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Abstract

We propose a nonlinear registration-based model reduction procedure
for rapid and reliable solution of parameterized two-dimensional steady
conservation laws. This class of problems is challenging for model reduc-
tion techniques due to the presence of nonlinear terms in the equations
and also due to the presence of parameter-dependent discontinuities that
cannot be adequately represented through linear approximation spaces.
Our approach builds on a general (i.e., independent of the underlying
equation) registration procedure for the computation of a mapping Φ that
tracks moving features of the solution field and on an hyper-reduced least-
squares Petrov-Galerkin reduced-order model for the rapid and reliable
computation of the solution coefficients. The contributions of this work
are twofold. First, we investigate the application of registration-based
methods to two-dimensional hyperbolic systems. Second, we propose a
multi-fidelity approach to reduce the offline costs associated with the con-
struction of the parameterized mapping and the reduced-order model. We
discuss the application to an inviscid supersonic flow past a parameterized
bump, to illustrate the many features of our method and to demonstrate
its effectiveness.

Keywords: parameterized hyperbolic partial differential equations; model
order reduction; registration methods; nonlinear approximations.

1 Introduction

1.1 Model order reduction for steady conservation laws

Despite the recent advances in high-performance computing and numerical anal-
ysis, approximation of the solution to fluid problems remains a formidable task
that requires extensive computational resources. The lack of fast and reliable
computational fluid dynamics (CFD) solvers limits the use of high-fidelity (hf)
simulations to perform extensive parametric studies in science and engineer-
ing. Parameterized model order reduction (pMOR) aims at constructing a
low-dimensional surrogate (or reduced-order) model (ROM) over a range of
parameters, and ultimately speed up parametric studies. The goal of this paper
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is to develop a nonlinear registration-based MOR procedure for steady two-
dimensional conservation laws and to demonstrate its effectiveness for applica-
tions in aerodynamics.

We denote by µ the vector of model parameters in the parameter region
P ⊂ RP ; we denote by Ω ⊂ R2 the open computational domain — to simplify the
presentation, in the introduction we assume that the domain does not depend
on the parameters; however, in the numerical examples, we shall consider the
case of parameterized geometries. Given the parametric field w : A × P → B
for some open sets A ⊂ Rn and B ⊂ Rm with m,n ∈ N, we denote by wµ =
w(·;µ) : A → B. We further denote by A the closure of the open set A in
Rn. We denote by U : Ω×P → RD the parametric solution field satisfying the
conservation law:

∇ · Fµ(Uµ) = Sµ(Uµ) in Ω, (1)

where F : RD × P → RD,2 is the physical flux and S : RD × P → RD is the
source term. The problem is completed with suitable boundary conditions that
depend on the number of incoming characteristics (cf. [68, Chapter 12]). We
denote by M := {Uµ : µ ∈ P} the solution manifold associated with (1). We
further define the Hilbert space X = [L2(Ω)]D, endowed with the inner product
(·, ·) and the induced norm ‖ · ‖ :=

√
(·, ·), such that (w, v) =

∫
Ω
w · v dx for all

w, v ∈ X .

We introduce the finite element (FE) mesh Thf :=
(
{xhf

j }
Nhf,v

j=1 , T
)

where

{xhf
j }j ⊂ Ω are the nodes of the mesh, Nhf,v is the total number of nodes, and

T ∈ Nnlp,Ne is the connectivity matrix, where nlp is the number of degrees of
freedom in each element and Ne is the total number of elements. We denote by
Xhf ⊂ X a FE discretization associated with Thf and we set Nhf = dim(Xhf).
Given w ∈ Xhf , we denote by w ∈ RNhf the vector representation of w with
respect to a suitable basis: note that the pair mesh-coefficients (Thf , w) uniquely
identifies the field w ∈ Xhf . Finally, we denote by Uhf

µ ∈ Xhf the hf estimate of
the solution Uµ ∈ X to (1) for a given µ ∈ P.

Hyperbolic problems with moving fronts are extremely challenging for state-
of-the-art model reduction procedures. First, the vast majority of MOR meth-
ods rely on linear approximations: as shown in several studies (e.g., [43]), linear
methods are fundamentally ill-suited to deal with parameter-dependent sharp
gradients that naturally arise in the solutions to hyperbolic conservation laws.
Another major issue concerns the construction of accurate meshes for parametric
studies. For advection-dominated problems, adaptive mesh refinement (AMR)
is of paramount importance to reduce the size of the mesh required to achieve
a given accuracy. However, if parametric variations strongly affect the location
of sharp-gradient regions, AMR should be applied to each system configuration
and will lead to hf discretizations of intractable size. Effective MOR procedures
for conservation laws should thus embed an effective parametric AMR strategy
to track moving structures.

1.2 Registration methods for parameterized problems

Registration-based (or Lagrangian) methods for pMOR (e.g., [29, 42, 54, 58, 57]
) rely on the introduction of a parametric mapping Φ : Ω × P → Ω such that
(i) Φµ is a bijection from Ω in itself for all µ ∈ P, and (ii) the mapped manifold

M̃ = {Uµ ◦ Φµ : µ ∈ P} is more amenable for linear compression methods. In
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the FE framework, or equivalently in the finite volume context, this corresponds
to considering approximations of the form

µ ∈ P 7→
(

Φµ(Thf), Ûµ = Z α̂µ

)
, (2)

where Φµ(Thf) :=
(
{Φµ(xhf

j )}Nhf,v

j=1 , T
)

, Z ∈ RNhf ,N is theN -dimensional reduced-

order basis (ROB). Note that the mapped mesh Φµ(Thf) shares with Thf the same

connectivity matrix, while Ûµ = Z α̂µ can be viewed as an approximation of
Uµ if paired with the mesh Φµ(Thf), or as an approximation of Uµ ◦Φµ if paired
with the mesh Thf .

Several features of registration methods are attractive for applications to
hyperbolic problems with moving fronts. First, registration methods are ef-
fective to track sharp gradients of the solution field, and ultimately improve
performance of linear compression methods in the reference configuration. Sec-
ond, since the mesh should be refined in the proximity of the jumps of the
solution, reducing shocks’ and contact discontinuities’ sensitivity to parameter
variations leads to a significant reduction of the mesh size required for a given
accuracy. Third, after having built the mapping Φ, Lagrangian methods reduce
to linear methods in parameterized domains: this class of methods has been
widely studied in the MOR literature (see the reviews [33, 53] and also [60])
and is now well-understood. In particular, we can rely on standard training
algorithms to build Z in (2) – in particular, proper orthogonal decomposition
(POD, [7, 63]) and the weak-Greedy algorithm [52] — and on effective hyper-
reduced projection-based techniques to compute the solution coefficients α̂µ.

