Model order reduction methods for

 data assimilation;state estimation, and structural health monitoring

T Taddei

Massachusetts Institute of Technology
PhD Defense, September 13th, 2016

Advisor: Prof. AT Patera

Objective

Objective of the present work

Develop model reduction techniques to integrate parametrized mathematical models ($\mu \mathrm{PDEs}$), and experimental observations
for prediction.
State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).

Objective of the present work

Develop model reduction techniques to integrate parametrized mathematical models ($\mu \mathrm{PDEs}$), and experimental observations
for prediction.
State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).

Model Order Reduction for parametrized PDEs (pMOR)
pMOR objective: reduce the marginal computational cost associated with the solution to parametrized models.

Typical applications:

many-query: design and optimization, UQ; real-time/interactive: control, education.

A pMOR procedure should address two separate tasks:

1. data compression (solution manifold \rightarrow linear space)
\Rightarrow POD, Greedy,...
2. offline-online computational decomposition
\Rightarrow Galerkin projection, interpolation,...

Model Order Reduction for parametrized PDEs (pMOR)

Claim: recent advances in pMOR offer new opportunities for the integration of μ PDEs and data.

We rely on pMOR techniques for

1. data compression,
2. offline-online computational decomposition,
as building blocks for our data assimilation strategies.

Contributions

We propose and analyze two computational strategies:

1. Parametrized-Background Data-Weak (PBDW) approach for state estimation.
2. Simulation-Based Classification (SBC) for damage identification.

PBDW: Y Maday, AT Patera, JD Penn, M Yano, 2015a, 2015b; T Taddei, 2016 (under review).
SBC: T Taddei, JD Penn, M Yano, AT Patera, 2016.

Outline of the presentation

Part I: Simulation-Based Classification (SBC)
Formulation, role of pMOR .
Part II: PBDW approach
Formulation, role of pMOR, a priori error analysis.
We apply our techniques to two companion experiments.

Topics not covered in this talk (but included in the thesis) SBC: error analysis.
PBDW: a posteriori error analysis, localised state estimation, adaptation.

Acknowledgements

James D Penn (MIT)
Conception and implementation of the experiments
Data acquisition
Calibration
Masayuki Yano (University of Toronto)
High-order FE code
Mathematical formulation
Numerical analysis

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

A target application: monitoring of ship loaders ${ }^{1}$

Objective: monitor the integrity of a ship loader during the operations

${ }^{1}$ Photo credit: www.directindustry.com

Our example: the microtruss system

Our example: the microtruss system

Our example: the microtruss system

Goal: detect the presence of added mass on top of block $(1,4)$ and block $(4,4)$

Apparatus: voice coil actuator; camera\&stroboscope
Input: x_{2}-displacement at prescribed frequencies $\left\{f^{q}\right\}$;
Exp data: x_{2}-displacement of blocks' centers $\left\{c_{i, j}^{\exp }\left(t^{\ell}, f^{q}\right)\right\}$.
Data reduction:
$c_{i, j}^{\exp }\left(t^{\ell}, f^{q}\right) \approx \bar{A}_{i, j}^{\exp }\left(f^{q}\right) \cos \left(2 \pi f^{q} t^{\ell}+\bar{\phi}_{i, j}^{\exp }\left(f^{q}\right)\right)$
Exp outputs: $A_{i, j}^{\exp }\left(f^{q}\right):=\frac{A_{\text {nom }}}{\overline{A_{2,1}} \exp (f q)} \bar{A}_{i, j}^{\exp }\left(f^{q}\right)$.

Definition of the QOI: damage function

$$
\begin{aligned}
& \text { Define } s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, \text { and } \\
& \qquad s_{R}:=1+\frac{V_{\text {right }}}{V_{\text {nom }}} . \\
& \text { Define } y=\bar{f}^{\text {dam }}\left(s_{L}, s_{R}\right),
\end{aligned}
$$

damage

$$
y= \begin{cases}1 & s_{L}, s_{R} \leq 1.5 \\ 2 & s_{L}>1.5, s_{R} \leq 1.5 \\ 3 & s_{L} \leq 1.5, s_{R}>1.5 \\ 4 & s_{L}, s_{R}>1.5\end{cases}
$$

The QOI y is the state of damage associated with the structure.

Definition of the QOI: damage function

 $y=2 \square \square \square$

$$
y=3
$$

Engineering objective

Generate a decision rule g that maps experimental outputs

$$
\left\{A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right)\right\}_{i, j, q}
$$

to the appropriate configuration state of damage

$$
y=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1,2,3,4\} ;
$$

for any given system configuration $\mathcal{C}=\left(s_{L}, s_{R}, \ldots\right)$.
Perspective: objective of Structural Health Monitoring (SHM)

Level II: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012

Engineering objective

Generate a decision rule g that maps experimental outputs

$$
\left\{A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right)\right\}_{i, j, q}
$$

to the appropriate configuration state of damage

$$
y=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1,2,3,4\} ;
$$

for any given system configuration $\mathcal{C}=\left(s_{L}, s_{R}, \ldots\right)$.
Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Mathematical best-knowledge (bk) model

Set

$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate
$A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j), and $u^{\mathrm{bk}}\left(\cdot ; f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:
μ incomplete representation of $C_{\text {; }}$
$\mathcal{G}_{\text {elast-helmhotz }}$ bk-parametrized mathematical model.

