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SUMMARY

We present and analyze a validation procedure for a given state estimate u? of the true field utrue based
on Monte Carlo sampling of experimental observation functionals. Our method provides, given a set of N
possibly noisy local experimental observation functionals over the spatial domain Ω, confidence intervals
for the L2(Ω) error in state and the error in L2(Ω) outputs. For L2(Ω) outputs, our approach also provides
a confidence interval for the output itself, which can be used to improve the initial output estimate based
on u?. Our approach implicitly takes advantage of variance reduction, through the proximity of u? to utrue,
to provide tight confidence intervals even for modest values of N . We present results for a synthetic model
problem to illustrate the elements of the methodology and confirm the numerical properties suggested by the
theory. Finally, we consider an experimental thermal patch configuration to demonstrate the applicability of
our approach to real physical systems. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to the definition of AIAA ([7]), validation ([18]) is the process of determining the degree
to which a model is an accurate representation of the real world from the perspective of the intended
uses of the model. The importance of validation is twofold. First, reliable validation procedures can
serve to verify that the error is less than a certain safety tolerance ε > 0 — uncertainty quantification.
Second, in the context of subsequent data assimilation ([16]), reliable error estimators can be
employed to properly choose the number and location of measurements — in effect, uncertainty
reduction. In this paper, we present and analyze a computational procedure to estimate the accuracy
of a given state estimate based on N local experimental observations: rather than employing
experimental measurements to improve our estimate of the state (data assimilation), we here wish
to use experimental measurements to assess a posteriori the accuracy of a given deterministic state
estimate of the true state (validation), and to improve the estimate of linear outputs of interest (output
estimation).

From a mathematical perspective, our goal is to estimate the L2(Ω) state-estimation error, and
the signed error in L2(Ω) output functionals. We shall denote by u? the estimate of the (assumed)
deterministic state utrue of a physical system over a specified spatial domain Ω ⊂ Rd. We shall
further denote by E = ‖utrue − u?‖L2(Ω) the L2(Ω) state-estimation error, and by EL = L(utrue)−
L(u?) the error in the L2(Ω) output L : L2(Ω)→ R. Finally, we introduce the experimental
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measurements {`obs
n }Nn=1: we assume that each experimental observation is the application of a

linear functional to the physical state with no systematic noise, that is `obs
n = `(utrue, ν, xobs

n ) + εn,
where xobs

n ∈ Ω is the transducer location, the constant ν > 0 denotes the spatial width of the
transducer, and εn is a random disturbance. The functional `(·, ν, xobs

n ) takes into account the
averaging process performed by the experimental device. We emphasize that the state estimate u?

may reflect “training” data, but the subsequent validation is independent of the training data (i.e.,
based on an independent dataset).

In this work we follow a frequentist approach to derive confidence intervals for the error in state
and output. For eitherEL orE, we first build a Monte Carlo estimate for the error (denoted by either
ÊL or Ê). Then, we build lower and upper error bounds for the difference between the estimated
error and the true error (either EL − ÊL or E − Ê) based on standard large-sample methods (see,
e.g., [21, Chapter 8]). In more detail, we identify three different error sources, here called finite-ν
error, finite-N error, and finite-noise error: finite-ν error is related to the finite spatial width ν of the
transducer (which prevents us from computing pointwise values of the error field); finite-N error
is related to the finite number of measurements available; finally, finite-noise error is related to the
random error in the measurements. We propose actionable lower and upper error bounds that take
into account finite-N and finite-noise error in the estimate. Furthermore, we develop a mathematical
theory to assess the conditions under which finite-ν error is small. We remark that the computational
procedure as well as the finite-N and finite-noise analysis do not rely on any assumption on the error
field utrue − u? — apart from a very weak regularity assumption.

Exploiting the linearity of L, we show that we can employ our technique to provide lower and
upper bounds for the quantity of interest L(utrue). We demonstrate that, by applying the Monte
Carlo procedure to the output error instead of to the true field, and exploiting the proximity of u? to
utrue, we can significantly reduce the variance of the process and thus improve the output estimate
L(u?) for the output L(utrue). We emphasize that the improvement in the output estimate is not the
consequence of the improvement of the state estimate u?, which is not updated by our procedure.

Large-sample methods — on which we rely to address finite-N and finite-noise errors — have
already been extensively used to assess the accuracy of computational models in the field of
Validation and Verification (see, e.g., [25]). However, the idea of applying a Monte Carlo approach
to estimate the L2(Ω) error in state and the error in output evaluations is new: rather than comparing
experimental measurements of the output with simulation predictions for the output, we exploit
(quasi-)pointwise experimental measurements to deduce the error in output functionals of interest.

From the perspective of uncertainty quantification, our method complements Bayesian techniques
[3, 4, 6, 19, 20] in that we make few assumptions on the error field utrue − u?. If substantial prior
information about the error field is available, we envision that our approach might be outperformed
by suitable Bayesian techniques. In absence of such information our frequentist approach can still
be applied and will yield good results in particular if the error utrue − u? is not too large.

From the perspective of uncertainty reduction, our approach may be viewed as the experimental
extension of recent efforts in variance reduction techniques for Monte Carlo simulations. In more
detail, the idea of using a surrogate model – in this case the state estimate u? – to reduce the variance
of a Monte Carlo process is related to the classical control variates method (see, e.g., [24, Chapter
4]) and to a number of more recent works for the estimation of statistical outputs of stochastic ODEs
([11, 12]), and stochastic PDEs ([1, 27, 17]).

