Model order reduction methods for data assimilation; state estimation, and structural health monitoring

T Taddei

Massachusetts Institute of Technology

PhD Defense, September 13th, 2016

Advisor: Prof. AT Patera
Objective
Objective of the present work

Develop **model reduction** techniques to integrate parametrized mathematical models (μ-PDEs), and experimental observations for prediction.

State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).
Objective of the present work

Develop **model reduction** techniques to integrate parametrized mathematical models (μPDEs), and experimental observations for prediction.

State estimation: provide an estimate of the system state (temperature, pressure, displacement...);

Damage identification: assess the state of damage of a structure of interest (is the system damaged? which is the type of damage present in the structure?...).
Model Order Reduction for parametrized PDEs (pMOR)

pMOR objective: reduce the marginal computational cost associated with the solution to parametrized models.

Typical applications:
- *many-query:* design and optimization, UQ;
- *real-time/interactive:* control, education.

A pMOR procedure should address two separate tasks:

1. data compression (solution manifold \rightarrow linear space) \Rightarrow POD, Greedy, ...
2. offline-online computational decomposition \Rightarrow Galerkin projection, interpolation, ...
Claim: recent advances in pMOR offer new opportunities for the integration of μPDEs and data.

We rely on pMOR techniques for

1. data compression,

2. offline-online computational decomposition,

as building blocks for our data assimilation strategies.
Contributions

We propose and analyze two computational strategies:

1. Parametrized-Background Data-Weak (PBDW) approach for state estimation.

2. Simulation-Based Classification (SBC) for damage identification.

PBDW: Y Maday, AT Patera, JD Penn, M Yano, 2015a, 2015b; T Taddei, 2016 (under review).

SBC: T Taddei, JD Penn, M Yano, AT Patera, 2016.
Outline of the presentation

Part I: Simulation-Based Classification (SBC)
 Formulation, role of pMOR.

Part II: PBDW approach
 Formulation, role of pMOR, \textit{a priori} error analysis.

We apply our techniques to two companion experiments.

Topics not covered in this talk (but included in the thesis)
 SBC: error analysis.
 PBDW: \textit{a posteriori} error analysis, localised state estimation, adaptation.
Acknowledgements

James D Penn (MIT)
Conception and implementation of the experiments
Data acquisition
Calibration

Masayuki Yano (University of Toronto)
High-order FE code
Mathematical formulation
Numerical analysis
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
A target application: monitoring of ship loaders

Objective: monitor the integrity of a ship loader during the operations

1 Photo credit: www.directindustry.com
Our example: the microtruss system
Our example: the microtruss system
Our example: the microtruss system

Goal: detect the presence of added mass on top of block \((1, 4)\) and block \((4, 4)\)

Apparatus: voice coil actuator; camera&stroboscope

Input: \(x_2\)-displacement at prescribed frequencies \(\{f^q\}\);

Exp data: \(x_2\)-displacement of blocks’ centers \(\{c_{i,j}^{\exp}(t^\ell, f^q)\}\).

Data reduction:

\[
c_{i,j}^{\exp}(t^\ell, f^q) \approx A_{i,j}^{\exp}(f^q) \cos \left(2\pi f^q t^\ell + \phi_{i,j}^{\exp}(f^q)\right)
\]

Exp outputs:

\[
A_{i,j}^{\exp}(f^q) := \frac{A_{\text{nom}}^{\exp}}{A_{2,1}^{\exp}(f^q)} \bar{A}_{i,j}^{\exp}(f^q).
\]
Definition of the QOI: damage function

Define $s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}$, and $s_R := 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}$.

Define $y = \bar{f}^{\text{dam}}(s_L, s_R)$,

$$y = \begin{cases}
1 & s_L, s_R \leq 1.5, \\
2 & s_L > 1.5, s_R \leq 1.5, \\
3 & s_L \leq 1.5, s_R > 1.5, \\
4 & s_L, s_R > 1.5.
\end{cases}$$

The QOI y is the state of damage associated with the structure.
Definition of the QOI: damage function

\begin{align*}
y &= 1 \\
y &= 2 \\
y &= 3 \\
y &= 4
\end{align*}
Engineering objective

Generate a decision rule g that maps experimental outputs
\[\{A_{i,j}^{\text{exp}}(f^q; C)\}_{i,j,q} \]
to the appropriate configuration state of damage
\[y = \bar{f}^\text{dam}(s_L, s_R) \in \{1, 2, 3, 4\}; \]
for any given system configuration $C = (s_L, s_R, \ldots)$.

Perspective: objective of Structural Health Monitoring (SHM)

Level I: is the structure damaged?

Level II: where is damage located?

C Farrar, K Worden, 2012
Engineering objective

Generate a decision rule g that maps experimental outputs

$$\{A_{i,j}^{\exp}(f^q;C)\}_{i,j,q}$$

to the appropriate configuration state of damage

$$y = f_{\text{dam}}(s_L, s_R) \in \{1, 2, 3, 4\};$$

for any given system configuration $C = (s_L, s_R, \ldots)$.

Perspective: objective of Structural Health Monitoring (SHM)

- **Level I:** is the structure damaged?
- **Level II:** where is damage located?

C Farrar, K Worden, 2012
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
Mathematical best-knowledge (bk) model

Set
\[C = (\mu := \left[s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, s_R = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E \right], \ldots), \]
where \(\alpha, \beta \) Rayleigh-damping coefficients, and \(E \) Young’s modulus.

