Model order reduction methods for data assimilation; state estimation, and structural health monitoring

T Taddei

Massachusetts Institute of Technology

PhD Defense, September 13th, 2016

Advisor: Prof. AT Patera

Objective

Develop **model reduction** techniques to integrate parametrized mathematical models (μ PDEs), and experimental observations for prediction.

State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).

Develop **model reduction** techniques to integrate parametrized mathematical models (μ PDEs), and experimental observations for prediction.

State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).

Model Order Reduction for parametrized PDEs (pMOR)

pMOR objective: reduce the marginal computational cost associated with the solution to parametrized models.

Typical applications:

many-query: design and optimization, UQ; *real-time/interactive*: control, education.

A pMOR procedure should address two separate tasks:

1. data compression (solution manifold \rightarrow linear space) \Rightarrow POD, Greedy,...

2. offline-online computational decomposition \Rightarrow Galerkin projection, interpolation,...

Claim: recent advances in pMOR offer new opportunities for the integration of μ PDEs and data.

We rely on pMOR techniques for

- 1. data compression,
- 2. offline-online computational decomposition,

as **building blocks** for our data assimilation strategies.

Contributions

We propose and analyze two computational strategies:

- 1. Parametrized-Background Data-Weak (PBDW) approach for state estimation.
- 2. Simulation-Based Classification (SBC) for damage identification.

PBDW: Y Maday, AT Patera, JD Penn, M Yano, 2015a, 2015b; T Taddei, 2016 (under review).

SBC: T Taddei, JD Penn, M Yano, AT Patera, 2016.

Part I: Simulation-Based Classification (SBC) Formulation, role of pMOR.

Part II: PBDW approach

Formulation, role of pMOR, *a priori* error analysis.

We apply our techniques to two companion experiments.

Topics not covered in this talk (but included in the thesis) SBC: error analysis.

PBDW: *a posteriori* error analysis, localised state estimation, adaptation.

James D Penn (MIT)

Conception and implementation of the experiments Data acquisition Calibration

Masayuki Yano (University of Toronto) High-order FE code Mathematical formulation Numerical analysis

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

• An example: a microtruss

- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

A target application: monitoring of ship loaders¹

Objective: monitor the integrity of a ship loader during the operations

¹Photo credit: www.directindustry.com

Our example: the microtruss system

Our example: the microtruss system

Our example: the microtruss system

Goal: detect the presence of added mass on top of block (1, 4) and block (4, 4)

Apparatus: voice coil actuator; camera&stroboscope

Input: x_2 -displacement at prescribed frequencies $\{f^q\}$; Exp data: x_2 -displacement of blocks' centers $\{c_{i,i}^{exp}(t^{\ell}, f^q)\}$.

Data reduction: $c_{i,j}^{\exp}(t^{\ell}, f^{q}) \approx \overline{A}_{i,j}^{\exp}(f^{q}) \cos\left(2\pi f^{q} t^{\ell} + \overline{\phi}_{i,j}^{\exp}(f^{q})\right)$ *Exp outputs:* $A_{i,j}^{\exp}(f^{q}) := \frac{A_{nom}}{\overline{A}_{2,1}^{\exp}(f^{q})} \overline{A}_{i,j}^{\exp}(f^{q}).$

Definition of the QOI: damage function

Define
$$s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}$$
, and
 $s_R := 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}$.
Define $y = \overline{f}^{\text{dam}}(s_L, s_R)$,
 $y = \begin{cases} 1 \quad s_L, s_R \leq 1.5, \\ 2 \quad s_L > 1.5, s_R \leq 1.5, \\ 3 \quad s_L \leq 1.5, s_R > 1.5, \\ 4 \quad s_L, s_R > 1.5. \end{cases}$

The QOI *y* is the **state of damage** associated with the structure.

Definition of the QOI: damage function

Engineering objective

Generate a *decision rule* g that maps experimental outputs $\{A_{i,j}^{\exp}(f^q; C)\}_{i,j,q}$

to the appropriate configuration state of damage $y = \overline{f}^{\text{dam}}(s_L, s_R) \in \{1, 2, 3, 4\};$ for any given system configuration $\mathcal{C} = \{s_L, s_R\}$

for any given system configuration $C = (s_L, s_R, \ldots)$.

Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?

Level II: where is damage located?

C Farrar, K Worden, 2012

Engineering objective

Generate a *decision rule* g that maps experimental outputs $\{A_{i,j}^{\exp}(f^q; C)\}_{i,j,q}$

to the appropriate configuration state of damage $y = \overline{f}^{\text{dam}}(s_L, s_R) \in \{1, 2, 3, 4\};$

for any given system configuration $C = (s_L, s_R, \ldots)$.

Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?

Level II: where is damage located?

C Farrar, K Worden, 2012

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Mathematical best-knowledge (bk) model

Set $\mathcal{C} = \left(\mu := [\mathbf{s}_L = 1 + \frac{V_{\text{left}}}{V_{\text{row}}}, \mathbf{s}_R = 1 + \frac{V_{\text{right}}}{V_{\text{row}}}, \alpha, \beta, E], \dots\right),$ α, β Rayleigh-damping coefficients, and where *E* Young's modulus.

