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Abstract

We propose a projection-based model order reduction procedure for the ageing of large prestressed concrete structures.
Our work is motivated by applications in the nuclear industry, particularly in the simulation of containment buildings.
Such numerical simulations involve a multi-modeling approach: a three-dimensional nonlinear thermo-hydro-visco-
elastic rheological model is used for concrete; and prestressing cables are described by a one-dimensional linear thermo-
elastic behavior. A kinematic linkage is performed in order to connect the concrete nodes and the steel nodes: coincident
points in each material are assumed to have the same displacement. We develop an adaptive algorithm based on a
Proper Orthogonal Decomposition (POD) in time and greedy in parameter to build a reduced order model (ROM). The
nonlinearity of the operator entails that the computational cost of the ROM assembly scales with the size of the high-
fidelity model. We develop an hyper-reduction strategy based on empirical quadrature to bypass this computational
bottleneck: our approach relies on the construction of a reduced mesh to speed up online assembly costs of the ROM.
We provide numerical results for a standard section of a double-walled containment building using a qualified and
broadly-used industrial grade finite element solver for structural mechanics (code aster).

Keywords: Nuclear containment buildings, Reduced order model, Hyper-reduction, Thermo-hydro-mechanical
modeling

1. Introduction

1.1. Context

A nuclear power plant is an industrial facility designed to produce electricity, and whose nuclear
steam supply comprises one or more nuclear reactors. Électricité De France (EDF) operates a fleet of
56 reactors, 24 of which have so-called double-walled nuclear containments buildings (NCBs). In this
case, the safety of the nuclear plants rely on an outer wall made of reinforced and prestressed concrete
that shield the reactor form external aggression and a inner wall made of prestressed concrete (no
steel liner) that should contain any leaks of radioelements in case of accident. However, the leakage
rate may be influenced by the ageing of these large concrete structures. This phenomenon is mainly
due to two physical phenomena: drying and creep of concrete. Creep and drying induce delayed
strains, and, thus, a loss of prestressing effects. All these phenomena may lead to a modification of
the concrete’s permeability, or to the re-opening of cracks within the material. These changes can
result in an increase in the leakage rate through the concrete. Therefore, the mechanical response of
the inner wall is carefully monitored using a set of deformation sensors embedded in the concrete,
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and the leak-tightness of the inner containment is checked every 10 years thanks to A Integrated
Leakage Rate Test, during which the NCB’s internal relative pressure rises to 4.2 bars. These in-
spections play a crucial role in ensuring that the structure maintains its optimal operational condition.

In recent years, research has been carried out into the realistic modeling of the thermo-hydro-
mechanical (THM) behavior, and even leakage (THM-L), of concrete in large prestressed concrete
structures. In view of the complexity of the phenomena involved in modeling these structures, vari-
ous techniques may be applied. More specifically, existing numerical approaches in the literature for
modeling concrete ageing can be divided into two main categories: strong coupling strategies [1][2],
where all dependencies between behaviors are accounted for, or weak coupling strategies [3][4][5]
(chained calculations) which aim to reduce these inter-dependencies by neglecting, e.g., the effect
of mechanical stresses on thermal and hydric responses. The aim of these numerical models is to
predict the temporal behavior of physical quantities of interest (QoIs), such as water saturation in
concrete, delayed deformations, and stresses. Comprehensive understanding of these diverse fields
has facilitated the development of numerical methods for estimating leakage rates, notably utilizing
prestress loss in cables [6].

Achieving accurate simulations for NCB systems involves handling a potentially large number of
model parameters, often with limited available knowledge. As noted in [7], numerous parameters lack
sufficient information, leading to the need for expert judgment in quantifying uncertainties [8]. The
uncertainties in the output fields of numerical calculations are hence significant and might be linked
to the inadequacy of the PDE model (structural uncertainty) or to the calibration of the parameters
(parametric uncertainty). To address this issue, auscultation data, which are obtained for studying
the long-term behavior of the structure, offer valuable insights. Those data, provided by the moni-
toring structures, can be leveraged to further enhance understanding of the system’s response.

The past decade has witnessed significant progress in the development of numerical methods
that combine data and models — in effect data assimilation — for THM systems. Bayesian infer-
ence has been applied as a first step to predict the THM-L behavior of confinement structures. To
reduce the computational burden, Bayesian methods have been implemented in combination with
simplified models of the system response: Berveiller et al. [9] employed Bayesian inference to refine
predictions of deformations using a simplified one-dimensional model of NCB; in a more recent study
[10], Bayesian updating of NCB leak response was presented, based on a simplified one-dimensional
model. On the other hand, Rossat [11] extended Bayesian strategies to three-dimensional models,
employing a 1:3 NCB [12] with a metamodel founded on a finite element model of a representative
structural volume (RSV). In addition to Bayesian approaches, other methodologies are deployed to
address uncertainties in parameters. Variational assimilation methodologies (3D VAR) are utilized
to integrate a priori knowledge of parameters with observations, providing an alternative strategy to
address model uncertainties.

The data assimilation strategies discussed so far pose challenges as they involve solving many-query
problems. For practical high-fidelity (HF) models, data assimilation strategies result in prohibitive
costs, which partly explains the scarcity of reported results on three-dimensional models. FE simu-
lations are key to achieve detailed estimations of the temporal behavior of THM QoIs; however, the
simulation of the aging of a real containment building over several decades takes approximately a
whole day, even with parallel computations, and is hence impractical for many-query scenarios.
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Figure 1: Highlighting the relevance of the ROM methodology for an industrial application: application to an HF
finite element (FE) model for the simulation of a containment building modeled by a THM approach for prestressed
concrete

Parametric Model Reduction (pMOR) is a family of algorithms aimed at reducing the marginal
cost associated with the computation of the solution to a parametric problem. This reduction is
achieved by leveraging prior knowledge obtained from previously conducted HF calculations, allowing
for the approximation of a field over a range of parameters. Our objective is to develop an intrusive
pMOR procedure for the mechanical simulation of double-walled power plant containment buildings;
we consider the application to a NCB, which involves a complex FE model of a RSV (cf. Figure 1).

1.2. Objective of the paper and relation to previous works

The key contribution of this paper is the development of a hyper-reduced model for nonlinear me-
chanics problems within the multi-modeling framework. More specifically, we develop an approach
that provides a high-quality reduced order model (ROM [13][14][15]) to mimic the behavior of pre-
stressed concrete, with an application to a standard section of a NCB . Clearly, such a problem
falls within the scope outlined above: it consists of concrete in which tendons are embedded. Each
material has its own constitutive equation, and the two are kinematically coupled. Furthermore, our
approach aims to develop a ROM useful for engineering applications, which means that in addition
to being able to approximate the solution, it must provide QoIs close to those obtained for the HF
solution: prestress loss in the cables and tangential and vertical deformations inside and outside the
standard section.

Our strategy for building a ROM is founded on previous work. The methodology relies on a
Galerkin projection method. We develop an adaptive algorithm based on a Proper Orthogonal De-
composition (POD)-Greedy strategy [16] to construct a ROM. This algorithm is an approach that
iteratively improves the model using poorly-approximated solutions, so as to get a reduced model
valid on a set of parameters. We rely on the Proper Orthogonal Decomposition (POD [17], [18], [19])
to compress the temporal trajectory of the physical problem. The nonlinearity of the operator entails
that the computational cost of the ROM assembly scales with the size of the HF model. We develop
an hyper-reduction [20][21][22][23] strategy based on empirical quadrature (EQ [24], [25]) to bypass
this computational bottleneck: our approach relies on the construction of a reduced mesh to speed
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up online assembly costs of the ROM.

The methodology developed and the simulations were carried out with a qualified and broadly-used
industrial grade finite element solver for structural mechanics (code aster) [26]. Our work constitutes a
continuation of research efforts at EDF R&D to develop approaches for nonlinear mechanical problems
in structural mechanics, with the aim of simulating real-world problems. In this respect, we mention
previous work on nonlinear parabolic thermo-mechanical problems [27], on vibro-acoustic problems
[28] and also on welding [29]. The approaches developed here must take into account the code aster
computational framework, namely the dualization of the boundary conditions. In particular, the work
in Reference [29] features one of the first efforts to design hyper-reduced ROMs in code aster. Our
point of departure is the pMOR methodology of [1] that relies on Energy-Conserving Sampling and
Weighting method (ECSW [24]) for hyper-reduction to deal with a three-dimensional elasto-plastic
holed plate.

1.3. Layout of the paper

The outline of the paper is as follows. In section 2, we present the pMOR methodology. In
section 3, we present the formulation of the multi-modeling framework for the THM modelisation
of prestressed concrete. In section 4.1, we validate the methodology for a non-parametric problem,
before presenting numerical results for a parametric problem in section 4.2.

2. Methodology for the ROM for the multi-modeling nonlinear mechanical problem

2.1. Formulation of the nonlinear quasi-static multi-modeling mechanical problem

2.1.1. Continuous formulation of the problem

In this contribution, we study quasi-static nonlinear problems for mechanics. We focus on small-
strain small displacements problems. We consider the modeling of large prestressed concrete struc-
tures. Therefore, the developed mechanical model is built on a coupling between a three-dimensional
model (modeling the concrete) and a one-dimensional model (modeling the prestressing steel cables).
We consider a domain Ω ⊂ R3 of the space supposed to be sufficiently regular. As mentioned above,
we assume that the domain Ω can be split into a three-dimensional domain Ωc, and a one-dimensional
domain Ωs. The latter can be decomposed in nC cables Ωs = {Ci}nC

i=1, modeled by curves that corre-
spond to their mean line. We introduce a vector of parameters µ ∈ P ⊂ Rp, which contains physical
parameters of the problem (coefficients in the constitutive equations of the steel or the concrete).

