1

Compute lks through (33).

{uaux,kδ 1,l (µ)}
N
2 −1

l=1 = FV mapping ({ukδ,l(µ)}l,1, lks − 1,1, N
2
− 1)

{uaux,kδ 1,l (µ)}N
l=N2

= FV mapping ({ukδ,l(µ)}l, lks ,N , N2 ,N)

end for
for k = k⋆(µ),⋯,K

{uaux,kδ 2,l (µ)}Nl=1 = FV mapping ({ukδ,l(µ)}l,1, lks − 1,1,N)

{uaux,kδ 3,l (µ)}Nl=1 = FV mapping ({ukδ,l(µ)}l, lks ,N ,1,N)
end for

Time scaling
for l = 1,⋯,N

{ukδ 1,l(µ)}Kk=0 = FV mapping ({ukδ 1,l(µ)}k,0, k⋆(µ) − 1,0,K)

{ukδ 2,l(µ)}Kk=0 = FV mapping ({uaux,kδ 2,l (µ)}k, k⋆(µ),K,0,K)

{ukδ 3,l(µ)}Kk=0 = FV mapping ({uaux,kδ 3,l (µ)}k, k⋆(µ),K,0,K)
end for

4.3. A greedy approach for the selection of the interpolation points

Unlike the other algorithms of this paper, the technique we are going to present - the so-called Empirical
Interpolation Method (EIM) (see, e.g., [4]) - is extremely well-known. However, at the best of our knowledge,
it is the first time that such technique is applied to this framework.

Let us assume that the values {ukδ i,l(µ)}k,l for i = 1,2,3, l = 1, . . . ,N and k = 0, . . . ,K, have already been

computed for some µ = µj ∈ D. Then, we can select the interpolation points (ti,j , xi,j) and the corresponding

interpolatory bases {qi,j} together with the associated matrix Bijj′ ∶= qi,j(ti,j′ , xi,j′) for j, j′ = 1,⋯,N and

i = 1,2,3 via the greedy strategy proposed in [4]. Our numerical simulations show that, if the elements of the
manifold exhibit regions characterized by high derivatives, the interpolation process may produce instabilities
when the number of reduced bases grows. In particular, when we apply the procedure to the first component
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{ukδ 1,l(µ)}k,l the interpolation process might be less reliable close to the shock starting point. This is why we
propose two devices to contain this drawback.

First of all, we perform a post-processing of each snapshot via a smooth filter to avoid spurious instabilities
in the proximity of the regions close to the shock starting point. In more detail, we use the Matlab® tool
smooth ( [24]), which is based on a simple moving average smoothing. Then, it is convenient to prevent the
greedy algorithm from selecting interpolation points associated with high solution gradients. This is justified
by the fact that the approximation of the nonlinear equation (26) is a problem whose conditioning is good when
we are far from the incoming shock, and viceversa.

4.4. The whole algorithm

After detailing separately the main specific algorithms, we provide now the proposed procedure as a whole.
Algorithm 3 itemizes the main steps of the global offline/online procedure. We remark that, so far, no detail
has been provided about the sampling strategy adopted for the smooth problems. In the RB framework, the
Greedy algorithm (see, for instance, [31]), is usually employed to properly select the parameters µj ∈ D. This
approach is based on an inexpensive and rigorous a posteriori error estimator. Nevertheless, such an estimator
has not yet been developed for nonlinear hyperbolic equations. For this reason, in the numerical simulations of
Section 5 we resort to equispaced µj . In Appendix A we provide a first attempt of a posteriori error indicator.

We finally observe that, in order to solve the nonlinear equation (26) in each mapped node (28) through an
iterative method, it is necessary to properly select the initial guess. To do this, we employ a simple polynomial
fitting. The same approach has been chosen to reconstruct t⋆(µ) and xs(µ, t⋆(µ)). However, any other
approximation technique, in principle, can be applied. Moreover, as proved in the numerical validation, while
the approximations of t⋆(µ) and xs(µ, t⋆(µ)) have to be extremely sharp, the other quantities can be roughly
approximated since they are used only as initial guess for the Newton iterative algorithm.

4.5. Input-output relationships

The Reduced Basis method can provide a significant speed-up in the computation of input-output relation-
ships depending on the solution of the parametrized equation.

In order to explain how to efficiently compute the input-output relation during the online stage, let us consider
the following example. Let

s(µ) = ∫
ΩT,(a,b)

w(µ)u(µ)dxdt (35)

be the linear-functional output of interest, where u(µ) is the solution to (17), w(µ) is a weight function and
ΩT,(a,b) = (0, T ) × (a, b).

