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Abstract In this paper, we present an exact Riemann solver for one-dimensional
systems of conservation laws. The method is based on an offline-online computa-
tional decomposition. During the offline stage, we generate an accurate surrogate
model for the solution to the Riemann problem for arbitrary left and right states.
Then, during the online stage, we employ the surrogate model to generate accu-
rate initial conditions for an iterative Newton solver. We present a mathematical
analysis of the Riemann problem to justify the proposed approach. Finally, we
illustrate its effectiveness by means of two numerical examples.
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1 Introduction and motivations

A wide class of finite volume methods for one-dimensional systems of conservation
laws ([6,17,4]) requires the approximation of the solution to Riemann problems
at cell interfaces between the neighboring cell averages. For Computational Fluid
Dynamics (CFD) applications, the Riemann problem is solved an extremely large
number of times, representing therefore the single most burdensome task in the
numerical method ([16]).

Given the flux F : Rm 7→ Rm and the initial left and right states ul,ur ∈ Rm,
the Riemann problem is defined as

ut + F(u)x = 0 (x, t) ∈ R× (0,∞), (1a)

with initial condition

u(x, 0) = ul, for x < 0, u(x, 0) = ur, for x ≥ 0. (1b)

In this work, we consider F ∈ C2(Rm;Rm) for some integer m ≥ 2. We also assume
that the flux F is strictly hyperbolic, i.e. the Jacobian matrix DF is diagonizable
with distinct real eigenvalues. Under suitable hypotheses, we show that the solution

to (1) is uniquely determined by the solution û = û(ul,ur) ∈ Rm
2

to the nonlinear
system of algebraic equations

L(û; ul,ur) = 0, L : Rm
2

×Rm ×Rm 7→ Rm
2

. (2)

For several differential problems, including the two systems considered in this
paper, a priori considerations lead to a reduction of the dimensionality of the
nonlinear algebraic system L. More precisely, there exists a smooth bijective map
between the solution û to (2) and the solution ûred to the reduced system of
nonlinear equations

Lred(ûred; ul,ur) = 0, Lred : Rp ×Rm ×Rm 7→ Rp, (3)

where p < m2.
During the last fifty or sixty years, much effort has been devoted to develop

efficient Riemann solvers either exact or approximate. Exact Riemann solvers are
based on the solution of the system of algebraic nonlinear equations (3) via an iter-
ative procedure. For the Euler equations, several different exact Riemann solvers
have been proposed in the literature; we refer to [16, Chapter 4] and to [7] for
a thorough discussion and numerical comparisons. Approximate Riemann solvers
estimate the solution to the Riemann problem preserving some key properties of
the physical solution. After the seminal work of Roe [14] for the Euler’s equation,
several approximate Riemann solvers have been proposed for a wide class of sys-
tems of conservation laws; we refer to [16] and to the references therein for further
details. Exact Riemann solvers heavily rely on the accuracy of the initial guess of
the solution to the system of nonlinear equations. On the other hand, approximate
Riemann solvers are less accurate and possibly hard to derive.

In this work, we propose a general exact Riemann solver for one-dimensional
systems of conservation laws. The strategy is based on the decomposition of the
computational work into two different phases. In the first phase, called offline stage,
we build an approximate surrogate model for the solution ûred to (3) for each choice
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of (ul,ur) in D, ûsurrogate : D 7→ Rm
2

. Here, D ⊂ R2m is a suitable compact set.
The surrogate model ûsurrogate is built by solving a regression problem based on
the solution to several Riemann problems with left and right states (ul,ur) ∈ D. In
the second phase, called online stage, we solve multiple Riemann problems by using
the surrogate model ûsurrogate to compute the initial guess for the iterative solver.
The online stage corresponds to the application of a finite volume scheme to the
one-dimensional system of conservation laws (1a) with general initial condition.

We provide a rigorous mathematical justification of the proposed approach.
We rigorously prove that, for the class of problems considered in this work, the
solution û to (2) depends smoothly on (ul,ur). Since, by assumption, there exists
a smooth bijective map between û in (2) and ûred in (3), this implies that ûred

can be approximated through a smooth expansion in (ul,ur).

We illustrate our method through two practical examples: the p-system and
the Euler equations for ideal gases. For these two problems, we compare the initial
guesses obtained using our offline/online method with the a priori initial guesses
employed in state-of-the-art exact Riemann solvers, and we quantitatively discuss
the influence of the initial guess on the performance of the Newton solver.

Offline/online computational procedures have been proposed and extensively
analyzed in the context of Model Order Reduction for parametric partial differen-
tial equations (PDEs) ([13,9,2]). In particular, our idea of developing an offline-
online computational strategy to provide an accurate initial guess for nonlinear
Newton-like solvers has already been exploited in [3]. However, to our knowledge,
this paper represents the first attempt to exploit this technique in the development
of Riemann solvers for systems of conservation laws. Furthermore, unlike in [3],
we do not directly apply the offline/online strategy to the solution to the PDE.

This paper is organized as follows. In section 2, we introduce our method
and we present the computational procedure. Then, in section 3, we provide the
theoretical justification of the proposed technique. In particular, we present an
explicit expression for the system L in (2) and we show that u is differentiable in
(ul,ur). Finally, in sections 4 and 5, we apply our method to the p-system and
the Euler equations for ideal gases.

2 Methodology

In this section, we present the offline-online Riemann solver. First, in section 2.1,
we briefly review the key ideas of exact Riemann solvers for one-dimensional sys-
tems of conservation laws. Then, in section 2.2, we detail the computational pro-
cedure. In order to simplify the notation, in what follows, we refer to the 2m-
dimensional vector consisting of the left and right states of the Riemann problem
(ul,ur) as to µ.