Estimate

$$A_{i,j}^{\exp}(f^q;\mathcal{C}) \approx A_{i,j}^{\mathrm{bk}}(f^q;\mu) := A_{\mathrm{nom}} \frac{|u_2^{\mathrm{bk}}(x_{i,j};f^q,\mu)|}{|u_2^{\mathrm{bk}}(x_{2,1};f^q,\mu)|}$$

where $x_{i,j}$ is the center of block (i,j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{\text{elast-helmhotz}}(u^{\text{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\mathrm{elast-helmhotz}}$ bk-parametrized mathematical model. 16

Mathematical best-knowledge (bk) model

Set $\begin{aligned} \mathcal{C} &= \left(\mu := [\mathbf{s}_{L} = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, \mathbf{s}_{R} = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E], \dots \right), \\ \text{where} \quad \alpha, \beta \quad \text{Rayleigh-damping coefficients, and} \\ E \quad \text{Young's modulus.} \end{aligned}$

Estimate

$$\mathcal{A}_{i,j}^{\exp}(f^q;\mathcal{C}) \approx \mathcal{A}_{i,j}^{\mathrm{bk}}(f^q;\mu) := \mathcal{A}_{\mathrm{nom}} \frac{|u_2^{\mathrm{bk}}(x_{i,j};f^q,\mu)|}{|u_2^{\mathrm{bk}}(x_{2,1};f^q,\mu)|}$$

where $x_{i,j}$ is the center of block (i, j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{ ext{elast-helmhotz}}(u^{ ext{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\mathrm{elast-helmhotz}}$ bk-parametrized mathematical model. $_{16}$

Mathematical best-knowledge (bk) model

Set $\begin{aligned} \mathcal{C} &= \left(\mu := [\mathbf{s}_{L} = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, \mathbf{s}_{R} = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E], \dots \right), \\ \text{where} \quad \alpha, \beta \quad \text{Rayleigh-damping coefficients, and} \\ E \quad \text{Young's modulus.} \end{aligned}$

Estimate

$$\mathcal{A}_{i,j}^{\exp}(f^q;\mathcal{C}) \approx \mathcal{A}_{i,j}^{\mathrm{bk}}(f^q;\mu) := \mathcal{A}_{\mathrm{nom}} \frac{|u_2^{\mathrm{bk}}(x_{i,j};f^q,\mu)|}{|u_2^{\mathrm{bk}}(x_{2,1};f^q,\mu)|}$$

where $x_{i,j}$ is the center of block (i, j), and $u^{bk}(\cdot; f^q, \mu)$ solves the parametrized PDE:

 $\mathcal{G}_{ ext{elast-helmhotz}}(u^{ ext{bk}}(f^q,\mu);f^q;\mu) = 0 + \mathsf{BC}$ Interpretation:

 μ incomplete representation of C;

 $\mathcal{G}_{\mathrm{elast-helmhotz}}$ bk-parametrized mathematical model. $_{_{16}}$

Feature extraction

Define the **feature map** $\mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q$ that takes as input the experimental (or bk) outputs $\{A_{i,i}^{\bullet}(f^{q};\star)\}_{i,i,q}, (\bullet = \exp, \operatorname{bk}, \star = \mathcal{C}, \mu)$ and returns the *Q* features $\mathbf{z}^{\bullet}(\star) = \mathcal{F}(\{A_{i,i}^{\bullet}(f^{q};\star)\}_{i,j,q}) \in \mathbb{R}^{Q}$ $\mathcal{F}: \mathbb{R}^{16Q_f} \rightarrow \mathbb{R}^Q$ should be chosen such that $z^{\bullet}(\star)$ is sensitive to the expected damage; $z^{\bullet}(\star)$ is insensitive to noise.

Mathematical objective

Given the features $\mathbf{z}^{bk}(\mu) = \mathcal{F}(\{A_{i,j}^{bk}(f^q;\mu)\}_{i,j,q}) \in \mathbb{R}^Q$, we seek $g : \mathbb{R}^Q \to \{1, \dots, 4\}$ that minimizes

 $R^{\mathrm{bk}}(g) = \int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}(g(\mathbf{z}^{\mathrm{bk}}(\mu)) \neq f^{\mathrm{dam}}(\mu)) w^{\mathrm{bk}}(\mu) d\mu,$

where

 $\mu = [\mathbf{s}_L, \mathbf{s}_R, \alpha, \beta, E] \in \mathcal{P}^{bk} \text{ anticipated configuration};$ $\mathcal{P}^{bk} \text{ anticipated configuration set};$ $\mu \mapsto f^{dam}(\mu) = \bar{f}^{dam}(\mathbf{s}_L, \mathbf{s}_R) \in \{1, \dots, 4\} \text{ damage};$ $\mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q \text{ feature map (to be defined)};$ $\mu \mapsto w^{bk}(\mu) \text{ user-defined weight } (\leftrightarrow P_{w^{bk}}).$

Mathematical objective

Given the features $\mathbf{z}^{bk}(\mu) = \mathcal{F}(\{A_{i,j}^{bk}(f^q;\mu)\}_{i,j,q}) \in \mathbb{R}^Q$, we seek $g : \mathbb{R}^Q \to \{1, \dots, 4\}$ that minimizes

 $R^{\mathrm{bk}}(g) = \int_{\mathcal{P}^{\mathrm{bk}}} \mathbb{1}(g(\mathbf{z}^{\mathrm{bk}}(\mu)) \neq f^{\mathrm{dam}}(\mu)) w^{\mathrm{bk}}(\mu) d\mu,$

where

$$\begin{split} \mu &= [s_L, s_R, \alpha, \beta, E] \in \mathcal{P}^{\mathrm{bk}} \text{ anticipated configuration}; \\ \mathcal{P}^{\mathrm{bk}} \text{ anticipated configuration set}; \\ \mu &\mapsto f^{\mathrm{dam}}(\mu) = \bar{f}^{\mathrm{dam}}(s_L, s_R) \in \{1, \dots, 4\} \text{ damage}; \\ \mathcal{F} : \mathbb{R}^{16Q_f} \to \mathbb{R}^Q \text{ feature map (to be defined)}; \\ \mu &\mapsto w^{\mathrm{bk}}(\mu) \text{ user-defined weight } (\leftrightarrow P_{w^{\mathrm{bk}}}). \end{split}$$