In this work, we consider the registration procedure first proposed in [57]
and then extended in [59, 61] to generate the mapping; then, similarly to [59],
we rely on a projection-based least-squares Petrov-Galerkin (LSPG, [13, 11])
formulation with elementwise empirical quadrature (EQ, [22, 69]) to estimate
the coefficients α̂µ for any new value of the parameters. Furthermore, we rely
on the discretize-then-map framework (cf. [17, 60, 65]) to deal with geometry
variations. The contribution of the paper is twofold.

• We show performance of registration-based model reduction for a repre-
sentative problem in aerodynamics with shocks: we discuss performance
of registration, and we also address the combination with projection-based
MOR techniques. In particular, we investigate in detail the offline-online
computational decomposition and we also comment on hyper-reduction,
which is key for online efficiency.

• We present work toward the implementation of a multi-fidelity approach
for registration-based model reduction. As explained in [57, 59, 61], a
major issue of our registration procedure is the need for extensive explo-
rations of the parameter domain: in this work, we show that we can rely
on a significantly less accurate hf discretization to generate the snapshots
used for registration and ultimately greatly reduce the cost of offline train-
ing. In the numerical results, we further show that multi-fidelity training
might help reduce the size of the hf discretization required to properly
track moving features — in effect, spatio-parameter mesh adaptivity.

The outline of the paper is as follows. In section 2, we introduce the model
problem; in section 3, we present the methodology: first, we introduce the regis-
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tration algorithm proposed in [61], then, we discuss the projection-based scheme
and finally we present the offline/online computational decomposition based on
a two-fidelity sampling. In section 4, we present extensive numerical investi-
gations to illustrate the performance of our proposal. In the remainder of this
section, we discuss relation to previous works (cf. section 1.3), we briefly com-
ment on the many nonlinear approximation methods appeared in the literature
to better clarify the interest for registration-based methods (cf. section 1.4),
and we present relevant notation (cf. section 1.5).

1.3 Relation to previous works

Several authors have applied MOR techniques to aerodynamics problems in-
cluding inviscid flows: we refer to [71] for a review; we further refer to the early
work by Zimmermann et al, [23] and to the more recent work by Carlberg et al,
[8] for application to aerodynamics of techniques based on nonlinear approxima-
tions. Simultaneous adaptivity in space — via AMR — and in parameter — via
Greedy sampling — has been considered by Yano in [70] and more recently in
[56]. Methods in [56, 70] rely on h-refinement to adapt the spatial mesh, while
we exploit a solution-aware parameterized mapping to deform the mesh without
changing its topology (r-adaptivity): we thus envision that the two strategies
might be combined with mutual benefits.

Multifidelity methods have been extensively studied in the MOR literature:
we refer to [45] for a thorough review and also to the more recent work by
Kast et al. [31]. As explicitly stated in section 1.2, the present study offers a
proof of concept of the application of multifidelity schemes in combination with
registration methods; it also shows the importance of multifidelity schemes for
spatio-parameter adaptivity.

As discussed in [57, 59, 61], the fundamental building block of our reg-
istration procedure is a nonlinear non-convex optimization statement for the
computation of the mapping Φ for the parameters in the training set. Our opti-
mization statement minimizes an L2 reconstruction error plus a number of terms
that control the smoothness of the map and the mesh distortion: minimization
of the L2 reconstruction error has been previously considered in several works
(e.g., [40, 50, 51, 55]); on the other hand, penalization of mesh distortion has
been considered in [73] in a related context.

For completeness, as already discussed in [61], we remark that registration-
based methods are tightly linked to a number of techniques in related fields.
First, registration is central in image processing: in this field, registration —
more precisely, non-rigid point set registration [35, 36, 76] — refers to the pro-
cess of computing a spatial transformation that optimally aligns pairs of point
sets. In computational mechanics, Persson and Zahr have proposed in [73] an
r-adaptive optimization-based high-order discretization method to deal with
shocks/sharp gradients of the solutions to advection-dominated problems. In
uncertainty quantification, several authors (see, e.g., [37]) have proposed mea-
sure transport approaches to sampling: transport maps are used to “push for-
ward” samples from a reference configuration and ultimately facilitate sampling
from non-Gaussian distributions. Finally, the notion of registration is also at
the core of diffeomorphic dimensionality reduction ([64]) in the field of machine
learning.
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1.4 Methods based on nonlinear approximations: expres-
sivity and learnability

In recent years, there has been a growing interest in nonlinear model reduction
techniques, particularly for CFD applications. A first class of methods relies on
adaptive partitioning of the parameter domain, [19]. Another class of methods
relies on online basis update and/or refinement: relevant works that fit in this
category might rely on low-rank updates (e.g., [12, 21, 44]), or might rely on
Grasmannian learning to construct parameter-dependent reduced-order bases
[1, 75]. A third class of methods relies on the introduction in the offline/online
workflow of a preprocessing stage to reformulate the problem in a form that is
more amenable for linear approximations: representative methods in this cate-
gory are the approach in [25] based on approximate Lax pairs, and the method
of freezing in [42]. We remark that such preprocessing stage might be performed
once during the offline stage, at the beginning of the online stage for any new
µ ∈ P, or at each time step in combination with a suitable time-marching
scheme. A fourth class of methods considers directly nonlinear approximations
in combination with specialized methods to compute the solution during the
online stage: to provide concrete references, we refer to the approaches based
on convolutional autoencoders, [24, 30, 32, 34], and to the approach in [20]
based on optimal transport and nonlinear interpolation. As explained below
(cf. (3b)), Lagrangian methods lead to predictions Û that are linear in the so-
lution coefficients α̂µ and nonlinear in the mapping coefficients âµ: depending
on the way mapping coefficients are computed, Lagrangian methods fit in the
third category (e.g., [57, 59] and this work) or in the fourth category (e.g., [39]).

To analyze the many nonlinear proposals and ultimately perform an in-
formed decision for the specific problem of interest, we shall interpret pMOR
techniques as the combination of two fundamental blocks: a low-rank parameter-
independent operator Z : A ⊂ RQ → X for some Q ∈ N that will be clarified
below in (3) and a ROM for the reduced coefficients β̂ : P → A. To build
Z, we first identify a class of approximations (see (3) below) and then we pro-
ceed to use offline data to identify the proper (quasi-optimal) approximation
within that class; after having built Z, we rely on intrusive (projection-based)

or non-intrusive (data-fitted) methods to rapidly find the coefficients β̂µ ∈ A
for any new value of the parameters in P. Examples of approximation classes
include the aforementioned linear methods, Lagrangian methods, convolutional
methods, and transported methods.