We denote by uµ the vector of displacements, whether in cables or concrete and we denote by X
the Hilbert space to which the field uµ belongs. To identify the displacements in each subdomain,
we shall note uc

µ the displacement in the concrete, and us
µ the displacement in the steel. Both of

those fields can be seen as restrictions of uµ on the corresponding domain. The mechanical strains
tensor within the concrete is the symmetric gradient of the displacement and is denoted εcµ = ∇su

c
µ =

1
2

(
∇uc

µ + (∇uc
µ

)⊤
), and the strains within the cables (also called uniaxial strains) are defined as

εsµ = ∂su
s
µ, where ∂s(.) is the derivative along the cable. We denote the stress tensor within the

concrete σµ, the normal forces in the steel Nµ, and the internal variables in the concrete γc
µ and in

the steel γs
µ. We assume that the constitutive equations used depend on auxiliary variables, which

we shall refer to in this section as a vector H. The fields enclosed in H include previously computed
fields and solutions to PDEs that do not depend on the parameters set in the vector µ. The vector is
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comprised of fields that may appear and be used in the problem’s constitutive or evolution equations.
In the application case presented, namely in the case of a thermo-hydro-activated mechanical problem,
this vector consists of the pair made of temperature and water content in the concrete. Details are
provided in section 3. We introduce the quasi-static equilibrium equations for the three-dimensional
model, where we omit to specify the initial conditions (ICs) and the boundary conditions (BCs) for
each subdomains:





−∇ · σµ = fc on Ωc,

σµ = Fσ
µ

(
εcµ, γc

µ, H
)
,

γ̇c
µ = Fγc

µ

(
σµ, γ

c
µ, H

)
,

and





∂Nµ

∂s
= fs on Ωs,

Nµ = FN
µ

(
∂su

s
µ, γs

µ, H
)
,

γ̇s
µ = Fγs

µ

(
Nµ, γ

s
µ, H

)
,

where Fσ
µ (resp. FN

µ ) stands for the constitutive equation for the three-dimensional (resp. one-
dimensional) problem, while the nonlinear operator Fγc

µ (resp. Fγs

µ ) denotes an equation of evolution
of internal variables within the concrete (resp. the steel). To provide more compact notations, we
introduce new notations for the fields defined on the whole domain, namely for the displacements,
strains, generalized forces (stresses or normal efforts), internal variables and the loadings. All the
details are provided in Table 1.

Notation on Ω Notation on Ωs Notation on Ωc Definition
Sµ Nµ σµ Generalized force
uµ us

µ uc
µ Displacement

εµ εsµ = ∂su
s
µ εcµ Strain

γµ γs
µ γc

µ Internal variables
f fc fs External loading

Table 1: Notations of the fields defined on the whole computational domain Ω, whose definition depends on the
subdomains (Ωc or Ωs)

These notations enable us to recast the problem in a compact form, which helps to manage
the multi-modeling (3d-1d) using three operators, Gµ (.) for the equilibrium equation, FS

µ (.) for the
constitutive equation and Fγ

µ (.) for the evolution equation for internal variables:





Gµ (Sµ) = f,
Sµ = FS

µ (Sµ, γµ, H) ,
γ̇µ = Fγ

µ (εµ, γµ, H) ,

where we still omit the ICs and BCs used. In our study, the initial state of the problem is the
material at rest, so all physical fields are assumed to be zero initially. The temporal discretization
of the equations is done using a one-step integrator (u

(k+1)
µ = u

(k)
µ +∆u

(k+1)
µ ), which implies that the

knowledge of the mechanical state is derived from the mechanical state previously computed (and
the knowledge of the field H at the current time). In our study, we consider both non-homogeneous
Neumann conditions (defined on Γc

n for the concrete) and homogeneous Dirichlet conditions for suit-
able linear combinations of the state variables. We assume that the displacement field belongs to the
kernel of this form (c linear form in Eq.(2)). In the general framework of the unidimensional problem,
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Neumann BCs on a given cable Ci are expressed as application of nodal forces Fi,j applied on a set

of discrete points {xCi
j }

n1d
Ci

j=1. This translates into a jump J.K in the normal efforts at every point xCi
j .

In the end, the multi-modeling problem can be written as:





Gµ

(
S

(k)
µ

)
= f (k) on Ω,

S
(k)
µ = F (k)

µ

(
u
(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
on Ω,

(1)

with BCs expressed as follows:





Dirichlet BCs : c(u
(k)
µ ) = 0 on Ω,

Neumann BCs :

{
(σµ)

(k) · n = f
(k)
s on Γc

n,

JN(k)
µ K(xCi

j ) = F
(k)
i,j ∀j ∈ {1, ..., n1d

Ci } for Ci, ∀i ∈ {1, ..., nC},
(2)

Finally, the variational problem investigated in this contribution can be summarized as follows:
eventually, the multi-modeling problem written in compact form in the Eq.(3) to which the BCs are
applied lead to the following variational problem:

∀k ∈ {1, ..., K}, Find u
(k)
µ ∈ Xbc s.t.





Rµ

(
u
(k)
µ , u

(k−1)
µ , S

(k)
µ

)
= 0, ∀v ∈ Xbc,

S
(k)
µ = F (k)

µ

(
u
(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
on Ω,

(3)
where Xbc := {v ∈ X , c(v) = 0 on Ω}. We denote:

Rµ

(
u
(k)
µ , u

(k−1)
µ , S

(k)
µ

)
= RS

µ

(
F (k)

µ

(
u
(k)
µ , u

(k−1)
µ ,S

(k−1)
µ , H(k)

)
, v
)
, and RS

µ (S, v) =


R

σ
µ

(
σ
(k)
µ , v

)

RN
µ

(
N(k)

µ , v
)

 ,

where we introduce the notations ∀v ∈ [vc, vs]⊤:




Rσ
µ

(
σ
(k)
µ , v

)
=

∫

Ω

σ(k)
µ : ε (vc) dΩ−

∫

Ω

fv · vc dΩ−
∫

Γ

fs · vc dΓ,

RN
µ

(
N(k)

µ , v
)

=

∫

C
N(k)

µ : ∂sv
s ds−

∫

C
fv · vs ds−

nC∑

i=1

n1d
Ci∑

j=1

F
(k)
i,j v

s(xCi
j ).

2.1.2. Finite element discretization

We apply a problem discretization with a continuous Galerkin finite element (FE) method. Given

the domain Ω, we consider a HF mesh T hf = {Di}N
3d
e

i=1 ∪{Di}
N1d

e
i=1 where D1d1 , . . . , DN1d

e
(resp. D3d1 , . . . , DN3d

e
)

are the elements of the one dimensional-mesh, and N1d
e (resp. N3d

e ) denotes the number of elements
in the one-dimensional (resp. three-dimensional) mesh. The hf subscript or superscript stands for
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HF discretization. In this framework, we denote by X hf the chosen finite element space to discretize
the problem. Within this framework, we denote the displacement unknowns at nodes (primal) by
uµ ∈ RN , where N = 3(N 3d

no + N 1d
no ) is the dimension of the space X hf . Furthermore, the general-

ized forces within the material are denoted by Sµ = [σµ, Nµ]
⊤ ∈ RNg , since they are unknowns at

quadrature points. For the record, the size of these vectors is Ng = N 3d
g +N 1d

g = 6N 3d
qd +N 1d

qd , where

N 3d
qd stands for the number of quadrature weights used for the three-dimensional mesh and N 1d

qd for
the one-dimensional mesh.

We denote by {uhf,(k)
µ }Kk=1 the FE approximation of the displacement (primal variable) given

by the HF-model at all times, whereas {Shf,(k)
µ }Kk=1 stand for the generalized force fields (stress or

normal efforts). We state the FE discretization of the variational form Eq.(3), ∀k ∈ {1, ..., K}, find
u
hf,(k)
µ ∈ X hf

bc s.t:





Rhf
µ

(
u
hf,(k)
µ , u

hf,(k−1)
µ , Shf,(k−1)

µ ,v
)
= 0, ∀v ∈ X hf

bc ,

Shf,(k)
µ = Fhf

µ

(
u
hf,(k)
µ ,u

hf,(k−1)
µ , Shf,(k−1)

µ , Hhf,(k)
)
,

(4)

where X hf
bc :=

{
v ∈ X hf : Bv = 0

}
depicts the test space for displacements, and B ∈ RNd×N is

the kinematic relationship matrix. Nd stands for the number of linear relations between degrees
of freedom that we intend to enforce. Such a formulation on the BCs implies that the kinematic
linear application depends neither on time nor on the parameter. Each line reflects a kinematic
relationship between nodes of the overall mesh. Therefore, the said matrix includes not only the
Dirichlet conditions applied to each physical domain, but also the kinematic relationships between
the nodes of two distinct models (kinematic coupling). The operators Rhf

µ and Fhf
µ stands for the

discrete counterparts of the continuous operators Rµ and Fµ introduced in Eq.(4). In practice, the
FE code compute the HF-residuals as sums of elementary contributions, as follows ∀v ∈ X hf :