Mathematical best-knowledge (bk) model
Set
$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate
$A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}$
where $x_{i, j}$ is the center of block (i, j), and $u^{\mathrm{bk}}\left(\cdot ; f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:

Mathematical best-knowledge (bk) model
Set
$\mathcal{C}=\left(\mu:=\left[s_{L}=1+\frac{V_{\text {left }}}{V_{\text {nom }}}, s_{R}=1+\frac{V_{\text {right }}}{V_{\text {nom }}}, \alpha, \beta, E\right], \ldots\right)$,
where $\quad \alpha, \beta \quad$ Rayleigh-damping coefficients, and $E \quad$ Young's modulus.
Estimate

$$
A_{i, j}^{\exp }\left(f^{q} ; \mathcal{C}\right) \approx A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right):=A_{\mathrm{nom}} \frac{\left|u_{2}^{\mathrm{bk}}\left(x_{i, j} ; f^{q}, \mu\right)\right|}{\left|u_{2}^{\mathrm{bk}}\left(x_{2,1} ; f^{q}, \mu\right)\right|}
$$

where $x_{i, j}$ is the center of block (i, j), and $u^{\mathrm{bk}}\left(\cdot ; f^{q}, \mu\right)$ solves the parametrized PDE:

$$
\mathcal{G}_{\text {elast-helmhotz }}\left(u^{\mathrm{bk}}\left(f^{q}, \mu\right) ; f^{q} ; \mu\right)=0+\mathrm{BC}
$$

Interpretation:
μ incomplete representation of \mathcal{C};
$\mathcal{G}_{\text {elast-helmhotz }}$ bk-parametrized mathematical model.

Feature extraction

Define the feature map $\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ that takes as input the experimental (or bk) outputs

$$
\left\{A_{i, j}^{\bullet}\left(f^{q} ; \star\right)\right\}_{i, j, q},(\cdot=\exp , \mathrm{bk}, \star=\mathcal{C}, \mu)
$$

and returns the Q features

$$
z^{\bullet}(\star)=\mathcal{F}\left(\left\{A_{i, j}^{\bullet}\left(f^{q} ; \star\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}
$$

$\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ should be chosen such that $z^{\circ}(\star)$ is sensitive to the expected damage; $z^{\circ}(\star)$ is insensitive to noise.

Mathematical objective
Given the features $z^{\mathrm{bk}}(\mu)=\mathcal{F}\left(\left\{A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}$, we seek $g: \mathbb{R}^{Q} \rightarrow\{1, \ldots, 4\}$ that minimizes
$R^{\mathrm{bk}}(g)=\int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}\left(g\left(\mathbf{z}^{\mathrm{bk}}(\mu)\right) \neq f^{\mathrm{dam}}(\mu)\right) w^{\mathrm{bk}}(\mu) d \mu$,
where
$\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right] \in \mathcal{P}^{\mathrm{bk}}$ anticipated configuration;
$\mathcal{P}^{\mathrm{bk}}$ anticipated configuration set;
$\mu \mapsto f^{\mathrm{dam}}(\mu)=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1, \ldots, 4\}$ damage;
$\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ feature map (to be defined);
$\mu \mapsto w^{\mathrm{bk}}(\mu)$ user-defined weight $\left(\leftrightarrow P_{w^{\mathrm{bk}}}\right)$.

Mathematical objective
Given the features $z^{\mathrm{bk}}(\mu)=\mathcal{F}\left(\left\{A_{i, j}^{\mathrm{bk}}\left(f^{q} ; \mu\right)\right\}_{i, j, q}\right) \in \mathbb{R}^{Q}$, we seek $g: \mathbb{R}^{Q} \rightarrow\{1, \ldots, 4\}$ that minimizes
$R^{\mathrm{bk}}(g)=\int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}\left(g\left(\mathrm{z}^{\mathrm{bk}}(\mu)\right) \neq f^{\mathrm{dam}}(\mu)\right) w^{\mathrm{bk}}(\mu) d \mu$,
where $\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right] \in \mathcal{P}^{\mathrm{bk}}$ anticipated configuration; $\mathcal{P}^{\mathrm{bk}}$ anticipated configuration set; $\mu \mapsto f^{\mathrm{dam}}(\mu)=\bar{f}^{\mathrm{dam}}\left(s_{L}, s_{R}\right) \in\{1, \ldots, 4\}$ damage; $\mathcal{F}: \mathbb{R}^{16 Q_{f}} \rightarrow \mathbb{R}^{Q}$ feature map (to be defined); $\mu \mapsto w^{\mathrm{bk}}(\mu)$ user-defined weight ($\leftrightarrow P_{w^{\mathrm{bk}}}$).

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Simulation-Based Classification

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {IId }} P_{w^{\text {bk }}}$
2. Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{z^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$
3. $\left[g_{M}^{\star}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{b \mathrm{bk}}\right)$

Online stage: (during operations)

1. Acquire the new outputs $\left\{A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right\}_{i, j, q}$.
2. Compute $\bar{z}^{\exp }=\mathcal{F}\left(A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right)$.
3. Return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$.

Taddei, Penn, Yano, Patera, 2016.

Simulation-Based Classification

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {lid }} P_{w^{\text {bk }}}$
2. Generate $\mathcal{D}_{M}^{\mathrm{bk}}=\left\{z^{\mathrm{bk}}\left(\mu^{m}\right), f^{\mathrm{dam}}\left(\mu^{m}\right)\right\}_{m=1}^{M}$
3. $\left[g_{M}^{\star}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{b \mathrm{bk}}\right)$

Online stage: (during operations)

1. Acquire the new outputs $\left\{A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right\}_{i, j, q}$.
2. Compute $\bar{z}^{\exp }=\mathcal{F}\left(A_{i, j}^{\exp }\left(f^{q} ; \overline{\mathcal{C}}\right)\right)$.
3. Return the label $g_{M}^{\star}\left(\bar{z}^{\exp }\right)$.

Taddei, Penn, Yano, Patera, 2016.

Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities:no need to estimate $\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right]$
(which includes nuisance variables α, β, E)
non-intrusive approach
(it requires only forward solves)
Challenge: generation of $\mathcal{D}_{M}^{\mathrm{bk}}$
\Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate $\mathcal{D}_{M}^{\mathrm{bk}}$.

Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities:no need to estimate $\mu=\left[s_{L}, s_{R}, \alpha, \beta, E\right]$ (which includes nuisance variables α, β, E) non-intrusive approach
(it requires only forward solves)
Challenge: generation of $\mathcal{D}_{M}^{\mathrm{bk}}$
\Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate $\mathcal{D}_{M}^{\mathrm{bk}}$.