Estimate
\[A_{i,j}^{\text{exp}}(f_q; C) \approx A_{i,j}^{\text{bk}}(f_q; \mu) := A_{\text{nom}} \frac{|u_{2}^{\text{bk}}(x_{i,j}; f_q, \mu)|}{|u_{2}^{\text{bk}}(x_{2,1}; f_q, \mu)|}, \]
where \(x_{i,j} \) is the center of block \((i, j)\), and \(u_{2}^{\text{bk}}(\cdot; f_q, \mu) \) solves the parametrized PDE:
\[\mathcal{G}_{\text{elast–helmhotz}}(u_{2}^{\text{bk}}(f_q, \mu); f_q; \mu) = 0 + \text{BC} \]

Interpretation:
\(\mu \) incomplete representation of \(C \);
\(\mathcal{G}_{\text{elast–helmhotz}} \) bk-parametrized mathematical model.
Mathematical best-knowledge (bk) model

Set
\[C = (\mu := [s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, s_R = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E], \ldots), \]
where \(\alpha, \beta \) Rayleigh-damping coefficients, and \(E \) Young’s modulus.

Estimate
\[A_{i,j}^{\exp} (f^q; C) \approx A_{i,j}^{bk} (f^q; \mu) := A_{\text{nom}} \frac{|u_{2}^{bk}(x_{i,j}; f^q, \mu)|}{|u_{2}^{bk}(x_{2,1}; f^q, \mu)|}, \]
where \(x_{i,j} \) is the center of block \((i,j)\), and \(u^{bk}(\cdot; f^q, \mu) \) solves the parametrized PDE:

\[G_{\text{elast–helmhotz}}(u^{bk}(f^q, \mu); f^q; \mu) = 0 + \text{BC} \]

Interpretation:
\(\mu \) incomplete representation of \(C \);
\[G_{\text{elast–helmhotz}} \] bk-parametrized mathematical model.
Mathematical best-knowledge (bk) model

Set
\[C = (\mu := [s_L = 1 + \frac{V_{\text{left}}}{V_{\text{nom}}}, s_R = 1 + \frac{V_{\text{right}}}{V_{\text{nom}}}, \alpha, \beta, E], \ldots), \]
where \(\alpha, \beta \) Rayleigh-damping coefficients, and \(E \) Young’s modulus.

Estimate
\[A_{i,j}^{\text{exp}}(f^q; C) \approx A_{i,j}^{\text{bk}}(f^q; \mu) := A_{\text{nom}} \frac{|u_{2}^{\text{bk}}(x_{i,j}; f^q, \mu)|}{|u_{2}^{\text{bk}}(x_{2,1}; f^q, \mu)|} \]
where \(x_{i,j} \) is the center of block \((i, j)\), and \(u^{\text{bk}}(\cdot; f^q, \mu) \) solves the parametrized PDE:
\[\mathcal{G}_{\text{elast–helmhotz}}(u^{\text{bk}}(f^q, \mu); f^q; \mu) = 0 + \text{BC} \]

Interpretation:
\(\mu \) incomplete representation of \(C \);
\(\mathcal{G}_{\text{elast–helmhotz}} \) bk-parametrized mathematical model.
Feature extraction

Define the **feature map** $\mathcal{F}: \mathbb{R}^{16Q_f} \rightarrow \mathbb{R}^{Q}$ that takes as input the experimental (or bk) outputs

$$\{A_{i,j}(f^q; \star)\}_{i,j,q}, (\cdot = \exp, \text{bk}, \star = \mathcal{C}, \mu)$$

and returns the Q **features**

$$z^\star(\star) = \mathcal{F}(\{A_{i,j}(f^q; \star)\}_{i,j,q}) \in \mathbb{R}^{Q}$$

$\mathcal{F}: \mathbb{R}^{16Q_f} \rightarrow \mathbb{R}^{Q}$ should be chosen such that

- $z^\star(\star)$ is sensitive to the expected damage;
- $z^\star(\star)$ is insensitive to noise.
Mathematical objective

Given the features \(z^{bk}(\mu) = \mathcal{F}(\{ A^{bk}_{i,j}(f^q; \mu) \}_{i,j,q}) \in \mathbb{R}^Q \), we seek \(g : \mathbb{R}^Q \rightarrow \{1, \ldots, 4\} \) that minimizes

\[
R^{bk}(g) = \int_{\mathcal{P}^{bk}} 1(g(z^{bk}(\mu)) \neq f^{\text{dam}}(\mu)) \, w^{bk}(\mu) \, d\mu,
\]

where

- \(\mu = [s_L, s_R, \alpha, \beta, E] \in \mathcal{P}^{bk} \) anticipated configuration;
- \(\mathcal{P}^{bk} \) anticipated configuration set;
- \(\mu \mapsto f^{\text{dam}}(\mu) = \bar{f}^{\text{dam}}(s_L, s_R) \in \{1, \ldots, 4\} \) damage;
- \(\mathcal{F} : \mathbb{R}^{16Q_f} \rightarrow \mathbb{R}^Q \) feature map (to be defined);
- \(\mu \mapsto w^{bk}(\mu) \) user-defined weight (\(\leftrightarrow P_{w^{bk}} \)).
Mathematical objective

Given the features \(z^{bk}(\mu) = \mathcal{F}(\{ A_{i,j}^{bk}(f^q; \mu) \}_{i,j,q}) \in \mathbb{R}^Q \), we seek \(g : \mathbb{R}^Q \rightarrow \{1, \ldots, 4\} \) that minimizes

\[
R^{bk}(g) = \int_{\mathcal{P}^{bk}} 1 (g(z^{bk}(\mu)) \neq f^{\text{dam}}(\mu)) \, w^{bk}(\mu) \, d\mu,
\]

where

\[
\begin{align*}
\mu &= [s_L, s_R, \alpha, \beta, E] \in \mathcal{P}^{bk} \text{ anticipated configuration;} \\
\mathcal{P}^{bk} &\text{ anticipated configuration set;} \\
\mu &\mapsto f^{\text{dam}}(\mu) = \bar{f}^{\text{dam}}(s_L, s_R) \in \{1, \ldots, 4\} \text{ damage;} \\
\mathcal{F} : \mathbb{R}^{16Q_f} &\rightarrow \mathbb{R}^Q \text{ feature map (to be defined);} \\
\mu &\mapsto w^{bk}(\mu) \text{ user-defined weight (} \leftrightarrow P_{w^{bk}} \text{).}
\end{align*}
\]
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
Simulation-Based Classification

**Offline stage: ** (before operations)

1. Generate $\mu^1, \ldots, \mu^M \overset{iid}{\sim} P_{w^{bk}}$
2. Generate $D^{bk}_M = \{ z^{bk}(\mu^m), f^{\text{dam}}(\mu^m) \}_{m=1}^M$
3. $[g^*_M] = \text{Supervised-Learning-alg}(D^{bk}_M)$

Online stage: (during operations)

1. Acquire the new outputs $\{ A_{i,j}^{\text{exp}}(f^q; \overline{C}) \}_{i,j,q}$.
2. Compute $\overline{z}^{\text{exp}} = \mathcal{F}(A_{i,j}^{\text{exp}}(f^q; \overline{C}))$.
3. Return the label $g^*_M(\overline{z}^{\text{exp}})$.

