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Objective of the present work

Develop model reduction techniques to integrate
parametrized mathematical models (µPDEs), and
experimental observations

for prediction.

State estimation: provide an estimate of the system
state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of
a structure of interest (is the system damaged? which is
the type of damage present in the structure?...).
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Model Order Reduction for parametrized PDEs (pMOR)

pMOR objective: reduce the marginal computational
cost associated with the solution to parametrized models.

Typical applications:
many-query: design and optimization, UQ;
real-time/interactive: control, education.

A pMOR procedure should address two separate tasks:

1. data compression (solution manifold → linear space)
⇒ POD, Greedy,...

2. offline-online computational decomposition
⇒ Galerkin projection, interpolation,...
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Model Order Reduction for parametrized PDEs (pMOR)

Claim: recent advances in pMOR offer new opportunities
for the integration of µPDEs and data.

We rely on pMOR techniques for

1. data compression,

2. offline-online computational decomposition,

as building blocks for our data assimilation strategies.
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Contributions

We propose and analyze two computational strategies:

1. Parametrized-Background Data-Weak (PBDW)
approach for state estimation.

2. Simulation-Based Classification (SBC) for
damage identification.

PBDW: Y Maday, AT Patera, JD Penn, M Yano, 2015a, 2015b;
T Taddei, 2016 (under review).

SBC: T Taddei, JD Penn, M Yano, AT Patera, 2016.
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Outline of the presentation

Part I: Simulation-Based Classification (SBC)
Formulation, role of pMOR.

Part II: PBDW approach
Formulation, role of pMOR, a priori error analysis.

We apply our techniques to two companion experiments.

Topics not covered in this talk (but included in the thesis)
SBC: error analysis.
PBDW: a posteriori error analysis, localised state estimation,
adaptation.
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Simulation-Based Classification

An example: a microtruss
Mathematical formulation
Computational approach
Application to the microtruss problem
Perspectives

9



Simulation-Based Classification

An example: a microtruss
Mathematical formulation
Computational approach
Application to the microtruss problem
Perspectives

10



A target application: monitoring of ship loaders1

Objective: monitor the integrity of a ship loader during
the operations

1Photo credit: www.directindustry.com
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Our example: the microtruss system
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Our example: the microtruss system

Goal: detect the presence of added mass on top of
block (1, 4) and block (4, 4)

Apparatus: voice coil actuator; camera&stroboscope

Input: x2-displacement at prescribed frequencies {f q};
Exp data: x2-displacement of blocks’ centers {cexp

i ,j (t`, f q)}.

Data reduction:
cexp
i ,j (t`, f q) ≈ A

exp
i ,j (f q) cos

(
2πf q t` + φ

exp
i ,j (f q)

)
Exp outputs: Aexp

i ,j (f q) :=
Anom

A
exp
2,1 (f q)

A
exp
i ,j (f q).
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Definition of the QOI: damage function

Define sL = 1 + Vleft
Vnom

, and

sR := 1 +
Vright
Vnom

.

Define y = f̄ dam(sL, sR),

y =


1 sL, sR ≤ 1.5,
2 sL > 1.5, sR ≤ 1.5,
3 sL ≤ 1.5, sR > 1.5,
4 sL, sR > 1.5.

The QOI y is the state of damage associated with the
structure.
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Definition of the QOI: damage function
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Engineering objective

Generate a decision rule g that maps experimental outputs
{Aexp

i ,j (f q; C)}i ,j ,q
to the appropriate configuration state of damage

y = f̄ dam(sL, sR) ∈ {1, 2, 3, 4};
for any given system configuration C = (sL, sR , . . .).

Perspective: objective of Structural Health Monitoring
(SHM)
Level I: is the structure damaged?
Level II: where is damage located?

C Farrar, K Worden, 2012
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Mathematical best-knowledge (bk) model

Set
C =

(
µ := [sL = 1 + Vleft

Vnom
, sR = 1 +

Vright
Vnom

, α, β,E ], . . .
)
,

where α, β Rayleigh-damping coefficients, and
E Young’s modulus.