2.1 Exact Riemann solvers for one-dimensional systems of conservation laws

As shown in section 3 and recalled in the introduction, exact Riemann solvers ex-
ploit the fact that the solution to the Riemann problem (1) is uniquely determined
by the solution û to the nonlinear system of algebraic equations (2). For several
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differential problems, we can simplify the nonlinear system (2) to obtain the re-
duced system (3). The latter system is then solved using an iterative nonlinear
solver of the form

[ûred(µ)] = nonlinear-solver
(
Lred, ∂ûred L

red, ûguess,µ
)
, (4)

where µ = (ul,ur), ∂ûred L
red denotes the partial derivatives of Lred with re-

spect to the first argument, and ûguess sets the initial condition of the iterative
procedure.

Some comments are in order. First, the explicit general formula of system L
for one-dimensional systems of conservation laws is given in section 3.1. On the
other hand, in sections 4 and 5, we derive Lred for the two problems considered
in this work. Second, the performance of the iterative solver (4) strongly depends
on the accuracy of the initial guess ûguess. It is well known, indeed, ([12]) that,
without a sufficiently accurate initial estimate, it is necessary to combine a high
order and locally convergent method (e.g., Newton method) with a more robust
root finding method (e.g., bisection or secant methods). The need for the latter
classes of schemes significantly deteriorates the performance of the exact Riemann
solver.

2.2 An offline-online strategy for the resolution of the Riemann problem

2.2.1 Offline-online strategy

We first motivate the strategy proposed in this paper. As shown in section 3.2,
the solution û = û(µ) to (1) is differentiable in both arguments. As explained in
the introduction, this implies that ûred can be approximated through a smooth
surrogate expansion ûsurrogate in µ.

Motivated by the above considerations, we can now propose our offline-online
computational strategy. In the offline stage, we first solve the Riemann problem
(1) for a certain number of states ΞN := {µi = (uil ,u

i
r)}Ni=1 ⊂ D ⊂ R2m, where

D is a compact parameter set. Then, we use the dataset {(µi, ûred(µi)}Ni=1 to
generate the surrogate model ûsurrogate : D 7→ Rp. The latter is a regression
problem where µ represents the vector of independent (or explanatory) variables
and ûred is the vector of dependent (or response) variables. In section 2.2.2, we
present the regression procedure employed in this work to solve this problem. In the
online stage, which corresponds to the application of a finite volume scheme to the
one-dimensional system of conservation laws (1a) with general initial conditions,
we can then use the surrogate model to generate accurate initial guesses for the
iterative solver (4).

2.2.2 Construction of the surrogate model

In view of the presentation of the regression procedure, we first introduce some
notation. First, we introduce the dataset PN = {(µi, ûi = û(µi))}Ni=1. Further-
more, we define the training set PtrainNtrain = {(µtraini , ûtraini }Ntraini=1 , the validation

set PvalNval
= {(µvali , ûvali }

Nval
i=1 , and the test set PtestNtest = {(µtesti , ûtesti }Ntesti=1 such

that PtrainNtrain ,P
val
Nval

,PtestNtest are a partition of PN .
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In this work, we employ Kernel Ridge regression based on Gaussian kernels
(see. e.g., [11, Chapter 14.4.3]). The procedure seeks for a surrogate model of the
form

ûsurrogate(µ) =

Ntrain∑
i=1

(
p∑
k=1

αi,kek

)
Kλ(µ,µtraini )

where ek are the vectors of the canonical basis of Rp, Kλ(µ,µ′) = exp (−λ‖µ−µ′‖22)
is the Gaussian kernel, and {αi,k}i,k is a matrix of coefficients to be determined.
Given ξ > 0, in Kernel Ridge regression, the coefficients {αi,k}i,k are computed by
solving the p linear systems:

(K + ξI)αk = bk, k = 1, . . . , p,

where Ki,i′ = Kλ(µtraini ,µtraini′ ), (αk)i = αi,k and (bk)i = (ûred(µi))k, for i, i′ =
1, . . . , Ntrain.

We now discuss how to tune the parameters of the regression procedure and
how to assess its performance. First, we observe that the regression procedure
depends on two parameters: the kernel parameter λ and the penalization weight ξ.
These parameters can be chosen by minimizing the mean square error associated
with the surrogate model ûsurrogate over the validation set

MSEval :=
1

Nval

Nval∑
i=1

‖ûred(µvali )− ûsurrogate(µvali )‖22.

On the other hand, in order to assess the accuracy of our estimate, we compute
the mean square error over the test set

MSEtest :=
1

Ntest

Ntest∑
i=1

‖ûred(µtesti )− ûsurrogate(µtesti )‖22. (5)

We recall (see, e.g., [15]) that if the test points µtesti are drawn from an uniform
distribution over D, then MSEtest is a Monte Carlo approximation of the integral

MSE :=

∫
D
‖ûred(µ)− ûsurrogate(µ)‖22 dµ.

Remark 1 (Adaptive choice of N) The evaluation of the mean square error over
the test set can be exploited to adaptively choose the value of N following the
idea proposed in [8] in the framework of reduced basis method. The key idea is
to specify a priori a threshold tol > 0 and then iteratively enlarge the training set
ΞN until MSEtest < tol.