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \stackrel{iid}{\sim} P_{w^{bk}}$
- 2. Generate $\mathcal{D}_{M}^{\mathrm{bk}} = \left\{ \mathbf{z}^{\mathrm{bk}}(\mu^{m}), f^{\mathrm{dam}}(\mu^{m}) \right\}_{m=1}^{M}$
- 3. $[g^{\star}_{\mathcal{M}}] = ext{Supervised-Learning-alg}(\mathcal{D}^{ ext{bk}}_{\mathcal{M}})$

Online stage: (during operations)

- 1. Acquire the new outputs $\{A_{i,i}^{\exp}(f^q; \overline{C})\}_{i,j,q}$.
- 2. Compute $\overline{\mathbf{z}}^{\exp} = \mathcal{F}(\mathcal{A}_{i,j}^{\exp}(f^q;\overline{\mathcal{C}})).$
- 3. Return the label $g_M^*(\bar{z}^{exp})$.

Taddei, Penn, Yano, Patera, 2016.

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \stackrel{iid}{\sim} P_{w^{bk}}$
- 2. Generate $\mathcal{D}_M^{\mathrm{bk}} = \{\mathbf{z}^{\mathrm{bk}}(\mu^m), f^{\mathrm{dam}}(\mu^m)\}_{m=1}^M$
- 3. $[g^{\star}_{\mathcal{M}}] = ext{Supervised-Learning-alg}(\mathcal{D}^{ ext{bk}}_{\mathcal{M}})$

Online stage: (during operations)

- 1. Acquire the new outputs $\{A_{i,i}^{\exp}(f^q; \overline{C})\}_{i,j,q}$.
- 2. Compute $\overline{\mathbf{z}}^{\exp} = \mathcal{F}(A_{i,j}^{\exp}(f^q; \overline{\mathcal{C}})).$
- 3. Return the label $g_M^{\star}(\bar{z}^{exp})$.

Taddei, Penn, Yano, Patera, 2016.

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E) non-intrusive approach (it requires only forward solves)

Challenge: generation of \mathcal{D}_{M}^{bk} \Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate \mathcal{D}_{M}^{bk} .

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E) non-intrusive approach (it requires only forward solves)

Challenge: generation of \mathcal{D}_{M}^{bk} \Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate \mathcal{D}_{M}^{bk} . Perspectives: a ship loader model²

Cost to build $\mathcal{D}_M^{\mathrm{bk}} = M \times Q_f \times \mathrm{cost} \mathrm{ per \, simulation}$

FE model ($\approx 5 \cdot 10^6$ dofs) cost per simulation $\approx 43'$ $M = 10^4, Q_f = 10 \Rightarrow 8$ years **ROM model** (PR-scRBE) cost per simulation $\approx 5''$

 $M = 10^4, Q_f = 10 \Rightarrow 6 \text{ days}$

 \Rightarrow pMOR enables the use of mathematical models in the simulation-based framework.

²Simulations are performed by Akselos S.A. using PR-scRBE.

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \stackrel{\text{\tiny Ho}}{\frown} P_{w^{\rm bk}}$
- 2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathsf{z}^{\mathrm{bk}}(\mu)$
- 2.b Use the ROM to generate the dataset $\mathcal{D}_{M}^{\mathrm{bk}}$
- 3. $[g_M^{\star}] =$ Supervised-Learning-alg $(\mathcal{D}_M^{\mathrm{bk}})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (many-query context).

Offline stage: (before operations)

- 1. Generate $\mu^1, \ldots, \mu^M \xrightarrow{\mu} P_{w^{bk}}$
- 2.a Construct a ROM for $\mu \in \mathcal{P}^{\mathrm{bk}} \mapsto \mathsf{z}^{\mathrm{bk}}(\mu)$
- 2.b Use the ROM to generate the dataset $\mathcal{D}_M^{\rm bk}$
- 3. $[g^{\star}_{M}] = \texttt{Supervised-Learning-alg}(\mathcal{D}^{\mathrm{bk}}_{M})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (many-query context).

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Choice of $\mathcal{P}^{\mathrm{bk}}$

We choose upper bounds for s_L , s_R a priori.

We choose lower and upper bounds for α, β, E using textbook values and a preliminary experiment for $s_L = s_R = 1$.

Choices of the features

Introduce

а

$$z_1^{ ext{bk}}(\cdot) = rac{A_{1,4}^{ ext{bk}}(\cdot)}{A_{4,4}^{ ext{bk}}(\cdot)}, \ z_2^{ ext{bk}}(\cdot) = rac{A_{2,4}^{ ext{bk}}(\cdot) + A_{3,4}^{ ext{bk}}(\cdot)}{A_{1,1}^{ ext{bk}}(\cdot) + A_{4,1}^{ ext{bk}}(\cdot)}.$$
nd define $\mathbf{z}_{\ell}^{ ext{bk}}(\mu) = [z_{\ell}^{ ext{bk}}(f^1;\mu), \dots, z_{\ell}^{ ext{bk}}(f^{Q_f};\mu)].$

Choices of the features: motivation

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

Classification procedure

Given z_1^{exp} , z_2^{exp} , Level 1: distinguish between {1,4}, {2} and {3} based on z_1^{exp} ;

Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on z_2^{exp} .

From the learning perspective,

Level 1 corresponds to a 3way classification problem; Level 2 corresponds to a 2way classification problem.

 $\label{eq:algorithms used: SVM, ANN, kNN, decision trees, \\ NMC^3.$

³Implementation is based on off-the-shelf Matlab functions.

Classification procedure

Given z_1^{exp} , z_2^{exp} , Level 1: distinguish between {1,4}, {2} and {3} based on z_1^{exp} ;

Level 2: if Level 1 returns $\{1,4\}$, distinguish between $\{1\}$ and $\{4\}$ based on \mathbf{z}_2^{exp} .