Estimate

Aexp
i ,j (f q; C) ≈ Abk

i ,j (f
q;µ) := Anom

|ubk
2 (xi ,j ; f

q, µ)|
|ubk

2 (x2,1; f q, µ)|
where xi ,j is the center of block (i , j), and ubk(·; f q, µ)
solves the parametrized PDE:

Gelast−helmhotz
(
ubk(f q, µ); f q;µ

)
= 0 + BC

Interpretation:
µ incomplete representation of C;
Gelast−helmhotz bk-parametrized mathematical model. 16
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Feature extraction

Define the feature map F : R16Qf → RQ that
takes as input the experimental (or bk) outputs

{A·i ,j(f q; ?)}i ,j ,q, (· = exp, bk, ? = C, µ)

and returns the Q features

z·(?) = F({A·i ,j(f q; ?)}i ,j ,q) ∈ RQ

F : R16Qf → RQ should be chosen such that
z·(?) is sensitive to the expected damage;

z·(?) is insensitive to noise.
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Mathematical objective

Given the features zbk(µ) = F({Abk
i ,j (f

q;µ)}i ,j ,q) ∈ RQ ,
we seek g : RQ → {1, . . . , 4} that minimizes

Rbk(g) =
∫
Pbk 1

(
g(zbk(µ)) 6= f dam(µ)

)
wbk(µ) dµ,

where
µ = [sL, sR , α, β,E ] ∈ Pbk anticipated configuration;
Pbk anticipated configuration set;
µ 7→ f dam(µ) = f̄ dam(sL, sR) ∈ {1, . . . , 4} damage;
F : R16Qf → RQ feature map (to be defined);
µ 7→ wbk(µ) user-defined weight (↔ Pwbk).
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An example: a microtruss
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Perspectives
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Simulation-Based Classification

Offline stage: (before operations)

1. Generate µ1, . . . , µM
iid︷︸︸︷∼ Pwbk

2. Generate Dbk
M =

{
zbk(µm), f dam(µm)

}M
m=1

3. [g ?M ] = Supervised-Learning-alg(Dbk
M )

Online stage: (during operations)

1. Acquire the new outputs {Aexp
i ,j (f q; C)}i ,j ,q.

2. Compute z̄exp = F(Aexp
i ,j (f q; C)).

3. Return the label g ?M(z̄exp).

Taddei, Penn, Yano, Patera, 2016.
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Simulation-Based Classification

Related works: Farrar et al. (based on experiments);
Basudhar, Missoum;
Willcox et al.

Opportunities:no need to estimate µ = [sL, sR , α, β,E ]
(which includes nuisance variables α, β,E )
non-intrusive approach

(it requires only forward solves)

Challenge: generation of Dbk
M

⇒ Exploit pMOR (↔ parametric def of damage) to
generate Dbk

M .
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Perspectives: a ship loader model2

Cost to build Dbk
M = M × Qf × cost per simulation

FE model (≈ 5 · 106 dofs)
cost per simulation ≈ 43′

M = 104,Qf = 10⇒ 8 years

ROM model (PR-scRBE)
cost per simulation ≈ 5′′

M = 104,Qf = 10⇒ 6 days

⇒ pMOR enables the use of mathematical models in the
simulation-based framework.

2Simulations are performed by Akselos S.A. using PR-scRBE.
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Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate µ1, . . . , µM
iid︷︸︸︷∼ Pwbk

2.a Construct a ROM for µ ∈ Pbk 7→ zbk(µ)

2.b Use the ROM to generate the dataset Dbk
M

3. [g ?M ] = Supervised-Learning-alg(Dbk
M )

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible
compared to the cost of 2.b (many-query context).
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Choice of Pbk

We choose upper bounds for sL, sR a priori.

We choose lower and upper bounds for α, β,E using
textbook values and a preliminary experiment for
sL = sR = 1.

20 40 60 80

f (Hz)

0

5

10

15

minAbk
1,1

A
exp
1,1

maxAbk
1,1

20 40 60 80

f (Hz)

0

1

2

3

4

minφbk
1,1

φ
exp
1,1

maxφbk
1,1

(explanation: minAbk
1,1 = minµ=(1,1,α,β,E )∈Pbk Abk

1,1(µ, f ))
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Choices of the features

Introduce

zbk
1 (·) =

Abk
1,4(·)

Abk
4,4(·)

, zbk
2 (·) =

Abk
2,4(·) + Abk

3,4(·)
Abk
1,1(·) + Abk

4,1(·)
.

and define zbk
` (µ) = [zbk

` (f 1;µ), . . . , zbk
` (f Qf ;µ)].
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Choices of the features: motivation

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.
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Classification procedure

Given zexp
1 , zexp

2 ,
Level 1: distinguish between {1, 4}, {2} and {3} based

on zexp
1 ;

Level 2: if Level 1 returns {1, 4}, distinguish between
{1} and {4} based on zexp

2 .