2.2.3 Computational procedure

In Algorithm 1, we summarize the procedure. In order to simplify the presenta-
tion of the computational procedure, we refer to the application of the regression
procedure described in section 2.2.2 as to

[ûsurrogate] = Kernel-Ridge-Regression
(
PtrainNtrain , P

val
Nval

)
.
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Algorithm 1 Offline-online Riemann solver
Offline stage

Input ΞN = {µi = (ui
l ,u

i
r)}Ni=1 N - dimensional discretization of the parameter set D

Ntrain, Nval, Ntest cardinalities of training, validation and test sets

Output ûsurrogate surrogate model for ûred : D 7→ Rp

MSEtest mean square error over the test set

1: For i = 1, . . . , N , compute ûredi := ûred(µi) by solving (3).

2: Define the sets PtrainNtrain = {(µtraini , ûtraini }Ntraini=1 , PvalNval
= {(µvali , ûvali }

Nval
i=1 ,

PtestNtest = {(µtesti , ûtesti }Ntesti=1

3: Compute [ûsurrogate] = Kernel-Ridge-Regression
(
PtrainNtrain , P

val
Nval

)
.

4: Compute MSEtest using (5).

Online stage

Input ûsurrogate surrogate model for ûred : D 7→ Rp

µ vector containing the left and right states ul, ur

Output ûred(µ) solution to (3)

1: Compute ûguess = ûsurrogate(µ),

2: Compute [ûred(µ)] = nonlinear-solver
(
Lred, ∂ûred L

red, ûguess,µ
)
,

3 Analysis of the Riemann problem

In this section, we provide the mathematical foundations for the computational
algorithm developed in section 2. First, in section 3.1, we show that, if ul,ur
are sufficiently close to each other, then the solution to (1) exists, is unique and
is completely determined by the solution to an algebraic system of equations of
the form (2). Then, in section 3.2, we prove that the solution û to (2) depends
smoothly on the left and right states. Our analysis is largely inspired by [10,5].

3.1 Solution to the Riemann problem

We first introduce the characteristics of equation (1a). Towards this end, for all
z ∈ Rm and k = 1, . . . ,m, we introduce the triplets (λk, rk, lk) such that

DF(z)rk(z) = λk(z)rk(z), λ1(z) < . . . < λm(z).
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We suppose that, for each k = 1, . . . ,m, the eigenpair (λk, rk) satisfies one of the
following conditions:{

∇λk(z) · rk(z) 6= 0 ∀ z ∈ Rm (genuinely nonlinear eigenpair),

∇λk(z) · rk(z) = 0 ∀ z ∈ Rm (linearly degenerate eigenpair).

Given ul ∈ Rm, we define the k-th rarefaction curve Rk(ul) as the path in Rm of
the solution to the ODE v′(s) = rk(v(s)) in a neighborhood of s = 0, with initial
condition v(0) = ul:

Rk(ul) := {v(s) : v′(s) = rk(v(s)), v(0) = ul; s ∈ (−δ, δ)},

where δ > 0. Furthermore, we define the shock set

S(ul) =
{
z ∈ Rm : F(z)− F(ul) = σ(z− ul) for a constant σ = σ(z,ul)

}
.

It is possible to show (see [5, Th.2, Chapter 11.2.3]) that the shock set S(ul)
consists of the union of m differentiable curves Sk(ul), k = 1, . . . ,m, such that
each curve Sk(ul) passes through ul, with tangent rk(ul). It follows that the curves
Rk(ul) and Sk(ul) agree at least to first order at ul. In the linearly degenerate
case, these curves in fact coincide.

We now present the definition of entropic solution to the Riemann problem
(1). First, we introduce the sets

R+
k (ul) = {z ∈ Rk(ul) : λk(z) > λk(ul)} ,

R−k (ul) = {z ∈ Rk(ul) : λk(z) < λk(ul)} ;

S+
k (ul) = {z ∈ Sk(ul) : λk(ul) < σ(z,ul) < λk(z)} ,

S−k (ul) = {z ∈ Sk(ul) : λk(z) < σ(z,ul) < λk(ul)} ;

and the curves Tk(ul) such that

Tk(ul) := R+
k (ul) ∪ {ul} ∪ S−k (ul), (6)

for k = 1, . . . ,m. If (λk, rk) is genuinely nonlinear, recalling that the curves Rk(ul)
and Sk(ul) agree at least to first order at ul, we have that the curve Tk(ul) admits
a C1 (and injective) parametrization ε 7→ Υ k(ε,ul) such that

{
Υ k(ε,ul) : ε > 0

}
=

R+
k (ul) and

{
Υ k(ε,ul) : ε < 0

}
= S−k (ul). On the other hand, if (λk, rk) is linearly

degenerate, Tk(ul) := Rk(ul) = Sk(ul) and it is still possible to parameterize the
curve through a regular injective function ε 7→ Υ k(ε,ul). We observe that each
curve Tk(ul) glues together the physically relevant parts of the k-th rarefaction
and k-th shock curve. We have now the elements to define the ”physical” (entropic)
solution to the Riemann problem (1) as in [5].

Definition 1 u ∈ L∞(R× (0,∞);Rm) is said to be an integral solution to (1) if it
satisfies∫ ∞

0

∫
R

u · vt + F(u) · vx dxdt +

∫ 0

−∞
ul · v|t=0 dx +

∫ ∞
0

ur · v|t=0 dx = 0 (7)
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for all v ∈ C1
0

(
R2;Rm

)
. Furthermore1, u is said to be admissible (or entropic) if for

all (x, t) ∈ R× (0,∞) the left and right limits u±(x, t) := limy→x± u(y, t) do exist

and, if u+(x, t) 6= u−(x, t), then u+(x, t) ∈ S−k (u−(x, t)) for some k ∈ {1, . . . ,m}.