From the learning perspective,

Level 1 corresponds to a 3way classification problem; Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees, NMC³.

³Implementation is based on off-the-shelf Matlab functions.

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential): Build a ROM for the state $u^{bk}(f; \mu)$, $f \in \mathcal{I}_f$, $\mu \in \mathcal{P}^{bk}$, Use the ROM to compute $(f^q, \mu^m) \mapsto A_{i,i}^{\text{bk}}(f^q; \mu^m)$ for $m = 1, \ldots, M$ and $q = 1, \ldots, Q_f$ (= MQ_f PDE solves). **Computational summary:** Finite Element (FE): 14670 dof, ≈ 0.18 s for each PDE query; Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24 [s], $\approx 4.4 \cdot 10^{-3}$ [s] for each PDE query. \Rightarrow RB is advantageous if $MQ_f \ge 180$

(we consider $MQ_f \approx 10^5$).

Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential): Build a ROM for the state $u^{bk}(f; \mu)$, $f \in \mathcal{I}_f$, $\mu \in \mathcal{P}^{bk}$,

Use the ROM to compute $(f^q, \mu^m) \mapsto A_{i,j}^{bk}(f^q; \mu^m)$ for m = 1, ..., M and $q = 1, ..., Q_f$ (= MQ_f PDE solves).

$\begin{array}{l} \mbox{Computational summary:} \\ \mbox{Finite Element (FE): 14670 dof,} \\ &\approx 0.18[s] \mbox{ for each PDE query;} \\ \mbox{Reduced Basis (RB): 20 dof, pre-processing cost} \approx 24[s], \\ &\approx 4.4 \cdot 10^{-3}[s] \mbox{ for each PDE query.} \end{array}$

 \Rightarrow RB is advantageous if $MQ_f \gtrsim 180$ (we consider $MQ_f \approx 10^5$).

Results (synthetic data)

Test

- 1.
- Generate a dataset $\mathcal{D}_{N_{\text{train}}}^{\text{bk}}$, $N_{\text{train}} = 10^4$, $Q_f = 9$; Use *M* points for learning, $N_{\text{train}} M$ for testing; 2.
- 3. Average over 100 partitions.

Memo: $R^{\mathrm{bk}}(g) = 0$ \Rightarrow no mistakes.

 $R^{\mathrm{bk}}(g) = 1$ \Rightarrow always wrong.

Strong dependence on $M \Rightarrow$ importance of pMOR.

Results (experimental data)

Test

- 1. Consider 5 different experimental system configurations, and perform 3 independent trials (= $15 \exp (\text{datapoints})$).
- 2. Train based on $M = 7 \cdot 10^3$ synthetic datapoints.
- 3. Average over 100 partitions of the synthetic dataset.

	bk-risk $R^{ m bk}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN (k = 5)	0.0050	0
ANN (10 layers)	0.0026	0.6000
NMC	0.0661	0

Results (experimental data)

Test

- 1. Consider 5 different experimental system configurations, and perform 3 independent trials (= $15 \exp (\text{datapoints})$).
- 2. Train based on $M = 7 \cdot 10^3$ synthetic datapoints.
- 3. Average over 100 partitions of the synthetic dataset.

	bk-risk $R^{ m bk}(g)$	exp risk (5×3)
ova-SVM	0.0059	0.2093
decision tree	0.0072	0.4000
kNN (k = 5)	0.0050	0
ANN (10 layers)	0.0026	0.6000
NMC	0.0661	0

Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives

Towards the application to real problems

Challenges

Parametrization of damage damage is a local phenomenon,

 \Rightarrow component-based pMOR

Choice of features

automated feature identification⁴.

⁴In collaboration with Prof. D Bertsimas, C Pawlowski (MIT).

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Thermal patch experiment

Objective: estimate the temperature field over the surface Ω .

Refined goal and experimental apparatus

Practical applications: local probes. Refined goal: given $\ell_m^{obs} \approx u^{true}(x_m^{obs})$, $x_m^{obs} \in \Omega$, estimate u^{true} over Ω .

Our apparatus:

IR camera Full-field information ⇒ performance assessment.

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Mathematical best-knowledge (bk) model

Estimate the steady-state temperature field as

$$\begin{aligned} & -\Delta u^{\rm bk} = 0, & \text{in } \Omega^{\rm bk}, \\ & \kappa \partial_n u^{\rm bk} + \gamma (u^{\rm bk} - \Theta^{\rm room}) = C \chi_{\Gamma^{\rm patch}} & \text{on } \Gamma^{\rm in}, \\ & \kappa \partial_n u^{\rm bk} = 0 & \text{on } \partial \Omega^{\rm bk} \setminus \Gamma^{\rm in}, \end{aligned}$$

 Θ^{room} room temperature (= 20°*C*); κ thermal conductivity;

 γ convective heat transfer coefficient;

C incoming flux (patch \rightarrow plate).

 $\Rightarrow \mu := [\gamma/\kappa, C/\kappa] \in \mathcal{P}^{\mathrm{bk}}$

Mathematical best-knowledge (bk) model

 $\Omega\subset\partial\Omega^{\mathrm{bk}}$,

 $\hat{L} = 22.606$ mm, $\hat{H} = 9.271$ mm.

Bk solution manifold

Define the bk solution manifold

 $\mathcal{M}^{\mathrm{bk}} = \{ u^{\mathrm{bk}}(\mu) |_{\Omega} : \ \mu \in \mathcal{P}^{\mathrm{bk}} \} \subset \mathcal{U} = \mathcal{U}(\Omega)$

 \mathcal{M}^{bk} takes into account parametrized uncertainty in the system.

 \mathcal{M}^{bk} does not take into account non-parametric uncertainty in the system:

nonlinear effects due to natural convection,

heat-exchange between the patch and the sheet.