Our goal is to make the computation of s(µ) independent of the spatial mesh. By recalling the definition
(23) of ui(µ), for i = 1,2,3, we have

s(µ) = ∫
ΩT,(a,b)

w(µ, t, x)u(µ, t, x)dxdt

= ∫
t⋆(µ)

0
∫

b

a
w(µ, t, x)u(µ, t, x)dxdt + ∫

T

t⋆(µ)
∫

xs(µ,t)

a
w(µ, t, x)u(µ, t, x)dxdt

+ ∫
T

t⋆((µ))
∫

b

xs(µ,t)
w(µ, t, x)u(µ, t, x)dxdt,

= ∫
ΩT,(a,b)

3

∑
i=1

(w(µ) ○Ti(µ)Ji(µ)) (s, y)ui(µ, s, y)dyds,
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s(µ) = ∫
Ω
T,(a, a+b

2
)

(w(µ) ○T1(µ)J1(µ)) (s, y)u1(µ, s, y)dyds,

+ ∫
Ω
T,( a+b

2
,b)

(w(µ) ○T1(µ)J1(µ)) (s, y)u1(µ, s, y)dyds

+
3

∑
i=2
∫

ΩT,(a,b)
(w(µ) ○Ti(µ)Ji(µ)) (s, y)ui(µ, s, y)dyds,

where the last equality is due to the discontinuity of Ji(µ) at (s, a+b
2

), for all s ∈ (0, T ). Then, by applying the
EIM to each term w(µ) ○Ti(µ)Ji(µ), we obtain

(w(µ) ○T1(µ)J1(µ)) (s, y) ≃
M1

∑
m=1

Θm
w,1(µ)w1

m(s, y) (s, y) ∈ ΩT,(a, a+b2 )

(w(µ) ○T1(µ)J1(µ)) (s, y) ≃
M2

∑
m=1

Θm
w,2(µ)w2

m(s, y) (s, y) ∈ ΩT,( a+b2 ,b)

(w(µ) ○Ti(µ)Ji(µ)) (s, y) ≃
Mi+1

∑
m=1

Θm
w,i+1(µ)wi+1

m (s, y) (s, y) ∈ ΩT,(a,b) i = 2,3,

(36)

where Θm
w,i ∶ D → R and wim ∶ ΩT,(a,b) → R, i = 1,2,3,4 and m = 1, . . . ,Mi, result from the application of the

EIM.
Therefore, given the RB approximations of ui(µ), uRBδ i (µ) = ∑Nj=1 Θj

u,i(µ)qi,j , we can define the following

parametrically affine approximation for the output (35)

sRB(µ) =
2

∑
i=1

Mi

∑
m=1

N

∑
j=1

Θm
w,i(µ)Θj

u,1(µ)Aijm +
4

∑
i=3

Mi

∑
m=1

N

∑
j=1

Θm
w,i(µ)Θj

u,i−1(µ)Aijm, (37a)

where
A1jm = ∫Ω

T,(a, a+b
2
)
w1
m(t, x)q1,j(t, x)dxdt A2jm = ∫Ω

T,( a+b
2
,b)
w2
m(t, x)q1,j(t, x)dxdt

A3jm = ∫ΩT,(a,b) w
3
m(t, x)q2,j(t, x)dxdt A4jm = ∫ΩT,(a,b) w

4
m(t, x)q3,j(t, x)dxdt

(37b)

can be computed offline.
We observe that (37) guarantees an efficient offline online computational decomposition: the online compu-

tation is independent of the spatial mesh whereas the temporal mesh influences the algorithm only during the
shock capturing algorithm.

5. Numerical results

We now assess the proposed approach on different hyperbolic problems. Three different aspects are essentially
investigated. First of all, we focus only on the shock detection phase during the offline stage. Then, we validate
the whole procedure detailed in Algorithm 3. Finally, we assess the input-output relationship discussed in
Section 4.5.

5.1. Shock detection and smooth just decomposition

First of all, we check the robustness of the whole shock detection procedure used during the offline stage,
i.e., of both the Algorithms 1 (offline part) and 2.

Consider the following example where the hyperbolic equation

∂

∂t
u(µ) + µ ∂

∂x
(u(µ)(1 − u(µ))) = 0 (38a)
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Algorithm 3 Offline-online decomposition

Offline stage

1: Compute uδ(µj), j = 1,⋯,N , through a truth method of the form (29) and build Λδ(µj) through Algorithm
1 (shock capturing).

2: Build uδ i(µj), i = 1,2,3 through Algorithm 2 (smooth jump decomposition).

3: Compute {qi,j}j=1,⋯,N , {(ti,j , xi,j)}j=1,⋯,N and {Bij,j′}j,j′=1,⋯,N through the EIM.

4: Using the precomputed values {Λδ(µj , t⋆(µj)), compute the coefficients of a (polynomial) approximation
of {Λδ(µ, t⋆(µ)) for µ ∈ D.

5: As in Point 4, compute the coefficients of a (polynomial) approximation of u(µ)○Ti(µ)(ti,j , xi,j), i = 1,2,3.

Online stage

1: Compute xs(µ, tk), k = k⋆(µ),⋯,K through Algorithm 1 (shock capturing).

2: Refer the points {(ti,j , xi,j)}j=1,⋯,N , i = 1,2,3, to the actual configuration via (28).

3: For i = 1,2,3, j = 1,⋯,N , apply the Newton method to solve (26) for (t, x) = (t̃i,j(µ), x̃i,j(µ)) using the
approximation of u(µ) ○Ti(µ)(ti,j , xi,j) as initial guess.