On the ground of the previous properties and definitions, we can introduce
three special types of solutions to problem (1), (see [5]).

Lemma 1 Let (λk, rk) be linearly degenerate and let ur ∈ Sk(ul), for some k ∈
{1, . . . ,m}. Then,

u(x, t) =

{
ul x < σt

ur x > σt
σ = λk(ul) = λk(ur) (8)

is called k-contact discontinuity and it represents an admissible integral solution to

the Riemann problem (1).

Lemma 2 Let (λk, rk) be genuinely nonlinear and let ur ∈ S−k (ul). Then

u(x, t) =

{
ul x < σt

ur x > σt
σ = σ(ul,ur) (9)

is called k-shock wave and is an admissible integral solution to the Riemann problem

(1).

Lemma 3 Let (λk, rk) be genuinely nonlinear and let ur ∈ R+
k (ul). Then, there exists

a continuous admissible integral solution u to the Riemann problem (1), which is a k-
simple wave constant along lines through the origin. More precisely, given Θl, Θr ∈ R,

Θl < Θr, the solution to (1) is

u(x, t) = v
(
Θ
(
x

t

))
, (10a)

where the function v : [Θl, Θr] 7→ Rm satisfies

v(Θl) = ul, v(Θr) = ur, v′(s) = rk(v(s)), s ∈ (Θl, Θr), (10b)

while the function Θ : R 7→ R is defined as

Θ(s) :=


Θl s < F ′k(Θl),

Gk(s) F ′k(Θl) ≤ s < F ′k(Θr),

Θr s ≥ F ′k(Θr),

(10c)

with Fk(s) =
∫ s
0
λk(v(t)) dt and Gk =

(
F ′k
)−1

.

We refer to this solution as to k-th rarefaction wave.

1 This entropy condition is well suited for the solution to the Riemann problem. We refer to
[5, Chapter 11.4] for more general entropy criteria.
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Provided that the states ul,ur ∈ Rm are sufficiently close to each other, we now
characterize the solution to (1) as a sequence of rarefaction waves, shock waves,
and/or contact discontinuities. Towards this end, we first introduce the map

ε = (ε1, . . . , εm) 7→ Υ (ε,ul) (11a)

such that

Υ (ε,ul) = Υm(εm,um−1), (11b)

where u1 = Υ 1(ε1,ul), u2 = Υ 2(ε2,u1), . . . ,um−1 = Υm−1(εm−1,um−2), and Υ k
are the C1-parametrizations of the curves Tk(·) defined in (6). Moving from the
definition of the map Υ , next proposition provides an existence and uniqueness
result for the solution to (1). We refer to [5, Th. 4, Chapter 11.2.4] for the proof.

Proposition 1 For each k = 1, . . . ,m assume that the pair (λk, rk) is either genuinely

nonlinear or else linearly degenerate. Suppose further the left state ul is given.

Then, there exists a neighborhood N (ul) of the left state ul such that if ur ∈ N (ul),

there exists a unique admissible (entropic) integral solution u ∈ L∞(R× (0,∞); Rm)
to the Riemann problem, which is constant on lines through the origin. Furthermore,

the solution consists of the (possibly coincident) states ul,u1, . . . ,um−1,ur, which are

separated by contact discontinuities, shock waves or rarefaction waves, and there exists

ε ∈ Rm such that u1 = Υ 1(ε1,ul), . . . ,ur = Υm(εm,um−1).

The next corollary contains the explicit expression of the function L anticipated
in (2).

Corollary 1 The solution to (1) is uniquely determined by the solution to û = (ε?,u1,

. . ., um−1) ∈ Rm
2

to the algebraic system of equations

L(û;µ) = 0, L(û;µ) =


u1 − Υ 1(ε?1,ul),

uk − Υ k(ε?k,uk−1), k = 2, . . . ,m− 1

ur − Υm(ε?m,um−1).

(12)

Proof We observe that L(û;µ) = 0 if and only if ur = Υ (ε,ul). As a consequence,

the system of algebraic equations (12) admits a unique solution û ∈ Rm
2

. Further-

more, the solution û ∈ Rm
2

to (12) identifies the unique admissible solution to the
Riemann problem (1). ut

We observe that the minimum information required to compute the solution to
(1) consists of the states u1, . . . ,um−1 and of the sign of the constants ε?k such that
the eigenpair (λk, rk) is genuinely nonlinear. We have indeed that if the eigenpair
(λk, rk) is genuinely nonlinear the states uk−1 and uk are pieced together by a k-th
rarefaction wave if ε?k > 0 and by a k-th shock if ε?k < 0. Then, recalling Lemmas
1, 2 and 3, we can build an explicit expression for the integral solution u(x, t) to
(7).
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3.2 Continuous dependence of the solution to initial conditions

In this section, we show that the solution to (12) depends smoothly on the left
and right states ul and ur. Proposition 2 states the rigorous result.

Proposition 2 Assume the system (1a) is strictly hyperbolic and let ul,ur ∈ Rm.

Then, if ul,ur are sufficiently close to each other, there exists a neighborhood

N (µ) ⊂ R2m, µ = (ul,ur), such that the solution û to (12) is differentiable, that

is û ∈ C1(N (µ);Rm
2

).

Before proving Proposition 2, we state an important corollary that follows from
the above theorem.