Taddei, Penn, Yano, Patera, 2016.
Simulation-Based Classification

Offline stage: (before operations)

1. Generate $\mu_1, \ldots, \mu^M \sim P_{w^{bk}}$
2. Generate $D_{bk}^M = \{z^{bk}(\mu^m), f^{\text{dam}}(\mu^m)\}_{m=1}^M$
3. $[g^*_M] = \text{Supervised-Learning-alg}(D_{bk}^M)$

Online stage: (during operations)

1. Acquire the new outputs $\{A_{i,j}^{\text{exp}}(f^q; C)\}_{i,j,q}$.
2. Compute $\bar{z}^{\text{exp}} = \mathcal{F}(A_{i,j}^{\text{exp}}(f^q; C))$.
3. Return the label $g^*_M(\bar{z}^{\text{exp}})$.

Taddei, Penn, Yano, Patera, 2016.
Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E)
- non-intrusive approach
- (it requires only forward solves)

Challenge: generation of D_{bk}^M

\Rightarrow Exploit pMOR (\leftrightarrow parametric def of damage) to generate D_{bk}^M.
Simulation-Based Classification

Related works: Farrar et al. (based on experiments); Basudhar, Missoum; Willcox et al.

Opportunities: no need to estimate $\mu = [s_L, s_R, \alpha, \beta, E]$ (which includes nuisance variables α, β, E)

- non-intrusive approach
- (it requires only forward solves)

Challenge: generation of D_{bk}^M

\Rightarrow Exploit pMOR (↔ parametric def of damage) to generate D_{bk}^M.
Perspectives: a ship loader model2

\textbf{Cost to build} \[D_{\text{blk}}^{\text{M}} = M \times Q_f \times \text{cost per simulation} \]

\textbf{FE model} \ ($\approx 5 \cdot 10^6$ dofs)\n\text{cost per simulation} $\approx 43'$\n$M = 10^4$, $Q_f = 10 \Rightarrow 8$ years

\textbf{ROM model} (PR-scRBE)\n\text{cost per simulation} $\approx 5''$\n$M = 10^4$, $Q_f = 10 \Rightarrow 6$ days

\Rightarrow pMOR enables the use of mathematical models in the simulation-based framework.

2Simulations are performed by Akselos S.A. using PR-scRBE.
Offline stage: (before operations)

1. Generate $\mu^1, \ldots, \mu^M \overset{iid}{\sim} P_{w^b_k}$
2.a Construct a ROM for $\mu \in \mathcal{P}_b^k \mapsto z^{b_k}(\mu)$
2.b Use the ROM to generate the dataset $\mathcal{D}_M^{b_k}$
3. $[g^*_M] = \text{Supervised-Learning-alg}(\mathcal{D}_M^{b_k})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (many-query context).
Simulation-Based Classification with pMOR

Offline stage: (before operations)

1. Generate $\mu^1, \ldots, \mu^M \overset{iid}{\sim} P_{w_{bk}}$
2.a Construct a ROM for $\mu \in P_{bk}^{bk} \mapsto z^{bk}(\mu)$
2.b Use the ROM to generate the dataset D_M^{bk}
3. $[g^*_M] = \text{Supervised-Learning-alg}(D_M^{bk})$

pMOR is employed only in the generation of the dataset;

If M is sufficiently large, the cost of 2.a is negligible compared to the cost of 2.b (*many-query context*).
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
Choice of \mathcal{P}^{bk}

We choose upper bounds for s_L, s_R \textit{a priori}.

We choose lower and upper bounds for α, β, E using textbook values and a preliminary experiment for $s_L = s_R = 1$.

(explanation: $\min A^{\text{bk}}_{1,1} = \min_{\mu=(1,1,\alpha,\beta,E)\in\mathcal{P}^{\text{bk}}} A^{\text{bk}}_{1,1}(\mu, f)$)
Choices of the features

Introduce

\[
\begin{align*}
z_{1}^{bk} (\cdot) &= \frac{A_{1,4}^{bk}(\cdot)}{A_{4,4}^{bk}(\cdot)}, \quad z_{2}^{bk} (\cdot) = \frac{A_{2,4}^{bk}(\cdot) + A_{3,4}^{bk}(\cdot)}{A_{1,1}^{bk}(\cdot) + A_{4,1}^{bk}(\cdot)}.
\end{align*}
\]

and define \(z_{\ell}^{bk} (\mu) = [z_{\ell}^{bk}(f^1; \mu), \ldots, z_{\ell}^{bk}(f^{Q_f}; \mu)] \).
Choices of the features: motivation

Rationale: z_1 detects asymmetry in the structure; z_2 detects added mass on corners.
Classification procedure

Given $z_1^{\text{exp}}, z_2^{\text{exp}}$,

Level 1: distinguish between $\{1, 4\}$, $\{2\}$ and $\{3\}$ based on z_1^{exp};

Level 2: if Level 1 returns $\{1, 4\}$, distinguish between $\{1\}$ and $\{4\}$ based on z_2^{exp}.

From the learning perspective,

Level 1 corresponds to a 3way classification problem;
Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees, NMC3.