4: Compute the interpolation coefficients.

is discretized in Ω6,(−3,3) = (0,6) × (−3,3), completed with the following initial and boundary conditions

u(µ,0, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3

x < 0

1
3
+ 5

12
x 0 ≤ x < 1

3
4

x ≥ 1,

u(µ, t,−3) = 1

3
, u(µ, t,3) = 3

4
. (38b)

for x ∈ (−3,3) and t ∈ (0,6), respectively. The corresponding exact solution is given by

u(µ, t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

x < min{ 1
3
µt, 1

2
− 1

12
µt}

4 + 5x − 5µt

2(6 − 5µt)
1
3
µt ≤ x ≤ 1 − 1

2
µt, t < 6

5µ

3
4

x > max{1 − 1
2
µt, 1

2
− 1

12
µt}.

(39)

Thus, via (23), the smooth components ui(µ) of u(µ) are given by:

u1(µ, s, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
T 1
x (s, y) ≤

1

15
s

4 + 5T 1
x (s, y) − s

2(6 − s)
1

15
s ≤ T 1

x (s, y) ≤ 1 − 1

10
s

3

4
T 1
x (s, y) ≥ 1 − 1

10
s

,

u2(µ, s, y) =
1

3
, u3(µ, s, y) =

3

4
,

(40)
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where

T 1
x (s, y) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−3 +
7 − 1

30
s

6
(y + 3) y ≤ 0

1

2
− 1

60
s +

5 + 1
30
s

6
y y ≥ 0.

Concerning the discretization scheme, we resort to the Godunov numerical flux, while we choose a uniform
space-time mesh with size δ = (2 ⋅ 10−3,10−2). The parameters to be set in Algorithm 2 are chosen as

H = 0.3
∆u(µ)
h

, ∆ = 10, Ntest = 20, ctest = 0.9, (41)

where ∆u(µ) = max(t,x) u(µ, t, x) −min(t,x) u(µ, t, x), for (t, x) ∈ Ω6,(−3,3).
Table 1 gathers some quantitative information for three different choices of µ. In particular, we compare the

approximate values for t⋆(µ), xs(µ, t⋆(µ)), uleft(µ, t⋆(µ)) and uright(µ, t⋆(µ)) (in the second column) with the
corresponding exact values (in the third column). It is evident that the proposed approach is able to correctly
detect the time and the starting point of the shock as well as the values of solution at the left and the right of
the shock.

Table 1. Main quantities involved in the shock capture: comparison between approximated
and exact values for different choices of the velocity.

(t⋆δ(µ), xs,δ(µ, t⋆δ(µ)), u
guess
left,δ(µ), u

guess
right,δ(µ)) Λ(µ, t⋆(µ))

µ = 0.6 (2.0260,0.4,0.3381,0.7419) (2,
2

5
,
1

3
,
3

4
)

µ = 1 (1.2200,0.4,0.3383,0.7413) (6

5
,
2

5
,
1

3
,
3

4
)

µ = 1.6 (0.7620,0.4,0.3381,0.7419) (3

4
,
2

5
,
1

3
,
3

4
)

Table 2. Errors in the reconstruction of the smooth components uδ 1(µ) and of the shock
starting time for three different uniform space-time meshes (µ = 1.6).

∥u1(µ) − uδ 1(µ)∥L2(Ω6,(−3,3)) ∣t⋆δ(µ) − t⋆(µ)∣
δ = (2 ⋅ 10−3,10−2) 2.1 ⋅ 10−2 1.2 ⋅ 10−2

δ = (10−3,5 ⋅ 10−3) 1.2 ⋅ 10−2 4.0 ⋅ 10−3

δ = (5 ⋅ 10−4,2.5 ⋅ 10−3) 7.5 ⋅ 10−3 5.0 ⋅ 10−4

δ = (2.5 ⋅ 10−4,1.25 ⋅ 10−3) 4.5 ⋅ 10−3 5.0 ⋅ 10−4

Let us focus now on the decomposition of the numerical solution uδ(µ) into the corresponding smooth
components uδ i(µ), with i = 1,2,3, provided by Algorithm 2. In this case, we fix the parameter µ to 1.6
and we vary the space-time discretization, by making four different choices for the space-time mesh size, i.e.,
δ = (2 ⋅ 10−3,10−2), δ = (2 ⋅ 10−3,10−2), δ = (5 ⋅ 10−4,2.5 ⋅ 10−3) and δ = (2.5 ⋅ 10−4,1.25 ⋅ 10−3). For each of these
choices, we compute the space-time L2-norm error associated with the approximation uδ 1(µ) as well as the error
due to the approximation of the time t⋆(µ) via the discrete prediction t⋆δ(µ). The corresponding values are
collected in Table 2. As expected, it turns out that the quality of the approximations provided by the proposed
reconstruction algorithm depends on the selected space-time mesh. In particular, since the Godunov scheme is



RB techniques for nonlinear conservation laws 19

first order accurate, we deduce that the slight deterioration in the rate of convergence can be ascribed to the
same reconstruction process.