Perspectives: a ship loader model ${ }^{2}$

Cost to build $\mathcal{D}_{M}^{\mathrm{bk}}=M \times Q_{f} \times$ cost per simulation

FE model ($\approx 5 \cdot 10^{6}$ dofs)
 cost per simulation $\approx 43^{\prime}$ $M=10^{4}, Q_{f}=10 \Rightarrow 8$ years

ROM model (PR-scRBE) cost per simulation $\approx 5^{\prime \prime}$

$$
M=10^{4}, Q_{f}=10 \Rightarrow 6 \text { days }
$$

\Rightarrow pMOR enables the use of mathematical models in the simulation-based framework.
${ }^{2}$ Simulations are performed by Akselos S.A. using PR-scRBE.

Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{\text {iid }} P_{w^{\text {bk }}}$
2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathrm{z}^{\mathrm{bk}}(\mu)$
2.b Use the ROM to generate the dataset $\mathcal{D}_{M}^{\text {bk }}$
2. $\left[g_{M}^{\star}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{\text {bk }}\right)$
pMOR is employed only in the generation of the dataset;
If M is sufficiently large, the cost of 2 .a is negligible compared to the cost of 2.b (many-query context).

Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate $\mu^{1}, \ldots, \mu^{M} \overbrace{\sim}^{i i d} P_{w^{\text {bk }}}$
2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathrm{z}^{\mathrm{bk}}(\mu)$
2.b Use the ROM to generate the dataset $\mathcal{D}_{M}^{\mathrm{bk}}$
2. $\left[g_{M}^{\star}\right]=$ Supervised-Learning-alg $\left(\mathcal{D}_{M}^{\text {bk }}\right)$
pMOR is employed only in the generation of the dataset;
If M is sufficiently large, the cost of $2 . a$ is negligible compared to the cost of $2 . b$ (many-query context).

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Choice of $\mathcal{P}^{b k}$

We choose upper bounds for s_{L}, s_{R} a priori.
We choose lower and upper bounds for α, β, E using textbook values and a preliminary experiment for $s_{L}=s_{R}=1$.

(explanation: $\min A_{1,1}^{\mathrm{bk}}=\min _{\mu=(1,1, \alpha, \beta, E) \in \mathcal{P}^{\mathrm{bk}}} A_{1,1}^{\mathrm{bk}}(\mu, f)$)

Choices of the features

Introduce

$$
z_{1}^{\mathrm{bk}}(\cdot)=\frac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, z_{2}^{\mathrm{bk}}(\cdot)=\frac{A_{2,4}^{\mathrm{bk}}(\cdot)+A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot)+A_{4,1}^{\mathrm{bk}}(\cdot)} .
$$

and define $z_{\ell}^{\mathrm{bk}}(\mu)=\left[z_{\ell}^{\mathrm{bk}}\left(f^{1} ; \mu\right), \ldots, z_{\ell}^{\mathrm{bk}}\left(f^{Q_{f}} ; \mu\right)\right]$.

Choices of the features: motivation

Rationale: z_{1} detects asymmetry in the structure; z_{2} detects added mass on corners.

Classification procedure
Given $z_{1}^{\exp }, z_{2}^{\exp }$,
Level 1: distinguish between $\{1,4\},\{2\}$ and $\{3\}$ based on $\mathrm{z}_{1}^{\exp }$;
Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on $z_{2}^{\exp }$.

From the learning perspective, Level 1 corresponds to a 3way classification problem; Level 2 corresponds to a 2 way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees, NMC^{3}.
${ }^{3}$ Implementation is based on off-the-shelf Matlab functions.

Classification procedure

Given $z_{1}^{\exp }, z_{2}^{\exp }$,
Level 1: distinguish between $\{1,4\},\{2\}$ and $\{3\}$ based on $\mathrm{z}_{1}^{\exp }$;
Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on $z_{2}^{\exp }$.

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2 way classification problem.
Algorithms used: SVM, ANN, kNN, decision trees, $N M C^{3}$.
${ }^{3}$ Implementation is based on off-the-shelf Matlab functions.

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):

Build a ROM for the state $u^{\mathrm{bk}}(f ; \mu), f \in \mathcal{I}_{f}, \mu \in \mathcal{P}^{\mathrm{bk}}$,
Use the ROM to compute $\left(f^{q}, \mu^{m}\right) \mapsto A_{i, j}^{b k}\left(f^{q} ; \mu^{m}\right)$ for $m=1, \ldots, M$ and $q=1, \ldots, Q_{f}\left(=M Q_{f}\right.$ PDE solves).

Computational summary:

Finite Element (FE): 14670 dof,
$\approx 0.18[\mathrm{~s}]$ for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost $\approx 24[\mathrm{~s}]$, $\approx 4.4 \cdot 10^{-3}[\mathrm{~s}]$ for each PDE query.
$\Rightarrow R B$ is advantageous if $M Q_{f} \gtrsim 180$
(we consider $M Q_{f} \approx 10^{5}$).

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):

Build a ROM for the state $u^{\mathrm{bk}}(f ; \mu), f \in \mathcal{I}_{f}, \mu \in \mathcal{P}^{\mathrm{bk}}$,
Use the ROM to compute $\left(f^{q}, \mu^{m}\right) \mapsto A_{i, j}^{b \mathrm{k}}\left(f^{q} ; \mu^{m}\right)$ for $m=1, \ldots, M$ and $q=1, \ldots, Q_{f}\left(=M Q_{f}\right.$ PDE solves).

Computational summary:

Finite Element (FE): 14670 dof, $\approx 0.18[\mathrm{~s}]$ for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost $\approx 24[\mathrm{~s}]$, $\approx 4.4 \cdot 10^{-3}[\mathrm{~s}]$ for each PDE query.
$\Rightarrow R B$ is advantageous if $M Q_{f} \gtrsim 180$
(we consider $M Q_{f} \approx 10^{5}$).