General idea

- Given $\mathcal{M}^{\mathrm{bk}}$, define $\mathcal{Z}_N = \operatorname{span}\{\zeta_n\}_{n=1}^N$ such that $\sup_{\mu} \inf_z \|u^{\mathrm{bk}}(\mu)|_{\Omega} - z\|$ is small.
- **Then**, given measurements $\ell_1^{\text{obs}}, \ldots, \ell_M^{\text{obs}}$,
 - step 1. find $z^* \in \mathcal{Z}_N$ such that $z^* \approx u^{\text{true}}$
 - step 2. find $\eta^{\star} \in \mathcal{U}$ such that $\eta^{\star} \approx u^{\text{true}} z^{\star}$
 - step 3. return the state estimate $u^{\star} = z^{\star} + \eta^{\star}$.

Variational formulation

Given the Hilbert space $(\mathcal{U} = \mathcal{U}(\Omega), \|\cdot\|)$, introduce $\ell_1^o, \ldots, \ell_M^o \in \mathcal{U}'$ such that

 $\ell_m^{\mathrm{obs}} \approx \ell_m^o(u^{\mathrm{true}}), \ m = 1, \dots, M.$

Define $u_{\xi}^{\star} = z_{\xi}^{\star} + \eta_{\xi}^{\star}$ to minimise $\min_{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}} \xi \|\eta\|^2 + \frac{1}{M} \sum_{m=1}^M \left(\ell_m^o(z+\eta) - \ell_m^{obs}\right)^2.$

Computation of z_{ξ}^{\star} corresponds to a weighted LS problem. Computation of η_{ξ}^{\star} corresponds to a generalized smoothing problem based on $\ell_m^{\text{err}} = \ell_m^{\text{obs}} - \ell_m^o(z_{\xi}^{\star}) \approx \ell_m^o(u^{\text{true}} - z_{\xi}^{\star})$.

Variational formulation

Given the Hilbert space $(\mathcal{U} = \mathcal{U}(\Omega), \|\cdot\|)$, introduce $\ell_1^o, \ldots, \ell_M^o \in \mathcal{U}'$ such that

 $\ell_m^{\mathrm{obs}} \approx \ell_m^o(u^{\mathrm{true}}), \ m = 1, \dots, M.$

Define $u_{\xi}^{\star} = z_{\xi}^{\star} + \eta_{\xi}^{\star}$ to minimise $\min_{\substack{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}}} \xi \|\eta\|^2 + \frac{1}{M} \sum_{m=1}^M \left(\ell_m^o(z+\eta) - \ell_m^{obs}\right)^2.$

Computation of z_{ξ}^{\star} corresponds to a weighted LS problem. Computation of η_{ξ}^{\star} corresponds to a generalized smoothing problem based on $\ell_m^{\text{err}} = \ell_m^{\text{obs}} - \ell_m^o(z_{\xi}^{\star}) \approx \ell_m^o(u^{\text{true}} - z_{\xi}^{\star})$.

Terminology:

- \mathcal{Z}_N background space;
- $z^{\star} \in \mathcal{Z}_{N}$ deduced background;
- η^{\star} update;
- z^{\star} addresses parametrized uncertainty in the model, while η^{\star} addresses non-parametric uncertainty in the model.

Solution to $\min_{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}}$ is simpler than $\min_{(z,\eta)\in\mathcal{M}^{\mathrm{bk}}\times\mathcal{U}}$.

Construction of \mathcal{Z}_N is a pMOR problem.

data compression

Terminology:

- Z_N background space; $z^* \in Z_N$ deduced background; η^* update;
- z^{\star} addresses parametrized uncertainty in the model, while η^{\star} addresses non-parametric uncertainty in the model.
- Solution to $\min_{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}}$ is simpler than $\min_{(z,\eta)\in\mathcal{M}^{\mathrm{bk}}\times\mathcal{U}}$.

Construction of \mathcal{Z}_N is a pMOR problem.

data compression

Solution representation

The update is of the form $\eta_{\xi}^{\star}(\cdot) = \sum \eta_{\xi,m}^{\star} R_{\mathcal{U}} \ell_{m}^{o}(\cdot) \in \mathcal{U}_{\mathcal{M}} := \operatorname{span}\{R_{\mathcal{U}} \ell_{m}^{o}\}_{m=1}^{\mathcal{M}},$ m=1where $R_{\mathcal{U}}: \mathcal{U}' \mapsto \mathcal{U}$ depends on $(\mathcal{U}, \|\cdot\|)$. For $\ell_m^o = \delta_{\chi_m^o}$ and suitable $(\mathcal{U}, \|\cdot\|)$, $R_{\mathcal{U}}\ell_m^o(\cdot) = K_{\gamma}(\cdot, x_m^{\text{obs}}) = \phi(\gamma \| \cdot - x_m^{\text{obs}} \|_2) \Rightarrow \text{connection}$ with Kernel methods

Bennett, 1985, Kimeldorf, Wahba, 1971; J Krebs, A Louis, H Wendland, 2009.

Maday et al, 2015

two-level mechanism to accommodate anticipated/ unanticipated uncertainty use of pMOR to generate Z_N ;

This thesis

adaptive selection of ξ \Rightarrow rigorous treatment of noisy measurements; adaptive selection of $\|\cdot\|$ for pointwise measurements \Rightarrow improved convergence with M.

Localized state estimation ($\Omega \subset \Omega^{bk}$, $\mu \in \mathbb{R}^{P}$, $P \gg 1$); not covered in this talk.