• Linear methods can be written as

Ûµ = Z(β̂µ = α̂µ) =

N∑
n=1

(α̂µ)nζn, (3a)

with Q = N , A = RN , and ζ1, . . . , ζN ∈ X .

• Lagrangian (or registration-based) methods can be written as

Ûµ = Z(β̂µ = [α̂µ, âµ]) =

N∑
n=1

(α̂µ)nζn ◦ N(âµ)−1 (3b)

where ζ1, . . . , ζN ∈ X , A = RN × Abj, N : RM → Lip(Ω;R2) such that
N(a) is a bijection in Ω for all a ∈ Abj, Q = N +M .
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• Convolutional approximations ([24, 30, 32, 34]) with L > 0 layers can be
stated as

Z(β̂µ = [α̂1,µ, . . . , α̂L,µ]) = NL (NL−1 (. . . , αL−1,µ) ,αL,µ) (3c)

where N` : RD`×RN` → RD`+1 withD1 = 2 (number of spatial dimensions)

and DL+1 = D (number of state variables), Q =
∑L
`=1N` and A = RQ.

• Finally, transported (or transformed) snapshot methods ([10, 41, 49, 66])
with N > 0 terms can be stated as

Z(β̂µ = [α̂µ, â1,µ, . . . , âN,µ]) =

N∑
n=1

(α̂µ)nζn ◦ Nn(ân,µ) (3d)

where N1, . . . , NN : RM → Lip(Ω : R2), ζ1, . . . , ζN ∈ Xext := {v ∈ L2(R2) :
v|Ω ∈ X}.

Note that, while in Lagrangian methods we require that N is bijective, trans-
formed methods do not explicitly require bijectivity of N1, . . . , NN . Note also
that linear methods are a subset of Lagrangian methods — in the sense that
they reduce to linear methods for N = id, id(x) = x. Similarly, Lagrangian
methods are a subset of convolutional and transported methods.

The choice of the class of approximations should be a compromise between
expressivity and learnability. In statistical learning, expressivity (or expressive
power) of a network refers to the approximation properties for a given class
of functions, [27]. Given the class of approximations C ⊂ C(A;X ) for some
A ⊂ RQ — C(A;X ) is the space of continuous applications from A to X — we
measure the expressivity of C for M in terms of the nonlinear width ([18]):

inf
Z∈C

sup
w∈M

inf
β∈A

‖Z(β)− w‖. (4)

On the other hand, learnability depends on two distinct factors: (i) the per-
formance of available training algorithms to identify an approximation map Z

in C that approximately realizes the optimum of (4); and (ii) the performance

of available methods to rapidly and reliably compute the coefficients β̂µ during
the online stage. Note that the training algorithm in (i) is fed with a finite set
of snapshots from M: due to the large cost of hf CFD simulations, reduction
of the number of required offline simulations is key for practical applications.

Since expressivity depends on the particular manifold of interest, while learn-
ability depends on the PDE model under consideration, it seems difficult to offer
a definitive answer concerning the optimal choice of the approximation class C.
The aim of this work is to show that Lagrangian approximations have high ex-
pressive power for a representative problem in aerodynamics and that they can
be learned effectively based on sparse datasets: further theoretical and numeri-
cal investigations are needed to clarify the scope of the present class of methods
and ultimately offer guidelines for the choice of the class of approximations.

1.5 Notation

We estimate the solution to (1) using a nodal-based discontinuous Galerkin
(DG) finite element (FE) discretization of degree p. Similarly to [61], we resort
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to a FE isoparametric discretization. We define the reference element D̂ = {X ∈
[0, 1]2 :

∑2
d=1Xd < 1} and the Lagrangian basis {`i}

nlp

i=1 of the polynomial space

Pp(D̂) associated with the nodes {Xi}
nlp

i=1; then, recalling the definition of Thf in

section 1.1, we define the elemental mappings {Ψhf
k }

Ne

k=1 such that

Ψhf
k (X) =

nlp∑
i=1

xhf
Ti,k

`i(X), (5)

and the elements of the mesh {Dk := Ψk(D̂)}k. We further define the basis
functions `i,k : Ω→ R such that `i,k(x) = 0 for all x /∈ Dk and `i,k = `i ◦Ψ−1

k (x)
for x ∈ Dk, i = 1, . . . , nlp, k = 1, . . . , Ne.

We define the FE space Xhf = span{`i,ked : i = 1, . . . , nlp, k = 1, . . . , Ne, d =
1, . . . , D} where e1, . . . , eD are the canonical basis of RD. Given w ∈ Xhf , we
denote by w ∈ RNhf , Nhf = nlp ·Ne ·D, the corresponding vector of coefficients
such that

w(x) =

Ne∑
k=1

nlp∑
i=1

D∑
d=1

(w)i+nlp(k−1)+nlpNe(d−1) `i,k(x) ed, ∀ x ∈ Ω. (6)

Note that (6) introduces an isomorphism between RNhf and Xhf . Following the
discussion in [60], we can extend the previous definitions to the mapped mesh
and mapped FE space. We omit the details.

In view of the FE approximation, it is important that the deformed mesh
Φµ(Thf) (cf. (2)) does not have inverted elements. In this respect, we say
that the mapping Φ : Ω × P → R2 is bijective with respect to Thf (discrete
bijectivity, [61, Definition 2.2]) if the elemental mappings of the deformed mesh
are invertible.