From the learning perspective,
Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees,
NMC3.

3Implementation is based on off-the-shelf Matlab functions.
28
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Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state ubk(f ;µ), f ∈ If , µ ∈ Pbk,

Use the ROM to compute (f q, µm) 7→ Abk
i ,j (f

q;µm) for
m = 1, . . . ,M and q = 1, . . . ,Qf (= MQf PDE solves).

Computational summary:
Finite Element (FE): 14670 dof,

≈ 0.18[s] for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24[s],

≈ 4.4 · 10−3[s] for each PDE query.

⇒ RB is advantageous if MQf & 180
(we consider MQf ≈ 105).
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Results (synthetic data)

Test
1. Generate a dataset Dbk

Ntrain
, Ntrain = 104, Qf = 9;

2. Use M points for learning, Ntrain −M for testing;
3. Average over 100 partitions.

10
1

10
2

10
3

10
4

M

10
-3

10
-2

10
-1

R
b
k
(g

⋆ M
)

ova-SVM

decision tree

kNN

ANN

NMC

Memo:
Rbk(g) = 0
⇒ no mistakes.

Rbk(g) = 1
⇒ always wrong.

Strong dependence on M ⇒ importance of pMOR. 30



Results (experimental data)

Test
1. Consider 5 different experimental system configu-

rations, and perform 3 independent trials (= 15 exp
datapoints).

2. Train based on M = 7 · 103 synthetic datapoints.
3. Average over 100 partitions of the synthetic dataset.

bk-risk Rbk(g) exp risk (5× 3)
ova-SVM 0.0059 0.2093
decision tree 0.0072 0.4000
kNN (k = 5) 0.0050 0
ANN (10 layers) 0.0026 0.6000
NMC 0.0661 0

31



Results (experimental data)

Test
1. Consider 5 different experimental system configu-

rations, and perform 3 independent trials (= 15 exp
datapoints).

2. Train based on M = 7 · 103 synthetic datapoints.
3. Average over 100 partitions of the synthetic dataset.

bk-risk Rbk(g) exp risk (5× 3)
ova-SVM 0.0059 0.2093
decision tree 0.0072 0.4000
kNN (k = 5) 0.0050 0
ANN (10 layers) 0.0026 0.6000
NMC 0.0661 0

31



Simulation-Based Classification

An example: a microtruss
Mathematical formulation
Computational approach
Application to the microtruss problem
Perspectives

32



Towards the application to real problems

Challenges
Parametrization of damage

damage is a local phenomenon,
⇒ component-based pMOR

Choice of features
automated feature identification4.

4In collaboration with Prof. D Bertsimas, C Pawlowski (MIT). 33



PBDW approach for state estimation

An example: a thermal patch configuration
The PBDW approach
Application to the thermal patch problem
A priori error analysis
Application to a synthetic problem
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Thermal patch experiment

Objective: estimate the temperature field over the
surface Ω.

x1
x3x2

Ω

plate

patch

36



Refined goal and experimental apparatus

Practical applications: local probes.
Refined goal: given `obs

m ≈ utrue(xobs
m ), xobs

m ∈ Ω,
estimate utrue over Ω.

Our apparatus:
IR camera
Full-field information

⇒ performance assessment.
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Mathematical best-knowledge (bk) model

Estimate the steady-state temperature field as
−∆ubk = 0, inΩbk,

κ∂nu
bk + γ(ubk −Θroom) = CχΓpatch on Γin,

κ∂nu
bk = 0 on ∂Ωbk \ Γin,

Θroom room temperature (= 20oC );
κ thermal conductivity;
γ convective heat transfer coefficient;
C incoming flux (patch → plate).

⇒ µ := [γ/κ, C/κ] ∈ Pbk

39



Mathematical best-knowledge (bk) model

x1
x3x2

Ω

Ωbk

Γin

Γin

Γpatch

Ĥ

L̂

Ω ⊂ ∂Ωbk, L̂ = 22.606mm, Ĥ = 9.271mm.