Corollary 2 Let us assume that there exists a differentiable map J : Rm
2

×R2m 7→ Rp
such that ûred(µ) = J (û(µ),µ) in a neighborhood of µ. Then, under the hypotheses

of Proposition 2, there exists a neighborhood N (µ) ⊂ R2m such that the solution ûred

to (3) is differentiable.

In the remainder of this section , we present the proof of Proposition 2. First,
we state the following Lemma.

Lemma 4 (Dependence of eigenvalues and eigenvectors on parameters) Let

B ∈ C1(R`; Rm,m), m, ` ∈ N. For a given z0 ∈ R`, let B(z0) be diagonizable with

distinct eigenvalues λ1(z0) < . . . < λm(z0).

Then, there exists a neighborhood N (z0) of z0 such that the eigenvalues λk and

the left and right eigenvectors lk, rk are differentiable in N (z0), λk ∈ C1(N (z0);R),

lk, rk ∈ C1(N (z0);R`), for each k ∈ {1, . . . ,m} and for all z ∈ N (z0). Furthermore,

the left and right eigenvectors lk, rk satisfy the normalization ‖rk(z)‖2, ‖lk(z)‖2 = 1
for each k ∈ {1, . . . ,m} and for all z ∈ N (z0).

The proof of Lemma 4 is a straightforward application of the Implicit Function
Theorem to the system of equations Φ(r, λ, z) = (B(z)r − λr, ‖r‖22 − 1) = 0. We
refer to [5, Th. 2, Chapter 11.1.2] for the details of the proof.

Thanks to Lemma 4, we can prove that the function (ε,ul) 7→ Υ (ε,ul) is
smooth with respect to the second argument, ul. To show this, we prove that for
each k = 1, . . . ,m, the curves Tk(ul) = R+

k (ul) ∪ {ul} ∪ S−k (ul) are of class C1

with respect to ul. Recalling the definition of Υ in (11), the latter implies that
the map Υ is a regular function of ul. By definition, it is straightforward that the
curve Rk(ul) and the corresponding parameterization depend smoothly on ul. On
the other hand, the continuous dependence of the shock set is less evident and is
addressed by the next Lemma.

Lemma 5 Let us consider the strictly hyperbolic system (1a).

Then, for each k = 1, . . . ,m there exists Ψk : I×Rm 7→ Rm such that for each ul ∈
Rm Ψk(·,ul) : I 7→ Rm is a parameterization of Sk(ul) and Ψk(0,ul) = ul. Further-

more, there exists a neighborhood N (0,ul) of (0,ul) such that Ψk ∈ C1(N (0,ul); Rm),

k = 1, . . . ,m.

Proof We define2 B : Rm ×Rm 7→ Rm,m such that

B(z,u) :=

∫ 1

0

DF(u + t(z− u)) dt z,u ∈ Rm.

2 This proof follows the same idea of the proof of [5, Th.2, Chapter 11.2.3].
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We observe that B(z,u)(z− u) = F(z)− F(u). As a consequence, z ∈ S(u) if and
only if

(B(z,u)− σI) (z− u) = 0, (13)

for some σ ∈ R. Since the system is strictly hyperbolic, B(ul,ul) = DF(ul) has
distinct eigenvalues, thus (due to Lemma 4) there exist a neighborhood N (ul,ul)
and smooth functions λk : N (ul,ul) 7→ R, rk : N (ul,ul) 7→ Rm and lk : N (ul,ul) 7→
Rm (k = 1, . . . ,m) such thatB(z,u)rk(z,u) = λk(z,u)rk(z,u),

BT (z,u)lk(z,u) = λk(z,u)lk(z,u),

for all (z,u) ∈ N (ul,ul). Furthermore, {rk(z,u)}k, {lk(z,v)}k are bases of Rm and
rl(z,v) · lk(z,v) = 0 if l 6= k.

If we fix k ∈ {1, . . . ,m}, equation (13) holds if and only if (z−u) ‖ rk(z,u). As
a consequence of the previous discussion, this condition can be reformulated as{

ll(z,u) · (z− u) = 0 if l 6= k

lk(z,u) · (z− u) 6= 0 if l = k.

In view of the application of the Implicit Function Theorem, we define

Φk : R2m 7→ Rm−1; Φk(z,v) =



...

lk−1(z,u) · (z− u)

lk+1(z,u) · (z− u)

...


.

The nonlinear system Φk(z,v) = 0 consists of m − 1 equations in 2m variables.

Let z′ = [z1, . . . , zm−1] and l̃j = [(lj)1, . . . , (lj)m−1]
T , we observe that:

Φk(ul,ul) = 0, Dz′Φk(z,u) =



...

l̃Tk−1(z,u)

l̃Tk+1(z,u)

...


+



...(
Dz′ l

T
k−1(z,u)(z− u)

)T
(
Dz′ l

T
k+1(z,u)(z− u)

)T
...


.

Since {lk(z,u)}k is a basis of Rm, rank(Dz′Φk(ul,ul)) = m−1. Therefore, thanks to
the Implicit Function Theorem, there exists a neighborhood N ((ul)m, ul) ⊂ Rm+1

and a C1 function Ψ̃k : N ((ul)m, ul) 7→ Rm such thatΦk(Ψ̃k(v),v) = 0⇔ Ψ̃k(v) ∈ Sk(u) ∀v =

[
s

u

]
∈ N ((ul)m, ul),

Ψ̃k((ul)m, ul) = ul.

The result follows by taking Ψk(t,u) = Ψ̃k((ul)m + t, u). ut
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We are now ready to prove our main result. We limit ourselves to the case
m = 2. The extension to the general case is not particularly complex.