Our method relies on three assumptions: (i) sensor locations are drawn randomly from a given
distribution, (ii) the random disturbance is homoscedastic, and (iii) the systematic error in the
measurements is small compared to the other sources of error. Measurements in arbitrary spatial
points can be acquired by appealing to robotic observation platforms. We refer to [15] for an
application of the former data acquisition system to acoustics. On the other hand, we observe that
in distributed sensor networks ([8, 23]) locations should be selected among a set of candidate grid
points; in section 2, we discuss how to extend our procedure to this scenario. The assumption of
homoscedastic random noise is convenient for the analysis and is reasonably accurate in many
engineering applications. Systematic error introduces a deterministic shift in our confidence

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme



VALIDATION BY MC SAMPLING OF EXPERIMENTAL OBSERVATION FUNCTIONALS 3

interval, which is difficult to quantify without any prior information. In section 2, we quantify under
what conditions we can neglect it.

This paper is organized as follows. In section 2, we derive a confidence interval ĈL for the error in
L2(Ω) functional outputs; we also unfold the confidence interval to develop estimates for the output
L(utrue). In section 3, we discuss how to extend our technique to the estimation of the L2(Ω) error
in state. Finally, in section 4, we first numerically validate our method for a synthetic example, and
we then consider an experimental thermal patch configuration to demonstrate the applicability of
our approach to real physical systems.

2. EXPERIMENTAL ERROR IN L2(Ω) FUNCTIONALS

2.1. Preliminaries

By way of preliminaries, we introduce notation used throughout the paper. First, we introduce
the observable domain Ωobs in which we can take measurements, and the domain of interest
Ω ⊂ Ωobs. Then, we introduce the standard Lp(Ωobs) Banach space over Ωobs endowed with
the norm ‖w‖Lp(Ωobs) = (

∫
Ωobs w

p dx)1/p. Here, Lp(Ωobs) consists of classes of equivalence of
functions {w : ‖w‖Lp(Ωobs) <∞}. Furthermore, we introduce the space of continuous functions
over Ωobs, C(Ωobs).

Given a random variable X , we denote by E[X] and by V[X] the mean and the variance, where
E denotes expectation. We use lower-case letters to indicate independent realizations (random
variates) of X , x1, x2, . . .; on the other hand, we use upper-case letters to indicate independent
copies of X , X1, X2, . . .. We refer to a function of the random variates x1, x2, . . . as to a (statistical)
estimate; while we refer to a function of the random variables X1, X2, . . . as to a (statistical)
estimator. We denote by X ∼ N (m,σ2) a Gaussian random variable with mean m and variance
σ2. Similarly, we denote by X ∼ Uniform(Ω) an uniform random variable over Ω. Furthermore,
we refer to an arbitrary random variable ε such that E[ε] = 0 and V[ε] = σ2 using the notation
ε ∼ (0, σ2). We denote by ε1, ε2, . . . independent realizations of ε. Finally, we denote by χA : Rd →
{0, 1} the indicator function of the set A ⊂ Rd.

2.2. General framework

We first introduce the problem we wish to address together with a number of definitions and
assumptions. Given the true deterministic field utrue : Ωobs → R, an estimate for utrue, u? : Ωobs →
R, and the associated state estimation error e := utrue − u?, we wish to exploit N local assessment
observations to compute a confidence interval ĈL for the error

EL = L(e), (1)

where L : L2(Ω)→ R is of the form

L(w) :=

∫
Ω

ζ(x)w(x) dx, (2)

and the kernel ζ : Ω→ R is a L2(Ω) function such that L is bounded in L2(Ω).
In order to develop the mathematical analysis, we assume that the ν-neighborhood Ων of Ω,

Ων :=
{
x ∈ Ωobs : dist(x,Ω) < ν

}
, (3)

is compactly embedded in Ωobs, Ων ⊂⊂ Ωobs, for some ν > 0.
We model the experimental observations at “point” xobs

n as

`obs
n = `(utrue, ν, xobs

n ) + εn, n = 1, . . . , N. (4)

The disturbances ε1, . . . , εN are N independent realizations of the random variable ε ∼ (0, σ2).
We emphasize that (4) corresponds to assuming that systematic experimental error is negligible. In
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section 2.3.1, we quantify this assumption. The functional `(·, ν, xobs
n ) : L2(Ωobs)→ R is defined as

the convolution
`(w, ν, xobs

n ) =

∫
Ωobs

ωd,ν(|x− xobs
n |)w(x) dx. (5a)

The convolutional kernel ωd,ν is given by

ωd,ν(r) =
C(d)

νd
ω
( r
ν

)
, (5b)

where ν, C(d) > 0 are given constants, and ω(·) is a positive function such that ω(ρ) = 0 for ρ ≥ 1.
We emphasize that the constant ν > 0 reflects the filter width of the transducer, assumed small
compared to the characteristic length-scale of the true field, while xobs

n ∈ Ω reflects the transducer
position. Finally, the function ω describes the local averaging process and is analogous to the
spread function employed in blurring/deblurring of images. In anticipation of the analysis, we also
introduce the low-pass filter operator Fν : L2(Ωobs)→ L2(Ω) such that

Fν(w)(x) = `(w, ν, x), ∀x ∈ Ω. (6)

We can now introduce the limited observations error estimate ÊL as

ÊL(N, ν) :=
|Ω|
N

N∑
n=1

ζ(xobs
n ) `err

n . (7)

Here, `err
1 , . . . , `err

N are defined as

`err
n = `obs

n − `(u?, ν, xobs
n ). (8a)

We observe that {`obs
n }n are taken experimentally, while {`(u?, ν, xobs

n )}n are computed
numerically. Recalling (6) and (4), we also observe that

`err
n = `(utrue, ν, xobs

n ) + εn − `(u?, ν, xobs
n ) = Fν(e)(xobs

n ) + εn. (8b)

In order to address the problem of estimating EL using the pointwise estimate ÊL, we identify
three different sources of error.