Before concluding, we observe that, while the solution u(µ) depends on the parameter µ, ui(µ) is µ-
independent, for i = 1,2,3. As a consequence, if we assume that the distance between the truth and the real
solution is negligible, then the whole error associated with the offline/online strategy proposed in Algorithm 3
coincides exactly with the error related to the shock detection procedure.

5.2. Validation of the whole algorithm

In this section we deal with the whole procedure, i.e., with Algorithm 3, with particular attention to the
convergence of the procedure.

5.2.1. Convergence analysis with respect to the number of basis functions

Let us investigate the sensitivity of the convergence with respect to the selected basis of functions. To this
aim, we consider the following problem;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(µ) + 1 + µ

6

∂

∂x
(u(µ)2) = 0 (t, x) ∈ Ω1,(−5,5),

u(µ,0, x) = sin(x) + µ

10
(x2 − 25) x ∈ (−5,5),

u(µ,−5, t) = − sin(5) u(µ,5, t) = sin(5) t ∈ (0,1),

(42)

with µ ∈ D = [−0.5,0.5], Ω1,(−5,5) = (0,1) × (−5,5) As truth approximation, we choose the one obtained via the
Lax-Friedrichs method ( [19]) on a uniform space-time mesh.

In order to assess the convergence of the reduction procedure, we compare the reduced solution yielded by
Algorithm 3 with the corresponding truth solution. When Galerkin projection is applied, we observe that the
convergence is independent of the selected space-time mesh. On the contrary, in the proposed approach the
space-time mesh influences the convergence of the RB solution with respect to the truth one. This is likely due
to the fact that we use two different strategies in the offline and online stage instead of simply reducing the
number of test functions as in Galerkin projection-based methods. As a consequence, the convergence of the
reduced solution to the truth one is guaranteed by the convergence of the reduced solution to the exact solution.
Therefore, since the difference between the exact and the truth solution depends on the space-time mesh, we
have that the convergence of the reduced solution to the truth one is limited by the accuracy characterizing the
truth solution as approximation of the exact one.

This is shown in Table 3 which collects, for different values of the parameter µ and for three different choices of
the space-time mesh, the value of the space-time L2-norm of the difference between the discrete reduced solution
uRBδ (µ) and the corresponding truth approximation uδ(µ) yielded by the discrete Lax-Friedrichs scheme. We
remark that this difference decreases with a rate about equal to O(δ) for large N enough. Since Lax Friedrichs
method is first-order accurate, the result is in good agreement with the previous observation. The results
gathered in Table 3 show that the convergence of the reduced solution to the real one is extremely fast.

5.2.2. Convergence analysis in the presence of a shock

Let us assume now to deal with a more complex test case. We consider the problem

∂

∂t
u(µ) + µ ∂

∂x
(u(µ)(1 − u(µ))) = 0 (t, x) ∈ Ω2,(−5,5) = (0,2) × (−5,5), (43a)
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Table 3. Values of ∥uRBδ (µ) − uδ(µ)∥L2(Ω1,(−5,5)) for different values of N and µ, and for

three different space-time meshes: δ = (2 ⋅ 10−3,10−2) (top), δ = (10−3,5 ⋅ 10−3) (middle), δ =
(5 ⋅ 10−4,2.5 ⋅ 10−3) (bottom).

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.4 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 1.1 ⋅ 10−2 4.9 ⋅ 10−3 4.2 ⋅ 10−2

N = 8 5.0 ⋅ 10−3 6.9 ⋅ 10−3 9.4 ⋅ 10−3 1.2 ⋅ 10−2

N = 16 5.3 ⋅ 10−3 6.6 ⋅ 10−3 8.7 ⋅ 10−3 1.3 ⋅ 10−2

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.4 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 7.1 ⋅ 10−4 1.4 ⋅ 10−3 3.6 ⋅ 10−2

N = 8 2.0 ⋅ 10−3 2.5 ⋅ 10−3 4.2 ⋅ 10−3 4.2 ⋅ 10−3

N = 16 3.6 ⋅ 10−3 3.3 ⋅ 10−3 4.8 ⋅ 10−3 5.8 ⋅ 10−3

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35
∥uδ(µ)∥L2(Ω1,(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 1.1 ⋅ 10−1 2.2 ⋅ 10−1 2.5 ⋅ 10−1 1.5 ⋅ 10−1

N = 4 1.0 ⋅ 10−2 1.0 ⋅ 10−2 9.0 ⋅ 10−3 3.4 ⋅ 10−2

N = 8 2.6 ⋅ 10−3 8.3 ⋅ 10−4 4.2 ⋅ 10−4 1.7 ⋅ 10−3

N = 16 1.7 ⋅ 10−3 1.8 ⋅ 10−3 1.9 ⋅ 10−3 2.1 ⋅ 10−3

where µ ∈ D = [0.3,1.7], completed with the following initial and boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(µ,0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