Rhf
µ

(
u(k)
µ , u(k−1)

µ , S(k−1)
µ , v

)
=

Ne∑

q=1

Rhf
µ,q

(
Eno

q u(k)
µ , Eno

q u(k−1)
µ , Eqd

q S(k−1)
µ , Eno

q v
)

=

N3d
e∑

q=1

Rhf
µ,q

(
Eno

q u(k)
µ , Eno

q u(k−1)
µ , Eqd,3d

q σ(k−1)
µ , Eno

q v
)

︸ ︷︷ ︸
:=Rhf,3d

µ

(
u

(k)
µ , u

(k−1)
µ , σ

(k−1)
µ , v

)
+

N1d
e∑

q=1

Rhf
µ,q

(
Eno

q u(k)
µ , Eno

q u(k−1)
µ , Eqd,1d

q N(k−1)
µ , Eno

q v
)

︸ ︷︷ ︸
:=Rhf,1d

µ

(
u

(k)
µ , u

(k−1)
µ , N

(k−1)
µ , v

)
,

where Eno
q (resp. Eqd

q ) is an elementary restriction operator on vectors at nodes (resp. quadrature
points). For operators on vectors at quadrature points, we adopt the specific notation Eqd,3d

q (resp.
Eno,1d

q ) for the case where the elements are three-dimensional (resp. one-dimensional). We emphasize
that the assembly procedure can be split into two terms, a loop for concrete elements and a second
loop for steel elements.

In our work, the boundary conditions are treated by dualization. Therefore, we introduce Lagrange
multipliers, and we solve the following saddle-point problem: Find (u

(k)
µ ,λ

(k)
µ ) ∈ RN × RNd s.t.:

{
Rhf

µ

(
u
(k)
µ , u

(k−1)
µ , S(k−1)

µ

)
+B⊤λ(k)

µ = 0,

Bu
(k)
µ = 0.
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This study expands upon a previously established framework for projection-based ROMs in non-
linear mechanics with internal variables, broadening its applicability to more intricate phenomena.
Indeed, Eq.(4) is formally similar to Eq.(9) of Reference [30]. However, the approach presented
here allows for the partitioning of the domain into distinct regions, each characterized by a specific
solid mechanics model. Additionally, our method broadens its scope to handle a diverse range of
mechanical problems by incorporating auxiliary variables. These variables encompass fields such
as temperature and water content, introducing influences on the constitutive equations, evolution
equations of internal variables, and thereby, the mechanical state of the material.

2.2. Projection-based model order reduction approach

In this section, we discuss the pMOR procedure that is sketched in Figure 2. As stated in the
introduction, our method is an extension of the work [30] to a more complex nonlinear mechanics
problem with 3D-1D coupling. Our formulation relies on an offline-online computational decomposi-
tion (cf. Figure 1): during the offline (training) stage, we solve the HF model for several parameter
values to construct the reduced basis, the EQ rule and the associated mesh; during the online (predic-
tion) stage, we call the surrogate model to approximate the solution. In section 2.2.1, we consider the
solution reproduction problem which addresses the task of reproducing the temporal trajectory for
the same parameter value considered in the offline stage. In section 2.2.2, we describe the extension
to the parametric case.

Stopping criterion if true ROM built

false

Compute reduced mesh

Compute EQ rule ρeq

Compute reduced bases

Compute solution for µ∗
Loop over the training set

to identify the most poorly

approximated solution

( for the parameter µ∗)

Greedy enrichment Building ECSW hyper-reduced ROM

{uµ}Kk=1, {σµ}Kk=1, {Nµ}Kk=1︸ ︷︷ ︸
= {Sµ}Kk=1

Zu, ZS

ρeq

ECSW hyper-reduced mesh for Ωc

+
keep HF mesh Ωs

Figure 2: Key ideas of the greedy methodology and the ROM approach adopted for the mechanical simulation of
prestressed concrete. The different components needed to define are provided in colors: blue corresponds to components
similar to the previous work, whereas red corresponds to the specific components within the multi-modeling framework
for prestressed concrete

2.2.1. Solution Reproduction Problem

We seek the reduced-order solution as a linear combination of modes:

û(k)
µ =

Nu∑

n=1

(
α̂(k)

u,µ

)
n
ζu,n = Zuα̂

(k)
u,µ,

8



where α̂
(k)
u,µ ∈ RNu are referred to as generalized coordinates and [Zu].,n = ζu,n are the displacement

reduced basis vectors, which are build thanks to the POD approach. The main objective of this
method is finding low dimensional approximations to the data, which preserve the essential informa-
tion of a given high dimensional data set. More precisely, we resort to the method of snapshots [31] to
build the displacement reduced basis. Given a discrete set of HF snapshots {vk}Kk=1, a discrete scalar
product (·, ·), and a tolerance ε, we define a Gramian matrix C ∈ RK×K , defined as Ci,j = (vi,vj).
We need to solve a eigenvalue problem:

Cφn = λnφn, λ1 ≥ . . . ≥ λK ,

to obtain the eigenpairs (λn, φn). Thanks to the latter, we can compute POD modes:

ζu,n =
1√
λn

K∑

k=1

(φn)k vk.

The number of selected POD modes is chosen according to a energy-criterion on the spectrum, thanks
to a user-defined tolerance ε:

Nu = min

{
Q ∈ N,

Q∑

k=1

λq ≥
(
1− ε2

) K∑

q=1

λq

}
.

A use of the method of snapshots [31] for POD can thus be interpreted as a call to the following
operator:

Z = POD
{
{vk}Kk=1, (·, ·) , ε

}
. (5)

The Galerkin ROM is obtained by projecting the discrete residual operator (onto the Eq.(4))
onto the primal reduced basis. We first consider the situation without Lagrange multipliers for the
boundary conditions:

Z⊤
uR

hf
µ

(
û(k)
µ , û(k−1)

µ , Ŝ
(k−1)

µ

)
= 0. (6)

The nonlinearity of the operator results in a CPU bottleneck, since the assembly procedure scales with
the cost of an HF computation. In order to circumvent this issue, we resort to an hyper-reduction
approach, namely the element-wise EQ approach [32][33]. The method samples a subset of the mesh
elements over the entire computational domain in order to reduced the assembly costs in the online
stage. With this approach, a residual operatorReq

µ is generated and applied to the assembly procedure
when the ROM solver is called. In the context of our multi-modeling problem, we choose to apply
the hyper-reduction procedure only to three-dimensional terms, since these are nonlinear:

Req
µ

(
u
(k)
µ , u

(k−1)
µ , S(k−1)

µ , v
)
= Req,3d

µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
︸ ︷︷ ︸

hyper-reduced

+Rhf,1d
µ

(
u(k)
µ , u(k−1)

µ , N(k−1)
µ , v

)

︸ ︷︷ ︸
not hyper-reduced

.

For the construction of the EQ rule, we rely on the Energy-Conserving Sampling and Weighting
method (ECSW) developed in the Reference [24], whose quality has already been demonstrated for
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hyper-reduction of problems in solid mechanics. The ECSW approach consists in solving a non-
negative least-square problem to find a sparse approximation of the HF rule that is tailored to the
integrals considered in (6). Solving the optimization problem provides an EQ rule ρeq ∈ RN3d

e , which
defines the operator Req

µ from the HF operator as follows:

Req,3d
µ

(
u(k)
µ , u(k−1)

µ , σ(k−1)
µ , v

)
=

N3d
e∑

q=1

(ρeq)q Rhf
µ,q

(
Eno

q u(k)
µ , Eno

q u(k−1)
µ , Eqd,3d

q σ(k−1)
µ , Eno

q v
)
.

As already mentioned in the previous work by Agouzal et al. [30], the dualization of the BCs
and the homogeneous BCs prevent us from considering any BCs in solving the problem, since the
displacement modes satisfy the BCs (they belong to the B kernel). This highlights the fact that
hyper-reduction of the three-dimensional domain, while preserving the one-dimensional part, has no
impact on the application of the BCs. Information on the kinematic coupling between the steel and
concrete nodes is already contained in the displacement modes.

Knowledge of the mechanical state of the material requires to know the stress field on the HF
mesh. The latter is determined by integrating the constitutive equations at the quadrature points.
However, the internal variables are only known at the sampled elements in the mesh. Hence, the stress
field is only known at the reduced mesh level. To solve this problem, we build a reduced order basis
for the generalized force S = [σ,N]⊤. Reconstruction of the generalized force field over the entire
HF mesh is then performed using a Gappy-POD procedure [34]. Unlike displacement vectors, the
components of generalized force vectors on one-dimensional and three-dimensional discrete points do
not have the same physical dimension [35][36]. Therefore, we define the scalar product on generalized
force vectors:

(S1,S2) =

([
σ1

N1

]
,

[
σ2

N2

])

[σ,N ]

=
1

λσ
1

(σ1, σ2)2 +
1

λN
1

(N1, N2)2 ,

where λσ
1 (resp. λN

1 ) is the largest eigenvalue in the sense of the scalar product ℓ2 for the stress vectors
(normal forces). In summary, in addition to the EQ rule ρeq (and the associated reduced mesh), the
ROM is made up of two reduced bases, defined thanks to the POD operator detailed in Eq.(5) as
follows:

Zu = POD
{
{uhf,(k)

µ }Kk=1, (·, ·)2 , εu
}
, and ZS = POD

{
{Shf,(k)

µ }Kk=1, (·, ·)[σ,N ] , εS

}
.