• Finite-ν error: since the transducers have finite spatial width, we can only measure an
approximation of the pointwise values of utrue.

• Finite-N error: since the number of measurements is limited, only a finite number of error
evaluations are available.

• Finite-noise error: since measurements are affected by homoscedastic error, we can only
observe a noisy value of `(utrue, ν, xobs

n ).

To formalize these definitions, we introduce the perfect unlimited observations error estimate

Ê∞L (ν) = L(Fν(e)), (9)

and then the finite-ν error
∆ν
L(ν) := |EL − Ê∞L (ν)|, (10)

and the combined finite-N and finite-noise error

∆N, σ
L (N, ν) := |Ê∞L (ν)− ÊL(N, ν)|. (11)

We emphasize that ∆ν
L is deterministic, while ∆N, σ

L is a random variate.
We now present the outline of the remainder of this section. In section 2.3, we propose an

actionable procedure to estimate a confidence interval for Ê∞L (ν). Then, in section 2.4, we illustrate
how to exploit the confidence interval for Ê∞L (ν) to update the estimate of the output L(utrue). In
these two sections, we assume that the finite-ν error is negligible. Finally, in section 2.5, we provide
conditions under which the finite-ν error is small.
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2.3. Construction of the confidence interval

2.3.1. Finite-noise and finite-N error In order to derive an asymptotic bound for the finite-noise
and finite-N error, it is first convenient to introduce a probabilistic interpretation of the quantities
introduced in section 2.2. Towards this end, we assume that the observation points {xobs

n }Nn=1 are
N independent realizations of the random variable X ∼ Uniform(Ω), such that X and the random
noise ε are independent. As a consequence, recalling (8), we have that {`err

n }Nn=1 are N independent
realizations of the random variable Lerr = Fν(e)(X) + ε and

Ê∞L (ν) = E [|Ω| ζ(X)Lerr] = E
[
Zobs

]
, (12)

where Zobs = |Ω|ζ(X)Lerr is introduced to simplify the notation.
We observe that ÊL is the sample mean associated with the random variates {zobs

n =

|Ω| ζ(xobs
n )`err

n }Nn=1; therefore, ÊL = ÊL(xobs
1 , . . . , xobs

N ) is an unbiased estimate for Ê∞L (ν), and
we can apply the Central Limit Theorem (see, e.g., [13, Theorem 21.1]) to derive an approximate
confidence interval for Ê∞L . We thus obtain:

ĈN,σL (N, ν, α) =
[
ÊN,σL,LB(N, ν, α), ÊN,σL,UB(N, ν, α)

]
=

[
ÊL(N, ν)− 1√

N
ŝeobs
L,N t1−α/2(N − 1),

ÊL(N, ν) +
1√
N
ŝeobs
L,N t1−α/2(N − 1)

]
,

(13)

where t1−α/2(N − 1) is the (1− α/2) quantile of the t-distribution with N − 1 degrees of freedom,

and ŝeobs
L,N =

√
1

N−1

∑N
n=1(zobs

n − z̄obs)2, z̄obs = 1
N

∑N
n=1 z

obs
n .

The confidence interval ĈN,σL is asymptotically correct for Ê∞L , its size vanishes as N goes to
infinity, and it can be computed in real time (O(N)-computational complexity). In addition, the
quantity 1√

N
ŝeobs
L,N t1−α/2(N − 1) asymptotically bounds the finite-N and finite-noise error ∆N, σ

L
in (11) with confidence 1− α. We remark that this procedure can be extended to the case of multiple
outputs. We refer to [5] for a thorough analysis of multivariate normal confidence regions. We
further observe that other non-parametric strategies for the construction of confidence regions can
be applied in lieu of the normal confidence intervals employed in this work. In this respect, we
mention bootstrap confidence intervals (see [10, 9] and [28, Chapter 3] ).

Our construction relies on the assumptions that we can take measurements in arbitrary spatial
points and that systematic noise is negligible. Remark 1 shows how to extend our approach to the
case in which sensor locations should be selected among a set of candidate grid points. On the other
hand, Remark 2 provides a condition under which systematic noise is negligible.

Remark 1
We shall now discuss the case in which sensor locations should be selected among a set of candidate
grid points {xgrid

j }Nj=1. With this in mind, we shall define the functional Lgrid : C(Ω)→ R as

Lgrid(u) = |Ω|
N∑
j=1

u(xgrid
j ) ζ(xgrid

j )wj , (14)

where {wj}Nj=1 is a set of suitable positive weights such that
∑N

j=1 wj = 1. We shall further define
the probability distribution P grid such that P grid(xgrid

j ) = wj , j = 1, . . . ,N .
Exploiting the definitions above, it is straightforward to verify that if X1, . . . , XN are N

independent copies of the random variable X ∼ P grid then

E [|Ω|ζ(X)Lerr] = Lgrid(Fν(e)), n = 1, . . . , N.