10
+ 1

10
sin(x) −5 < x < 0.5

1

2
+ 1

10
sin(x) 0.5 < x < 5.

u(µ, t,−5) = 1

10
− 1

10
sin(5) u(µ, t,5) = 1

2
+ 1

10
sin(5) t ∈ (0,2),

(43b)

respectively. As truth approximation we refer to the discretization provided by the Lax-Friedrichs scheme,
applied on an uniform space-time mesh. For all µ ∈ D, the solution to problem (43) exhibits only one shock
propagating from (0,0.5). Since t⋆(µ) ≡ 0 for all µ ∈ D, we refer to Ω1(µ) and Ω2(µ) as to the two subdomains
induced by the shock and, consequently, we refer to u1(µ) and u2(µ) as to the corresponding smooth components
of the solution. Let us compare the reduced discrete solution with the truth one uδ(µ). To better understand
the corresponding values gathered in Table 4, we observe that the norm ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−5,5)) actually
takes into account two different contributions:

(1) the one associated with the smooth jump decomposition (i.e., the distance related to the reconstruction
of the shock and to the mapping). Since the RB approximation is discontinuous by construction whereas
the truth solution is continuous, we expect that this component depends on the adopted mesh and on
the shock equation;

(2) the one related to the approximation of the smooth problems (25) (i.e., linked to the interpolation
procedure). This component is still linked to the selected mesh (for the reasons explained in the
previous paragraph) but it also depends on the RB approximation of the smooth components of the
solution.
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To highlight the two different components, we consider both the percentage error associated with the global
solution and the one associated with the smooth components. More precisely, we consider the norms ∥uRBδ (µ)−
uδ(µ)∥L2(Ω2,(−5,5))/∥uδ(µ)∥L2(Ω2,(−5,5)) and ∥uRBδ,i (µ) − uδ,i(µ)∥L2(Ω2,(−5,5))/∥uδ,i(µ)∥L2(Ω2,(−5,5)), i = 1,2, for three
different values of the parameter, three different bases and two different space-time meshes.

Table 4. Values of the relative discrepancy between the global RB solution and the truth so-
lution and between the corresponding smooth components for two different space-time meshes:
δ = (2 ⋅ 10−3,10−2) (left), δ = (10−3,5 ⋅ 10−3) (right).

µ = 0.5 µ = 1 µ = 1.5

N = 2 global 3.14% 3.81% 3.46%
smooth 1 4.16% 6.91% 2.84%
smooth 2 0.67% 0.73% 0.34%

N = 4 global 3.05% 3.16% 3.24%
smooth 1 2.28% 1.71% 1.48%
smooth 2 0.99% 0.93% 0.72%

N = 8 global 3.01% 3.13% 3.24%
smooth 1 2.81% 2.22% 1.56%
smooth 2 0.89% 0.85% 0.70%

µ = 0.5 µ = 1 µ = 1.5

N = 2 global 2.29% 3.09% 2.5%
smooth 1 4.06% 6.98% 2.72%
smooth 2 0.40% 0.84% 0.41%

N = 4 global 2.06% 2.16% 2.23%
smooth 1 1.16% 0.87% 0.71%
smooth 2 0.47% 0.45% 0.33%

N = 8 global 2.06% 2.15% 2.24%
smooth 1 1.13% 0.85% 0.70%
smooth 2 0.48% 0.44% 0.38%

We observe that as in the previous test case, the discrepancy between the truth solution and the correspond-
ing RB approximation, when considering the smooth components of the solution and for N large enough, is
approximately proportional to the mesh size. This is not true for the whole solution. This is in good agreement
with the considerations at the end of Section 5.1: the contribution related to the smooth jump decomposition
decreases slower than the mesh size does.

Finally, Figure 3 shows the values of ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−5,5))/∥uδ(µ)∥L2(Ω2,(−5,5)) for N = 2 and N = 4
for two different meshes. We observe that for N = 4 the numerical error is almost uniform for all parameters,
while for N = 2 it is clearly higher in the region about µ = 1: this can be explained by recalling that the RB
basis has been built using the solutions for µ = 0.3 and µ = 1.7.
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(a) N = 2
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Figure 3. ∥uRBδ (µ)−uδ(µ)∥L2(Ω2,(−5,5))/∥uδ(µ)∥L2(Ω2,(−5,5)) for different values of the parameter

µ ∈ D and for two different meshes: δ = (2 ⋅ 10−3,10−2) (red), δ = (10−3,5 ⋅ 10−3) (blue).
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5.2.3. Shock that starts at t⋆(µ) > 0

Let us consider the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(µ) + µ ∂

∂x
(u(µ) log

1

u(µ)) = 0, (t, x) ∈ Ω2,(−2,4),

u(µ,0, x) = g1(x) + µg2(x) x ∈ (−2,4)

u(µ, t,−5) = 1

3
, u(µ, t,5) = 3

4
, t ∈ (0,2)

(44)

where Ω2,(−2,4) = (0,2) × (−2,4), µ ∈ D = [1.7,2.7] and with

g1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
x ≤ 0

1

3
+ 5

48
x2 0 < x < 2,

3

4
x ≥ 2,

g2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ −1

1

100
sin(πx) −1 < x < 3,

0 x ≥ 3.