3Implementation is based on off-the-shelf Matlab functions.
Classification procedure

Given z_1^{exp}, z_2^{exp},

Level 1: distinguish between $\{1, 4\}$, $\{2\}$ and $\{3\}$ based on z_1^{exp};

Level 2: if Level 1 returns $\{1, 4\}$, distinguish between $\{1\}$ and $\{4\}$ based on z_2^{exp}.

From the learning perspective,

- Level 1 corresponds to a 3way classification problem;
- Level 2 corresponds to a 2way classification problem.

Algorithms used: SVM, ANN, kNN, decision trees, NMC3.

3Implementation is based on off-the-shelf Matlab functions.
Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state $u^{bk}(f; \mu), f \in \mathcal{I}_f, \mu \in \mathcal{P}^{bk}$.
Use the ROM to compute $(f^q, \mu^m) \mapsto A^{bk}_{i,j}(f^q; \mu^m)$ for $m = 1, \ldots, M$ and $q = 1, \ldots, Q_f (= MQ_f$ PDE solves).

Computational summary:
Finite Element (FE): 14670 dof,
≈ 0.18[s] for each PDE query;
Reduced Basis (RB): 20 dof, pre-processing cost ≈ 24[s],
≈ 4.4 \cdot 10^{-3}[s] for each PDE query.

⇒ RB is advantageous if $MQ_f \gtrsim 180$
(we consider $MQ_f \approx 10^5$).
Model reduction procedure: Reduced Basis (RB) method

Computational procedure (essential):
Build a ROM for the state \(u^{bk}(f; \mu) \), \(f \in \mathcal{I}_f \), \(\mu \in \mathcal{P}^{bk} \).

Use the ROM to compute \((f^q, \mu^m) \mapsto A_{i,j}^{bk}(f^q; \mu^m) \) for \(m = 1, \ldots, M \) and \(q = 1, \ldots, Q_f \) (= \(MQ_f \) PDE solves).

Computational summary:
Finite Element (FE): 14670 dof,
\[\approx 0.18[s] \text{ for each PDE query; } \]

Reduced Basis (RB): 20 dof, pre-processing cost \(\approx 24[s] \),
\[\approx 4.4 \cdot 10^{-3}[s] \text{ for each PDE query. } \]

\(\Rightarrow \) RB is advantageous if \(MQ_f \gtrsim 180 \)
(we consider \(MQ_f \approx 10^5 \)).
Results (synthetic data)

Test

1. Generate a dataset $\mathcal{D}_{N_{\text{train}}}^{bk}$, $N_{\text{train}} = 10^4$, $Q_f = 9$;
2. Use M points for learning, $N_{\text{train}} - M$ for testing;
3. Average over 100 partitions.

Memo:

$R_{bk}(g) = 0$
\Rightarrow no mistakes.

$R_{bk}(g) = 1$
\Rightarrow always wrong.

Strong dependence on $M \Rightarrow$ importance of pMOR.
Test

1. Consider 5 different experimental system configurations, and perform 3 independent trials ($= 15$ exp datapoints).
2. Train based on $M = 7 \cdot 10^3$ synthetic datapoints.
3. Average over 100 partitions of the synthetic dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>bk-risk $R^{bk}(g)$</th>
<th>exp risk (5×3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ova-SVM</td>
<td>0.0059</td>
<td>0.2093</td>
</tr>
<tr>
<td>decision tree</td>
<td>0.0072</td>
<td>0.4000</td>
</tr>
<tr>
<td>kNN ($k = 5$)</td>
<td>0.0050</td>
<td>0</td>
</tr>
<tr>
<td>ANN (10 layers)</td>
<td>0.0026</td>
<td>0.6000</td>
</tr>
<tr>
<td>NMC</td>
<td>0.0661</td>
<td>0</td>
</tr>
</tbody>
</table>
Results (experimental data)

Test

1. Consider 5 different experimental system configurations, and perform 3 independent trials (= 15 exp datapoints).

2. Train based on $M = 7 \cdot 10^3$ synthetic datapoints.

3. Average over 100 partitions of the synthetic dataset.

<table>
<thead>
<tr>
<th></th>
<th>bk-risk $R^{bk}(g)$</th>
<th>exp risk (5×3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ova-SVM</td>
<td>0.0059</td>
<td>0.2093</td>
</tr>
<tr>
<td>decision tree</td>
<td>0.0072</td>
<td>0.4000</td>
</tr>
<tr>
<td>kNN ($k = 5$)</td>
<td>0.0050</td>
<td>0</td>
</tr>
<tr>
<td>ANN (10 layers)</td>
<td>0.0026</td>
<td>0.6000</td>
</tr>
<tr>
<td>NMC</td>
<td>0.0661</td>
<td>0</td>
</tr>
</tbody>
</table>
Simulation-Based Classification

- An example: a microtruss
- Mathematical formulation
- Computational approach
- Application to the microtruss problem
- Perspectives
Towards the application to real problems

Challenges

Parametrization of damage

damage is a local phenomenon,

⇒ component-based pMOR

Choice of features

automated feature identification\(^4\).

\(^4\)In collaboration with Prof. D Bertsimas, C Pawlowski (MIT).
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
Thermal patch experiment

Objective: estimate the temperature field over the surface Ω.
Refined goal and experimental apparatus

Practical applications: local probes.

Refined goal: given $\ell_m^{\text{obs}} \approx u^{\text{true}}(x_m^{\text{obs}})$, $x_m^{\text{obs}} \in \Omega$, estimate u^{true} over Ω.