2 Model problem

We consider the problem of approximating the solution to the parameterized
compressible Euler equations. The compressible Euler equations are a widely-
used model to study aerodynamic flows: we refer to [62] for a thorough discus-
sion; we here consider the non-dimensional form of the equations. We denote
by ρ the density of the fluid, by u = [u1, u2] the velocity field, by E the total
energy and by p the pressure; we further define the vector of conserved variables
U = [ρ, ρu,E] : Ω → RD=4. In this work, we consider the case of ideal gases
for which we have the following relationship between pressure and conserved
variables U :

p = (γ − 1)

(
E − 1

2
ρ‖u‖22

)
, (7a)

where γ is the ratio of specific heats, which is here set equal to γ = 1.4. We
further introduce the speed of sound a and the Mach number Ma with respect
to the channel axis such that

a =

√
γ
p

ρ
, Ma =

u1

a
. (7b)
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Finally, we introduce the Euler physical flux and source term:

F (U) =

 ρuT

ρuuT + p1
uT (E + p)

 , S(U) = 0. (7c)

We consider a parametric channel flow past a circular bump: the parameters
are the free-stream Mach number Ma∞ and the central angle α associated with
the bump — cf. Figures 1(a),

µ = [α,Ma∞] ∈ P = [0.75, 0.8]× [1.7, 1.8]. (8)

The horizontal length of the bump and the height of the channel are set to one.
We impose wall conditions at the lower and upper boundaries, transmissive
boundary conditions at the outflow and we set U = U∞ at the inflow with

ρ∞ =
p∞
T∞

, u∞ =
√
γT∞

[
Ma∞
0

]
,

p∞ =
1

(1 + γ−1
2 Ma2

∞)
γ
γ−1

, T∞ =
1

1 + γ−1
2 Ma2

∞
.

Figure 1(b) shows an horizontal slice of the Mach number at x2 = 0.6 for three
parameters µmin = [0.75, 1.7], µ̄ = [0.775, 1.75] µmax = [0.8, 1.8]; Figures 1(c)
and (d) show the contour lines of the Mach number for µmin and µmax: the
red dots in the Figures denote salient points of the flow for µ = µmin and are
intended to simplify the comparisons between the two flows.

We resort to a DG discretization based on artificial viscosity. We use the
local Lax-Friedrichs flux for the advection term, and the BR2 flux (cf. [6]) for
the diffusion term. We consider the piecewise-constant viscosity

(ν(U))k = cvisc

(
hk
p

)2
1

|Dk|

∫
Dk

|∇ · u|dx (9)

where hk =
√
|Dk| is the characteristic size of the k-th element of the mesh and

cvisc > 0 is a constant set equal to cvisc = 10 in the numerical simulations. Note
that (9) is an example of dilation-based model for the viscosity: we refer to the
recent review [72] for alternative viscosity models and for extensive comparisons.

To estimate the hf solution Uhf
µ ∈ Xhf , we resort to the pseudo-time continu-

ation strategy proposed in [5]. More in detail, if we denote by Rµ : Xhf → RNhf

and by Jµ : Xhf → RNhf ,Nhf the hf residual and the hf Jacobian and by
M ∈ RNhf ,Nhf the mass matrix, we consider the iterative scheme:

(
M + ∆tkJµ(Uhf,k

µ )
)
δUhf,k+1

µ = −Rµ(Uhf,k
µ ) k = 1, 2, . . . ,

Uhf,k+1
µ = Uhf

µ + ∆tkδU
hf,k+1
µ ,

(10)

where ∆tk is chosen adaptively based on the strategy detailed in [16, Chapter
4]. Note that (10) can be interpreted as a Newton solver with an adaptive
relaxation factor.

We conclude this section by introducing the purely-geometric map used to
deform the mesh in absence of a priori information about the solution: in sec-
tion 3.1, we introduce a generalization of this map that takes into account the
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α

Ω

(a) (b)

(c) (d)

Figure 1: flow past a circular bump. (a) geometric configuration. (b) horizontal
slices of the Mach number at x2 = 0.6 for µmin = [0.75, 1.7], µ̄ = [0.775, 1.75]
µmax = [0.8, 1.8]. (c)-(d) contour lines of the Mach number for µmin and µmax.

parametric field of interest. Towards this end, we define Ω̂ = (0, 1)2 and we
introduce the parameterized Gordon-Hall map (cf. [26]) as

Ψµ(x) = (1− x2)cbtm,µ(x1) + x2ctop(x1) + (1− x1)cleft(x2) + x1cright(x2)

− ((1− x1)(1− x2)cbtm,µ(0) + x1x2ctop(1) + x1(1− x2)cbtm,µ(1)

+(1− x1)x2ctop(0)) ,

(11)
where cbtm, ctop, cleft, cright are parameterizations of the bottom, top, left and
right boundaries of the domain, respectively. Note that cbtm depends on the
parameter µ through the angle α (cf. Figure 1(a)): we build cbtm so that the
jump discontinuities of its derivative c′btm — which correspond to the extrema
of the bump — are located at x1 = 0.2 and x1 = 0.6 for all parameters. We
further define the inverse map Λµ = Ψ−1

µ : Ωµ → Ω̂. We have now the elements
to introduce the parametric mapping Φgeo such that

Φgeo
µ = Ψµ ◦ Λµ̄, (12)

where µ̄ is the centroid of P. Given the mesh Thf , we compute the reference

points {xhf,ref
j = Λµ̄(xhf

j )}Nhf,v

j=1 ; then, for any new value of the parameter,
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we compute the deformed points of the mesh using the identity Φgeo
µ (xhf

j ) =

Ψµ(xhf,ref
j ) for j = 1, . . . , Nhf,v.

3 Methodology

In this section, we present the methodology through the vehicle of the model
problem introduced in section 2. In section 3.1, we present the registration
procedure, while in section 3.2, we discuss in detail the projection-based MOR
scheme. Finally, in section 3.3, we illustrate the multifidelity approach to reduce
offline costs. We state upfront that the two building blocks of our formulation,
registration and LSPG formulation in parameterized geometries, have been ex-
tensively discussed in [61] and [60].

3.1 Registration

The registration procedure takes as input a mesh Thf of Ω, a set of snapshots
{(µk, Uk = Uhf

µk)}ntrain

k=1 , and returns a parameterized mapping Φ : Ω× P → R2,

Φ = param registration
(
Thf , {(µk, Uk = Uhf

µk)}ntrain

k=1

)
.

In the remainder of this section, we illustrate the key features of the procedure
and we provide several comments.