The truth approximation is based on the Godunov method on a uniform space-time mesh. For each value of the
parameter, the solution to problem (44) exhibits only a single shock that propagates from (t⋆(µ), xs(µ, t⋆(µ))),
where t⋆(µ) > 0.

As explained in Section 4.1, to properly initialize the shock capturing procedure it is necessary to estimate
Λ(µ, t⋆(µ)). In this simulation we consider a third order polynomial approximation for t⋆(µ), xs(µ, t⋆(µ)),
uguessleft (µ, t⋆(µ)) and uguessright (µ, t⋆(µ)).

We evaluate the norm ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−2,4)) for different values of the parameter and by employing

not necessarily the same number of reduced bases to approximate the three components ui(µ) of the solution.
In particular, with the notation N = (N1,N2,N3) we mean that we employ N1, N2 and N3 basis functions to
approximate u1(µ), u2(µ) and u3(µ), respectively. N1 is also the number of points used to build the polynomial
approximations.

Table 5 shows the results for three different meshes. As in the previous cases, the proposed approach is able
to provide rapidly convergent approximations, whereas the value of the norm ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−2,4)) is
dominated by the contribution of the smooth jump decomposition.

Table 5. Values of maxµ∈Ξtrain⊂D ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−2,4))/∥uδ(µ)∥L2(Ω2,(−2,4)) for three

different meshes (∣Ξtrain∣ = 30).

δ = (4 ⋅ 10−3,2 ⋅ 10−2) δ = (2 ⋅ 10−3,10−2) δ = (10−3,5 ⋅ 10−3)
N = (4,2,2) 2.50% 1.49% 1.24%
N = (6,2,2) 2.12% 1.48% 1.23%
N = (4,4,4) 2.22% 1.50% 1.15%

Finally, Figure 4 compares the plots of the reduced and of the truth solutions for different values of the
parameter µ.

We observe that, despite the high gradient for t ≃ t⋆δ(µ), the reduced solution does not exhibits any spurious
oscillations. This is likely related to the choice made for the map T1(µ) in (20) and to the approach followed
to select the interpolation points.
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Figure 4. Reduced (dashed line) and truth (continuous line) solutions at different time steps
and for different values of the parameter. N = (4,4,4), . Solutions for µ = 1.8 (top) and µ = 2.6
(bottom) at time t = t⋆δ(µ) −∆t (left) and t = T (right.)

5.3. Input-output relationships

We finally assess the input-output relation dealt with in Section 4.5. In particular, we choose:

s(µ) = ∫
Ω1,(−5,5)

1

1 + x2
u(µ)dxdt, µ ∈ D = [0.3,1.7], (45a)

where Ω1,(−5,5) = (0,1) × (−5,5) and u(µ) is the solution to the following conservation law4

∂

∂t
u(µ) + µ ∂

∂x
(u(µ) log

1

u(µ)) = 0, (t, x) ∈ Ω1,(−5,5), (45b)

4This law is usually employed in hyperbolic traffic models. It was proposed by Greenbery and supported by experimental data
from the Lincoln tunnel in New York (see [12] for further details).
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completed with the following initial and boundary conditions:

u(µ,0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

5
+ 1

10
sin(x) −5 < x < 0.5

1

2
+ 1

10
sin(x) 0.5 < x < 5,

u(µ, t,−5) = 1

5
− 1

10
sin(5), u(µ, t,5) = 1

2
+ 1

10
sin(5). (45c)

To discretize this problem we resort to the Godunov method applied on a uniform space-time mesh.
In Table 6, we provide the values for maxµ∈Ξtrain⊂D ∥uRBδ (µ) − uδ(µ)∥L2(Ω2,(−2,4))/∥uδ(µ)∥L2(Ω2,(−2,4)) for two

choices of the space-time mesh and for two different reduced bases, being Ξtrain a discretization of the parameter
domain such that ∣Ξtrain∣ = 30. In Table 7, the resulting outputs and the computational time demanded to obtain
these are listed. In particular, with Nw we denote the number of terms in the affine expansion (36).

Table 6. Values of maxµ∈Ξtrain⊂D ∥uRBδ (µ)−uδ(µ)∥L2(Ω2,(−2,4))/∥uδ(µ)∥L2(Ω2,(−2,4)) for two dif-

ferent meshes (∣Ξtrain∣ = 30).

δ = (2 ⋅ 10−3,10−2) δ = (10−3,5 ⋅ 10−3)
N = 2 5.60% 5.16%
N = 4 6.00% 5.27%

Table 7. Values of maxµ∈Ξtrain⊂D ∣sRB(µ)−sδ(µ)∣/∣sδ(µ)∣ for two different meshes and average
speed-up in the output evaluation (∣Ξtrain∣ = 30).