Therefore, ÊL is an unbiased estimate for Lgrid(Fν(e)): provided that |Lgrid(Fν(e))− L(Fν(e))| is
small, we can rely on ĈN,σL to estimate Ê∞L (ν). This observation suggests (for smooth problems) a
grid informed by high-order quadrature schemes.
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Remark 2
Let us assume that ε1, . . . , εN are independent realizations of the random variable ε ∼ (δ, σ2)

with δ 6= 0. Then, ĈN,σL is an asymptotically-correct (1− α) confidence interval for E∞L (ν) +
|Ω|δE[ζ(X)]. Therefore, we can neglect the effect of systematic noise if and only if

|Ω|δE[ζ(X)]� 1√
N
ŝeL,N (δ)t1−α/2(N − 1), (15)

where the argument δ at the right-hand side stresses the fact that the sample standard deviation
depends on δ.

2.3.2. Computational procedure Algorithm 1 outlines the computational procedure to generate the
confidence interval ĈN,σL for Ê∞L (ν). Provided that ∆ν

L(ν) is negligible, we can rely on the same
procedure to estimate EL.

Algorithm 1 Confidence region for Ê∞L (ν)

Input N number of measurements

u? : Ωobs → R approximated field

Output ĈN,σL confidence interval for Ê∞L (ν)

1: Draw N independent realizations {xobs
n }n from X ∼ Uniform(Ω), and collect the experimental

results {`obs
n }n.

2: Compute `err
n = `obs

n − `(u?, ν, xobs
n ) for n = 1, . . . , N .

3: ÊL(N, ν) := |Ω|
N

∑N
n=1 `

err
n ζ(xobs

n ).

4: Compute the confidence region ĈN,σL of (13).

The computational cost associated with the procedure is very limited. If the approximated field u?

is discretized through the Finite Element method ([2]), calculation of `(u?, ν, xobs
n ) requires a search

to find the element of the FE triangulation to which xobs
n belongs. For structured grids, this operation

is independent of the mesh size, while for unstructured grids it scales in general with the size of the
mesh. In both cases, the cost is negligible if compared to the cost of acquiring experimental data.

If sensor locations should be selected among a set of grid points {xgrid
j }Nj=1 (cf. Remark 1), we

first introduce the functional Lgrid (14) by selecting the weights {wj}Nj=1; then we draw {xobs
n }n

from X ∼ P grid, and we collect the corresponding experimental results {`obs
n }n. The remainder of

the Algorithm (steps 2-4) remains unchanged.

2.4. Variance analysis and output updates

Proposition 2.1 provides a formula for the asymptotic behavior of the square of ŝeobs
L,N defined in

(13).

Proposition 2.1
Let {Xn}n and {εn}n be N independent copies of the two independent random variables X ∼
Uniform(Ω) and ε ∼ (0, σ2). Then, the following limit holds in the almost sure sense:

lim
N→∞

(
ŝeobs
L,N

)2

= |Ω|2
(
V [ζ(X)Fν(e)(X)] + E[ζ(X)2]σ2

)
. (16)

Proof
Recalling the law of large numbers, it is sufficient to show that

V[Zobs] = |Ω|2
(
V [ζ(X)Fν(e)(X)] + E[ζ(X)2]σ2

)
,

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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where Zobs = |Ω|ζ(X)(Fν(e)(X) + ε). Since X and ε are independent, E[f(X) g(ε)] =
E[f(X)]E[g(ε)] for any pair (f, g) of measurable functions (see, e.g., [13, Theorem 10.1]).
Therefore, we obtain

E[Zobs] = E[|Ω|ζ(X)(Fν(e)(X) + ε)]

= |Ω|
(
E[ζ(X)Fν(e)(X))] + E[ζ(X)] E[ε]︸︷︷︸

=0

)
= |Ω|E[ζ(X)Fν(e)(X)],

and

E[
(
Zobs

)2
] = |Ω|2

(
E[(ζ(X)Fν(e)(X))

2
] + E[ζ(X)2] E[ε2]︸ ︷︷ ︸

=σ2

+2E[ζ(X)2Fν(e)(X)] E[ε]︸︷︷︸
=0

)
.

= |Ω|2
(
E[(ζ(X)Fν(e)(X))

2
] + E[ζ(X)2]σ2

)
.

Thesis follows recalling that V[W ] = E[W 2]− (E[W ])
2 for any random variable W .

The limit (16) and the confidence interval (13) show that the variance of the Monte Carlo process
is the sum of two contributions: the first one is related to the accuracy of the state estimate u?, the
second one is related to the magnitude of the noise. The first term vanishes when utrue = u? (perfect
approximation), while the second term vanishes when the measurements are noise-free. Provided
that the noise is small, if the error e = utrue − u? is also small, we can accurately estimate the error
for modest values of N .

Due to the linearity of L, and provided that the finite-ν error is negligible, we can also use our
error estimator ÊL to improve the estimate for the output. We have indeed that

lim
N→∞

L(u?) + ÊL(N, ν) = L(u? −Fν(u?)) + L(Fν(utrue)) ' L(utrue). (17)

Clearly, the variance associated with the processL(u?) + ÊL(N, ν) satisfies (16). On the other hand,
if we apply the Monte Carlo procedure to the true field, we obtain

lim
N→∞

(
ŝeobs
L,N

)2

= |Ω|2
(
V
[
ζ(X)Fν(utrue)(X)

]
+ E[ζ(X)2]σ2

)
.