Results (synthetic data)

Test

1. Generate a dataset $\mathcal{D}_{N_{\text {train }}}^{\text {bk }}, N_{\text {train }}=10^{4}, Q_{f}=9$;
2. Use M points for learning, $N_{\text {train }}-M$ for testing; 3. Average over 100 partitions.

Memo:
$R^{\mathrm{bk}}(g)=0$
\Rightarrow no mistakes.
$R^{\mathrm{bk}}(g)=1$
\Rightarrow always wrong.

Strong dependence on $M \Rightarrow$ importance of pMOR.

Results (experimental data)

Test

1. Consider 5 different experimental system configurations, and perform 3 independent trials (=15 exp datapoints).
2. Train based on $M=7 \cdot 10^{3}$ synthetic datapoints.
3. Average over 100 partitions of the synthetic dataset.

	bk-risk $R^{\text {bk }}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN $(k=5)$	0.0050	0
ANN $(10$ layers $)$	0.0026	0.6000
NMC	0.0661	0

Results (experimental data)

Test

1. Consider 5 different experimental system configurations, and perform 3 independent trials ($=15 \exp$ datapoints).
2. Train based on $M=7 \cdot 10^{3}$ synthetic datapoints.
3. Average over 100 partitions of the synthetic dataset.

	bk-risk $R^{\text {bk }}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN $(\mathrm{k}=5)$	0.0050	0
ANN $(10$ layers $)$	0.0026	0.6000
NMC	0.0661	0

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Towards the application to real problems

Challenges

Parametrization of damage
damage is a local phenomenon,
\Rightarrow component-based pMOR
Choice of features
automated feature identification ${ }^{4}$.

${ }^{4}$ In collaboration with Prof. D Bertsimas, C Pawlowski (MIT).

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Thermal patch experiment
Objective: estimate the temperature field over the surface Ω.

Refined goal and experimental apparatus
Practical applications: local probes.
Refined goal: given $\ell_{m}^{\text {obs }} \approx u^{\text {true }}\left(x_{m}^{\text {obs }}\right), x_{m}^{\text {obs }} \in \Omega$, estimate $u^{\text {true }}$ over Ω.

Our apparatus:
 IR camera

Full-field information
\Rightarrow performance assessment.

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Mathematical best-knowledge (bk) model

Estimate the steady-state temperature field as

$$
\begin{cases}-\Delta u^{\mathrm{bk}}=0, & \text { in } \Omega^{\mathrm{bk}}, \\ \kappa \partial_{n} u^{\mathrm{bk}}+\gamma\left(u^{\mathrm{bk}}-\Theta^{\mathrm{room}}\right)=C \chi_{\Gamma^{\mathrm{patch}}} & \text { on } \Gamma^{\mathrm{in}}, \\ \kappa \partial_{n} u^{\mathrm{bk}}=0 & \text { on } \partial \Omega^{\mathrm{bk}} \backslash \Gamma^{\mathrm{in}},\end{cases}
$$

$\Theta^{\text {room }}$ room temperature $\left(=20^{\circ} \mathrm{C}\right)$;
κ thermal conductivity;
γ convective heat transfer coefficient;
C incoming flux (patch \rightarrow plate).
$\Rightarrow \mu:=[\gamma / \kappa, C / \kappa] \in \mathcal{P}^{\mathrm{bk}}$

Mathematical best-knowledge (bk) model

Bk solution manifold

Define the bk solution manifold
$\mathcal{M}^{\mathrm{bk}}=\left\{\left.u^{\mathrm{bk}}(\mu)\right|_{\Omega}: \quad \mu \in \mathcal{P}^{\mathrm{bk}}\right\} \subset \mathcal{U}=\mathcal{U}(\Omega)$
$\mathcal{M}^{\text {bk }}$ takes into account parametrized uncertainty in the system.
$\mathcal{M}^{\text {bk }}$ does not take into account non-parametric uncertainty in the system:
nonlinear effects due to natural convection, heat-exchange between the patch and the sheet.

General idea

Given $\mathcal{M}^{\mathrm{bk}}$, define $\mathcal{Z}_{N}=\operatorname{span}\left\{\zeta_{n}\right\}_{n=1}^{N}$ such that

$$
\sup _{\mu} \inf _{z}\left\|\left.u^{\mathrm{bk}}(\mu)\right|_{\Omega}-z\right\| \text { is small. }
$$

Then, given measurements $\ell_{1}^{\text {obs }}, \ldots, \ell_{M}^{\text {obs }}$,
step 1. find $z^{\star} \in \mathcal{Z}_{N}$ such that $z^{\star} \approx u^{\text {true }}$
step 2. find $\eta^{\star} \in \mathcal{U}$ such that $\eta^{\star} \approx u^{\text {true }}-z^{\star}$
step 3. return the state estimate $u^{\star}=z^{\star}+\eta^{\star}$.

Variational formulation

Given the Hilbert space $(\mathcal{U}=\mathcal{U}(\Omega),\|\cdot\|)$, introduce $\ell_{1}^{o}, \ldots, \ell_{M}^{o} \in \mathcal{U}^{\prime}$ such that

$$
\ell_{m}^{\text {obs }} \approx \ell_{m}^{0}\left(u^{\text {true }}\right), m=1, \ldots, M .
$$

Define $u_{\xi}^{\star}=z_{\xi}^{\star}+\eta_{\xi}^{\star}$ to minimise

$$
\min _{(z, \eta) \in \mathcal{Z}_{N} \times \mathcal{U}} \xi\|\eta\|^{2}+\frac{1}{M} \sum_{m=1}^{M}\left(\ell_{m}^{o}(z+\eta)-\ell_{m}^{\mathrm{obs}}\right)^{2} .
$$

Computation of z_{ξ}^{\star} corresponds to a weighted LS problem.
Computation of η_{ξ}^{\star} corresponds to a generalized smoothing problem based on $\ell_{m}^{\text {err }}=\ell_{m}^{\text {obs }}-\ell_{m}^{0}\left(z_{\xi}^{\star}\right) \approx \ell_{m}^{0}\left(u^{\text {true }}-z_{\xi}^{\star}\right)$.