Our apparatus:
IR camera
Full-field information \Rightarrow performance assessment.
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
Mathematical best-knowledge (bk) model

Estimate the steady-state temperature field as

\[
\begin{cases}
-\Delta u^{bk} = 0, & \text{in } \Omega^{bk}, \\
\kappa \partial_n u^{bk} + \gamma (u^{bk} - \Theta^{room}) = C \chi_{\Gamma^{\text{patch}}} & \text{on } \Gamma^{\text{in}}, \\
\kappa \partial_n u^{bk} = 0 & \text{on } \partial\Omega^{bk} \setminus \Gamma^{\text{in}},
\end{cases}
\]

\(\Theta^{room}\) room temperature \((= 20^\circ C)\);
\(\kappa\) thermal conductivity;
\(\gamma\) convective heat transfer coefficient;
\(C\) incoming flux (patch \(\rightarrow\) plate).

\(\Rightarrow \mu := [\gamma/\kappa, C/\kappa] \in \mathcal{P}^{bk}\)
Mathematical best-knowledge (bk) model

\[\Omega \subset \partial \Omega^{\text{bk}}, \quad \hat{L} = 22.606\text{mm}, \quad \hat{H} = 9.271\text{mm}. \]

\[\Omega \]

\[\Gamma^\text{in} \]

\[\Omega^{\text{bk}} \]

\[\Gamma^\text{in} \]

\[\Gamma^\text{patch} \]

\[\hat{L} \]

\[\hat{H} \]
Define the bk solution manifold

\[M^{bk} = \{ u^{bk}(\mu) |_{\Omega} : \mu \in P^{bk} \} \subset U = U(\Omega) \]

\(M^{bk} \) takes into account parametrized uncertainty in the system.

\(M^{bk} \) does not take into account non-parametric uncertainty in the system:
- nonlinear effects due to natural convection,
- heat-exchange between the patch and the sheet.
Given \mathcal{M}^{bk}, define $\mathcal{Z}_N = \text{span}\{\zeta_n\}_{n=1}^N$ such that
\[
\sup_{\mu} \inf_{z} \| u^{\text{bk}}(\mu)|_{\Omega} - z \| \text{ is small.}
\]

Then, given measurements $\ell_1^{\text{obs}}, \ldots, \ell_M^{\text{obs}}$,

step 1. find $z^* \in \mathcal{Z}_N$ such that $z^* \approx u^{\text{true}}$

step 2. find $\eta^* \in \mathcal{U}$ such that $\eta^* \approx u^{\text{true}} - z^*$

step 3. return the state estimate $u^* = z^* + \eta^*$.
Variational formulation

Given the Hilbert space \(\mathcal{U} = \mathcal{U}(\Omega), \| \cdot \| \), introduce \(\ell_1^o, \ldots, \ell_M^o \in \mathcal{U}' \) such that

\[
\ell_m^{\text{obs}} \approx \ell_m^o(\mathcal{u}^{\text{true}}), \quad m = 1, \ldots, M.
\]

Define \(\mathcal{u}_\xi^* = \mathcal{z}_\xi^* + \mathcal{\eta}_\xi^* \) to minimise

\[
\min_{(\mathcal{z}, \mathcal{\eta}) \in \mathcal{Z}_N \times \mathcal{U}} \xi \| \mathcal{\eta} \|^2 + \frac{1}{M} \sum_{m=1}^{M} \left(\ell_m^o(\mathcal{z} + \mathcal{\eta}) - \ell_m^{\text{obs}} \right)^2.
\]

Computation of \(\mathcal{z}_\xi^* \) corresponds to a weighted LS problem. Computation of \(\mathcal{\eta}_\xi^* \) corresponds to a generalized smoothing problem based on \(\ell_m^{\text{err}} = \ell_m^{\text{obs}} - \ell_m^o(\mathcal{z}_\xi^*) \approx \ell_m^o(\mathcal{u}^{\text{true}} - \mathcal{z}_\xi^*). \)
Variational formulation

Given the Hilbert space \((\mathcal{U} = \mathcal{U}(\Omega), \| \cdot \|) \), introduce \(\ell^0_1, \ldots, \ell^0_M \in \mathcal{U}' \) such that

\[
\ell^\text{obs}_m \approx \ell^0_m(u^{\text{true}}), \quad m = 1, \ldots, M.
\]

Define \(u^*_\xi = z^*_\xi + \eta^*_\xi \) to minimise

\[
\min_{(z, \eta) \in \mathcal{Z}_N \times \mathcal{U}} \xi \| \eta \|^2 + \frac{1}{M} \sum_{m=1}^{M} \left(\ell^0_m(z + \eta) - \ell^\text{obs}_m \right)^2.
\]

Computation of \(z^*_\xi \) corresponds to a weighted LS problem. Computation of \(\eta^*_\xi \) corresponds to a generalized smoothing problem based on \(\ell^\text{err}_m = \ell^\text{obs}_m - \ell^0_m(z^*_\xi) \approx \ell^0_m(u^{\text{true}} - z^*_\xi) \).
Terminology:

- \mathcal{Z}_N background space;
- $z^* \in \mathcal{Z}_N$ deduced background;
- η^* update;

z^* addresses parametrized uncertainty in the model, while η^* addresses non-parametric uncertainty in the model.

Solution to $\min_{(z,\eta) \in \mathcal{Z}_N \times \mathcal{U}} \cdot$ is simpler than $\min_{(z,\eta) \in \mathcal{M}^{bk} \times \mathcal{U}} \cdot$.

Construction of \mathcal{Z}_N is a pMOR problem.

data compression
Interpretation

Terminology:
\[\mathcal{Z}_N \] background space;
\[z^* \in \mathcal{Z}_N \] deduced background;
\[\eta^* \] update;

\[z^* \] addresses parametrized uncertainty in the model, while
\[\eta^* \] addresses non-parametric uncertainty in the model.

Solution to \(\min_{(z, \eta) \in \mathcal{Z}_N \times \mathcal{U}} \) is simpler than \(\min_{(z, \eta) \in \mathcal{M}^\text{bk} \times \mathcal{U}} \).

Construction of \(\mathcal{Z}_N \) is a pMOR problem.

data compression
Solution representation

The update is of the form

\[\eta^*_{\xi}(\cdot) = \sum_{m=1}^{M} \eta^*_{\xi,m} R_U \ell^o_m(\cdot) \in \mathcal{U}_M : = \text{span}\{R_U \ell^o_m\}_{m=1}^M, \]

where \(R_U : \mathcal{U}' \mapsto \mathcal{U} \) depends on \((\mathcal{U}, \| \cdot \|)\).