Thus, by applying the Monte Carlo procedure to the output error instead of to the true field, we can
significantly reduce the variance associated to the process and thus improve the output estimate even
for modest values of N . As stated in the introduction, this idea is related to control variates method
for variance reduction ([24]), and also to multi-level Monte Carlo approaches ([11, 12, 1, 27, 17]).
In section 4, we assess numerically the practical relevance of (17).

2.5. Analysis of the finite-ν error

In section 2.3, we have proposed an actionable procedure to compute a confidence region ĈN,σL for
Ê∞L (ν). In this section, we investigate under what assumptions we can neglect the finite-ν error
∆ν
L(ν) = |EL − Ê∞L (ν)| and then interpret ĈN,σL as an appropriate confidence interval for EL. We

refer to [26, Appendix A] for further details.
We present the error bound for ∆ν

L(ν). We assume that the filter width ν is such that Ων ⊂⊂ Ω;
we further assume that ω(r) ≤M for all r ≥ 0 and for some M > 0. Then, if ∇e ∈ Lq(Ων) for
some q > d, we have

|EL − Ê∞L | ≤ Cων1−d/q|Ω|1/2‖ζ‖L2(Ω)‖∇e‖Lq(Ων), (18)

where Cω depends on the exponent q, on the dimension d, and on the filter shape ω. We observe
that bound (18) is not actionable since ‖∇e‖Lq(Ων) is unknown; in section 4.1, we investigate
numerically the actual magnitude of ∆ν

L(ν) for the problems considered.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme



8 T TADDEI, JD PENN, AT PATERA

Unlike finite-N and finite-noise error, finite-ν error admits a physical interpretation: it is a balance
between the filter width ν and the characteristic spatial length scale of the error field. Furthermore,
finite-ν error is related to the so-called minimum detectable signal in radar systems [22] since it
represents a way of assessing the maximum accuracy of our estimate. However, in radar systems
this concept has a different physical interpretation: it is the ratio between signal and noise.

3. EXPERIMENTAL L2(Ω) A POSTERIORI ERROR ESTIMATOR

3.1. General framework

We now tailor the analysis of section 2 to the a posteriori error estimation of the L2(Ω)-error
E = ‖utrue − u?‖L2(Ω). Due to the nonlinearity of E, the procedure is more involved; however,
the same ideas apply also to this case.

Given {`err
n }Nn=1 introduced in (8), we define the limited observations error estimate

Ê(N, ν) :=

√√√√ |Ω|
N

N∑
n=1

(`err
n )2. (19)

Then, we define the perfect unlimited observations error estimate

Ê∞(ν) := ‖Fν(e)‖L2(Ω). (20)

Finally, we define the finite-ν error

∆ν(ν) := |E − Ê∞(ν)|, (21)

and the combined finite-N and finite-noise error

∆N, σ(N, ν) := |Ê∞(ν)− Ê(N, ν)|. (22)

In the remainder of this section, we first propose a confidence interval for Ê∞(ν), and we present
an error bound for ∆ν(ν).

3.2. Construction of the confidence interval

3.2.1. Finite-noise and finite-N error We first consider the case in which the variance σ2 associated
with the random noise is known a priori. Given X ∼ Uniform(Ω), we define the random
variable Y obs = |Ω|( (Lerr)2 − σ2 ), where Lerr = Fν(e)(X) + ε, and X and ε are assumed to be
independent. We observe that

E
[
Y obs

]
=
(
Ê∞(ν)

)2

. (23)

Therefore, assuming that σ2 is known, and exploiting the positivity of Ê∞(ν), we can apply the
Central Limit Theorem to derive an approximate confidence interval for Ê∞(ν):

ĈN,σ(N, ν, α, σ) =
[
ÊN,σLB (N, ν, α, σ), ÊN,σUB (N, ν, α, σ)

]
=

[√((
Êmod(N, ν, σ)

)2

− 1√
N
t1−α/2(N − 1)ŝeY obs,N

)
+

,√((
Êmod(N, ν, σ)

)2

+
1√
N
t1−α/2(N − 1)ŝeY obs,N

)
+

,

]
.

(24a)

Here, (a)+ = max{a, 0}, the modified estimate Êmod is defined as

Êmod(N, ν, σ) =

√((
Ê(N, ν)

)2

− |Ω|σ2

)
+

, (24b)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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while t1−α/2(N − 1) is the (1− α/2) quantile of the t-distribution with N − 1 degrees of freedom,
and ŝeY obs,N is the sample standard deviation associated with the N independent realizations of
Y obs:

ŝeY obs,N :=

√√√√ 1

N − 1

N∑
n=1

(
|Ω| (`err

n )2 −
(
Ê(N, ν)

)2
)2

. (24c)

We now consider the case in which σ ∈ [σLB, σUB] for some known constants σLB, σUB > 0.
Since ŝeY obs,N is independent of σ2, the noise variance σ2 only shifts the confidence region ĈN,σ

along the real axis. Therefore, finite-N and finite-noise errors can be asymptotically decoupled in
the limit of N →∞. The latter observation helps us manage uncertainty through the value of σ2: if
we are confident that σ ∈ [σLB, σUB], we can modify (24) as follows:

ĈN,σ(N, ν, α, σ) =
[
ÊN,σLB (N, ν, α, σ), ÊN,σUB (N, ν, α, σ)

]
=

[√((
Êmod,LB(N, ν, σ)

)2

− 1√
N
t1−α/2(N − 1)ŝeY obs,N

)
+

,√((
Êmod,UB(N, ν, σ)

)2

+
1√
N
t1−α/2(N − 1)ŝeY obs,N

)
+

,

]
,

(25a)

where Êmod,LB(N, ν, σ), and Êmod,UB(N, ν, σ) are defined as

Êmod,LB(N, ν, σ) =

√((
Ê(N, ν)

)2

− |Ω|σ2
UB

)
+

,

Êmod,UB(N, ν, σ) =

√((
Ê(N, ν)

)2

− |Ω|σ2
LB

)
+

.

(25b)

3.2.2. Computational procedure Algorithm 2 summarizes the computational procedure. Unlike the
case of L2(Ω) outputs, we must provide an estimate for σ2. As for L2(Ω) functionals, if the finite-ν
error is modest, we can employ the same procedure to estimate E.

Algorithm 2 Confidence region for Ê∞(ν)

Input N number of measurements

σLB, σUB lower and upper bound for the noise standard deviation σ

u? : Ωobs → R approximated field

Output ĈN,σ confidence interval for Ê∞(ν)

1: Draw N independent realizations {xobs
n }n from X ∼ Uniform(Ω), and collect the experimental

results {`obs
n }n.

2: Compute `err
n = `obs

n − `(u?, ν, xobs
n ) for n = 1, . . . , N .

3: Ê(N, ν) :=

√
|Ω|
N

∑N
n=1(`err

n )2.

4: Compute the confidence region ĈN,σ of (25).

3.3. Analysis of the finite-ν error

We briefly comment on the finite-ν error ∆ν(ν). With this in mind, we assume that (i) Ων ⊂⊂ Ω,
(ii) ω(r) ≤M for all r ≥ 0 and for some M > 0, and (iii) ∇e ∈ Lq(Ων) for some q > d. Then, it is

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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possible to prove the following estimate

∆ν(ν) ≤ Cω
√
|Ω| ν1−d/q ‖∇e‖Lq(Ων), (26)

where Cω > 0. As for L2(Ω) functionals, finite-ν error ∆ν(ν) depends on the balance between filter
width ν and characteristic spatial length scale of the error field. We refer to [26, Appendix A] for
the proof of (26), and to the numerical results for a rigorous assessment of the practical effect of this
contribution for a controlled synthetic example.

4. NUMERICAL RESULTS

4.1. A synthetic problem

We first assess our computational procedures through a synthetic problem. Towards this end, we
consider the parametric problem:

−∇ · (κ(µ)∇u(µ)) = 0 in Ωobs

κ(µ) ∂u∂n = g on Γ1 ∪ Γ2 ∪ Γ3

u(µ) = 0 on Γ4

(27a)

where Ωobs =
⋃9
i=1 Ωi, and

κ(x, µ) =

{
1 in Ω1,
µi in Ωi+1, i = 1, . . . , 8;

g(x) =

 1 on Γ1,
0 on Γ2,
1− 2x1 on Γ3.

(27b)

Figure 1 shows the computational domain. We consider the domain of interest Ω = Ω5. In order to
assess our method, we generate the true field utrue and the approximate field u? by considering the
solution to (27) obtained using a Finite Element (FE) solver for different choices of the parameter
µ:

utrue = u(µtrue = [1, 1, 1, 1, 1, 1, 1, 1]), u? = u(µ? = [1, 1.2, 1.5, 0.6, 1.6, 1.3, 1.1, 1]).

We resort to a P3 Finite Element discretization withN = 37249 degrees of freedom. Figure 2 shows
the true field and the error field over Ωobs and highlights the domain of interest Ω.

Local experimental observations are assumed to be truncated Gaussians with ν = 2rGauss, and
standard deviation equal to rGauss:

ωd,ν(r) = C(rGauss, d) exp
(
− r2

2r2
Gauss

)
χ{r<2rGauss}(r). (28)

In all the simulations, we consider observations of the form

`obs
n = `

(
utrue, ν, xobs

n

)
+ εn,

where ε1, . . . , εN areN independent random variates of the Gaussian random variable ε ∼ N (0, σ2).

4.1.1. Error in L2(Ω) outputs We first consider the case of L2(Ω) outputs. We wish to estimate the
error associated with the output

L(utrue) =
1

|Ω|

∫
Ω

utrue dx,

corresponding to ζ = 1/|Ω|. For this choice of L, we have

L(utrue) = −1.9588, L(u?) = −1.8464.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 1. Thermal block synthetic problem: computational domain.

(a) utrue (b) utrue − u?

Figure 2. Thermal block synthetic problem: visualization of the true field and of the error field. The domain
Ω is the rectangular region inside the black boundary.