PBDW approach for state estimation

- An example: a thermal patch configurationThe PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Details

Observations: $\ell_m^{\text{obs}} = u^{\text{obs}}(x_{i_m,j_m}^{\text{obs}})$, $(\Rightarrow \ell_m^o = \delta_{x_{i_m,j_m}^{\text{obs}}})$ x_{i_m,j_m}^{obs} center of the (i_m, j_m) pixel⁵.

Background: $\{\mathcal{Z}_N\}_N$ generated using the weak-Greedy⁶ algorithm;

Kernel:⁷ $K_{\gamma}(x, x') = \phi(\gamma ||x - x'||_2),$ $\phi(r) = (1 - r)^4_+ (4r + 1), \ (\mathcal{U} = H^{2.5}(\mathbb{R}^2)).$

 $^{^5} The$ IR camera returns 160×120 pixel-wise measurements. $^6 G$ Rozza, DBP Huynh, AT Patera, 2008. $^7 H$ Wendland, 2004.

Numerical results (N = 2, M = 25): step 1

step 1. find $z^* \in \mathbb{Z}_N$ such that $z^* \approx u^{\text{true}}$

Numerical results (N = 2, M = 25): step 2

step 2. find $\eta^{\star} \in \mathcal{U}$ such that $\eta^{\star} \approx u^{\text{true}} - z^{\star}$

Numerical results (N = 2, M = 25): step 3

step 3. return the state estimate $u^* = z^* + \eta^*$.

Numerical results (N = 0, M = 25): step 3

step 3. return the state estimate $u^* = z^* + \eta^*$.

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

Preliminaries

Suppose

 $y_m = u^{\mathrm{true}}(x_m^{\mathrm{obs}}) + \epsilon_m, \ m = 1, \ldots, M.$

Define the fill distance:

$$h_M := \sup_{x \in \Omega} \min_m \|x - x_m^{\text{obs}}\|_2;$$

Suppose quasi-uniform grid: $h_M \sim M^{-1/d}, \qquad \Omega \subset \mathbb{R}^d.$

Systematic noise: $|\epsilon_m| \leq \delta$

Homoscedastic noise: $\epsilon_m \stackrel{\sim}{\frown} (0, \sigma^2)$

iid

A priori error analysis: $|\epsilon_m| \leq \delta$

Suppose: $\mathcal{U} = H^{\tau}(\mathbb{R}^d)$, $\tau > d/2$, $u^{\text{true}} \in \mathcal{U}, \mathcal{Z}_N \subset \mathcal{U}$; $h_M \sim M^{-1/d};$ $\Rightarrow \|u^{\mathrm{true}} - u_{\xi}^{\star}\|_{L^{2}(\Omega)}^{2} \leq C_{N} \Big(h_{M}^{2\tau} \big(2\|\Pi_{\mathcal{Z}_{N}^{\perp}} u^{\mathrm{true}}\|_{\mathcal{U}} + \frac{\delta}{2} \frac{1}{\sqrt{\xi}} \big)^{2}$ $+\left(\delta+\frac{\sqrt{\xi}}{2}\|\Pi_{\mathcal{Z}_{N}^{\perp}}u^{\mathrm{true}}\|_{\mathcal{U}}\right)^{2}\right)$ $\xi^{\text{opt}} = \left(\frac{\delta}{\|\Pi_{z \perp} u^{\text{true}}\|_{\mathcal{U}}} h_M^{2\tau}\right)^{1/2};$ If $\delta = 0 \Rightarrow \| u^{\text{true}} - u^{\star}_{\mathcal{E},\gamma} \|_{L^2(\Omega)}^2 \leq C_N \| \Pi_{\mathcal{Z}_M^{\perp}} u^{\text{true}} \|_{\mathcal{U}}^2 \left(h_M^{2\tau} + \xi \right)$

 $\mathcal{Z}_N = \emptyset \Rightarrow J$ Krebs, A Louis, H Wendland, 2009.

A priori error analysis: $|\epsilon_m| \leq \delta$

Suppose: $\mathcal{U} = H^{\tau}(\mathbb{R}^d)$, $\tau > d/2$, $u^{\text{true}} \in \mathcal{U}, \mathcal{Z}_N \subset \mathcal{U}$; $h_M \sim M^{-1/d};$ $\Rightarrow \|u^{\mathrm{true}} - u_{\xi}^{\star}\|_{L^{2}(\Omega)}^{2} \leq C_{N} \Big(h_{M}^{2\tau} \big(2\|\Pi_{\mathcal{Z}_{N}^{\perp}} u^{\mathrm{true}}\|_{\mathcal{U}} + \frac{\delta}{2} \frac{1}{\sqrt{\xi}} \big)^{2}$ $+\left(\delta+\frac{\sqrt{\xi}}{2}\|\Pi_{\mathcal{Z}_{N}^{\perp}}u^{\mathrm{true}}\|_{\mathcal{U}}\right)^{2}\right)$ $\xi^{\text{opt}} = \left(\frac{\delta}{\|\Pi_{\mathcal{Z}_{M}^{\perp}} u^{\text{true}}\|_{\mathcal{U}}} h_{M}^{2\tau} \right)^{2/3};$ If $\delta = 0 \Rightarrow \| u^{\text{true}} - u^{\star}_{\xi,\gamma} \|_{L^2(\Omega)}^2 \leq C_N \| \Pi_{\mathcal{Z}_N^{\perp}} u^{\text{true}} \|_{\mathcal{U}}^2 \left(h_M^{2\tau} + \xi \right)$

 $\mathcal{Z}_N = \emptyset \Rightarrow$ J Krebs, A Louis, H Wendland, 2009.
A priori error analysis: $\epsilon_m \sim (0, \sigma^2)$ i.i.d.