Both for the displacements and for the generalized forces, we opted for a scalar product ℓ2 on the
discrete snapshots. From a variational perspective, it would have been more suitable to work with an
H1 scalar product. However, from an algorithm application point of view, extracting such matrices in
this context can be fairly challenging. Our choice is typical for numerical applications on real-world
applications. Furthermore, ℓ2 compression delivers high-quality numerical results.

2.2.2. Parametric problem

In order to provide a reliable ROM on a set of parameters, we build the surrogate model using
a POD-Greedy approach. This iterative procedure is designed to enrich the reduced model (i.e. the
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reduced bases and the reduced mesh) by computing at each iteration the HF solution least well
approximated by the ROM. The worst-approximated solution is estimated by exploring a test set
Θtrain, defined as a discrete approximation of P . In our case, we chose to rely on a strong-greedy
approach: we compare the approximation errors (error between HF solution and reduced solution)
over the whole test set, to identify the parameter for which this error is maximal. This parameter is
then used to further enhance the ROM. Strong-greedy approach is not optimal from the standpoint
of the computational cost of building the reduced model. Indeed, the estimation of the poorest ap-
proximated solution requires knowledge of the HF solutions on a given discrete training set. For a
more efficient greedy approach in terms of computational cost, weak-greedy methods would be more
appropriate, along with the introduction of an appropriate error indicator. This remains a limitation
to be borne in mind, particularly in the context of increasing the dimensionality of the parameter
space. Nevertheless, this work constitutes a proof of concept of the feasibility of a greedy approach
for three-dimensional THM calculations on prestressed concrete. The numerical optimization of the
process, with the development of error indicators adapted to these problems and to industrial-grade
HF codes, is a focus for forthcoming research.

The switch of the methodology to the parametric case requires the adaptation of two parts of the
algorithm: the construction of the reduced bases and the computation of the EQ. Two constructions
of the reduced bases are explored in this paper. A first approach consists in performing a new POD on
the set of computed HF snapshots. A second approach involves an incremental approach, known in
the literature as H-POD [16]. The latter has the advantage of providing a hierarchical basis achieved
by concatenating the previous basis with one obtained with new snapshots:

Z = [Z, Zproj] , Zproj = POD
{
{ΠZ⊥vk}Kk=1 , (·, ·) , ε

}
,

where ΠZ⊥ : X hf → Z is the orthogonal projection operator Z ⊂ X hf using the (·, ·) scalar product.
We rely on the regularization approaches given in Reference [16] to compute the new number of
modes. Before concatenating the two bases, a criterion is added such that only the basis vectors that
effectively reduce the projection error are added to the reduced order basis. The different steps of
the adaptive algorithm are summarized in Algorithm 1.

3. Thermo-Hydro-Mechanical (THM) modeling of large concrete structures

3.1. Weak-coupling strategy for the THM numerical model

In this section, we introduce the mathematical model designed to simulate the behavior of pre-
stressed concrete. We consider models that account for the evolution of large concrete structures over
their lifetime, which consists mainly of two stages: young age and long-term evolution. The young
age refers to a stage during which the chemical and physical properties of concrete are changing at
a fast rate, as it sets and hardens. Long-term phase represents the evolution of hardened concrete
under operating conditions (taking into account thermo-hydric loadings) and mechanical loadings.
Within the framework of the FE models employed in practice, we only consider long-term evolution.
The behavior of heterogeneous and porous concrete is governed by numerous and complex physico-
chemical phenomena. Such material behavior requires a THM modeling strategy: the behavior of the
material is based on knowledge of the temperature (T ), the water content (Cw) in the concrete and
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Algorithm 1 strong POD-Greedy algorithm

Require: Θtrain = {µi}ntrain
i , εu, εS

1: ZNu = ZNσ = ∅, µ∗ = µ, Θ∗ = {µ∗}.
2: while Stop Criterium do
3: Compute {uhf,(k)

µ∗ }Kk=1, {Shf,(k)
µ∗ }Kk=1 ▷ Call of code aster

4: Compute primal reduced basis Zu

5: Compute ρeq knowing {ζu,n}Nu
n=1 and {Shf,(k)

µ }k∈{1,..,K},µ∈Θ∗

6: Compute the reduced mesh T red

7: Compute dual reduced basis ZS

8: for µ ∈ Θtrain do
9: Solve the ROM for µ and compute Eapp,avg

µ ▷ See definition of Eapp,avg
µ in Eq.(14)

10: end for
11: µ∗ = arg max

µ∈Θtrain

Eapp,avg
µ

12: Θ∗ = Θ∗ ∪ {µ∗}
13: end while

the mechanical fields, in a framework where all these phenomena are coupled together. Since we are
interested in modeling the whole ageing of the concrete structure, our THM model should encompass
the various physical processes which induce deformations within the concrete: shrinkage, dessication
and creep.

Notation Physical quantity Unit
T Temperature K
ξ Hydration degree −
h Ambient relative humidity (RH) −
Cw Water content of concrete −
σ Stress in the concrete Pa

εc = ∇su
c Deformations in the concrete −

N Normal efforts in the prestressing cables N
εs = ∂su

s Deformations in the prestressing cables −

Table 2: Fields of interest in the overall THM model for large prestressed concrete structures

In our framework, we adopt a weakly-coupled approach. This assumption implies that the com-
putation is carried out in a chained manner. First, a thermal calculation is performed, followed by
a hydric calculation (water diffusion in the concrete). Once all the thermal and hydric fields are
known, a mechanical calculation is conducted. Each calculation step yields fields of interest which:
first describe the state of the material; second, can be reused for subsequent calculation steps. The
Table 2 details the ouputs for the entire THM calculation. The different steps in the process are
summarized in Figure 3. Such a formulation of the problem is founded on several assumptions. To
begin with, the influence of the mechanical response on the thermal and water fields is neglected
[5][4]. Furthermore, it is assumed that the hydric response has no influence on the thermal fields.
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Weak-coupling approaches have demonstrated their effectiveness in modeling prestressed concrete
structures, both for a RSV [5][4] and for a full-scale model [3].

µT

µH

µM

Parameters Thermal Hydric Mechanical

ξ ε σ,N

T Cw

Figure 3: Weakly-coupled chained THM approach for large prestressed concrete structures. Each step provides different
fields of interest: at the end of the thermal calculation, we get the temperature field (T ) and the degree of hydration
of the concrete (ξ; which will be always analytically given in our simulations); at the end of the hydric calculation,
we get the water content of concrete (Cw); at the end of the mechanical calculation, we get the displacement fields in
the steel cables and in the concrete, the associated deformations (ε = [εc, εs]), the stresses in the concrete (σ) and the
normal forces in the cables (N).

3.2. THM constitutive equations

As stated above, we describe in the following section the set of equations that make up the THM
problem under study. Prestressed concrete behavior modeling requires a multi-modeling approach:
a three-dimensional nonlinear rheological model is used for concrete; and prestressing cables are
described by a one-dimensional linear thermo-elastic behavior. As mentioned above, the rheological
behavior of concrete is coupled with hydric and thermal phenomena. Thermal-hydric resolutions are
thus solved on the concrete domain (Ωc), while mechanical calculations are solved on both domains
(Ωc and Ωs).

3.2.1. Modeling of the thermal and the hydric behavior of the concrete

First, we introduce the set of equations employed for the first two stages of the chained calculation:
the thermal calculation and the hydric calculation. This decision is motivated by the fact that this
calculation is the starting point for the mechanical calculation, to which we apply our model reduction
methodology (section 2). The temperature evolution is modeled by the heat equation [37]:

ρcc
p
p

∂T

∂t
= ∇ · (λc∇T ) , on Ωc, (7)

where ρc is the density of the concrete, cpp heat capacity of hardened concrete and λc thermal con-
ductivity of hardened concrete. Dirichlet conditions are applied in our context (see details for the
numerical test case in section 3.3).

Since we only consider liquid water diffusion [38], moisture transfer is modeled by a single nonlinear
diffusion on Cw (see Eq (8a)), which denotes the water content of the concrete. The diffusion equation
depends on Dw, which is a phenomenological diffusion coefficient, and is assumed to follow Arrhenius’
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law[39]. In summary, the nonlinear diffusion equation of the water content can be summed up as
follows:





∂Cw

∂t
= ∇ · [Dw (Cw, T )∇Cw] , on Ωc,

Dw (Cw, T ) = Dw,0 (Cw)
T

T 0
w

exp

[
−Uw

R

(
1

T
− 1

T 0
w

)]
,

Dw,0 (Cw) = A exp (BCw) ,

(8a)

(8b)

(8c)

where Uw is the activation energy of drying, R the ideal gas constant and Dw,0 (Cw) is the diffusion
coefficient at a reference temerature T 0

w. The latter is assumed to follow a model defined by Mensi
et al. [40], which depends on two model parameters A, and B.

At the scale of large concrete structures, measurements of ambient conditions cannot be made
in terms of the water content of the concrete, and are thus conducted in relative humidity [41].
Relative humidity (RH) is defined as the ratio of vapor pressure to saturation vapor pressure for a
given temperature. For the sake of consistency and use of collected data, the boundary conditions
are formulated in terms of RH. From an experimental point of view, the drying or wetting cycles
are assumed to affect only the concrete skin. This assumption enables to draw a link between the
water concentration in the concrete and the relative humidity. For a given temperature, these two
quantities are related by a bijective function called the sorption-desorption function:

Cw = fd (h) . (9)

Within the framework of these constitutive laws, the sorption-desorption function may be defined
either analytically with hyper-parameters [4][42], or empirically by defining a function. In our case, we
define a sorption-desorption function as shown in Figure 4. This curve is drawn from experimentally
acquired points (without interpolation).