For \(\ell^o_m = \delta_{x^o_m} \) and suitable \((\mathcal{U}, \| \cdot \|)\),

\[R_U \ell^o_m(\cdot) = K_\gamma(\cdot, x^\text{obs}_m) = \phi(\gamma \| \cdot - x^\text{obs}_m \|_2) \Rightarrow \text{connection with Kernel methods}. \]

Contributions

Maday et al, 2015

two-level mechanism to accommodate anticipated/unanticipated uncertainty
use of pMOR to generate \mathcal{Z}_N;

This thesis

adaptive selection of ξ
 \Rightarrow rigorous treatment of noisy measurements;
adaptive selection of $\| \cdot \|$ for pointwise measurements
 \Rightarrow improved convergence with M.

Localized state estimation ($\Omega \subset \Omega^{bk}$, $\mu \in \mathbb{R}^P$, $P \gg 1$); not covered in this talk.
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
Details

Observations: \(\ell_{m}^{\text{obs}} = u_{m}^{\text{obs}}(x_{i_{m},j_{m}}^{\text{obs}}), \quad (\Rightarrow \ell_{m}^{o} = \delta_{x_{i_{m},j_{m}}^{\text{obs}}}) \)
\(x_{i_{m},j_{m}}^{\text{obs}} \) center of the \((i_{m},j_{m})\) pixel\(^5\).

Background: \(\{Z_{N}\}_{N} \) generated using the weak-Greedy\(^6\) algorithm;

Kernel:\(^7\) \(K_{\gamma}(x, x') = \phi(\gamma \| x - x' \|_{2}), \quad \phi(r) = (1 - r)^{4}(4r + 1), \quad (U = H^{2.5}(\mathbb{R}^{2})). \)

\(^5\)The IR camera returns 160 \(\times \) 120 pixel-wise measurements.
\(^6\)G Rozza, DBP Huynh, AT Patera, 2008.
\(^7\)H Wendland, 2004.
Numerical results ($N = 2$, $M = 25$): step 1

step 1. find $z^* \in \mathcal{Z}_N$ such that $z^* \approx u^{\text{true}}$
Numerical results ($N = 2$, $M = 25$): step 2

step 2. find $\eta^* \in U$ such that $\eta^* \approx u^{true} - z^*$
Numerical results \((N = 2, \ M = 25)\): step 3

step 3. return the state estimate \(u^\star = z^\star + \eta^\star\).
step 3. return the state estimate \(u^* = z^* + \eta^* \).
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
Suppose
\[y_m = u^{\text{true}}(x_{m}^{\text{obs}}) + \epsilon_m, \quad m = 1, \ldots, M. \]

Define the fill distance:
\[h_M := \sup_{x \in \Omega} \min_m \| x - x_{m}^{\text{obs}} \|_2; \]

Suppose quasi-uniform grid:
\[h_M \sim M^{-1/d}, \quad \Omega \subset \mathbb{R}^d. \]

Systematic noise: \[|\epsilon_m| \leq \delta \]

Homoscedastic noise: \[\epsilon_m \overset{iid}{\sim} (0, \sigma^2) \]
A priori error analysis: $|\epsilon_m| \leq \delta$

Suppose: $\mathcal{U} = H^\tau(\mathbb{R}^d)$, $\tau > d/2$, $u^{\text{true}} \in \mathcal{U}$, $\mathcal{Z}_N \subset \mathcal{U}$;

$h_M \sim M^{-1/d}$;

$$\Rightarrow \left\| u^{\text{true}} - u^*_\xi \right\|_{L^2(\Omega)}^2 \leq C_N \left(h_M^{2\tau} \left(2 \left\| \Pi_{\mathcal{Z}_N^\perp} u^{\text{true}} \right\|_{\mathcal{U}} + \frac{\delta}{2} \frac{1}{\sqrt{\xi}} \right)^2 \right.$$

$$+ \left(\delta + \frac{\sqrt{\xi}}{2} \left\| \Pi_{\mathcal{Z}_N^\perp} u^{\text{true}} \right\|_{\mathcal{U}}^2 \right) \right)$$

$$\xi^{\text{opt}} = \left(\frac{\delta}{\left\| \Pi_{\mathcal{Z}_N^\perp} u^{\text{true}} \right\|_{\mathcal{U}}} h_M^{2\tau} \right)^{2/3}$$

If $\delta = 0$ \Rightarrow $\left\| u^{\text{true}} - u^*_{\xi,\gamma} \right\|_{L^2(\Omega)}^2 \leq C_N \left\| \Pi_{\mathcal{Z}_N^\perp} u^{\text{true}} \right\|_{\mathcal{U}}^2 \left(h_M^{2\tau} + \xi \right)$

$\mathcal{Z}_N = \emptyset$ \Rightarrow J Krebs, A Louis, H Wendland, 2009.
A priori error analysis: $|\epsilon_m| \leq \delta$

Suppose: $\mathcal{U} = H^\tau(\mathbb{R}^d)$, $\tau > d/2$, $u^{\text{true}} \in \mathcal{U}$, $\mathcal{Z}_N \subset \mathcal{U}$; $h_M \sim M^{-1/d}$;

$\Rightarrow \|u^{\text{true}} - u^{\star}{_\xi}\|^2_{L^2(\Omega)} \leq C_N \left(h_M^{2\tau} (2\|\Pi_{\mathcal{Z}_N^\perp}u^{\text{true}}\|_U + \frac{\delta}{2}\frac{1}{\sqrt{\xi}})^2 + (\delta + \frac{\sqrt{\xi}}{2}\|\Pi_{\mathcal{Z}_N^\perp}u^{\text{true}}\|_U)^2 \right)$

$\xi^{\text{opt}} = \left(\frac{\delta}{\|\Pi_{\mathcal{Z}_N^\perp}u^{\text{true}}\|_U} h_M^{2\tau}\right)^{2/3}$

If $\delta = 0 \Rightarrow \|u^{\text{true}} - u^{\star}{_\xi,\gamma}\|^2_{L^2(\Omega)} \leq C_N \|\Pi_{\mathcal{Z}_N^\perp}u^{\text{true}}\|^2_U (h_M^{2\tau} + \xi)$

$\mathcal{Z}_N = \emptyset \Rightarrow$ J Krebs, A Louis, H Wendland, 2009.
A priori error analysis: $\epsilon_m \sim (0, \sigma^2)$ i.i.d.