Suppose:
$$\mathcal{U} = H^{\tau}(\mathbb{R}^{d}), \tau > d/2, u^{\text{true}} \in \mathcal{U}, \mathcal{Z}_{N} \subset \mathcal{U};$$

 $h_{M} \sim M^{-1/d};$
 $\Rightarrow \mathbb{E} \left[\| u^{\text{true}} - u_{\xi}^{\star} \|_{L^{2}(\Omega)}^{2} \right] \leq C_{N} (h_{M}^{2\tau} + \xi) \| \Pi_{\mathcal{Z}_{N}^{\perp}} u^{\text{true}} \|_{\mathcal{U}}^{2}$
 $+ 2\sigma^{2} \mathcal{T}_{N,M}^{\sigma}(\xi)$
where $\mathcal{T}_{N,M}^{\sigma}(\xi)$ can be computed explicitly.
If $u^{\text{true}} \in \mathcal{Z}_{N} \Rightarrow \mathbb{E} \left[\| u^{\text{true}} - u_{\xi,\gamma}^{\star} \|_{L^{2}(\Omega)}^{2} \right] = \sigma^{2} \mathcal{T}_{N,M}^{\sigma}(\xi)$
Empirical studies show that $\mathcal{T}_{N,M}^{\sigma}(\xi)$ is monotonic
decreasing in ξ .

PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem

An acoustic model problem

Let $u_g(\mu)$ be the solution to $\begin{cases}
-(1 + \epsilon \mu i) \Delta u_g(\mu) - \mu^2 u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g \text{ in } \Omega \\
\partial_n u_g(\mu) = 0 \text{ on } \partial \Omega
\end{cases}$ where $\epsilon = 10^{-2}$ and $\mu \in \mathcal{P}^{bk} = [2, 10]$.

Perfect model: $u^{\text{true}}(\mu) = u_{g_0}(\mu)$, $u^{\text{bk}}(\mu) = u_{g_0}(\mu)$;

Imperfect model: $u^{\text{true}}(\mu) = u_{\overline{g}}(\mu)$, $u^{\text{bk}}(\mu) = u_{g_0}(\mu)$.

 $g_0 \equiv 0, \ \bar{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)).$

Details

Observations: $y_{\ell} = u^{\text{true}}(x_{\ell}^{\text{obs}}) + \epsilon_{\ell}, \ \epsilon_{\ell} \sim \mathcal{N}(0, \sigma^2);$

Centers: $\{x_m^{obs}\}_m$ deterministic (equispaced), $\{x_i^{obs}\}_i$ drawn randomly (uniform), I = M/2;

Background: $\{Z_N\}_N$ generated using the weak-Greedy algorithm;

Kernel: $K_{\gamma}(x, x') = \phi(\gamma || x - x' ||_2),$ $\phi(r) = (1 - r)^4_+ (4r + 1), \ (\mathcal{U} = H^{2.5}(\mathbb{R}^2)).$

G Rozza, DBP Huynh, AT Patera, 2008; H Wendland, 2004.

Measure of performances

We introduce

$$egin{split} \mathcal{E}_{ ext{avg}}^{ ext{rel}} &= rac{1}{|\mathcal{P}_{ ext{train}}^{ ext{bk}}|} \; \sum_{\mu \in \mathcal{P}_{ ext{train}}^{ ext{bk}}} \; rac{\|u^{ ext{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^2(\Omega)}}{\|u^{ ext{true}}(\mu)\|_{L^2(\Omega)}}, \end{split}$$

 $\mathcal{P}_{\mathrm{train}}^{\mathrm{bk}} \subset [2, 10].$

if $\sigma > 0$ (noisy measurements), computations of $\|u^{\text{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^{2}(\Omega)}$ are averaged over K = 24 trials.

Results: *M* convergence ($\sigma = 0$, $g = \bar{g}$)

 $E_{\text{avg}}^{\text{rel}} \sim M^{-1.3} - M^{-1.5}$, $|\mathcal{P}_{\text{train}}^{\text{bk}}| = 20$ Multiplicative effect between M and N convergence. Results: *M* convergence (N = 5, $\sigma > 0$, $g = \bar{g}$)

 $E_{\text{avg}}^{\text{rel}} \sim M^{-0.4} - M^{-0.5}$, $|\mathcal{P}_{\text{train}}^{\text{bk}}| = 1$, $\mu = 6.6$; Adaptation in ξ allows us to deal with noisy measurements.

Conclusions

pMOR techniques for

- 1. data compression and
- 2. offline/online computational decomposition

offer new opportunities for the integration of $\mu {\rm PDEs}$ and data.

We relied on pMOR techniques to develop two Data Assimilation strategies for systems modeled by PDEs.

PBDW for state estimation:

two-level procedure to address parametric and nonparametric uncertainty pMOR employed to construct Z_N

data compression

SBC for damage identification:

simulation-based approach for discrete-valued QOIs pMOR procedure for rapid generation of $\mathcal{D}_M^{\mathrm{bk}}$ offline/online decomposition

Thank you for the attention!

- Choice of the features
- Explanation of the Table
- H¹-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

• Choice of the features

- Explanation of the Table
- H¹-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Choices of the features

Introduce

а

$$z_1^{\mathrm{bk}}(\cdot) = rac{A_{1,4}^{\mathrm{bk}}(\cdot)}{A_{4,4}^{\mathrm{bk}}(\cdot)}, \ z_2^{\mathrm{bk}}(\cdot) = rac{A_{2,4}^{\mathrm{bk}}(\cdot) + A_{3,4}^{\mathrm{bk}}(\cdot)}{A_{1,1}^{\mathrm{bk}}(\cdot) + A_{4,1}^{\mathrm{bk}}(\cdot)}.$$

nd define $\mathbf{z}_{\ell}^{\mathrm{bk}}(\mu) = [z_{\ell}^{\mathrm{bk}}(f^1;\mu), \dots, z_{\ell}^{\mathrm{bk}}(f^{Q_f};\mu)].$

Feature visualization: z_1 and z_2

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

Feature visualization: z_1

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

67

Feature visualization: z_2

Rationale: z_1^{\cdot} detects asymmetry in the structure; z_2^{\cdot} detects added mass on corners.