20 40 60 80 100

20

40

60

80

100

120

h [−]

C
w
[L

m
−
3
]

(a) Soprtion-desorption function used for the THM problem

Cw [Lm−3] 0 39.0 57.9 76.5 90.1 112.9 128.8
h [−] 0 43 58 75 84 92 100

(b) Summary

Figure 4: Definition of the sorption-desorption function fd (defined in Eq (9)). The table shows the point values
given to define the function. The function is computed by linear interpolation between those points. The reference
configuration corresponds to h = 100, which is the initial RH value in the wall.

As previsouly mentioned, the BC of the water diffusion problem are stated in terms of RH when
using real life data. All the parameters related to the thermal and hydric aspects of the model are
summarized and detailed in Table 3.
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Calculation step Notation Physical quantity or parameter Unit
ρc Density kgm−3

Thermal (µT) cpc Heat capacity of hardened concrete kJ kgK−1

λc Thermal conductivity of hardened concrete Wm−1K−1

Dw Phenomenological diffusion coefficient
fd Sorption-desorption function
T 0
w Reference temperature K

Dw,0 Diffusion coefficient at a reference temperature T 0
w

Uw Activation energy of drying kJmol−1

R Ideal gas constant kJmol−1K−1

Hydric (µH) A Model parameter for Mensi’s law 10−15m2 s−1

B Model parameter for Mensi’s law −

Table 3: Summary of parameters and physical quantities at stake in the modeling of the thermal (see Eq.(7) and the
hydric (see Eq.(8a)-(8b)-(8c)) behavior

3.2.2. Modeling of the mechanical behavior of the concrete

σ

σ
σdσs

σdσs

krs ηrs

ηis

krd ηrd

ηidεbcis

εbcrs

εbcis

εbcrs

(a) Burger rheological model for the basic creep

Notation Physical quantity or parameter Unit
Ec Young’s modulus (concrete) Pa
νc Poisson’s ratio (concrete) −

αth,c Thermal dilation coefficient (concrete) K−1

αdc Dessication shrinkage coefficient −
βendo Autogeneous shrinkage coefficient −
νbc Basic creep Poisson’s ratio −
krd Reversible deviatoric basic stiffness Pa
ηrd Reversible deviatoric basic viscosity Pa s
ηid Irreversible deviatoric basic viscosity Pa s
Ubc Basic creep activation energy kJmol−1

T 0
bc Basic creep reference temperature ◦C
κ Basic creep consolidation parameter −
ηdc Desiccation creep parameter Pa s

(b) Summary of the parameters for the me-
chanical model

Figure 5: Parameters for the three-dimensional mechanical model (concrete)

In this section, we detail the governing equations for the mechanical behavior of concrete. Since,
we consider small-displacement small-strain mechanical problems, the total strain is decomposed as
the sum of several contributions:

ε = εel + εth + εds + εbc + εdc,

where εel is the elastic strain tensor, εth the thermal strain tensor, εds the dessication shrinkage strain
tensor, εbc the basic creep strain tensor, εdc the dessication creep strain tensor and εen the autoge-
nous shrinkage. We explain in the following section the evolution and constitutive equation that help
expressing the different strain tensors.
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According to experimental observations, the variation of thermal strain εth proportionnal to tem-
perature variations (see Eq (10a)). The proportionality coefficient αth,c is referred to as the thermal
dilation coefficient of concrete and is assumed to be constant when focusing on the long-terme phase.
Similar experimental observations suggest a linear dependency between the variations of the dessica-
tion shrinkage strains εds and the water content of the concrete Cw (see Eq (10b)), which is expressed
thanks to dessication shrinkage coefficient (αds). We assume that we have the same kind of relation-
ship between the autogenous shrinkage εen and the hydratation degree ξ, expressed thanks to a βendo

coefficient.





ε̇th = αth,c
∂T

∂t
I,

ε̇ds = αdc
∂Cw

∂t
I,

ε̇en = βendo
∂ξ

∂t
I.

(10a)

(10b)

(10c)

The model selected for the creep deformations is the Burger model developed by Foucault et al.
[43]. This choice is motivated by several experimental validations and is well-suited for creep inves-
tigations on the considered structures, as confirmed by the work of Bouhjiti et al. [4]. We assume
that the creep is a phenomenon involving a decoupling of a spherical part and a deviatoric part. We
decompose the Cauchy stress tensor (σ) as the sum of a spherical part (σs) and deviatoric part (σd):

σ = σsI + σd,

where σs = Tr(σ)/3, and I is the identity tensor. The Burger creep model is built on a decomposition
into a reversible and an irreversible part, where we split each tensor into its spherical and deviatoric
part:





ε = εbci + εbcr ,
εbci = εbcrs I + εbcrd ,
εbcr = εbcis I + εbcid .

Each part (deviatoric and spherical) is described by a Burger-type model. For each chain, the
reversible basic creep strains are modeled by a Kelvin-Voigt rheological elements, whereas the ir-
reversible basic creep strains are modeled by Maxwell elements. The Kelvin-Voigt model (see Eq.
(11a)) used for the reversible reversible spherical basic creep is expressed thanks to the stiffness (resp.
viscosity) krs (resp. ηrs), while the irreversible spherical basic creep viscosity ηis is given by a nonlinear
relationship, expressed thanks to a consolidation parameter κ (see Eq.(11b)).





hσs = krsε
bc
rs + ηrsε̇

bc
rs ,

hσs = η0is exp

(∥∥εbci
∥∥
m

κ

)

︸ ︷︷ ︸
:=ηis

ε̇bcis , where
∥∥εbci

∥∥
m
= max

τ∈[0,t]

√
εbci (τ) : εbci (τ), ∀t ≥ 0,

(11a)

(11b)

The deviatoric part is expressed using a similar set of tensor equations (the spherical part being a set
of scalar equations). The aforementioned model accounts for thermo-activation of basic creep. To
this end, stiffness and viscosity parameters expressions follow an Arrhenius’ law:

16



κ (T ) = κ0 exp

[
−Ubc

R

(
1

T
− 1

T 0
bc

)]
,

where k0
rs is the reversible spherical creep stiffness at a reference temperature T 0

bc and Ubc the activation
energy of basic creep. Finally, the equivalence of spherical and deviatoric chains enables to restrict the
number of model parameters, by assuming a constant creep Poisson ratio νbc, given by the following
relation:

krs
krd

=
ηrs
ηrd

=
η0rs
η0rd

=
1 + νbc
1− 2νbc

.

In order to model the dessication creep strain, we consider the following equation, founded on the
work of Bazant and Chern [44]:

ε̇bc =
1

ηdc

∣∣∣ḣ
∣∣∣σ,

where ηdc is a material parameter (Pa s).

3.2.3. Modeling of the coupling between concrete and prestressing cables

Within large prestressed concrete structures, the aim of the steel cables embedded within the
concrete is to apply permanent compressive stresses to the concrete in such a way as to compensate
for the tensile forces that are to be applied to the structure. This technique generates favorable
internal forces in the concrete. The installation of a prestressed concrete structure requires the ten-
sioning of the cables in the concrete. The tension profile along a cable is designed in our case to
comply with an official standard (BPEL 91 regulation). Given physical parameters (initial tension),
a tension profile is computed along the length of the cable as a function of the curvilinear abscissa.
To be more precise, the coupling between cables and concrete can be decomposed into three main
stages: before, during and after prestressing. In the case of the above structures, the concrete is first
poured around sheaths and begins to dry. Cables are then inserted into these ducts and prestressed
in order to comply with civil engineering standards. At last, cement is poured in the ducts, and
the life of the structure can continue with a kinematic coupling between the concrete and the steel
cables. In the numerical model studied here, the one-dimensional mesh (modeling the steel cables) is
immersed within the three-dimensional mesh. This means that the cables ”cross” the concrete cells.
A kinematic linkage is performed in order to connect the concrete nodes and the steel nodes. Since
the coupling is assumed to be perfect (no slip between the tendons and the cement), coincident points
in each material are assumed to have the same displacement. Instantaneous prestressing losses due
to anchor recoil and friction are not taken into account at the scale of the considered RSV.

The cables are modeled by bars, which means that we resort to a one-dimensional approach where
only the tension-compression forces are considered. In this framework, the structure is described at
each instant by a curve representing its mean line. Consequently, only the normal efforts appear
(efforts defined along the tangent vector to the beam section) in the variational formulation of the
problem. Two sets of equilibrium equations appear in the studied case: during the prestressing step
(namely between the times tinit,p and tend,p) and after the prestressing step (namely until the end of
the study tf):
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{
∂sN (s, t) = fs, ∀t ∈

[
tinit,p , tend,p

]
, and JNK

(
xno,1d
i

)
= − t(k)−tinit,p

tend,p−tinit,p
Fi,

∂sN (s, t) = fs, ∀t ∈
[
tend,p, tf

]
,

(12)

where {xno,1d
i }N s

i=1 are the nodes of the one-dimensional mesh and Fi are the nodal forces prescribed in
order to respect the BPEL regulation used. We consider a linear thermo-elastic constitutive equation
for the steel cables. Thus, the normal efforts in the cables (N) are linked to the uniaxial strains (εs)
in the cables:

N = EsSs (ε
s − αth,s∆T ) ,

where Es the Young’s modulus, αth,s the thermal dilation coefficient, Ss the section of the prestressing
cables and ∆T is the temperature rise in the beam.