Figure 3 shows the behavior of the error estimator ÊL and of the lower and upper bounds ÊN,σL,LB

and ÊN,σL,UB with respect to N for two values of σ. In this test, we consider α = 0.1, rGauss = 0.1.
We observe that in the noise-free case (σ = 0), ÊL is an accurate approximation of EL for N & 5,
and that ĈN,σL is a meaningful confidence interval for EL for N & 10. By comparing Figure 3(a),
and Figure 3(b), we observe that the convergence with N depends on the magnitude of noise as
expected from the theory (see equation (16)).
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(b) σ = 0.25

Figure 3. Thermal block synthetic problem: (1− α)- confidence interval for the output error (α = 0.1,
rGauss = 0.1, L(utrue − u?) = −0.1124 ).
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Figure 4 shows that we can use our procedure to build a confidence interval for L(utrue). This
observation confirms the result in (17). We observe that we can use our strategy to update the
estimate for L(utrue) for N & 10 in the noise-free case, and for N & 20 in the noisy case.
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(b) σ = 0.25

Figure 4. Thermal block synthetic problem: (1− α)-confidence interval for the output (α = 0.1, rGauss =
0.1, L(utrue) = −1.9288 ).

Figure 5 shows the behavior of the size of the confidence interval, |ĈN,σL |, for two different
choices of σ, and for u? = 0 and u? = u(µ?). We denote by ĈN,σL,1 the region associated with
u? = u(µ?), and by ĈN,σL,2 the region associated with u? = 0. As in the previous test, we set α = 0.1,
rGauss = 0.1. We observe that |ĈN,σL,1 (N = 10)| ≈ |ĈN,σL,2 (N = 150)| in the noise-free case, and
|ĈN,σL,1 (N = 10)| ≈ |ĈN,σL,2 (N = 40)| in the noisy case. The results show that our procedure takes
advantage of the proximity of u? to utrue to reduce the variance of the process. We observe that the
variance reduction strategy is less effective in the presence of experimental noise: this is in good
agreement with estimate (16).
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Figure 5. Thermal block synthetic problem: size of the confidence interval |ĈN,σL | for two different choices
of σ, and for u? = 0 and u? = u(µ?) ( α = 0.1, rGauss = 0.1).

4.1.2. L2(Ω) error We now consider the problem of estimating the L2(Ω) error. Figure 6 shows
the behavior of Ê, Êmod, and the lower and upper bounds ÊN,σLB and ÊN,σ,UB with respect to N and
for two values of σ. In this test, we consider α = 0.1, rGauss = 0.05, and we assume that we know
the value of σ. We observe that our procedure provides a meaningful upper bound for the error for
N & 5 in the noise-free case, and for N & 20 in the noisy case.
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Figure 6. Thermal block synthetic problem: confidence intervals for theL2(Ω) error for two different choices
of σ (α = 0.1, rGauss = 0.05, ‖utrue − u?‖L2(Ω) = 0.1756).

4.1.3. Finite-ν error In Figure 7, we investigate the effect of the finite width ν in output error and
L2(Ω) error estimation†. Figure 7(a) a shows the behavior of ÊL, ÊN,σL,LB and ÊN,σL,UB with respect to
rGauss for N = 2000. Similarly, Figure 7(b) shows the behavior of Ê, ÊN,σLB and ÊN,σUB with rGauss

for the same value of N . We observe that Ê − E ∼ CrGauss as rGauss → 0+: since for our choice of
utrue and u? we have that ∇e is bounded, and recalling that ν = 2rGauss , this empirically confirms
the error bound (26).
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Ê

Ê
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Figure 7. Thermal block synthetic problem: confidence intervals for output error and L2(Ω) error for
different values of rGauss (σ = 0, α = 0.1, N = 2000).

4.1.4. Analysis of the finite-grid case We now consider the case in which sensor locations should
be selected among a set of grid points {xgrid

j }Nj=1. Towards this end, we consider two different
cases: (i) a 10 by 10 grid of equispaced sensors in Ω, and (ii) a 10 by 10 grid associated with the
Gaussian quadrature points in Ω. Figure 8 shows the grids. For the first grid we define Lgrid (14)
using uniform weights wj = 1

100 , while for the second grid we consider the weights associated with
Gaussian quadrature.

Figure 9 shows the behavior of the confidence intervals for EL and for L(utrue). We here set
rGauss = 0.1. We observe that for the Gaussian case results are comparable with the results shown
in Figures 3 and 4; on the other hand, for the uniform case we observe that Lgrid(Fν(e))− L(Fν(e))
is not negligible.

†For rGauss ≥ 0.5, condition Ων ⊂⊂ Ωobs does not hold; in this case, we simply adjust the constant C =
C(rGauss, d, x) in (28) by imposing that `(1, ν, x) = 1 for any x ∈ Ω.
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Figure 8. Thermal block synthetic problem: sensor grids.
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Ê
N,σ

L,LB

Ê
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Figure 9. Thermal block synthetic problem: confidence intervals for the output error and for the output
(σ = 0, rGauss = 0.1, α = 0.1).

4.2. A physical problem

4.2.1. Physical system As our second example, we consider a physical (experimental) system: a
thermal patch problem in which a 1.5mm thick acrylic sheet is heated from behind by a resistive
patch‡. The goal of a data assimilation procedure is to estimate the temperature field over a portion
Ωobs of the external surface of the plate heated by the patch in the steady-state limit. We can then
assess the accuracy of the state estimate with the Monte Carlo procedure developed in this paper.