39



Bk solution manifold

Define the bk solution manifold

Mbk = {ubk(µ)|Ω : µ ∈ Pbk} ⊂ U = U(Ω)

Mbk takes into account parametrized uncertainty in the
system.

Mbk does not take into account non-parametric uncer-
tainty in the system:

nonlinear effects due to natural convection,
heat-exchange between the patch and the sheet.
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General idea

GivenMbk, define ZN = span{ζn}Nn=1 such that

supµ infz ‖ubk(µ)|Ω − z‖ is small.

Then, given measurements `obs
1 , . . . , `obs

M ,

step 1. find z? ∈ ZN such that z? ≈ utrue

step 2. find η? ∈ U such that η? ≈ utrue − z?

step 3. return the state estimate u? = z? + η?.

41



Variational formulation

Given the Hilbert space (U = U(Ω), ‖ · ‖), introduce
`o1, . . . , `

o
M ∈ U ′ such that

`obs
m ≈ `om(utrue), m = 1, . . . ,M .

Define u?ξ = z?ξ + η?ξ to minimise

min
(z ,η)∈ZN×U

ξ‖η‖2 +
1
M

M∑
m=1

(
`om(z + η)− `obs

m

)2
.

Computation of z?ξ corresponds to a weighted LS problem.
Computation of η?ξ corresponds to a generalized smoothing
problem based on `errm = `obs

m − `om(z?ξ ) ≈ `om(utrue − z?ξ ).
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Interpretation

Terminology:
ZN background space;
z? ∈ ZN deduced background;
η? update;

z? addresses parametrized uncertainty in the model, while
η? addresses non-parametric uncertainty in the model.

Solution to min
(z ,η)∈ZN×U

· is simpler than min
(z ,η)∈Mbk×U

·.

Construction of ZN is a pMOR problem.
data compression
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Solution representation

The update is of the form

η?ξ(·) =
M∑

m=1

η?ξ,mRU`
o
m(·) ∈ UM := span{RU`om}Mm=1,

where RU : U ′ 7→ U depends on (U , ‖ · ‖).

For `om = δxom and suitable (U , ‖ · ‖),
RU`

o
m(·) = Kγ(·, xobs

m ) = φ(γ‖ · −xobs
m ‖2) ⇒ connection
with Kernel methods.

Bennett, 1985, Kimeldorf, Wahba, 1971;
J Krebs, A Louis, H Wendland, 2009.

44



Contributions

Maday et al, 2015
two-level mechanism to accommodate anticipated/
unanticipated uncertainty
use of pMOR to generate ZN ;

This thesis
adaptive selection of ξ

⇒ rigorous treatment of noisy measurements;
adaptive selection of ‖ · ‖ for pointwise measurements

⇒ improved convergence with M .
Localized state estimation (Ω ⊂ Ωbk, µ ∈ RP , P � 1); not

covered in this talk.
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Details

Observations: `obs
m = uobs(xobs

im,jm
), (⇒ `om = δxobs

im,jm
)

xobs
im,jm

center of the (im, jm) pixel5.

Background: {ZN}N generated using the weak-Greedy6

algorithm;

Kernel:7 Kγ(x , x ′) = φ(γ‖x − x ′‖2),
φ(r) = (1− r)4+(4r + 1), (U = H2.5(R2)).

5The IR camera returns 160× 120 pixel-wise measurements.
6G Rozza, DBP Huynh, AT Patera, 2008.
7H Wendland, 2004.
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Numerical results (N = 2, M = 25): step 1

step 1. find z? ∈ ZN such that z? ≈ utrue

uobs z?ξ

48



Numerical results (N = 2, M = 25): step 2

step 2. find η? ∈ U such that η? ≈ utrue − z?

uobs − z?ξ η?ξ

48



Numerical results (N = 2, M = 25): step 3

step 3. return the state estimate u? = z? + η?.

uobs u?ξ
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Numerical results (N = 0, M = 25): step 3

step 3. return the state estimate u? = z? + η?.

uobs u?ξ
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Application to a synthetic problem
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Preliminaries

Suppose
ym = utrue(xobs

m ) + εm, m = 1, . . . ,M .