Variational formulation

Given the Hilbert space $(\mathcal{U}=\mathcal{U}(\Omega),\|\cdot\|)$, introduce $\ell_{1}^{o}, \ldots, \ell_{M}^{o} \in \mathcal{U}^{\prime}$ such that

$$
\ell_{m}^{\text {obs }} \approx \ell_{m}^{0}\left(u^{\text {true }}\right), m=1, \ldots, M .
$$

Define $u_{\xi}^{\star}=z_{\xi}^{\star}+\eta_{\xi}^{\star}$ to minimise

$$
\min _{(z, \eta) \in \mathcal{Z}_{N} \times \mathcal{U}} \xi\|\eta\|^{2}+\frac{1}{M} \sum_{m=1}^{M}\left(\ell_{m}^{o}(z+\eta)-\ell_{m}^{\mathrm{obs}}\right)^{2} .
$$

Computation of z_{ξ}^{\star} corresponds to a weighted LS problem. Computation of η_{ξ}^{\star} corresponds to a generalized smoothing problem based on $\ell_{m}^{\text {err }}=\ell_{m}^{\text {obs }}-\ell_{m}^{0}\left(z_{\xi}^{\star}\right) \approx \ell_{m}^{0}\left(u^{\text {true }}-z_{\xi}^{\star}\right)$.

Interpretation

Terminology:

\mathcal{Z}_{N} background space;
$z^{\star} \in \mathcal{Z}_{N}$ deduced background;
η^{\star} update;
z^{\star} addresses parametrized uncertainty in the model, while η^{\star} addresses non-parametric uncertainty in the model.

Solution to

$$
\min _{(z, \eta) \in \mathbb{Z}_{N} \times \mathcal{U}} \text { is simpler than }
$$

Construction of \mathcal{Z}_{N} is a pMOR problem.
data compression

Interpretation

Terminology:

\mathcal{Z}_{N} background space;
$z^{\star} \in \mathcal{Z}_{N}$ deduced background;
η^{\star} update;
z^{\star} addresses parametrized uncertainty in the model, while η^{\star} addresses non-parametric uncertainty in the model.

Solution to $\min _{(z, \eta) \in \mathcal{Z}_{N} \times \mathcal{U}}$ is simpler than $\min _{(z, \eta) \in \mathcal{M}^{\text {bk }} \times \mathcal{U}}$.
Construction of \mathcal{Z}_{N} is a pMOR problem.
data compression

Solution representation

The update is of the form

$$
\eta_{\xi}^{\star}(\cdot)=\sum_{m=1}^{M} \eta_{\xi, m}^{\star} R_{\mathcal{U}} \ell_{m}^{0}(\cdot) \in \mathcal{U}_{M}:=\operatorname{span}\left\{R_{\mathcal{U}} \ell_{m}^{0}\right\}_{m=1}^{M},
$$

where $R_{\mathcal{U}}: \mathcal{U}^{\prime} \mapsto \mathcal{U}$ depends on $(\mathcal{U},\|\cdot\|)$.
For $\ell_{m}^{o}=\delta_{x_{m}^{\circ}}$ and suitable $(\mathcal{U},\|\cdot\|)$,

$$
\begin{array}{r}
R_{\mathcal{U}} \ell_{m}^{\circ}(\cdot)=K_{\gamma}\left(\cdot, x_{m}^{\mathrm{obs}}\right)=\phi\left(\gamma\left\|\cdot-x_{m}^{\mathrm{obs}}\right\|_{2}\right) \Rightarrow \text { connection } \\
\text { with Kernel methods. }
\end{array}
$$

Bennett, 1985, Kimeldorf, Wahba, 1971;
J Krebs, A Louis, H Wendland, 2009.

Contributions

Maday et al, 2015

two-level mechanism to accommodate anticipated/ unanticipated uncertainty use of pMOR to generate \mathcal{Z}_{N};

This thesis

adaptive selection of ξ
\Rightarrow rigorous treatment of noisy measurements; adaptive selection of $\|\cdot\|$ for pointwise measurements \Rightarrow improved convergence with M. Localized state estimation ($\Omega \subset \Omega^{\mathrm{bk}}, \mu \in \mathbb{R}^{P}, P \gg 1$); not covered in this talk.

PBDW approach for state estimation

- An example: a thermal patch configuration - The PBDW approach
- Application to the thermal patch problem
- A priori error analysis - Application to a synthetic problem

Details

Observations: $\ell_{m}^{\text {obs }}=u^{\mathrm{obs}}\left(\chi_{i_{m} \mathrm{o}_{m}}^{\mathrm{obs}}\right),\left(\Rightarrow \ell_{m}^{\circ}=\delta_{\chi_{i_{m}^{\mathrm{obs}} \mathrm{s}_{m}}}\right)$
$x_{i_{m} j_{m}}^{\text {obs }}$ center of the $\left(i_{m}, j_{m}\right)$ pixel ${ }^{5}$.
Background: $\left\{\mathcal{Z}_{N}\right\}_{N}$ generated using the weak-Greedy ${ }^{6}$ algorithm;

Kernel: ${ }^{7} K_{\gamma}\left(x, x^{\prime}\right)=\phi\left(\gamma\left\|x-x^{\prime}\right\|_{2}\right)$,

$$
\phi(r)=(1-r)_{+}^{4}(4 r+1),\left(\mathcal{U}=H^{2.5}\left(\mathbb{R}^{2}\right)\right) .
$$

${ }^{5}$ The IR camera returns 160×120 pixel-wise measurements.
${ }^{6}$ G Rozza, DBP Huynh, AT Patera, 2008.
${ }^{7} \mathrm{H}$ Wendland, 2004.