δ = (2 ⋅ 10−3,10−2) δ = (10−3,5 ⋅ 10−3)
Nw = 2, NRB = 2 Output error 1.77% 1.69%

Speed-up 170.52 206.31
Nw = 4, NRB = 2 Output error 1.44% 1.37%

Speed-up 127.63 145.29
Nw = 4, NRB = 4 Output error 0.32% 0.21%

Speed-up 102.17 111.82

The speed-ups associated with the proposed approach are interesting. Since the truth method is an explicit
scheme, the corresponding computational effort is proportional to O(C1NK), where C1 is the cost due to the
evaluation of the Godunov flux, N is the spatial mesh dimension and K is the temporal mesh dimension. On
the other hand, the computation of the reduced model is dominated by the cost associated with the shock
capturing algorithm, that is O(C2K), where C2 is the cost demanded by the Newton algorithm to approximate
the nonlinear equations (26).

6. Conclusions

In this paper we have presented a new reduced order strategy to deal with parametrized nonlinear conservation
laws in the presence of shocks. For this purpose, we have essentially exploited some of the well-known analytical
properties of this kind of equations, in particular the Rankine-Hugoniot condition as well as the characteristic
equation.

The application of a preliminary domain partitioning and then the employment of the standard RB method
on each component of the solution has already been exploited in the RB literature (see, e.g., [17, 18, 21, 22]).
On the contrary, at the best of our knowledge, the proposed interpolation strategy is new. Both the domain
partitioning and the interpolation step are subject to the three hypotheses (H1)-(H3) in Section 4. The approach
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presented here can be extended in a straightforward way to different parametric conservation laws with more
than one shock.

The numerical validation in Section 5 shows that the proposed method is able to reconstruct the solution in
an efficient and reasonably reliable way. In more detail, the example in Section 5.1 proves that, despite a slight
deterioration in the rate of convergence, the shock detection procedure is able to sharply reconstruct the shock
equation and to compute the smooth components ui(µ) of the solution, i = 1,2,3, while the three examples in
Section 5.2 show the reliability of the whole algorithm. Finally, the input-output problem discussed in Section
5.3 verifies the efficiency of the method. We highlight that the results concerning the speed-up in Table 7 are
particularly meaningful since the truth numerical scheme used as benchmark is explicit.

Concerning possible future developments, we are interested in applying this approach to more general prob-
lems, in particular to quasi-linear first-order equations.

The authors are indebted with Professor Sandro Salsa for his contribution and comments on an earlier version of this
work. The second author kindly acknowledges the financial support of Project PRIN 2010-2011 Innovative Methods for
Water Resources under Hydro-Climatic Uncertainty Scenarios.

Appendix A. An a posteriori error indicator for the greedy sampling

In an RB framework the importance of an a posteriori error estimator is twofold. First, it is employed to
reduce the online computational effort without losing the reliability of the RB approximation. Then, also the
greedy sampling strategy can benefit of an inexpensive error indicator to consider larger training sets Ξ ⊂ D
and to provide a better space exploration at a greatly reduced offline computational cost.

With a view to both these tasks, it is crucial that the error estimator turns out to be efficiently computable
in the offline as well as in the online framework. In more detail, whereas for the online phase it is essential to
have an error estimator providing a rigorous bound for the error, we are allowed to employ even non-strictly
rigorous error indicators during the greedy sampling.

A posteriori error estimators for hyperbolic problems are available in the context of mesh adaptation. We
recall the work by L. Gosse and C. Makridakis, (see [14]) that, starting from Kruzkov-type estimates ( [5]),
provides a result for one-dimensional scalar conservation laws discretized via E-schemes ( [20]).

On the other hand, in the RB framework a residual a posteriori error estimator based on a lower and upper
Lipschitz continuity condition has been derived in [9].

In the sequel we propose and empirically motivate a residual based error indicator, ideally suited for the
greedy sampling. We first assume that the solution does not exhibit any shock. Then, we discuss how to extend
the estimator to the case of discontinuous solutions by properly exploiting the decoupling strategy proposed in
Section 3. Unlike the a posteriori error estimator in [9], our indicator does not rely on the underlined truth
discretization and it is designed to be extended to the domain partition strategy discussed in this paper.

Throughout this appendix we omit the dependence on the parameter µ to simplify the notation. Furthermore,
we settle our analysis in ΩT,∞ = (0, T ) ×R .

A.1. Error indicator for strong solutions

We consider the two following problems:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u + ∂

∂x
(af(u)) + a0u = 0 (t, x) ∈ ΩT,∞

u(0) = u0 x ∈ R,
(46a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
uRB + ∂

∂x
(af(uRB)) + a0u

RB = −rRB (t, x) ∈ ΩT,∞

uRB(0) = u0 + r̄RB x ∈ R,
(46b)
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with a ∈ W 1,∞(ΩT,∞), a0 ∈ L∞(ΩT,∞) and u0 ∈ L2(R), where r̄RB ∈ L2(R) and rRB ∈ L2(ΩT,∞). We assume
that u is the strong solution to problem (46a), while uRB is the strong solution to problem (46b). We can now
introduce the error indicator

∆RB(t) ∶= (∫
t

0
∥rRB(τ)∥2

L2(R) dτ + ∥r̄RB∥2
L2(R))

1
2

, (47)

First, we observe that the indicator is based on the strong residual, which can be computed through an offline-
online strategy: in particular, non-polynomial nonlinearities in the flux can be treated in a standard way via
the EIM. Furthermore, it is possible to prove the following result, which motivates the choice made for the error
indicator.