Proof (Proposition 2) Given ul and ur, we introduce the parameterizations Υ k :
I × R2 7→ R2 for the curves Tk(·), k = 1, 2. Then, we introduce the function
Φ : R6 7→ R2 such that: Φ(ε,µ) = Υ 2(ε2,Υ 1(ε1,ul)) − ur. Due to Lemma 5, we
have that Φ(ε,µ) is of class C1. Furthermore,

DεΦ(ε,µ) = [DuΥ 2(ε2,Υ 1(ε1,ul))∂ε1Υ 1(ε1,ul), ∂ε2Υ 2(ε2,Υ 1(ε1,ul))]

= [r1(ul), r2(ul)] +O(ε),

where we used the fact that DuΥ k(ε,u)|ε=0 = I for k = 1, 2. Since {rk(ul)}k is a
basis of R2, we have that, for sufficiently small ε1, ε2,

rank (DεΦ(ε,µ)) = 2.

Applying the Implicit Function Theorem, we find that the solution ε? = ε?(µ)
to Φ(ε?,µ) = 0 is differentiable in µ. Since the function Υ 1 is differentiable in both
arguments (Lemma 5), then the state u1 defined by the formula u1 = Υ 1(ε?1,ul)
is also differentiable in µ. Thesis follows. ut

4 Application to the p-system

In this section, we apply our method to the p-system, which is a special case of
(1a) representing a model for isentropic gas dynamics in Lagrangian coordinates.
In section 4.1, we introduce the problem and we derive the nonlinear system of
algebraic equations (2) to be solved as well as a simplified system of the form
(3). Then, in section 4.2, we evaluate the performance of our method through a
number of numerical experiments.

4.1 The p-system

We first introduce the mathematical formulation of the p-system. The p-system is
a system of conservation laws of the form (1a) such that

u :=

[
w

v

]
, F(w, v) =

[
−v
p(w)

]
, (14a)

where the function p : R+ 7→ R satisfies

(i) lim
w→0+

p(w) = +∞, (ii) p′(w) < 0, ∀w ∈ R+, (iii) p′′(w) > 0, ∀w ∈ R+.

(14b)
To simplify the notation, we define a := −p′.



An offline-online Riemann solver 13

Fixed ul ∈ R2
+, we now introduce the explicit formulas of the curves Tk(u0) in

(6) for the p-system. First, we introduce the sets

S−1 (ul) := {(w, v) ∈ R2
+ : w < wl, v = Φ1(w,ul) = vl −

√
(p(w)− p(wl))(wl − w)},

S−2 (ul) := {(w, v) ∈ R2
+ : w > wl, v = Φ2(w,ul) = vl −

√
(p(w)− p(wl))(wl − w)},

R+
1 (ul) := {(w, v) ∈ R2

+ : w > wl, v = Ψ1(w,ul) = vl +
∫ w
wl

√
a(s) ds},

R+
2 (ul) := {(w, v) ∈ R2

+ : w < wl, v = Ψ2(w,ul) = vl −
∫ w
wl

√
a(s) ds},

and the corresponding curves Tk(ul) = R+
k (ul) ∪ {ul} ∪ S−k (ul), k = 1, 2. If we

introduce the functions Υ 1, Υ 2;R×R2 7→ R such that

Υ 1(w,ul) =

{
Φ1(w,ul) w < wl

Ψ1(w,ul) w ≥ wl
, Υ 2(w,ul) =

{
Ψ2(w,ul) w < wl

Φ2(w,ul) w ≥ wl
,

we obtain that the maps ε 7→ Υ k(ε,ul),

Υ 1(ε,ul) =

[
wl + ε

Υ 1(wl + ε,ul)

]
, Υ 2(ε,ul) =

[
wl − ε

Υ 1(wl − ε,ul)

]
, (15)

are parametrizations of the curves Tk(ul) such that
{
Υ k(ε,ul) : ε > 0

}
= R+

k (ul)

and
{
Υ k(ε,ul) : ε < 0

}
= S−k (ul), k = 1, 2. Finally, we introduce the partition

{Ri(ul)}4i=1 induced by the curves Tk(ul):

R1(ul) = {(w, v) ∈ R2
+ : w > wl, Υ 2(w,ul) < v < Υ 1(w,ul)};

R2(ul) = {(w, v) ∈ R2
+ : v < min{Υ 1(w,ul), Υ 2(w,ul)}};

R3(ul) = {w, v) ∈ R2
+ : w < wl, Υ 1(w,ul) < v < Υ 2(w,ul)};

R4(ul) = {(w, v) ∈ R2
+ : v > max{Υ 1(w,ul), Υ 2(w,ul)}}.

(16)

Figure 1 shows the partition {Ri(ul)}4i=1

v

w

ul

IV

I

II

III

R+
2 (ul)

S−
2 (ul)

S−
1 (ul)

R+
1 (ul)

Fig. 1: State space partition (16) induced by the curves Tk(ul), k = 1, 2.