Suppose: $\mathcal{U} = H^\tau(\mathbb{R}^d)$, $\tau > d/2$, $u^\text{true} \in \mathcal{U}$, $\mathcal{Z}_N \subset \mathcal{U}$; $h_M \sim M^{-1/d}$.

$$\Rightarrow \mathbb{E} \left[\|u^\text{true} - u_\xi^*\|_{L^2(\Omega)}^2\right] \leq C_N (h_M^{2\tau} + \xi) \|\Pi_{\mathcal{Z}_N^\perp} u^\text{true}\|_{\mathcal{U}}^2 + 2\sigma^2 \mathcal{T}_{N,M}^\sigma(\xi)$$

where $\mathcal{T}_{N,M}^\sigma(\xi)$ can be computed explicitly.

If $u^\text{true} \in \mathcal{Z}_N \Rightarrow \mathbb{E} \left[\|u^\text{true} - u_{\xi,\gamma}^*\|_{L^2(\Omega)}^2\right] = \sigma^2 \mathcal{T}_{N,M}^\sigma(\xi)$

Empirical studies show that $\mathcal{T}_{N,M}^\sigma(\xi)$ is monotonic decreasing in ξ.
PBDW approach for state estimation

- An example: a thermal patch configuration
- The PBDW approach
- Application to the thermal patch problem
- A priori error analysis
- Application to a synthetic problem
An acoustic model problem

Let \(u_g(\mu) \) be the solution to

\[
\begin{cases}
-(1 + \epsilon \mu i) \Delta u_g(\mu) - \mu^2 u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g & \text{in } \Omega \\
\partial_n u_g(\mu) = 0 & \text{on } \partial \Omega
\end{cases}
\]

where \(\epsilon = 10^{-2} \) and \(\mu \in P^{bk} = [2, 10] \).

Perfect model: \(u^{true}(\mu) = u_{g_0}(\mu), \ u^{bk}(\mu) = u_{g_0}(\mu) \);

Imperfect model: \(u^{true}(\mu) = u_{\bar{g}}(\mu), \ u^{bk}(\mu) = u_{g_0}(\mu) \).

\(g_0 \equiv 0, \ \bar{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)) \).
Observations: $y_\ell = u_\text{true}(x_\ell^{\text{obs}}) + \epsilon_\ell, \epsilon_\ell \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$;

Centers: $\{x_m^{\text{obs}}\}_m$ deterministic (equispaced),
$\{x_i^{\text{obs}}\}_i$ drawn randomly (uniform), $I = M/2$;

Background: $\{Z_N\}_N$ generated using the weak-Greedy algorithm;

Kernel: $K_\gamma(x, x') = \phi(\gamma \|x - x'\|_2)$,
$\phi(r) = (1 - r)^4(4r + 1), (\mathcal{U} = H^{2.5}(\mathbb{R}^2))$.

G Rozza, DBP Huynh, AT Patera, 2008;
Measure of performances

We introduce

\[E_{\text{avg}}^{\text{rel}} = \frac{1}{|\mathcal{P}_{\text{train}}^{\text{bk}}|} \sum_{\mu \in \mathcal{P}_{\text{train}}^{\text{bk}}} \frac{\| u^{\text{true}}(\mu) - u^{\text{opt}}_\xi(\mu) \|_{L^2(\Omega)}}{\| u^{\text{true}}(\mu) \|_{L^2(\Omega)}} , \]

\[\mathcal{P}_{\text{train}}^{\text{bk}} \subset [2, 10] . \]

if \(\sigma > 0 \) (noisy measurements), computations of \(\| u^{\text{true}}(\mu) - u^{\text{opt}}_\xi(\mu) \|_{L^2(\Omega)} \) are averaged over \(K = 24 \) trials.
Results: M convergence ($\sigma = 0, \ g = \bar{g}$)

$E_{\text{avg}}^{\text{rel}} \sim M^{-1.3} - M^{-1.5}, \ |P_{\text{train}}^{\text{bk}}| = 20$

Multiplicative effect between M and N convergence.
Results: M convergence ($N = 5$, $\sigma > 0$, $g = \bar{g}$)

$$E_{\text{avg}}^{\text{rel}} \sim M^{-0.4} - M^{-0.5}, \ |P_{\text{train}}^{\text{bk}}| = 1, \ \mu = 6.6;$$

Adaptation in ξ allows us to deal with noisy measurements.
Conclusions
Summary

pMOR techniques for

1. data compression and
2. offline/online computational decomposition

offer new opportunities for the integration of μPDEs and data.

We relied on pMOR techniques to develop two Data Assimilation strategies for systems modeled by PDEs.
Summary

PBDW for state estimation:
- two-level procedure to address parametric and non-parametric uncertainty
- pMOR employed to construct \mathcal{Z}_N

SBC for damage identification:
- simulation-based approach for discrete-valued QOIs
- pMOR procedure for rapid generation of \mathcal{D}_{bk}^M

 data compression

offline/online decomposition
Thank you for the attention!
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of P^b_k for thermal patch
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of P^{bk} for thermal patch
Choices of the features

Introduce

\[z_{1}^{bk} (\cdot) = \frac{A_{1,4}^{bk} (\cdot)}{A_{4,4}^{bk} (\cdot)}, \quad z_{2}^{bk} (\cdot) = \frac{A_{2,4}^{bk} (\cdot) + A_{3,4}^{bk} (\cdot)}{A_{1,1}^{bk} (\cdot) + A_{4,1}^{bk} (\cdot)}. \]

and define \(z_{\ell}^{bk} (\mu) = [z_{\ell}^{bk} (f^{1}; \mu), \ldots, z_{\ell}^{bk} (f^{Q_{f}}; \mu)] \).