Notation Physical quantity or parameter Unit
Es Young’s modulus (steel) Pa
νs Poisson’s ratio (steel) −
ρs Density (steel) kgm3

αth,s Thermal dilation coefficient (steel) K−1

Ss Cable cross-sections m2

Figure 6: Parameters for the one-dimensional mechanical model (steel)

Details and informations of the physical parameters for the three-dimensional are provided on
Figure 3, whereas those on the one-dimensional are given on Figure 6.

3.3. Representative Structural Volume : standard section of a nuclear containment building

The physical model is designed to capture the behavior of the so-called standard zone of the model,
which corresponds to a portion of the mesh at mid-height, in the cylindrical part of the NCB. Thus,
the region covered by the RSV comprises a three-dimensional portion containing three tangential
prestressing cables and two vertical cables. For the section studied in this study, the internal radius
of the wall is 21.9m, while the external radius is 23.4m. The width of the standard section corresponds
to an angular sector of 4.2. For the scope of this work, the effect of passive steel reinforcement is
neglected.

Two mesh designs are used in practice: one for thermo-hydric calculations and another for me-
chanical calculations. The thermal mesh is refined close to the intrados and extrados to enable better
reconstruction of the thermo-hydric gradients. The fields resulting from this procedure are then pro-
jected onto the mechanical mesh. The meshes employed in these studies are fairly coarse. In fact,
these meshes have been built in order to be able to carry out uncertainty quantification or data
assimilation studies. Therefore, engineers had to strike a balance between affordable computational
cost and approximation quality. Numerical solutions for thermal problems may exhibit oscillations
(in terms of temporal and spatial discretizations). This may imply a violation of the maximum prin-
ciple. To avoid this phenomenon, linear finite elements and a lumping of the mass matrix are used
for this study. As previously mentioned, the thermal mesh does not contain the prestressing cables:
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(a) Temperature and water content BCs
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(b) Temperature and water content evolutions

Figure 7: Boundary conditions for the thermal and hydric problems visualized on the HF thermal mesh

it is composed of linear hexahedral cells (HEXA8). For the mechanical mesh, hexahedral quadratic
elements (HEXA20) are employed for the concrete, and prestressing tendons are represented using
SEG2 linear finite elements (2-node beams).

(a) Vizualisation of the mechanical mesh

Ne N1d
e N2d

e N3d
e N Nc Ns

1532 784 693 55 4076 3911 165

(b) Summary of the parameters for the one-dimensional me-
chanical model

Figure 8: Visualization of the mechanical mesh (Figure 8a) and information on the mechanical mesh (number of
elements and number of nodes for one- and three-dimensional meshes, Figure 8b)

The BCs and loads applied to the RSV zone are detailed below (Eq.(13)). Figure 7 shows the
temperature and water content histories adopted for the thermo-hydraulic calculations. As mentioned
above, the BCs applied are Dirichlet conditions for temperature and water content. These are imposed
on the inner wall (intrados) and the outer wall (extrados), as follows:

{
T = Tint, on Γext,
T = Text, on Γint,

and

{
C = Cint, on Γext,
C = Cext, on Γint.

(13)

With regard to mechanical BCs, axisymmetric conditions are specified at the lateral boundaries
of the RSV: this implies that normal displacements are assumed to be zero on each lateral face.
Furthermore, vertical displacement is assumed to be blocked on the inner face of the RSV, while
a uniform vertical displacement is used on the upper face. The set of boundary conditions with a
visualization of the mechanical mesh is illustrated in Figure 9.

4. Numerical results: application to a standard section of a nuclear containment building

4.1. Solution Reproduction Problem

We first perform a validation of the methodology on a non-parametric case. We aim to mimic the
HF simulation with our ROM for the same set of parameters. To assess the quality of the reduced
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Figure 9: Boundary conditions for the mechanical problem visualized on the HF mechanical mesh

model, we introduce several metrics. First of all, since our ROM is founded on a projection onto
displacement modes, we introduce displacement approximation errors, at a given time step (E

app,(k)
u,µ ),

and averaged over time (Eapp,avg
u,µ ):

Eapp,(k)
u,µ =

∥∥∥uhf,(k)
µ − û

(k)
µ

∥∥∥
2

2∥∥∥uhf,(k)
µ

∥∥∥
2

2

, and Eapp,avg
u,µ =

√
K∑
k=1

t(k)−t(k−1)

tf

∥∥∥uhf,(k)
µ − û

(k)
µ

∥∥∥
2

2

√
K∑
k=1

t(k)−t(k−1)

tf

∥∥∥uhf,(k)
µ

∥∥∥
2

2

, (14)

where tf is the final physical time used in the simulation and where u
hf,(k)
µ and û

(k)
µ are respectively

the solution at the k-th timestep obtained when using the HF model or the ROM for the parameter
µ. For the simulations reported below, we simulate a physical time of around 18 years.

4.1.1. HF problem

In this section, we present the HF problem we wish to reproduce. As previously stated, we are
only seeking to reduce the mechanical calculation in our THM coupling. To this end, we rely on
a thermo-hydraulic calculation, which can be viewed as an initial state common to all parametric
calculations. These two simulations are carried out in compliance with the BCs described previously.
On the figures provided afterwards, the time is given in seconds, as this is the time used in the
numerical code (1 day = 86400 seconds). The time scheme for our creep simulations features an
adaptive time step algorithm. In practice, in all the simulations carried out as part of this study, the
entire simulation is performed over around 50 time steps.

Figure 10 displays the water content in the standard section at the end of the HF calculation.
This figure depicts the evolution of the Cw field in the thickness of the containment building (in the
standard section). Likewise, Figure 11 shows the evolution of the temperature field in the thickness
of the standard section. The physical parameters used for these calculations are summarized in Table
4 where undefined parameters are chosen as follows:

ηdc = 5 · 109, κ = 4.2 · 10−4, αdc = 7.56 · 10−6, ηis = 2.76 · 1018, ηid = 1.38 · 1018.

From these auxiliary fields (H field in the methodology formulation in section 2) we can determine
all the mechanical fields using the HF code. Figure 12 represents the displacement fields and the
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(a)View of the drying field Cw at the last time
step of the HF simulation (top view)
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Figure 10: Water content snapshots (output of the hydric calculation step) at the end of the HF simulation

(a) View of the temperature field T at the last
time step of the HF simulation (top view)
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Figure 11: Temperature snapshots (output of the thermal calculation step) at the end of the HF simulation

components of the Cauchy stress tensor obtained for the HF calculation we are seeking to reproduce
in this section.

(a) ur [m] (b) uθ [m] (c) uz [m] (d) σθθ [Pa]

Figure 12: Mechanical fields snapshots (displacements, see Figure 12a, 12b, 12c, and stresses within the concrete, see
Figure 12d) at the end of the HF calculation on the standard section

Our first goal is to ensure that the mechanical fields (displacements, stresses in the concrete and
normal forces in the cables) are fairly accurate approximations of the values obtained from HF cal-
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culations. Besides, using a ROM of a standard section should provide a good quality approximation
of the fields used in practical applications by engineers. In our case, this RSV has two main pur-
poses: first, to compute leakage estimates from prestress loss in the cables, and second, to perform
recalibration tests from deformation data (tangential and vertical deformations) on the intrados and
extrados.
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Figure 13: Evolution of normal forces in the two vertical (CABV1, CABV2) and three horizontal (CABH1, CABH2,
CABH3) cables of the standard section

Figure 13 depicts the evolution of the mean value of the normal forces in each of the five cables
within the standard section. For the record, the mesh studied contains two vertical cables and three
horizontal cables. Within the framework of the investigated model, the vertical cables have a similar
behavior (as do the three horizontal cables). In the following, we have decided to report only the
results for one horizontal and one vertical cables (CABV1 and CABH2), to ease the readability of
the results. Figure 14 displays the evolution of mechanical strains and total strains in the concrete.
In our notations, (I) stands for intrados whereas (E) stands for extrados. In our cases of interest, the
total strains of the material are not purely mechanical. In general, data assimilation problems only
focus on mechanical deformations. This is of key interest when reconstructing the strain field from the
displacement modes, since the strain includes components due to temperature gradients and/or water
pressure. Indeed, in our ROM resolution procedure, we have generalized coordinates at our disposal,
which enable us to reconstruct the displacement field in the material. By computing the symmetric
gradient of this displacement field, we can determine the total strains. In order to reconstruct a
strain field, we must subtract the terms related to the thermal and hydric fields. Both these fields
may be derived independently of the reduction process, since we only reduce the mechanical part of
the calculation chain. We are thus able to pre-calculate the TH strain fields and subtract them from
a total strain field so as to obtain the reconstructed mechanical strain field.