We can now present the main result of this section. We refer to [1, Section 5.5]
for the proof.
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Proposition 3 Should it exists, the solution to the Riemann problem (1) for the p-

system (14) is uniquely determined by the solution û = (ε?1, ε
?
2,u1), u1 = (w1, v1), to

the following system of equations
u1 − Υ 1(ε?1,ul) = 0,

ur − Υ 2(ε?2,u1) = 0,
(17)

where Υ 1, Υ 2 have been introduced in (15). Furthermore, the solution to (17) is of the

form

û =


w1 − wl
wl − w1

w1

vl − h(w1, wl)

 , (18a)

where w1 = ûred is the unique solution to the nonlinear equation

Lred(w; µ) = vr − vl + h(w,wl) + h(w,wr) = 0, w ∈ Ii(µ). (18b)

Here, the function h : R2
+ 7→ R is defined as

h(w,wK) :=


√

(p(w)− p(wK))(wK − w) w ≤ wK ,

−
∫ w

wK

√
a(s) ds w > wK ,

(18c)

where K = l, r, while the real interval Ii(µ) is defined as

Ii(µ) :=



(wl, wr) i = 1,

(0,min{wl, wr}) i = 2,

(wr, wl) i = 3,

(max{wr, wl},∞) i = 4.

(18d)

4.2 Application of the offline-online strategy to the p-system

In view of the numerical assessment, we first introduce a number of definitions.
Given h > 0, we introduce the parameter set

Dh :=
{
µ = (ul,ur) ∈ R4 : ul,ur ∈ [1, 3]2, ‖ul − ur‖∞ ≤ h

}
. (19)

We also introduce the finite dimensional discretizations of D, ΞonNon,h = {µoni }
Non
i=1

and ΞoffNoff ,h
= {µoffi }Noffi=1 : while the former is used to generate the surrogate

model for the solution ûred = w1 into (18b) based on Algorithm 1, the latter is used

to assess the performance of our approach. Both ΞoffNoff ,h
and ΞonNon,h are generated

through an uniform random sampling over D. In all our tests, we set Non = 3000,
while we consider Ntrain = 0.5Noff , Nval = Ntest = 0.25Noff . Furthermore,
equation (18b) is solved using Newton’s method with termination criterion based
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on the increment; the tolerance is set equal to 10−9. We also consider p(w) =
0.75w−2.5. Finally, in order to compare our results with a benchmark, we introduce
the a priori surrogate wa priori1 defined as

wa priori1 (µ) :=



1
2 (wl + wr) ur ∈ R1(ul) ∪R3(ul)

1
2 min{wl, wr} ur ∈ R2(ul)

max{wl, wr} ur ∈ R4(ul)

(20)

In Figure 2, we compare the accuracy of the surrogate model based on the
offline-online stage with the a priori surrogate (20). Figure 2 (a) shows the behavior
of the mean square error MSEsurrogateoff computed offline based on (5) and of the

mean square errors MSEsurrogateon and MSEa priorion computed online and defined
by 

MSEsurrogateon =
1

Non

Non∑
i=1

(
w1(µoni ) − ûsurrogate(µoni )

)
MSEa priorion =

1

Non

Non∑
i=1

(
w1(µoni ) − wa priori1 (µoni )

) (21)

for h = 0.5 and for different values of Noff . Figure 2(b) shows the behavior of
the same quantities for Noff = 100 and for different values of h. We observe that
as Noff increases, the accuracy of the surrogate model increases. We also observe
that results weakly depend on the value of h.
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Fig. 2: Application to the p-system. Figure (a): behavior of the mean square er-
rors MSEsurrogateoff , MSEsurrogateon and MSEa priorion with Noff and for h = 0.5.

Figure (b): behavior of the mean square errors MSEsurrogateoff , MSEsurrogateon and

MSEa priorion with h and for Noff = 100.

In Figure 3, we show the behavior of the average number of Newton’s iterations
for the two different choices of the initial guess. As in Figure 2, in Figure 3(a),
we fix h = 0.5 and we consider different values of Noff , while in Figure 3(b),
we fix Noff = 100 and we consider different values of h. We observe that the
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improvement in the initial guess leads to a reduction of the required number of
Newton’s iterations for the same accuracy. This reduction motivates the additional
offline expense required to train the surrogate model.
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Fig. 3: Application to the p-system. Figure (a): behavior of the average number of
Newton’s iterations with Noff and for h = 0.5. Figure (b): behavior of the average
number of Newton’s iterations with h and for Noff = 100.

5 Application to the Euler equations for ideal gases

In this section, we apply our method to the Euler equations for ideal gases. The
discussion follows the same outline of section 5. In section 5.1, we present the prob-
lem statement, and we derive the reduced nonlinear algebraic system of equations
(3) to be solved. Then, in section 5.2, we present some numerical results.

5.1 Explicit formula for Euler equations

As in section 4.1, we introduce the mathematical formulation of the problem of
interest. The Euler equations for ideal gases are a system of conservation laws such
that

u :=

 ρ

ρu

E

 , F(u) :=

 ρu

ρu2 + p

u(E + p)

 . (22a)

Here, ρ is the gas density, u is the particle velocity, p is the pressure, and E is the
total energy per unit volume defined as

E =
1

2
ρu2 +

1

γ − 1
p, (22b)

with γ > 1. We refer to u in (22a) as to the vector of conserved variables. For reasons
that will become clear below, we also introduce the vector of primitive variables

w = (ρ, u, p).
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We now discuss the structure of the solution to the Riemann problem (1)-(22).
We present the complete formula in Proposition 4. We refer to [16, Chapters 4.2
and 4.4] for the proof. To simplify the statement, we present the solution in terms
of the primitive variables.

Proposition 4 The solution to the Riemann problem (1)-(22) consists of four con-

stant states wl,w1,w2,wr. The first two states, wl,w1, are separated by a 1-shock or

by a 1-rarefaction wave, while w1,w2 are connected through a 2-contact discontinuity.

Finally, w2,wr are pieced together through a 3-shock or a 3-rarefaction wave.