3.1.1 Spectral maps

The first step of our registration procedure consists in introducing a class of
approximation maps. Following [61], we consider mappings of the form

N(a;µ) = Ψµ ◦ Φ̃ ◦ Λµ̄, Φ̃ = id + ϕ, ϕ =

M∑
m=1

(a)mϕm. (13a)

Note that N generalizes the map (12) in the sense that N(0;µ) = Φgeo
µ . Here, µ̄

is the centroid of P and ϕ1, . . . , ϕM belong to the polynomial space

Whf =
{
ϕ ∈ [QJ ]2 : ϕ · n̂|∂Ω̂ = 0, ϕ(s, 0) = 0, s ∈ {0.2, 0.6}

}
, (13b)

where QJ denotes the space of tensorized polynomials of degree at most J
in each variable, n̂ is the outward normal to Ω̂. In the numerical tests, we
consider J = 15. Note that the second condition in (13b) ensures that jump
discontinuities of ∇N(a;µ) are located in [−0.5, 0], [0.5, 0] for all a ∈ RM and
µ ∈ P. We equip the mapping space Whf with the H2 norm,

‖ϕ‖2
H2(Ω̂)

:=

∫
Ω̂

 2∑
i,j,k=1

(∂j,kϕi)
2 +

2∑
i=1

ϕ2
i

 dx. (14)

Exploiting the analysis in [57, 61], we find that N(a;µ) is a bijection from
Ω to Ωµ for all a in the set

Abj :=

{
a ∈ RM : inf

x∈Ω̂
ĝ(x; a) > 0

}
, ĝ(·; a) := det∇Φ̃(a). (15a)
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The set Abj is difficult to deal with numerically: as a result, we define A′bj :={
a ∈ RM : C(a) ≤ 0

}
such that

C(a) :=

∫
Ω̂

exp

(
ε− ĝ(x; a)

Cexp

)
+ exp

(
ĝ(x; a)− 1/ε

Cexp

)
dx− δ, (15b)

where ε, Cexp, δ are positive constants that will be specified in the next section.
Provided that exp

(
ε

Cexp

)
is sufficiently large, we find that there exists a constant

C > 0 such that (see [57, section 2.2]):

Abj ⊂ A′bj ∩ {a : sup
x∈Ω̂

‖∇ĝ(x; a)‖2 ≤ C}. (16)

The discussion above motivates the combination of the constraint C(a) ≤ 0 with
a (strong or weak) control of the second-order derivatives of the mapping. We
refer to C(a) ≤ 0 as to the bijectivity constraint.

3.1.2 Optimization-based registration

Given µ ∈ P, we denote by s : Ω̂× P → R a target sensor that depends on the
solution Uµ and such that sµ ∈ L2(Ω̂) for all µ ∈ P, and we introduce the N -

dimensional template space SN ⊂ L2(Ω̂). The sensor s should capture relevant
features of the solution field and is crucial for the success of the method: we
discuss its choice in section 3.1.4. We further denote by WM ⊂ Whf an M -
dimensional mapping space and by WM : RM → WM an isometry such that
‖WMa‖H2(Ω̂) = ‖a‖2 for all a ∈ RM . We discuss the construction of SN ,WM

and the sensor sµ in the next sections.
We can then introduce the optimization statement that is used to identify

the mapping coefficients for a given µ ∈ P:

min
a∈RM

f(a; sµ,SN ,WM ) + ξ|WMa|2
H2(Ω̂)

+ ξmshRmsh(a;µ);

subject to C(a) ≤ 0,
(17a)

where |ϕ|2
H2(Ω̂)

=
∫

Ω̂

∑2
i,j,k=1(∂j,kϕi)

2 +
∑2
i=1 ϕ

2
i dx is the H2 seminorm.

Here, the proximity measure f measures the projection error associated with
the mapped target sµ with respect to the template space SN ,

f(a; sµ,SN ,WM ) := min
ψ∈SN

∫
Ω̂

(
sµ ◦ Φ̃(·; a)− ψ

)2

dx, Φ̃ = id +WMa.

(17b)
The contribution ξ|WMa|2

H2(Ω̂)
is a regularization term that is intended to con-

trol the norm of the mapping Hessian and, in particular, the gradient of the
Jacobian determinant ∇ĝ(·; a): recalling (16), the latter is important to en-
force bijectivity. The term Rmsh penalizes excessive distortions of the mesh and
ultimately preserves the discrete bijectivity (cf. section 1.5):

Rmsh(a;µ) =

Ne∑
k=1

|Dk|exp (fmsh,k (N(a;µ)) − fmsh,max) , (17c)

11



where fmsh,max > 0 is a given positive constant and

fmsh,k(Φ) :=
1

2

‖∇Ψhf,1
k,Φ ‖2F

(det(∇Ψhf,1
k,Φ ))+

, k = 1, . . . , Ne, (17d)

‖·‖F is the Frobenius norm, (·)+ = max{0, ·}, and Ψhf,1
k,Φ is the elemental mapping

associated with the mapped mesh and a p=1 discretization. We observe that
the indicator (17d) is widely used for high-order mesh generation, and has also
been considered in [74] to prevent mesh degradation, in the DG framework.
Finally, C is the bijectivity constraint in (15b).

We observe that the choice of the L2 norm in (17b) allows explicit calcula-
tion of the minimizer ψ? ∈ SN and thus simplifies evaluation of the proximity
measure and its derivative. In [66], Welper proposed to use the L1 norm for a
related task. The L1 norm is natural for hyperbolic PDEs; however, it increases
the cost of evaluating (17b) due to the lack of an explicit formula; furthermore,
it might also affect the optimization process due to the lack of smoothness.

We observe that the optimization statement depends on several parameters:
here, we set

ε = 0.1, Cexp = 0.025ε, δ = 1, fmsh,max = 10, ξ = 10−3, ξmsh = 10−3.

The choice of ε, Cexp, δ is the same considered in [57, 61, 59]; on the other
hand, the choice of ξ, ξmsh is more involved and is discussed in Remark 3.1.
Since the optimization statement (17) is highly nonlinear and non-convex, the
choice of the initial condition is of paramount importance: here, we exploit the
strategy described in [57, section 3.1.2] to initialize the optimizer; furthermore,
we resort to the Matlab function fmincon [38], which relies on an interior penalty
algorithm to find local minima of (17). In our implementation, we provide

gradients of the objective function and we rely on a structured mesh on Ω̂ to
speed up evaluations of the sensor and its gradient at deformed quadrature
points, at each iteration of the optimization algorithm.

Remark 3.1. In our experience, the choice of ξ is of paramount importance for
performance. Small values of ξ lead to lower values of the proximity measure
at the price of more irregular mappings (i.e., larger values of |WMa|H2). We
empirically observe that the latter reduces the generalization properties of the re-
gression algorithm (cf. section 3.1.5) used to define the parameterized mapping;
in terms of reconstruction performance, we also find that the mapping process
introduces small-amplitude smaller spatial scale distortions that ultimately con-
trol convergence of the ROM (cf. [57, Figure 5]) and become more and more
noticeable as ξ decreases. We perform thorough investigations of the sensitivity
to ξ in A.