In order to assess the accuracy of our reduced model, we introduce approximation errors for
these different fields: for the average of the normal forces at the nodes in the CABV1 vertical cable
(E

app,(t)
µ [NV2 ]), and in the horizontal cable (E

app,(t)
µ [NH2 ]), for the average of the tangential strain

and vertical strain on the extrados (E
app,(t)
µ [εmtt (avg - E) ] and E

app,(t)
µ [εmzz (avg - E) ]) , and finally

for the average of the tangential strain and horizontal strain on the intrados (E
app,(t)
µ [εmtt (avg - I) ]

and E
app,(t)
µ [εmzz (avg - I) ]) . To average the components of the strain tensor, the values at the Gauss

points are extrapolated to the nodes, and the value at the nodes is then averaged. These relative
errors in the deformation fields relate exclusively to mechanical deformations. Indeed, this is the only
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Figure 14: Comparison for the pointwise values between some components (tangential and vertical) the mechanical
strains and the total strains in sensor zones (extrados (E) and intrados (I))

part of the tensor that is actually modified by our reduction process, as explained above.

4.1.2. Speedups and approximation errors

In order to validate the ROM, we verify that the displacement field is properly reconstructed.
Furthermore, since we are interested in the use of the ROM for engineering applications, it is necessary
to confirm the quality of the approximation on the various quantities of interest, more precisely
tangential and vertical deformations and normal forces in the cables (which enables us to calculate
prestressing loss). Ultimately, it is crucial to provide a model that reduces the computation time
required whenever a call is made. To this end, we focus on the speedups (speedup = ROM CPU cost

HF CPU cost
)

obtained after construction of the reduced model (online phase).

0 10 20 30 40 50
10−19

10−14

10−9

10−4

101

n

λ
i/
λ
1

u
S

Figure 15: POD eigenvalues for the displacement (u) and the generalized forces (S) using a ℓ2 compression for a
solution reproduction problem (50 initial snapshots)

Figure 15 depicts the POD eigenvalues generated on snapshots of displacements (u) and general-
ized forces (S). The decay profiles are quite distinct between the two physical quantities: the decay
of the eigenvalues for displacements is fast, unlike in the case of generalized forces. This implies
that the sizes of the two bases generated for POD tolerances of the same order of magnitude are
significantly different. The displacement basis will always be much smaller than the generalized force
basis.
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Figure 16: Evolution of time-averaged approximation errors on the displacements and speedups as a function of the
number of modes used (Nu, see Figure16a) and for several hyper-reduction tolerances (δ, see Figure16b)

As a way of assessing the robustness of the reduction approach proposed here, we have built
several ROMs for different numbers of displacement modes and different hyper-reduction tolerances.
An increase in the number of modes and a decrease in the δ hyperparameter both improve the
quality of the ROM and increase computation time (speedup). Thus, a tradeoff needs to be found
for engineering applications in order to provide a fast and accurate ROM. Figure 16 displays the
evolution of speedups and time-averaged displacement approximation errors as a function of the
number of modes (for several tolerances). We observe that from 5 modes upwards, The reduced
order model exhibits an good approximation quality, with approximation errors below the order of
0.2% (for all tolerances studied). In this case, the speedups achieved are substantial: around 10 for
the most severe tolerance (equal to the Newton-Raphson tolerance), around 15 for the intermediate
tolerance studied, and over 30 for the coarsest tolerance. These accelerations in CPU computation
time are all the more appealing as the mesh studied in this paper is very coarse, with only a few
hundred elements (see Figure 17 for further details). This opens the door to future work on the use
of finer meshes in NCB cross-section studies.

(a) δ = 10−2
(b) δ = 10−4

(c) δ = 10−6

Figure 17: Reduced meshes of the standard section obtained for a reproduction problem solution using Nu = 5
displacement modes and for several hyper-reduction parameters

We have further investigated the quality of the ROM along the time trajectory of the problem.
Figure 18 represents the relative errors at each time step for different ROMs. Since the construction
of the ROM is determined by a pair of hyperparameters (Nu, δ), we focused on the influence of each
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parameter in fixing the second. The parameters set in the two test cases are chosen so as to be as
restrictive as possible in the parameter sets we explore here. We find that for our problem, the number
of modes has a much greater influence on time-evolution profiles than hyper-reduction tolerance. Since
the latter parameter leads to an increase in mesh size as it decreases, this prompts us to state that: in
this non-parametric case, it is advisable to fix a number of modes to control the approximation error,
and it suffices to take a low or intermediate tolerance to get good speedups. We notice that for low
approximation qualities, there are jumps in the relative error profiles of the displacement fields. This
is due to the fact that the ROM is built over the entire life of the standard section, namely with three
distinct physical regimes: life of concrete without cables, prestressing, and life of concrete with cables.
For small numbers of modes, the ROMs is unable to generate modes designed to approximate these
three phases. Since we chose to use no weighting, it will have a tendency to approximate the final
step much more accurately, which is justified by the fact that the number of time steps associated
with this phase is much greater. This higher approximation quality on the last step is of interest for
our applications, as we seek not only a reliable approximation in terms of time trajectories, but also,
and above all, a solution that is truly representative of the system’s final state. If we need control
the time-averaged approximation errors in a different manner, it would be natural to use a weighted
POD in order to take into account the non-constant timestepping.
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Figure 18: Evolution of approximation errors on displacements at each time step for several numbers of modes used
or for several hyper-reduction tolerances

4.1.3. Errors on the quantities of interest

The scope of the research we have undertaken requires us to be confident in our ability to provide
accurate QoIs. We thus wish to verify that the ROM obtained, in addition to being a good approxi-
mation of the HF calculation in terms of displacements while being significantly less computationally
expensive, can be used in real applications. This is achieved by investigating the profiles of nor-
mal forces in the cables and deformations at the sensor level (average measure of a component of the
strains tensor over the internal or external face). We would like to point out that data post-processing
differs according to the QoIs studied. The reduced mesh contains all the prestressing cables, while
the quadrature laws are unchanged in the one-dimensional mesh. As a result, we can compute the
relative error on normal forces directly after calling up the reduced model. For strains, however, we
must reconstruct the strain fields on the HF mesh, and then apply the observation operators (physical
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sensors) used in the HF framework. This step s computationally inexpensive compared to the overall
procedure, as the symmetric gradients of the modes are already known, because they are required for
the hyper-reduction process. All that needs to be done is to multiply these modes to the generalized
coordinates and apply the observation operator. Figure 19 provides the time-evolution of the relative
errors on the QoIs. On Figure 19, we delimit the three phases of a mechanical calculation for a power
plant containment building: a first phase in which the cables are not involved in the mechanical
calculation, i.e. the concrete evolves on its own; a second phase in which the concrete is prestressed
(see Eq. (12) for specific loads in this case); then, finally, the life of the prestressed concrete, in
which the concrete and cables are fully coupled. The three periods are delimited by dotted black
vertical lines. The HF solver’s adaptive time-stepping process explains the temporal distribution of
the various snapshots. The initial time for plotting corresponds to the first time step output by the
reference calculation code.
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Figure 19: Evolution of approximation errors on QoIs at each time step for several numbers of modes used or for
several hyper-reduction tolerances (the two vertical lines in black delimit the prestressing section of the cables)

The pattern of strain changes is similar to that of displacement approximation errors. Further-
more, the observation of a better approximation of deformations during the life of the NCB after
prestressing is also confirmed. This confirms the usefulness of the ROM for data assimilation prob-
lems. In practice, data is only available once the cables have been prestressed. For the sake of clarity,
we would like to point out that the time scale for the profile of relative errors in normal forces is not
the same as that for deformations. In fact, only the life of the enclosure after prestressing is depicted,
since normal forces are always zero beforehand, or known analytically.

4.2. Parametric problem

In a second step, we study a parametric case. As mentioned above, we consider here a strong-
greedy approach. Thus, in order to drive the greedy search, we consider the maximum approximation
error on a given training set (Θtrain), for the parameters we have not yet examined. As a reminder,
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Θ∗ corresponds to the set of parameters used in building the ROM. We introduce a notation for the
maximal error obtained when testing the ROM:

∆stg
N = max

i∈Θtrain\Θ∗
Eapp,avg

u,µi
.

In the physical case under study, uncertainty is mainly limited to five physical parameters µ =
[ηdc, κ, , αdc, ηis, ηid]

⊤ ∈ R5, and in particular to the first two. As a validation of our model reduction
approach, we set all the other parameters of the problem (see values in the Table 4), and restrict the
parametric problem to the other parameters.

Input parameter Notation Value Unit
Young’s modulus (steel) Es 1.9 · 1011 Pa
Poisson’s ratio (steel) νs 0.3 −

Density (steel) ρs 7850 kgm3

Thermal dilation coefficient (steel) αth,s 1 · 10−5 K−1

Guaranteed maximum load stress at break fprg 1.86 · 109 Pa
Cable cross-section Ss 5400 · 10−6 m

Young’s modulus (concrete) Ec 4.2 · 1010 Pa
Poisson’s ratio (concrete) νc 0.2 −

Density (concrete) ρc 2350 kgm3

Thermal dilation coefficient (concrete) αth,c 5.2 · 10−6 K−1

Autogenous shrinkage coefficient βendo 66.1 · 10−6 −
Dessication shrinkage coefficient αdc X −

Reversible deviatoric basic stiffness krd 5.98 · 1018 Pa
Reversible deviatoric basic viscosity ηrd 8.12 · 1016 Pa s
Irreversible deviatoric basic viscosity ηid X Pa s

Basic creep activation energy Ubc/R 4700 K
Basic creep reference temperature T 0

bc 20 ◦C
Basic creep consolidation parameter κ X −

Desiccation creep viscosity ηdc X Pa−1

Dead weight of upper concrete lifts σz,c 1.375 · 106 Pa
Stress applied to vertical cables σv,s 990.7 · 106 Pa

Stress applied to horizontal cables σh,s 1264.7 · 106 Pa

Table 4: Coefficients for the mechanical model fixed for the parametric problem. The notation X corresponds to the
parameters that can vary and, therefore, we do not give a priori numerical values.