Numerical results $(N=2, M=25)$: step 1
step 1. find $z^{\star} \in \mathcal{Z}_{N}$ such that $z^{\star} \approx u^{\text {true }}$

Numerical results $(N=2, M=25)$: step 2
step 2. find $\eta^{\star} \in \mathcal{U}$ such that $\eta^{\star} \approx u^{\text {true }}-z^{\star}$

$u^{\text {obs }}-z_{\xi}^{\star}$

$$
\eta_{\xi}^{\star}
$$

Numerical results $(N=2, M=25)$: step 3
step 3. return the state estimate $u^{\star}=z^{\star}+\eta^{\star}$.

u_{ξ}^{\star}

Numerical results $(N=0, M=25)$: step 3
step 3. return the state estimate $u^{\star}=z^{\star}+\eta^{\star}$.

$$
u_{\xi}^{\star}
$$

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Preliminaries

Suppose

$$
y_{m}=u^{\text {true }}\left(x_{m}^{\text {obs }}\right)+\epsilon_{m}, \quad m=1, \ldots, M
$$

Define the fill distance:

$$
h_{M}:=\sup _{x \in \Omega} \min _{m}\left\|x-x_{m}^{\mathrm{obs}}\right\|_{2} ;
$$

Suppose quasi-uniform grid:

$$
h_{M} \sim M^{-1 / d}, \quad \Omega \subset \mathbb{R}^{d} .
$$

Systematic noise: $\left|\epsilon_{m}\right| \leq \delta$
Homoscedastic noise:

A prior error analysis: $\left|\epsilon_{m}\right| \leq \delta$

Suppose: $\mathcal{U}=H^{\tau}\left(\mathbb{R}^{d}\right), \tau>d / 2, u^{\text {true }} \in \mathcal{U}, \mathcal{Z}_{N} \subset \mathcal{U}$; $h_{M} \sim M^{-1 / d} ;$
$\Rightarrow\left\|u^{\text {true }}-u_{\xi}^{\star}\right\|_{L^{2}(\Omega)}^{2} \leq C_{N}\left(h_{M}^{2 \tau}\left(2\left\|\Pi_{\mathcal{Z}_{\frac{1}{N}}} u^{\text {true }}\right\|_{\mathcal{U}}+\frac{\delta}{2} \frac{1}{\sqrt{\xi}}\right)^{2}\right.$

$$
\left.+\left(\delta+\frac{\sqrt{\xi}}{2}\left\|\Pi_{\mathcal{Z}_{\frac{1}{N}}} u^{\text {true }}\right\|_{\mathcal{U}}\right)^{2}\right)
$$

$\xi^{\mathrm{opt}}=\left(\frac{\delta}{\left\|\Pi_{\mathcal{Z}_{N}^{1}}^{u^{\text {true }}}\right\|_{U}} h_{M}^{2 \tau}\right)^{2 / 3} ;$
If $\delta=0 \Rightarrow\left\|u^{\text {true }}-u_{\xi, \gamma}^{\star}\right\|_{L^{2}(\Omega)}^{2} \leq C_{N}\left\|\Pi_{\mathcal{Z}_{N}^{\prime}} u^{\text {true }}\right\|_{\mathcal{U}}^{2}\left(h_{M}^{2 \tau}+\xi\right)$
$\mathcal{Z}_{N}=\emptyset \Rightarrow$ J Krebs, A Louis, H Wendland, 2009.

A priori error analysis: $\left|\epsilon_{m}\right| \leq \delta$
Suppose: $\mathcal{U}=H^{\tau}\left(\mathbb{R}^{d}\right), \tau>d / 2, u^{\text {true }} \in \mathcal{U}, \mathcal{Z}_{N} \subset \mathcal{U}$; $h_{M} \sim M^{-1 / d} ;$
$\Rightarrow\left\|u^{\text {true }}-u_{\xi}^{\star}\right\|_{L^{2}(\Omega)}^{2} \leq C_{N}\left(h_{M}^{2 \tau}\left(2\left\|\Pi_{\mathcal{Z}_{\frac{N}{\prime}}} u^{\text {true }}\right\|_{\mathcal{U}}+\frac{\delta}{2} \frac{1}{\sqrt{\xi}}\right)^{2}\right.$

$$
\left.+\left(\delta+\frac{\sqrt{\xi}}{2}\left\|\Pi_{\mathcal{Z}_{\bar{N}}} u^{\text {true }}\right\|_{\mathcal{U}}\right)^{2}\right)
$$

$\xi^{\mathrm{opt}}=\left(\frac{\delta}{\left\|\Pi_{\mathcal{Z}_{N}^{1}}^{u^{\text {true }}}\right\|_{U}} h_{M}^{2 \tau}\right)^{2 / 3} ;$
If $\delta=0 \Rightarrow\left\|u^{\text {true }}-u_{\xi, \gamma}^{\star}\right\|_{L^{2}(\Omega)}^{2} \leq C_{N}\left\|\Pi_{\mathcal{Z}_{\frac{\perp}{N}}} u^{\text {true }}\right\|_{\mathcal{U}}^{2}\left(h_{M}^{2 \tau}+\xi\right)$
$\mathcal{Z}_{N}=\emptyset \Rightarrow$ J Krebs, A Louis, H Wendland, 2009.

A priori error analysis: $\epsilon_{m} \sim\left(0, \sigma^{2}\right)$ i.i.d.