67

- Choice of the features
- Explanation of the Table
- H¹-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Explanation of the table

For i = 1, ..., 100

Partition the dataset $\mathcal{D}_{N_{\text{train}}}^{\text{bk}}$ into $\mathcal{D}_{M}^{\text{bk}}$ and $\mathcal{D}_{N_{\text{train}}-M}^{\text{bk}}$ Train the learning algorithm based on $\mathcal{D}_{M}^{\text{bk}}$ Test the learning algorithm based on $\mathcal{D}_{N_{\text{train}}-M}^{\text{bk}} \rightarrow R_{i}^{\text{bk}}$ Test the learning algorithm based on $\mathcal{D}_{15}^{\text{bk}} \rightarrow R_{i}^{\text{exp}}$ EndFor

Return $R^{\text{bk}} = \frac{1}{100} \sum_{i=1}^{100} R_i^{\text{bk}}$ Return $R^{\text{exp}} = \frac{1}{100} \sum_{i=1}^{100} R_i^{\text{exp}}$

- Choice of the features
- Explanation of the Table
- *H*¹-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Results (N = 5, $\sigma = 0$, $g = g_0$)

 H^{1} -PBDW: $\mathcal{U} = H^{1}(\Omega)$, $\ell_{m}^{\text{obs}} = \text{Gauss}(u^{\text{true}}, x_{m}^{\text{obs}}, r_{\text{Gauss}})$ A-PBDW: $\mathcal{U} = H^{1}(\Omega)$, $\ell_{m}^{\text{obs}} = u^{\text{true}}(x_{m}^{\text{obs}})$

Results (N = 5, $\sigma = 0$, $g = \bar{g}$)

 H^{1} -PBDW: $\mathcal{U} = H^{1}(\Omega)$, $\ell_{m}^{\text{obs}} = \text{Gauss}(u^{\text{true}}, x_{m}^{\text{obs}}, r_{\text{Gauss}})$ A-PBDW: $\mathcal{U} = H^{1}(\Omega)$, $\ell_{m}^{\text{obs}} = u^{\text{true}}(x_{m}^{\text{obs}})$

- Choice of the features
- Explanation of the Table
- H¹-PBDW vs A-PBDW
- Localised state estimation
- Choice of $\mathcal{P}^{\mathrm{bk}}$ for thermal patch

Localised state estimation (Chapter 5)

Objective: estimate the state in a subregion Ω of the original domain $\Omega^{\rm pb}$.

Region of interest Localised state estimation (Chapter 5)

Strategy: restrict computations to Ω^{bk} , $\Omega \subset \Omega^{bk} \subset \Omega^{pb}$. uncertainty in global inputs \Rightarrow uncertainty at ports. Solution manifold

$$\mathcal{M}^{\mathrm{bk}} = \left\{ u_g^{\mathrm{bk}}(\mu) |_{\Omega} : \underbrace{\mu \in \mathcal{P}^{\mathrm{bk}}}_{\text{parameters boundary conditions}} \right\}$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_N to approximate \mathcal{M}^{bk}

- **Fundamental question:** is the manifold reducible? (\leftrightarrow evanescence);
- **Challenge:** $\mathcal{P}^{bk} \times \mathcal{T}$ is infinite-dimensional.

Localised state estimation (Chapter 5)

Strategy: restrict computations to Ω^{bk} , $\Omega \subset \Omega^{bk} \subset \Omega^{pb}$. uncertainty in global inputs \Rightarrow uncertainty at ports. Solution manifold

$$\mathcal{M}^{\mathrm{bk}} = \left\{ u_g^{\mathrm{bk}}(\mu) |_{\Omega} : \underbrace{\mu \in \mathcal{P}^{\mathrm{bk}}}_{\text{parameters boundary conditions}} \right\}$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_N to approximate \mathcal{M}^{bk}

Fundamental question: is the manifold reducible? (\leftrightarrow evanescence);

Challenge: $\mathcal{P}^{bk} \times \mathcal{T}$ is infinite-dimensional.

- Choice of the features
- Explanation of the Table
- H¹-PBDW vs A-PBDW
- Localised state estimation
- \bullet Choice of \mathcal{P}^{bk} for thermal patch

Thermal patch: choice of \mathcal{P}^{bk}

 $\mu := [\mu_1 = \gamma/\kappa, \ \mu_2 = C/\kappa]$ $u^{\rm bk}$ is linear in $C/\kappa \Rightarrow$ no need to estimate μ_2 $\kappa = 0.2 W / (m \cdot K)$ thermal conductivity of acrylic, $\gamma = rac{\textit{Nu}\kappa_{air}}{\widehat{l}} pprox 10 \pm 5 \mathrm{W/m^2}$, $\kappa_{\rm air} = 0.0257 \,\mathrm{W}/(\mathrm{m} \cdot \mathrm{K})$ thermal conductivity of air, $Nu = 0.59 (Ra)^{1/4}$ Nusselt number, $Ra = \frac{\beta g \Delta \Theta \hat{L}^3}{\nu \alpha}$ Rayleigh number $g = 9.8 \mathrm{m/s^2}$, $\Delta \Theta = 50^{\circ} K$, $\widehat{L} = 22.606 \mathrm{mm}$, $\beta = 1/300 \mathrm{K}^{-1}$ thermal expansion coefficient, $\alpha = 1.9 \cdot 10^{-5} \mathrm{m}^2/\mathrm{s}$ thermal diffusivity coefficient of air, $\nu = 1.81 \cdot 10^{-5} \text{m}^2/\text{s}$ kinematic viscosity of air.