4.2.1. In-sample test for P ⊂ R2

We confine the study to a parametric case with two parameters. The vector of parameters con-
sidered is as follows:

µ =

[
ηdc
κ

]
∈
[
5 · 108, 5 · 1010

]
×
[
10−5, 10−3

]
⊂ R2.

This is tantamount to setting the following parameters (in addition to those given in the Table 4):
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αdc = 7.56 · 10−6, ηis = 2.76 · 1018, ηid = 1.38 · 1018.
We rely on a training space of size |Θtrain| = 25, designed as the tensor product of two one-

dimensional grids log-evenly spaced (5×5 grid). This choice results from a tradeoff between the need
for sufficiently fine discretization to have several parameters, and the offline CPU cost of building the
ROM (an HF calculation takes around fifteen minutes). The choice of optimal discretization is out of
the scope of this work and is a field of research of its own. To help understand the physical problem
under study, Figure 20 depicts the evolution of normal forces over time for different parameter sets.
We can clearly appreciate that the loss of prestress in the cables (a key feature in the study of leakage
rates) strongly differs according to the pair of parameters studied. The observation of these quantities
supports the choice of a logarithmic discretization for the construction of the parametric grid.
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Figure 20: Evolution of normal forces over time for pairs of parameters belonging to the parametric set of size
|Θtrain| = 25. Figures 20a-20b (resp. Figure 20c-20d) feature cases where the parameter κ (resp. ηdc) is fixed. For each
pair, we plot the time evolution of the normal forces averaged over all the nodes of the vertical and horizontal cables.

Figure 21 shows the decay of the POD eigenvalues when using the 25 HF snapshots. The decay
is similar to that shown in Figure 15. We notice that for the parametric case, the decay is fast and
the gain in compression will be significant.

As a first test, we report a quick evaluation of the construction of a ROM on a smaller training
set, consisting of 4 points. In other words, we take only the extremums of the 2d square to which
all the parameters belong. The aim of this simpler case is to compare the two methodologies for
building POD-reduced bases (in the parametric case) before presenting the case on the 25-point
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Figure 21: POD eigenvalues for the displacement and the generalized forces (S) using a ℓ2 compression for a parametric
problem

parametric case. Figure 22 depicts the speedups and approximation errors obtained after 4 iterations
(the maximum number of iterations possible for this case) for different pairs of hyper-parameters
used for ROM construction: number of modes and hyper-reduction tolerance. We observe that the
hierarchical basis strategy leads to an increase in basis size (in our case), which reduces speedup and
improves approximation quality (to below one percent). On the other hand, the use of full POD
enables much better speedups to be maintained, while reducing the approximation error, but to a
lesser extent. The same tradeoff applies to ROM construction as described above. In the case studied
here, the regularity of the problem (at least for this set of parameters), prompts us to favor a POD
on all snapshots (therefore, the basis is not hierarchical during iterations), in order to have the most
efficient ROM both in terms of computational gain, while having reasonable approximation errors.

Then, we apply this strategy to a larger training set (|Θtrain| = 25 parameters). Figure 23
represents the decay of the maximum approximation error on unexplored parameters (used to drive
the greedy procedure). These successive choices clearly lead to a decrease in the maximum error
(Figure 25a) and the average error (Figure 25b) over the entire training set (explored and unexplored
parameters). Scaling up for each parameter, Figure 26 shows the time-averaged approximation errors
for each parameter over the first iterations of the algorithm. As confirmed by the other figures, we
observe that for the case studied, we have errors of the order of a few percent on all parameters (no
more than ten percent) after just a few iterations. This is due to the relative regularity of the problem
studied. Figure 24 displays error statistics (median, quartiles) over the course of greedy iterations
(5 by 5). We compare two approaches for incremental POD or POD on all snapshots, with error
visualization, where we observe a decrease in medians over the iterations.

4.2.2. Out-of-sample test for P ⊂ R2

All the above numerical results highlight the good approximation quality of the ROM on the
training set. Nevertheless, it is crucial to further assess the methodology’s suitability for out-of-
sample parameters. To this end, we consider a 7-by-7 grid. This ensures that we get non-matching
points. Then, we test the approximation quality of the ROM on this set, called the test set.

Figure 27 depicts boxplots for time-averaged approximation errors on the test set for the same
training set for two sets of greedy strategies: one based on a POD on all snapshots (Figure 27a)
and the other on an incremental POD (Figure 27b). From a statistical point of view, most of the
test set features good approximation quality. The distribution of statistics across the two cases is
consistent. For the POD on all snapshots, the error on the training set is of slightly higher quality
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Figure 22: Speedups and average approximation errors on displacements fields for µ ∈ Θtrain using a training set of
size |Θtrain| = 4 for different compression tolerances (ε) and hyper-reduction parameters (δ) and comparison between
non-incremental and incremental POD
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Figure 23: Maximum approximation error on unexplored parameters decreases during greedy iterations with an hyper-
reduction parameter δ = 10−5

than on the test set, while maintaining excellent approximation quality. Despite the simplicity of
the case, it remains complex to perfectly capture the worst-case representations in the same way as
the rest. Nevertheless, the worst-case error remains of the order of a few percent on the test set.
For the case with incremental POD, the error quality between training and test sets is very similar,
which is consistent with the fact that more modes are used than with POD on the snapshot set. Yet
the difference between training and test sets is due to the smaller quartile spread on the training set
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Figure 25: Average approximation errors on displacements fields for µ ∈ Θtrain using a training set of size |Θtrain| = 25
and a non-incremental POD for different compression tolerances (ε) with an hyper-reduction parameter δ = 10−5
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Figure 26: Time-averaged approximation errors on displacement on the training set (|Θtrain| = 25) for the first greedy
iterations with an hyper-reduction parameter δ = 10−5

(lower statistical dispersion), which is also coherent.
In a second step, we can also compare the greedy approaches with each other in terms of their

behavior on the test set (Figure 28). As can be expected, the poorest approximation case matches the
case with the smallest training set size, followed by the case with 25 points and total POD, followed
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Figure 27: Boxplot for a training set on a 5× 5 grid (|Θtrain| = 25), verified on a test set on a 7× 7 grid (|Θtest| = 49).
The quantities measured are the time-averaged errors on each set, for a ROM resulting from a greedy procedure,
stopped after 5 iterations.
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Figure 28: Statiscal repartition of time-averaged errors generated by several ROMs on the same test set defined on a
7× 7 grid (|Θtest| = 49). Three ROMs are compared (all obtained by a greedy process): built on a 2× 2 training grid
with POD on all HF snapshots (blue), on a 5 × 5 training grid with POD on all HF snapshots (red), and on a 5 × 5
training grid with an incremental POD (orange). Figure 28a is a boxplot of time-averaged errors on Θtest and 28b is
the time-averaged errors according to the number of the parameters in the Θtest (numerotation is similar to Figure
26a, but on a 7× 7 grid)

by a case with 25 points and incremental POD. This analysis is reflected in the boxplots (see Figure
28a), as well as in the plot of errors as a function of parameter indices (indices are distributed in a
similar way to discretization on a 5x5 grid).

5. Conclusion

We proposed and validated a methodology for the construction of ROMs for multi-modeling prob-
lems, with an application to a standard section of prestressed concrete NCB. This involves several
aspects. First, we devised a robust numerical method, suitable for use with industrially-constrained
codes, providing ROMs designed to replicate the behavior of prestressed concrete with high speedups
and good approximation errors. Furthermore, we proposed an adaptive approach to iteratively enrich
the reduced model on a set of parameters. These two points are presented theoretically and validated
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numerically. Second, we have also succeeded in producing a ROM that can be used for real engineer-
ing applications, in that it provides a good representation of the variables of interest used in practice
by engineers, whether for structural state analysis (leakage rate study) or for in-depth data analysis
(data-assimilation problem, Bayesian approaches).

Much work is currently underway to make further progress in several directions. First, these
promising results are validated on fairly coarse meshes (although used in practice) and on smaller
parametric spaces. Efforts are currently underway to evaluate these approaches by increasing the
dimension of the parametric vector, and of the snapshot vectors considered (mesh refinement). Sec-
ond, the approach adopted is a strong greedy process and relies on comparison with known HF
snapshots. This leads to significant offline computation costs, since it requires a priori knowledge of
these solutions. This is a particular limitation when scaling up. Previous efforts have focused on the
construction of low-cost a posteriori error indicators. The efficiency of these indicators in steering
greedy search (within a weak-greedy context) has been demonstrated for problems featuring internal
variables. The problems presented here are somewhat more intricate from a theoretical standpoint in
mechanics (THM and multimodeling), and consequently, pose challenges for robust implementation
in an industrial-grade FE code. Ongoing efforts are being made to broaden the application of indica-
tors to tackle these challenges. Research is also underway to make this methodology still applicable
when the parameter space becomes larger. Finally, the coupling of the ROM methodology with the
optimization problems mentioned above, and in particular data assimilation, in order to reduce the
resolution time, are being studied.
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