Define the fill distance:
hM := sup

x∈Ω
min
m
‖x − xobs

m ‖2;

Suppose quasi-uniform grid:
hM ∼ M−1/d , Ω ⊂ Rd .

Systematic noise: |εm| ≤ δ

Homoscedastic noise: εm
iid︷︸︸︷∼ (0, σ2)
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A priori error analysis: |εm| ≤ δ

Suppose: U = Hτ(Rd), τ > d/2, utrue ∈ U ,ZN ⊂ U ;
hM ∼ M−1/d ;

⇒ ‖utrue − u?ξ‖2L2(Ω) ≤ CN

(
h2τM
(
2‖ΠZ⊥

N
utrue‖U +

δ

2
1√
ξ

)2
+
(
δ +

√
ξ

2
‖ΠZ⊥

N
utrue‖U

)2)
ξopt =

(
δ

‖ΠZ⊥
N
utrue‖U h

2τ
M

)2/3

;

If δ = 0⇒ ‖utrue − u?ξ,γ‖2L2(Ω) ≤ CN‖ΠZ⊥
N
utrue‖2U

(
h2τM + ξ

)
ZN = ∅ ⇒ J Krebs, A Louis, H Wendland, 2009.
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A priori error analysis: εm ∼ (0, σ2) i.i.d.

Suppose: U = Hτ(Rd), τ > d/2, utrue ∈ U ,ZN ⊂ U ;
hM ∼ M−1/d ;

⇒ E
[
‖utrue − u?ξ‖2L2(Ω)

]
≤ CN

(
h2τM + ξ

)
‖ΠZ⊥

N
utrue‖2U

+2σ2 T σN,M(ξ)

where T σN,M(ξ) can be computed explicitly.

If utrue ∈ ZN ⇒ E
[
‖utrue − u?ξ,γ‖2L2(Ω)

]
= σ2 T σN,M(ξ)

Empirical studies show that T σN,M(ξ) is monotonic
decreasing in ξ.
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PBDW approach for state estimation

An example: a thermal patch configuration
The PBDW approach
Application to the thermal patch problem
A priori error analysis
Application to a synthetic problem
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An acoustic model problem

Let ug(µ) be the solution to{
−(1 + εµi) ∆ug(µ)− µ2 ug(µ) = µ(x21 + ex2) + µg inΩ

∂nug(µ) = 0 on ∂ Ω

where ε = 10−2 and µ ∈ Pbk = [2, 10].

Perfect model: utrue(µ) = ug0(µ), ubk(µ) = ug0(µ);

Imperfect model: utrue(µ) = uḡ(µ), ubk(µ) = ug0(µ).

g0 ≡ 0, ḡ(x) = 0.5(ex1 + cos(1.3πx2)).
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Details

Observations: y` = utrue(xobs
` ) + ε`, ε`

iid︷︸︸︷∼ N (0, σ2);

Centers: {xobs
m }m deterministic (equispaced),
{xobs

i }i drawn randomly (uniform), I = M/2;

Background: {ZN}N generated using the weak-Greedy
algorithm;

Kernel: Kγ(x , x ′) = φ(γ‖x − x ′‖2),
φ(r) = (1− r)4+(4r + 1), (U = H2.5(R2)).

G Rozza, DBP Huynh, AT Patera, 2008;
H Wendland, 2004.
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Measure of performances

We introduce

E rel
avg =

1
|Pbk

train|
∑

µ∈Pbk
train

‖utrue(µ)− u?ξ (µ)‖L2(Ω)

‖utrue(µ)‖L2(Ω)
,

Pbk
train ⊂ [2, 10].

if σ > 0 (noisy measurements), computations of
‖utrue(µ)− u?ξ (µ)‖L2(Ω) are averaged over K = 24 trials.
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Results: M convergence (σ = 0, g = ḡ)

E rel
avg ∼ M−1.3 −M−1.5, |Pbk

train| = 20
Multiplicative effect between M and N convergence.
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Results: M convergence (N = 5, σ > 0, g = ḡ)

E rel
avg ∼ M−0.4 −M−0.5, |Pbk

train| = 1, µ = 6.6;
Adaptation in ξ allows us to deal with noisy measurements.
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Conclusions
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Summary

pMOR techniques for

1. data compression and

2. offline/online computational decomposition

offer new opportunities for the integration of µPDEs and
data.