Diagram: 4x4 grid with labels and annotations.
Feature visualization: z_1 and z_2

Rationale:
- z_1 detects asymmetry in the structure;
- z_2 detects added mass on corners.
Feature visualization: z_1

Rationale: z_1 detects asymmetry in the structure; z_2 detects added mass on corners.
Feature visualization: z_2

Rationale:

- z_1 detects asymmetry in the structure;
- z_2 detects added mass on corners.
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of \mathcal{P}^{bk} for thermal patch
Explanation of the table

For \(i = 1, \ldots, 100 \)

Partition the dataset \(D_{N_{\text{train}}}^{bk} \) into \(D_{M}^{bk} \) and \(D_{N_{\text{train}}-M}^{bk} \)

Train the learning algorithm based on \(D_{M}^{bk} \)

Test the learning algorithm based on \(D_{N_{\text{train}}-M}^{bk} \rightarrow R_{i}^{bk} \)

Test the learning algorithm based on \(D_{15}^{exp} \rightarrow R_{i}^{exp} \)

EndFor

Return \(R^{bk} = \frac{1}{100} \sum_{i=1}^{100} R_{i}^{bk} \)

Return \(R^{exp} = \frac{1}{100} \sum_{i=1}^{100} R_{i}^{exp} \)
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of P^b_k for thermal patch
Results \((N = 5, \sigma = 0, g = g_0)\)

\(H^1\)-PBDW: \(U = H^1(\Omega), \ell_{m}^{\text{obs}} = \text{Gauss}(u^{\text{true}}, x_{m}^{\text{obs}}, r_{\text{Gauss}})\)

A-PBDW: \(U = H^1(\Omega), \ell_{m}^{\text{obs}} = u^{\text{true}}(x_{m}^{\text{obs}})\)
Results \((N = 5, \sigma = 0, g = \bar{g}) \)

\[H^1-\text{PBDW}: \mathcal{U} = H^1(\Omega), \ell_m^{\text{obs}} = \text{Gauss}(u_{\text{true}}, x_m^{\text{obs}}, r_{\text{Gauss}}) \]

\[\text{A-PBDW}: \mathcal{U} = H^1(\Omega), \ell_m^{\text{obs}} = u_{\text{true}}(x_m^{\text{obs}}) \]
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of \mathcal{P}^{bk} for thermal patch
Objective: estimate the state in a subregion Ω of the original domain Ω^{pb}.
Localised state estimation (Chapter 5)

Strategy: restrict computations to $\Omega^{bk}, \Omega \subset \Omega^{bk} \subset \Omega^{pb}$.

uncertainty in global inputs \Rightarrow uncertainty at ports.

Solution manifold

$$\mathcal{M}^{bk} = \{ u^{bk}_g(\mu) |_{\Omega} : \mu \in \mathcal{P}^{bk}, g \in \mathcal{T} \}$$

Refined objective: determine rapidly convergent spaces \mathcal{Z}_N to approximate \mathcal{M}^{bk}

Fundamental question: is the manifold reducible? (↔ evanescence);

Challenge: $\mathcal{P}^{bk} \times \mathcal{T}$ is infinite-dimensional.
Localised state estimation (Chapter 5)

Strategy: restrict computations to Ω^{bk}, $\Omega \subset \Omega^{bk} \subset \Omega^{pb}$.

uncertainty in global inputs \Rightarrow uncertainty at ports.

Solution manifold

$$\mathcal{M}^{bk} = \left\{ u^{bk}_g(\mu) \big| \Omega : \begin{array}{c} \mu \in \mathcal{P}^{bk} \\ g \in \mathcal{T} \end{array} \right\}$$

parameters boundary conditions

Refined objective: determine rapidly convergent spaces \mathcal{Z}_N to approximate \mathcal{M}^{bk}

Fundamental question: is the manifold reducible? (↔ evanescence);

Challenge: $\mathcal{P}^{bk} \times \mathcal{T}$ is infinite-dimensional.
Backup slides

- Choice of the features
- Explanation of the Table
- H^1-PBDW vs A-PBDW
- Localised state estimation
- Choice of P^{bk} for thermal patch
Thermal patch: choice of \mathcal{P}^{bk}

$$\mu := [\mu_1 = \gamma / \kappa, \mu_2 = C / \kappa]$$

u^{bk} is linear in $C / \kappa \Rightarrow$ no need to estimate μ_2

$$\kappa = 0.2 \text{W}/(\text{m} \cdot \text{K})$$ thermal conductivity of acrylic,

$$\gamma = \frac{Nu \kappa_{\text{air}}}{\hat{L}} \approx 10 \pm 5 \text{W/m}^2,$$

$$\kappa_{\text{air}} = 0.0257 \text{W}/(\text{m} \cdot \text{K})$$ thermal conductivity of air,

$$Nu = 0.59 (Ra)^{1/4}$$ Nusselt number,

$$Ra = \frac{\beta g \Delta \Theta \hat{L}^3}{\nu \alpha}$$ Rayleigh number

$$g = 9.8 \text{m/s}^2, \Delta \Theta = 50^\circ \text{K}, \hat{L} = 22.606 \text{mm},$$

$$\beta = 1/300 \text{K}^{-1}$$ thermal expansion coefficient,

$$\alpha = 1.9 \cdot 10^{-5} \text{m}^2/\text{s}$$ thermal diffusivity coefficient of air,

$$\nu = 1.81 \cdot 10^{-5} \text{m}^2/\text{s}$$ kinematic viscosity of air.