Proposition A.1. Let us assume that

rRB ∈ L2(ΩT,∞), r̄RB ∈ L2(R), f ∈ C2(R), u, uRB ∈W 1,1(ΩT,∞). (48)

Then, the following estimate holds:

∥u(t) − uRB(t)∥2
L2(R) ≤ eλ(t) (∆RB(t))2

, (49a)

where λ(t) ∶= ∫
t

0 (1 + 2C(τ))dτ , with

C(t) ∶= max{0,− inf
x∈R

(a0(t, x) +
1

2

∂

∂x
(af ′(ξ(t,x))))} (49b)

and ξ(t,x) such that f ′(ξ(t,x)) =
f(u(t, x)) − f(uRB(t, x))

u(t, x) − uRB(t, x) .

The proof of this statement consists in a straightforward application of the following result from [30].

Lemma A.2. Let us consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t
u + ∂

∂x
(au) + a0u = g (t, x) ∈ ΩT,∞

u(0) = u0 x ∈ R,
(50)

where u0 ∈ L2(R), g ∈ L2(ΩT,∞), a ∈W 1,∞(ΩT,∞) and a0 ∈ L∞(ΩT,∞). Then, the following estimate holds:

∥u(t)∥2
L2(R) ≤ eλ(t) (∫

t

0
∥g(τ)∥2

L2(R) dτ + ∥u0∥2
L2(R)) , (51a)

where λ(t) = ∫
t

0 (1 + 2C(τ)) dτ and

C(t) ∶= max{0,− inf
x∈R

(a0(t, x) +
1

2

∂

∂x
a(t, x))} . (51b)

The sharpness of estimate (51) and consequently of (49) depends on the time dependent function C(t),
which is related to the regularity of the solution. In addition, we observe that the exponential growth in time
characterizing both estimates (51) and (47), which might turn to be very pessimistic in many practical cases.
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We now try to numerically validate the proposed error indicator. For this purpose, we consider the same
problem presented in Section 5.2.1. We identify uRBδ (µ) with the reduced solution obtained by considering two
equispaced snapshots. Then, we define

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µtruthmax ∶= arg max
µ∈D

∥uδ(µ) − uRBδ (µ)∥L2(ΩT,∞),

µresmax ∶= arg max
µ∈D

∆RB(µ,T ). (52)

In particular, µtruthmax maximizes the distance between the reduced solution and the truth solution (computed
with the Lax-Friedrichs scheme), whilst µresmax maximizes the error indicator ∆RB(µ,T ) proposed in (48). Figure
5 compares the error indicator with the distance ∥uδ(µ) − uRBδ (µ)∥L2(ΩT,∞) with respect to the parameter
µ ∈ D = [−0.5,0.5]. The indicator is able to mimic the behaviour of the distance despite a certain discrepancy,
more evident for µ ≃ µtruthmax . More quantitatively, we have that ∣µtruthmax − µresmax∣ < 0.01.
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Figure 5. Comparison between the residual error indicator in (47) (dashed line) and the
distance ∥uδ(µ) − uRBδ (µ)∥L2(ΩT,∞) (continuous line).

A.2. Generalization to discontinuous solutions

Let us remove now the simplifying assumption concerning the absence of shocks. We consider the model
problem (17) on the space-time domain ΩT,(a,b) ∶= (0, T ) × (a, b). If we assume that the error associated with
the shock capturing algorithm is negligible with respect to the one introduced by the approximation of the
smooth problems (25), we can estimate the whole error simply by taking into account the errors due to the
approximation of each smooth problem (25).

Thus, we can write the a posteriori error indicator ∆RB for the global solution as

∆RB =
3

∑
i=1

∆RB,i ∼ ∥uRB − u∥L2(ΩT,(a,b)), (53)

where ∆RB,i denote the a posteriori error indicator associated with the i-th smooth component uRB,i of the
reduced solution, for i = 1,2,3.

It is easy to show that the smooth problem (25) is equivalent to problem (46a) for a suitable choice of a and
a0, and for i = 2,3. On the contrary, for i = 1 problem (25) is not equivalent to (46a), because J1 ∈ L∞(ΩT,(a,b))∖
W 1,∞(ΩT,(a,b)). A possible solution consists in considering a different map T1(µ). More precisely, we might
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require that T1(µ) ∶ ΩT,(a,b) → Ω1(µ), T1(µ) ∈W 2,∞(ΩT,(a,b);R2) and that T1(µ, a+b2
) = (t⋆(µ), xs(µ, t⋆(µ)))

for all µ ∈ D. This approach however is not further investigated in this paper and makes the subject of a
forthcoming report.
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