Furthermore, given wl = [ρl, ul, pl]
T , wr = [ρr, ur, pr]

T and µ = (wl,wr), we

have that

w1 =

 ρ?,lu?
p?

 , w2 =

 ρ?,ru?
p?

 . (23a)

The pressure p? = ûred is the unique solution to the nonlinear equation

Lred(p,µ) := f(p,wl) + f(p,wr) + ur − ul = 0, p ∈ I(µ). (23b)

Here, the function f : R×R3 7→ R is defined by

f
(
p,wK = [ρK , uK , pK ]T

)
=


(p− pK)

√
A(ρK)

p+B(pK)
p > pK

2a(ρK , pK)

γ − 1

[(
p

pK

) γ−1
2γ

− 1

]
p ≤ pK

(23c)

where a(ρ, p) =
√
γ pρ is the speed of sound, A(ρ) = 2

(γ+1)ρ , B(p) = γ−1
γ+1p and K = l, r.

The particle velocity u? and the densities ρ?,l and ρ?,r are uniquely determined by p?
through the relations

u? =
1

2
(ul + ur) +

1

2
(f(p?,wr)− f(p?,wl)) , (23d)

and

ρ?,K =


ρr

[
γ−1
γ+1 + p?

pK
γ−1
γ+1

p?
pK

+ 1

]
p? > pK ,

ρr

(
p?
pK

) 1
γ

p? ≤ pK ,
(23e)

with K = l, r. Finally, the interval I(µ) is defined as

I(µ) :=


(0, pmin) Lred(pmin;µ) > 0,

(pmin, pmax) Lred(pmin;µ) < 0, Lred(pmax;µ) > 0,

(pmax,∞) Lred(pmax;µ) > 0,

(23f)

where pmin = min{pl, pr} and pmax = max{pl, pr}.
If p? > pl, the states wl and w1 are connected by a 1-shock, while if p? ≤ pl, the

states wl and w1 are connected by a 1-rarefaction wave. Similarly, if p? > pr, the

states w2 and wr are connected by a 3-shock, while if p? ≤ pr, the states w2 and wr

are connected by a 3-rarefaction wave.



18 T. Taddei et al.

5.2 Application of the offline-online strategy to the Euler equation

As in section 4.2, given h > 0, we introduce the parameter set

Dh :=
{
µ = (ul,ur) ∈ R6 : ul,ur ∈ [1, 5]3, ‖ul − ur‖∞ ≤ h

}
, (24)

and the finite dimensional discretizations ΞoffNoff ,h
, ΞonNon,h ⊂ Dh. We set Non =

3000, Ntrain = 0.5Noff , Nval = Ntest = 0.25Noff and we set the tolerance in
Newton’s method equal to 10−9. We also set γ in (22b) equal to 1.4. Finally, we
consider the a priori surrogate pa priori (see [16, (4.47) Chapter 4.3]) defined by

pa priori(µ) := max{TOL, pPV (µ)}, pPV (µ) =
1

2
(pl+pr)−

1

8
(ur−ul)(ρr+ρl)(al+ar),

(25)

where aK =
√
γ pKρK is the speed of sound, K = l, r. The tolerance TOL –here set

equal to 10−3 – guarantees that the surrogate pressure is strictly positive. This
surrogate is derived analytically from a linearized Riemann problem.

In Figure 4, we compare the accuracy of the surrogate model based on the
offline-online stage with the a priori surrogate (25). Figure 4 (a) shows the behavior
of the mean square error MSEsurrogateoff computed offline based on (5) and of the

mean square errors MSEsurrogateon and MSEa priorion computed online and defined
as in (21) for h = 0.5 and for different values of Noff . Figure 4(b) shows the
behavior of the same quantities for Noff = 2000 and for different values of h. As
for the p-system, we observe that as Noff increases, the accuracy of the surrogate
model increases and that results weakly depend on the value of h.
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Fig. 4: Application to the Euler equations. Figure (a): behavior of the mean square
errors MSEsurrogateoff , MSEsurrogateon and MSEa priorion with Noff and for h = 0.5.

Figure (b): behavior of the mean square errors MSEsurrogateoff , MSEsurrogateon and

MSEa priorion with h and for Noff = 2000.

In Figure 5, we show the behavior of the average number of Newton’s iterations
for the two different choices of the initial guess. As in Figure 4, in Figure 5(a),
we fix h = 0.5 and we consider different values of Noff , while in Figure 3(b),
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we fix Noff = 2000 and we consider different values of h. We observe that for
this problem the improvement in the initial guess does not lead to a substantial
reduction of the required number of Newton’s iterations.
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Fig. 5: Application to the Euler equations. Figure (a): behavior of the average
number of Newton’s iterations with Noff and for h = 0.5. Figure (b): behavior of
the average number of Newton’s iterations with h and for Noff = 2000.

6 Conclusions

In this work, we propose an exact Riemann solver based on an offline-online com-
putational decomposition. The approach is theoretically justified by the results
presented in section 3, and is applied to the p-system and to the Euler equations.

While for the p-system the improvement in the initial guess leads to a sub-
stantial reduction in the number of required Newton’s iterations, for the Euler
equations, the improvement is not substantial. However, we remark that the choice
of the surrogate pressure (25) is absolutely not self-evident and is strictly related
to the differential problem at hand. On the other hand, our ”empirical” guess is
computed automatically, and it is influenced by the equation only through the
function p?(µ) and the parameter space Dh.

As next step, we wish to integrate this approach with traditional finite volume
schemes for the approximation of nonlinear systems of conservation laws with
arbitrary initial and boundary conditions.
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