Remark 3.2. We observe that Rmsh(a;µ) = ∞ if the deformed mesh has de-
generate elements; as a result, careful implementations of the optimization al-
gorithm — i.e., implementations that are robust to non-double results of the
objective function (cf. see Matlab fmincon documentation) — are guaranteed to
not explore degenerate deformation maps. We further recall (cf. [57, Proposi-

tion 2.3]) that if det(∇Φ̃(·; a)) is strictly positive in Ω̂, then N(a;µ) is guaranteed
to map Ω in Ωµ.
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3.1.3 Parametric registration

Given snapshots of the sensor s, {(µk, sµk)}ntrain

k=1 , we propose to iteratively build
the template space SN , WM through the Greedy procedure provided in Algo-
rithm 1. The algorithm takes as input (i) the sensors associated with the snap-
shot set, (ii) the initial template SN0

, and (iii) the mesh Thf , and returns (i)
the final template space SN , (ii) the isometry WM associated with the mapping
space, and (iii) the mapping coefficients {ak}k. To clarify the procedure, we
introduce notation[

a?, f?N,M
]

= registration (sµ, SN , WM , Thf , µ)

to refer to the function that takes as input the target sensor s, the template
space SN , the isometry WM : RM → WM associated with the mapping space,
the mesh Thf of Ω and the parameter µ ∈ P and returns a solution to (17) and
the value of the proximity measure f?N,M = f(a?, sµ,SN ,WM ). Furthermore, we
introduce the POD function that takes as input a set of mapping coefficients
and returns the reduced isometry and the projected mapping coefficients

[WM , {ak}k] = POD
(
{ϕk}ntrain

k=1 , tolpod, ‖ · ‖H2(Ω̂)

)
,

where {ϕk}ntrain

k=1 ⊂ Whf is a set of admissible displacements (cf. (13b)), and
M is chosen according to the eigenvalues {λm}m of the Gramian matrix C ∈
Rntrain,ntrain such that Ck,k′ = (ϕk, ϕk

′
)H2(Ω̂) and,

M := min

M ′ :

M ′∑
m=1

λm ≥ (1− tolpod)

ntrain∑
i=1

λi

 . (18)

Algorithm 1 Registration algorithm

Inputs: {(µk, sk = sµk )}ntrain
k=1 ⊂ P × L2(Ω̂) snapshot set, SN0 = span{ψn}N0

n=1 initial
template space; Thf mesh.

Outputs: SN = span{ψn}Nn=1 template space, WM : RM →WM mapping isometry,
{ak}k mapping coefficients.

1: Initialization: SN=N0
= SN0

, WM =Whf .

2: for N = N0, . . . , Nmax − 1 do

3:

[
a?,k, f?,kN,M

]
= registration

(
sk,SN ,WM , Thf , µ

)
for k = 1, . . . , ntrain.

4: [WM , {ak}k] = POD
(
{WMa?,k}ntrain

k=1 , tolpod, ‖ · ‖H2(Ω̂)

)
5: if maxk f

?,k
N,M < tol then, break

6: else
7: SN+1 = SN ∪ span{sk? ◦ (id +WMak

?

)} with k? = arg maxk f
?,k
N,M .

8: end if
9: end for

We observe that our approach depends on several hyper-parameters. In our
tests, we set SN0=1 = span{sµ̄}, where µ̄ is the centroid of P; furthermore, we
set Nmax = 5, tolpod = 10−3 and tol = 10−4.
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3.1.4 Choice of the registration sensor

The sensor s : Ω̂×P → R should be designed to capture relevant features of the
solution field that are important to track through registration; furthermore, it
should be sufficiently smooth to allow efficient applications of gradient-based op-
timization methods. Given the FE field in the deformed mesh (Φgeo

µ (Thf),U
hf
µ ),

we compute the Mach number Mahf
µ (see (7b)) in the nodes of the mesh; then,

we define the sensor as the solution to the following smoothing problem:

sµ := arg min
s∈H1(Ω̂)

ξs‖∇s‖2L2(Ω̂)
+

Nhf,v∑
j=1

(
s(xhf,ref

j )−
(
Mahf

µ

)
j

)2

. (19)

The regularization term associated with the hyper-parameter ξs > 0 is needed
due to the fact that sµ is defined over a structured1 mesh over Ω̂ that is not
related to the mesh Thf used for FE calculations. In all our tests, we consider
ξs = 10−4. We refer to [61, section 3.3] for an alternative strategy for the
construction of the sensor. We remark that the sensor is exclusively used to
construct the mapping: as a result, the smoothing of the sensor in (19) does not
affect the numerical dissipation of the hf solver (and thus of the reduced order
model).

We observe that the choice of the Mach number to define the registration
sensor is coherent with the choice made in [46] to define the highest-modal decay
artificial viscosity. Other choices are possible: in particular, we obtain similar
results using the fluid density ρ in (19) as opposed to Ma. Figure 2 shows the
behavior of the registration sensors for the two values of the parameter in Figure
1. We recall that the solution to the Euler equations might exhibit shocks that
correspond to jump discontinuities of density, velocity, and internal energy, and
contact discontinuities that correspond to jump discontinuities of density and
internal energy (cf. [62, Chapter 4]). For this reason, the use of density (or
Mach number) is sufficient to detect discontinuities of the whole vector-valued
solution field.

(a) µ = µmin (b) µ = µmax

Figure 2: registration sensor for two values of the parameter, µmin = [0.75, 1.7],
µmax = [0.8, 1.8].

1As explained in [61], the use of structured meshes for the sensor is crucial to speed up the
evaluation of the objective function of (17).
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3.1.5 Generalization

Given the dataset {(µk,ak)}ntrain

k=1 as provided by Algorithm 1, we resort to a
multi-target regression algorithm to learn a regressor µ 7→ âµ for the mapping
coefficients, and ultimately the parametric mapping

Φ : Ω× P → R2, Φµ := N(WM âµ;µ). (20)

We here resort to radial basis function (RBF, [67]) approximation: other regres-
sion algorithms could also be considered. Similarly to [57, 59], to avoid overfit-
ting, we verify the statistical significance of the RBF estimators. We randomly
split the dataset {(µk,ak)}ntrain

k=1 into the learning and test sets {(µk,ak)}nlearn

k=1

and {(µj ,aj)}ntest
j=1 (we here consider a 80%-20% learning/test split); we com-

pute the RBF approximation â : P → RM based on the learning set and we
compute the out-of-sample R-squared coefficient for each component:

R2
m = 1−

∑ntest

j=1

(
ajm −

(
âµj
)
m

)2
∑ntest

j=1

(
ajm − ālearn

m

)2 , ālearn
m =

1

nlearn

nlearn∑
k=1

akm. (21)

Then, we retain exclusively modes for which R2
m is above the threshold Rmin =

0.75.
Since the maps {N(WMak;µk)}k are bijective by construction, we expect

and numerically verify that Φµ is also bijective for all µ ∈ {µk}ntrain

k=1 ; however,
since we do not enforce bijectivity for out-of-sample parameters, we cannot in
general expect bijectivity of Φµ over the whole parameter domain. In practice,
we should thus consider sufficiently large training sets in Algorithm 1. This
is a major limitation of the present approach that motivates the multifidelity
proposal discussed in section 3.3.