Suppose: $\mathcal{U}=H^{\tau}\left(\mathbb{R}^{d}\right), \tau>d / 2, u^{\text {true }} \in \mathcal{U}, \mathcal{Z}_{N} \subset \mathcal{U}$;

$$
h_{M} \sim M^{-1 / d}
$$

$$
\Rightarrow \mathbb{E}\left[\left\|u^{\text {true }}-u_{\xi}^{\star}\right\|_{L^{2}(\Omega)}^{2}\right] \leq C_{N}\left(h_{M}^{2 \tau}+\xi\right)\left\|\Pi_{\mathcal{Z}_{N}} u^{\text {true }}\right\|_{\mathcal{U}}^{2}
$$

$$
+2 \sigma^{2} \mathcal{T}_{N, M}^{\sigma}(\xi)
$$

where $\mathcal{T}_{N, M}^{\sigma}(\xi)$ can be computed explicitly.
If $u^{\text {true }} \in \mathcal{Z}_{N} \Rightarrow \mathbb{E}\left[\left\|u^{\text {true }}-u_{\xi, \gamma}^{\star}\right\|_{L^{2}(\Omega)}^{2}\right]=\sigma^{2} \mathcal{T}_{N, M}^{\sigma}(\xi)$
Empirical studies show that $\mathcal{T}_{N, M}^{\sigma}(\xi)$ is monotonic decreasing in ξ.

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

An acoustic model problem

Let $u_{g}(\mu)$ be the solution to
$\left\{\begin{array}{l}-(1+\epsilon \mu i) \Delta u_{g}(\mu)-\mu^{2} u_{g}(\mu)=\mu\left(x_{1}^{2}+e^{\chi_{2}}\right)+\mu g \text { in } \Omega \\ \partial_{n} u_{g}(\mu)=0 \text { on } \partial \Omega\end{array}\right.$
where $\epsilon=10^{-2}$ and $\mu \in \mathcal{P}^{\mathrm{bk}}=[2,10]$.
Perfect model: $u^{\text {true }}(\mu)=u_{g_{0}}(\mu), u^{\mathrm{bk}}(\mu)=u_{g_{0}}(\mu)$;
Imperfect model: $u^{\text {true }}(\mu)=u_{\bar{g}}(\mu), u^{\mathrm{bk}}(\mu)=u_{g_{0}}(\mu)$.

$$
g_{0} \equiv 0, \bar{g}(x)=0.5\left(e^{x_{1}}+\cos \left(1.3 \pi x_{2}\right)\right)
$$

Details

Observations: $y_{\ell}=u^{\text {true }}\left(x_{\ell}^{\mathrm{obs}}\right)+\epsilon_{\ell}, \epsilon_{\ell} \overbrace{\sim}^{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$;
Centers: $\left\{x_{m}^{\mathrm{obs}}\right\}_{m}$ deterministic (equispaced), $\left\{x_{i}^{\text {obs }}\right\}_{i}$ drawn randomly (uniform), $I=M / 2$;

Background: $\left\{\mathcal{Z}_{N}\right\}_{N}$ generated using the weak-Greedy algorithm;

Kernel: $K_{\gamma}\left(x, x^{\prime}\right)=\phi\left(\gamma\left\|x-x^{\prime}\right\|_{2}\right)$,

$$
\phi(r)=(1-r)_{+}^{4}(4 r+1),\left(\mathcal{U}=H^{2.5}\left(\mathbb{R}^{2}\right)\right) .
$$

G Rozza, DBP Huynh, AT Patera, 2008;
H Wendland, 2004.

Measure of performances

We introduce
$E_{\text {avg }}^{\text {rel }}=\frac{1}{\left|\mathcal{P}_{\text {train }}^{\text {bk }}\right|} \sum_{\mu \in \mathcal{P}_{\text {train }}^{\text {bk }}} \frac{\left\|u^{\text {true }}(\mu)-u_{\xi}^{\star}(\mu)\right\|_{L^{2}(\Omega)}}{\left\|u^{\text {true }}(\mu)\right\|_{L^{2}(\Omega)}}$,
$\mathcal{P}_{\text {train }}^{\text {bk }} \subset[2,10]$.
if $\sigma>0$ (noisy measurements), computations of $\left\|u^{\text {true }}(\mu)-u_{\xi}^{\star}(\mu)\right\|_{L^{2}(\Omega)}$ are averaged over $K=24$ trials.

Results: M convergence $(\sigma=0, g=\bar{g})$

$E_{\text {avg }}^{\mathrm{rel}} \sim M^{-1.3}-M^{-1.5},\left|\mathcal{P}_{\text {train }}^{\mathrm{bk}}\right|=20$
Multiplicative effect between M and N convergence.

Results: M convergence $(N=5, \sigma>0, g=\bar{g})$

$E_{\text {avg }}^{\mathrm{rel}} \sim M^{-0.4}-M^{-0.5},\left|\mathcal{P}_{\text {train }}^{\mathrm{bk}}\right|=1, \mu=6.6$;
Adaptation in ξ allows us to deal with noisy measurements.

Conclusions

Summary

pMOR techniques for

1. data compression and
2. offline/online computational decomposition
offer new opportunities for the integration of μ PDEs and data.

We relied on pMOR techniques to develop two Data Assimilation strategies for systems modeled by PDEs.

Summary

PBDW for state estimation:

two-level procedure to address parametric and nonparametric uncertainty
pMOR employed to construct \mathcal{Z}_{N}
data compression
SBC for damage identification:
simulation-based approach for discrete-valued QOIs pMOR procedure for rapid generation of $\mathcal{D}_{M}^{\mathrm{bk}}$
offline/online decomposition

Thank you for the attention!

Backup slides

- Choice of the features
- Explanation of the Table
- H^{1}-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Backup slides

- Choice of the features
- Explanation of the Table
- H^{1}-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Choices of the features

Introduce

$$
z_{1}^{\mathrm{bk}}(\cdot)=\frac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, z_{2}^{\mathrm{bk}}(\cdot)=\frac{A_{2,4}^{\mathrm{bk}}(\cdot)+A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot)+A_{4,1}^{\mathrm{bk}}(\cdot)} .
$$

and define $z_{\ell}^{\mathrm{bk}}(\mu)=\left[z_{\ell}^{\mathrm{bk}}\left(f^{1} ; \mu\right), \ldots, z_{\ell}^{\mathrm{bk}}\left(f^{Q_{f}} ; \mu\right)\right]$.