‡Heat is generated through an electrical resistance. Input power is 0.667W .
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We use an IR camera (Fluke Ti 9) to take measurements in the rectangular region Ωobs =
[−23.85, 23.85]× [−17.85, 17.85]mm centered on the patch. After the patch power is turned on,
we take measurements using a sampling time of 4 seconds until steady state is reached; the
total duration of the experiment is roughly 5 minutes. The external temperature is about 20oC,
roughly constant throughout the experiment. Each surface measurement taken from the IR camera
corresponds to 160× 120 pixel-wise measurements; the pixel size is roughly ∆hdevice = 0.3mm,
which is much smaller than the spatial length scale of the phenomenon of interest. Figure 10 shows
the experimental apparatus: Figure 10(a) shows the IR camera employed to take measurements;
Figure 10(b) shows a section of the experimental apparatus; Figure 10(c) shows the geometry of the
patch, (L̂ = 22.606mm, Ĥ = 9.271mm).

(a)

IR
camera

Patch

(b)

Patch
Ĥ

L̂

(c)

Figure 10. Thermal patch problem. Figure (a): IR camera. Figures (b) and (c): mathematical description of
the acrylic sheet. L̂ = 22.606mm, Ĥ = 9.271mm.

We define the observed thermal field uobs as the spatial field obtained from the IR camera at
steady state and we consider the state estimate u? corresponding to the Finite Element solution to
a properly-tuned steady-heat transfer PDE model (see [26, Chapter 4.5.2]). We also introduce the
domain of interest Ω = (−0.5L̂, 0.5L̂)× (−0.5L̂, 0). Figure 11 shows the observed field uobs, the
error field eobs = uobs − u?, and the domain Ω.

(a) uobs (b) uobs − u?

Figure 11. Thermal patch problem: visualization of the observed field and of the error field. The domain Ω
is the rectangular region inside the black boundary.

The IR camera is a luxury since full-field information is typically not available. In actual practice,
we envision a system with a local sensor or a small sensor array. For this reason, we synthesize
local measurements – the experimental input to our method – from the IR camera data to obtain
`obs
n = `(uobs, ν, xobs

n ), where `(·, ν, ·) is a truncated-Gaussian functional with support in the ball
of radius ν = 6∆hdevice = 1.8mm and standard deviation ν/2. This corresponds to a weighted
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Prepared using nmeauth.cls DOI: 10.1002/nme



16 T TADDEI, JD PENN, AT PATERA

average over roughly 144 pixel-wise measurements. Observation points are chosen as independent
realizations of a discrete uniform distribution over the pixels’ centers. We observe that the IR
camera permits us to conduct convergence studies that would typically not be feasible in actual
field deployment.

We now briefly comment on the noise in the dataset and we define the true field. In Figure 12,
we show two spatial slices of the field uobs − ufilt. The field uobs is obtained directly from the IR
camera, while ufilt is obtained applying a Wiener filter (see, e.g., [14]) based on a 3 by 3 pixel
averaging to the field uobs. Comparing ufilt and uobs, we can deduce that the magnitude of noise in
the measurements is approximately ±0.5oC, roughly independent of the spatial position. In what
follows, we set utrue = ufilt. We emphasize that measurements are computed based on uobs.

(a) uobs
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Figure 12. Thermal patch problem: comparison between filtered and unfiltered fields. Figure (a): observed
thermal field uobs. Figures (b) and (c): spatial slices of the difference uobs − ufilt.

4.2.2. Numerical results We wish to estimate the error associated with the output

L(utrue) =
1

|Ω|

∫
Ω

utrue dx,

and the L2(Ω) error over Ω, ‖utrue − u?‖L2(Ω). We observe that

L(utrue) = 50.0640oC, L(u?) = 52.5965oC,

and§

‖utrue − u?‖L2(Ω) = 0.0529[Co ×m].

Figure 13 shows the results. We observe that for N ' 10 the 90% confidence interval for the
output error contains the true value, and has a half-amplitude equal to 1oC (Figure 13(a)); therefore,
we can use ÊL to update the estimate of the output (Figure 13(b)). Similarly, we are able to construct
meaningful confidence intervals for the L2(Ω) error forN & 10 (Figure 13(c)). This shows that, also
in this case, our procedure is able to provide accurate confidence intervals for modest values of N .

5. CONCLUSIONS AND PERSPECTIVES

We propose a Monte Carlo experimental procedure that provides confidence intervals for the L2(Ω)
error in state and the signed error in L2(Ω) outputs. The procedure relies on a state estimate u?

for the true field utrue and on N possibly noisy local experimental functionals, and is based on the
identification of three different sources of error: the finite-ν, the finite-N error, and the finite-noise
error. Finite-N and finite-noise errors can be bound through an asymptotically rigorous statistical

§To provide a benchmark value, we observe that ‖utrue − L(utrue)‖L2(Ω) = 0.1275[Co ×m].
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Figure 13. Thermal patch: confidence intervals for the output error, the output, and the L2(Ω) error (α = 0.1,
rGauss = 0.09mm, L(utrue − u?) = −2.5325oC, ‖utrue − u?‖L2(Ω) = 0.0529[Co ×m]).

procedure. On the other hand, the effect of ν depends on the spatial scale of the field and on the
transducer resolution, and can only be assessed on a case-by-case basis.

We now identify a number of open problems that are the subject of ongoing research. First,
we wish to extend our approach to heteroscedastic noise and to more general sampling strategies.
Second, we wish to consider time-dependent problems. In this respect, for sequential estimates,
we distinguish between the case of fixed sensors and the case of movable sensors. For the former,
our approach seems to be readily extendable; for the latter, we envision that the error estimation
procedure should be coupled with adaptive strategies for the choice of the transducer paths.
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