3.2 Projection-based reduced-order model

To clarify the formulation and also provide insights into the implementation, we
introduce a number of definitions and further notation. Given the FE vector
w ∈ RNhf , we define the elemental restriction operators Ek : RNhf → Rnlp·D such
that Ekw contains the values of the FE field in the nodes of the k-th element for
k = 1, . . . , Ne; the elemental restriction operators Eext

k : RNhf → Rnlp·D,3 such
that Eext

k w contains the values of the FE field in the nodes of the neighbors
of the k-th element, for k = 1, . . . , Ne. We further introduce the set of mesh
nodes associated with the k-th element and its neighbors: Xhf

k = {xhf
Ti,k
}nlp

i=1 and

Xhf
k,ext = {xhf

Ti,k′
: i = 1, . . . , nlp, Dk ∩ Dk′ 6= ∅}; given the mapping Φ, we define

Φµ(Xhf
k ) = {Φµ(xhf

Ti,k
)}nlp

i=1 and Φµ(Xhf
k,ext) = {Φµ(xhf

Ti,k′
) : i = 1, . . . , nlp, Dk ∩

Dk′ 6= ∅}.
We have now the elements to introduce the DG residual associated with (1):

Rhf
µ (U,V) =

Ne∑
k=1

rkµ(U,V), ∀ U,V ∈ RNhf , (22a)

where the local residual rkµ corresponds to the contribution to the global residual
associated with the k-th element of the mesh and depends on the value of the
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FE fields U, V in the k-th element and in its neighbors,

rkµ(U,V) = rµ
(
EkU, EkV, Eext

k U, Eext
k V, Φµ(Xhf

k ), Φµ(Xhf
k,ext)

)
, (22b)

for k = 1, . . . , Ne. In the DG literature, schemes in which the primal unknown
is only coupled with the unknowns of the adjacent elements are referred to as
“compact”: the BR2 flux considered in this work is an example of compact
treatment of second-order terms for DG formulations (cf. [4]). Decomposition
of the residual as the sum of local elemental contributions is at the foundation
of the hf assembling and also of the hyper-reduction procedure discussed below.
We emphasize that the decomposition of the facets’ contributions is not unique:
in order to ensure certain stability and conservation properties for the hyper-
reduced ROM, we here consider the energy-stable element-wise decomposition
in [69, section 3.1].

Given the ROBs Z ∈ RNhf ,N and Y ∈ RNhf ,Jes , where N, Jes denote the
size of the trial and test ROB respectively, with N ≤ Jes, and the trial and
test norms ‖ · ‖ and |||·|||, the EQ-LSPG ROM considered in this work reads as

follows: find Ûµ = Zα̂µ to minimize

min
ζ∈col(Z)

sup
η∈col(Y)

Req
µ (ζ,η)

|||η|||
. (23a)

Here, Req
µ is the empirical residual defined as

Req
µ (U,V) =

∑
k∈Ieq

ρeq
k r

k
µ(U,V), ∀ U,V ∈ RNhf , (23b)

where Ieq ⊂ {1, . . . , Ne} are the indices of the sampled elements and ρeq =
[ρeq

1 , . . . , ρ
eq
Ne

] are positive empirical weights to be determined, ρeq
k > 0 ⇔ k ∈

Ieq. Provided that the columns [η1, . . . ,ηJes ] of Y are orthonormal with respect
to the |||·||| norm, we can rewrite (23a) as

α̂µ ∈ arg min
α∈RN

‖Req
µ (α)‖2, Req

µ (α) =
[
Req
µ (Zα,η1), . . . , Req

µ (Zα,ηJes)
]
.

(23c)
Note that (23c) is a nonlinear least-squares problem that can be solved using
the Gauss-Newton algorithm. We initialize the iterative procedure using a non-
intrusive estimate of the solution coefficients: if the number of training points is
sufficiently large — such as in the case of POD data compression — we use RBF
regression as in [59, 60]; for small training sets — such as in the first steps of
the Greedy algorithm — we use nearest-neighbors regression. Similarly to [59],
we resort to a discrete L2 norm for the trial space and to a discrete H1 norm
for the test space: we refer to [9] for a discussion on variational formulations for
first-order linear hyperbolic problems.

The MOR formulation (23) depends on the choice of the trial and test ROBs
Z and Y and on the sparse vector of empirical weights ρeq: we discuss their
construction in the remainder of section 3.2. Before proceeding with the dis-
cussion, we remark that we can exploit (23b) to assemble the reduced residual
Req
µ : first, we evaluate Φµ(Xhf

k ) and Φµ(Xhf
k,ext) for all k ∈ Ieq; then, we compute

the local residuals {rkµ(Zα,ηj)}k using (22b); finally, we compute Req
µ (α) by

summing over the sampled elements, cf. (23b). Note that, since the residuals
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{rkµ}k are linear with respect to the test function, we can use standard element-
wise residual evaluation routines to compute local contributions to the residual.
Furthermore, we observe that computation of the residual Req

µ (α) requires the
storage of trial and test ROBs in the sampled elements and in their neighbors,
and is thus independent of the total number of mesh elements. We refer to [60]
for further details.

Remark 3.3. Treatment of geometry parameterization. We here resort
to a discretize-then-map (DtM, [17, 60, 65]) treatment of parameterized geome-
tries. As discussed in [60], the DtM approach — as opposed to the more standard
map-then-discretize (MtD, [33, 53, 2, 3, 52]) ) approach — in combination with
EQ allows to reuse hf local integration routines and is thus considerably easier
to implement, particularly for nonlinear PDEs. In this approach, the mapping
Φµ is evaluated at the beginning of the online stage to deform the nodes of the
sampled elements of the mesh and its neighbors (cf. (22b)). As a result, on-
line costs are nearly independent of the size M of the mapping space. On the
other hand, we should store the mapping ROB WM in the reference nodes of
all sampled elements and its neighbors: as a result, memory costs scale with
(dM + D(N + Jes))nlpQ — where d = 2 is the space dimension, D = 4 is
the number of equations, Q is the number of sampled elements, and nlp is the
number of degrees of freedom in each element.