Feature visualization: z_{1} and z_{2}
Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Feature visualization: z_{1}
Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Feature visualization: z_{2}

Rationale: $\quad z_{1}$ detects asymmetry in the structure;
z_{2} detects added mass on corners.

Backup slides

- Choice of the features
- Explanation of the Table
- $H^{1}-P B D W$ vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Explanation of the table

For $i=1, \ldots, 100$
Partition the dataset $\mathcal{D}_{N_{\text {train }}}^{\mathrm{bk}}$ into $\mathcal{D}_{M}^{\mathrm{bk}}$ and $\mathcal{D}_{N_{\text {train }}-M}^{\mathrm{bk}}$
Train the learning algorithm based on $\mathcal{D}_{M}^{\mathrm{bk}}$
Test the learning algorithm based on $\mathcal{D}_{N_{\text {train }}-M}^{\mathrm{bk}} \rightarrow R_{i}^{\mathrm{bk}}$
Test the learning algorithm based on $\mathcal{D}_{15}^{\exp }$

EndFor

Return $R^{\mathrm{bk}}=\frac{1}{100} \sum_{i=1}^{100} R_{i}^{\mathrm{bk}}$
Return $R^{\exp }=\frac{1}{100} \sum_{i=1}^{100} R_{i}^{\exp }$

Backup slides

- Choice of the features
- Explanation of the Table
- H^{1}-PBDW vs $A-P B D W$
- Localised state estimation
- Choice of $\mathcal{P}^{\text {bk }}$ for thermal patch

Results $\left(N=5, \sigma=0, g=g_{0}\right)$
$H^{1}-\operatorname{PBDW}: \mathcal{U}=H^{1}(\Omega), \ell_{m}^{\text {obs }}=\operatorname{Gauss}\left(u^{\text {true }}, x_{m}^{\text {obs }}, r_{\text {Gauss }}\right)$
A-PBDW: $\mathcal{U}=H^{1}(\Omega), \ell_{m}^{\text {obs }}=u^{\text {true }}\left(x_{m}^{\text {obs }}\right)$

Results $(N=5, \sigma=0, g=\bar{g})$
$H^{1}-\operatorname{PBDW}: \mathcal{U}=H^{1}(\Omega), \ell_{m}^{\text {obs }}=\operatorname{Gauss}\left(u^{\text {true }}, x_{m}^{\text {obs }}, r_{\text {Gauss }}\right)$
A-PBDW: $\mathcal{U}=H^{1}(\Omega), \ell_{m}^{\text {obs }}=u^{\text {true }}\left(x_{m}^{\text {obs }}\right)$

Backup slides

- Choice of the features
- Explanation of the Table
- H^{1}-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Localised state estimation (Chapter 5)

Objective: estimate the state in a subregion Ω of the original domain Ω^{pb}.

Region of interest

Localised state estimation (Chapter 5)

Strategy: restrict computations to $\Omega^{\mathrm{bk}}, \Omega \subset \Omega^{\mathrm{bk}} \subset \Omega^{\mathrm{pb}}$. uncertainty in global inputs \Rightarrow uncertainty at ports.

Solution manifold

$$
\mathcal{M}^{\mathrm{bk}}=\{\left.u_{g}^{\mathrm{bk}}(\mu)\right|_{\Omega}: \underbrace{\mu \in \mathcal{P}_{\text {bk }}^{\mathrm{bk}}}_{\text {parameters }} \underbrace{g \in \mathcal{T}}_{\text {boundary conditions }}\}
$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_{N} to approximate $\mathcal{M}^{b k}$
Fundamental question: is the manifold reducible? $(\leftrightarrow$ evanescence);
Challenge: $\mathcal{P}^{b \mathrm{k}} \times \mathcal{T}$ is infinite-dimensional.

Localised state estimation (Chapter 5)

Strategy: restrict computations to $\Omega^{\mathrm{bk}}, \Omega \subset \Omega^{\mathrm{bk}} \subset \Omega^{\mathrm{pb}}$. uncertainty in global inputs \Rightarrow uncertainty at ports.

Solution manifold

$$
\mathcal{M}^{\mathrm{bk}}=\{\left.u_{g}^{\mathrm{bk}}(\mu)\right|_{\Omega}: \underbrace{\mu \in \mathcal{P}^{\mathrm{bk}}}_{\text {parameters }} \underbrace{g \in \mathcal{T}}_{\text {boundary conditions }}
$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_{N} to approximate $\mathcal{M}^{\text {bk }}$
Fundamental question: is the manifold reducible? (\leftrightarrow evanescence);
Challenge: $\mathcal{P}^{b \mathrm{k}} \times \mathcal{T}$ is infinite-dimensional.

Backup slides

- Choice of the features
- Explanation of the Table
- H^{1}-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\text {bk }}$ for thermal patch

Thermal patch: choice of $\mathcal{P}^{\mathrm{bk}}$
$\mu:=\left[\mu_{1}=\gamma / \kappa, \mu_{2}=C / \kappa\right]$
u^{bk} is linear in $C / \kappa \Rightarrow$ no need to estimate μ_{2}
$\kappa=0.2 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$ thermal conductivity of acrylic,
$\gamma=\frac{N u \kappa_{\text {air }}}{\hat{L}} \approx 10 \pm 5 \mathrm{~W} / \mathrm{m}^{2}$,
$\kappa_{\text {air }}=0.0257 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$ thermal conductivity of air, $N u=0.59(R a)^{1 / 4}$ Nusselt number, $R a=\frac{\beta g \Delta \theta \hat{L}^{3}}{\nu \alpha}$ Rayleigh number
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}, \Delta \Theta=50^{\circ} \mathrm{K}, \widehat{L}=22.606 \mathrm{~mm}$,
$\beta=1 / 300 \mathrm{~K}^{-1}$ thermal expansion coefficient,
$\alpha=1.9 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ thermal diffusivity coefficient of air,
$\nu=1.81 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ kinematic viscosity of air.