We relied on pMOR techniques to develop two Data
Assimilation strategies for systems modeled by PDEs.
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Summary

PBDW for state estimation:
two-level procedure to address parametric and non-
parametric uncertainty
pMOR employed to construct ZN

data compression

SBC for damage identification:
simulation-based approach for discrete-valued QOIs
pMOR procedure for rapid generation of Dbk

M

offline/online decomposition
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Thank you for the
attention!
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Backup slides

Choice of the features
Explanation of the Table
H1-PBDW vs A-PBDW
Localised state estimation
Choice of Pbk for thermal patch
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Choices of the features

Introduce

zbk
1 (·) =

Abk
1,4(·)

Abk
4,4(·)

, zbk
2 (·) =

Abk
2,4(·) + Abk

3,4(·)
Abk
1,1(·) + Abk

4,1(·)
.

and define zbk
` (µ) = [zbk

` (f 1;µ), . . . , zbk
` (f Qf ;µ)].
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Feature visualization: z1 and z2

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.
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Feature visualization: z1

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.

f (Hz)
20 30 40 50 60 70 80

0.5

1

1.5

2

2.5
y=1,4(bk)
y=2(bk)
y=3(bk)
y=1,4(exp)
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Feature visualization: z2

Rationale: z ·1 detects asymmetry in the structure;
z ·2 detects added mass on corners.

f (Hz)
20 30 40 50 60 70 80

0

0.5

1

1.5
y=1(bk)
y=4(bk)
y=1(exp)
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Explanation of the table

For i = 1, . . . , 100
Partition the dataset Dbk

Ntrain
into Dbk

M and Dbk
Ntrain−M

Train the learning algorithm based on Dbk
M

Test the learning algorithm based on Dbk
Ntrain−M → Rbk

i

Test the learning algorithm based on Dexp
15 → Rexp

i

EndFor

Return Rbk = 1
100

∑100
i=1 R

bk
i

Return Rexp = 1
100

∑100
i=1 R

exp
i
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Backup slides

Choice of the features
Explanation of the Table
H1-PBDW vs A-PBDW
Localised state estimation
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Results (N = 5, σ = 0, g = g0)

H1-PBDW: U = H1(Ω), `obs
m = Gauss(utrue, xobs

m , rGauss)

A-PBDW: U = H1(Ω), `obs
m = utrue(xobs

m )
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Results (N = 5, σ = 0, g = ḡ)

H1-PBDW: U = H1(Ω), `obs
m = Gauss(utrue, xobs

m , rGauss)

A-PBDW: U = H1(Ω), `obs
m = utrue(xobs

m )
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Choice of the features
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H1-PBDW vs A-PBDW
Localised state estimation
Choice of Pbk for thermal patch

73



Localised state estimation (Chapter 5)

Objective: estimate the state in a subregion Ω of the
original domain Ωpb.
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Localised state estimation (Chapter 5)

Strategy: restrict computations to Ωbk, Ω ⊂ Ωbk ⊂ Ωpb.

uncertainty in global inputs ⇒ uncertainty at ports.

Solution manifold

Mbk =
{
ubk
g (µ)|Ω : µ ∈ Pbk︸ ︷︷ ︸

parameters
g ∈ T︸ ︷︷ ︸

boundary conditions

}
Refined objective: determine rapidly convergent spaces
ZN to approximateMbk

Fundamental question: is the manifold reducible? (↔
evanescence);
Challenge: Pbk × T is infinite-dimensional.
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Thermal patch: choice of Pbk

µ := [µ1 = γ/κ, µ2 = C/κ]

ubk is linear in C/κ ⇒ no need to estimate µ2

κ = 0.2W/(m · K) thermal conductivity of acrylic,

γ = Nuκair

L̂
≈ 10± 5W/m2,

κair = 0.0257W/(m · K) thermal conductivity of air,
Nu = 0.59(Ra)1/4 Nusselt number,

Ra = βg∆ΘL̂3

να Rayleigh number

g = 9.8m/s2, ∆Θ = 50oK , L̂ = 22.606mm,
β = 1/300K−1 thermal expansion coefficient,
α = 1.9 · 10−5m2/s thermal diffusivity coefficient of air,
ν = 1.81 · 10−5m2/s kinematic viscosity of air.
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