3.2.1 Construction of trial and test spaces

We resort to the standard data compression algorithms POD and weak-Greedy
to build the trial ROB Z. For stability reasons, we ensure that the columns
ζ1, . . . , ζN of Z are orthonormal with respect to the ‖ · ‖ norm. We anticipate
that, for the problem considered in this paper, POD leads to superior perfor-
mance (cf. section 4) in terms of online accuracy; however, POD requires more
extensive explorations of the parameter domain and is thus more onerous during
the offline stage. For this reason, in section 3.3, we resort to the weak-Greedy
method in combination with multi-fidelity training to reduce offline costs. We
refer to the monographies [28, 48] for extensive discussions on POD and weak-
Greedy data compression.

For completeness, we report in Algorithm 2 the weak-greedy algorithm as
implemented in our code. Note that the algorithm takes as input the mesh Thf

and the mapping Φ which define the FE mesh for all parameters, and returns
the ROB Z and the ROM for the solution coefficients. The residual indicator is
presented in section 3.2.3. The function Gram-Schmidt at Line 4 performs one
step of the Gram Schmidt process to ensure that the trial ROB is orthonormal
with respect to the ‖ · ‖ norm. Construction of the ROM at Line 5 involves the
construction of the test ROB Y and the computation of the empirical quadrature
rule: these procedures are described below.
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Algorithm 2 Weak-greedy algorithm.

Inputs: Ptrain := {µk}ntrain
k=1 training parameter set, Φ : Ω× P → R2 mapping; Thf

mesh.

Outputs: Z trial ROB; µ ∈ P 7→ α̂µ ROM for the solution coefficients.

Offline stage

1: Choose µ?,1 = µ̄.

2: for N = 1, . . . , Nmax do
3: Solve the hf problem for µ = µ?,N to obtain U? = Uµ?,N .

4: Update the ROB Z = Gram-Schmidt(Z,U?, ‖ · ‖).
5: Build the ROM µ ∈ P 7→ α̂µ.

6: for k = 1, . . . , ntrain do
7: Estimate the solution using the ROM for µ = µk.

8: Compute the error indicator ∆µk := Rµk(α̂µk) (cf. section 3.2.3).
9: end for

10: Set µ?,N+1 = arg maxµ∈Ptrain
∆µ.

11: end for

As rigorously proven in [59, Appendix C] for linear inf-sup stable prob-
lems, the test ROB Y should approximate the Riesz representers of the Fréchet
derivative of the residual at Uhf

µ applied to the elements of the trial ROB for
all µ ∈ P. Similarly to [60], we here resort to the sampling strategy based
on POD proposed in [59]: first, given the Y inner product ((·, ·)) such that
|||·||| =

√
((·, ·)), we compute the Riesz representers of the Fréchet derivative of

the residual at Uhf
µ , evaluated for the elements of the n-th trial bases ζn and

for the k-th parameter µk in the training set,

((ψk,n,v)) = DRhf
µ [Uhf

µ ](ζn,v), ∀ v ∈ RNhf ,

for n = 1, . . . , N , k = 1, . . . , ntrain; then, we apply POD for a given tolerance
toltest > 0 to find the test ROB Y,

[Y, ·] = POD
(
{ψk,n}k,n, toltest, |||·|||

)
.

The POD tolerance should be sufficiently tight to ensure the well-posedness of
the reduced problem: in the numerical tests of section 4, we set toltest = 10−3.

3.2.2 Empirical quadrature

As in [60], we seek ρeq ∈ RNe
+ such that (i) the number of nonzero entries in ρeq,

‖ρeq‖`0 , is as small as possible; (ii, constant function constraint) the constant
function is approximated correctly in Ω (i.e., Φ = id),

∣∣∣ Ne∑
k=1

ρeq
k |Dk| − |Ω|

∣∣∣� 1; (24)
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(iii, manifold accuracy constraint) for all µ ∈ Ptrain,eq = {µk}ntrain+ntrain,eq

k=1 , the
empirical residual satisfies∥∥∥Rhf

µ (αtrain
µ ) − Req

µ (αtrain
µ )

∥∥∥
2
� 1. (25a)

where Rhf
µ corresponds to substitute ρeq

1 = . . . = ρeq
Ne

= 1 in (23b) and αtrain
µ

satisfies

αtrain
µ =


ZTXhfU

hf
µ if µ ∈ Ptrain;

arg min
α∈RN

‖Rhf
µ (α)‖2, if µ /∈ Ptrain.

(25b)

Here, Xhf is the matrix associated with the (·, ·) inner product and Ptrain =
{µk}ntrain

k=1 is the set of parameters for which the hf solution is available. When
we apply POD to generate the ROM, we set Ptrain = Ptrain,eq; when we apply
the weak-Greedy algorithm, we augment Ptrain with ntrain,eq = 10 randomly-
selected parameters (see [69, Algorithm 1]): we empirically observe that this
choice improves performance of the hyper-reduced ROM, particularly for small
values of ntrain. We refer to the above-mentioned literature for a thorough
motivation of the previous constraints; in particular, we refer to [14, 69] for a
discussion on the conservation properties of the ROM for conservation laws.

It is possible to show (see, e.g., [59]) that (i)-(ii)-(iii) lead to a sparse repre-
sentation problem of the form

min
ρ∈RNe

‖ρ‖`0 , s.t

{ ‖Gρ− b‖2 ≤ δ;

ρ ≥ 0;
(26)

for a suitable threshold δ > 0, and for a suitable choice of G,b. Following [22],
we here resort to the non-negative least-squares method to find approximate
solutions to (26). In particular, we use the Matlab function lssnonneq, which
takes as input the pair (G,b) and a tolerance toleq > 0 and returns the sparse
vector ρeq,

[ρeq] = lsqnonneg (G,b, toleq) . (27)

We refer to [15] for an efficient implementation of the non-negative least-squares
method for large-scale problems.

3.2.3 Dual residual estimation

We here resort to the dual residual error indicator

Rhf
µ (α) := sup

v∈RNhf

Rhf
µ (Zα, v)

|||v|||
, α ∈ RN , (28)

to drive the weak-Greedy algorithm. If we denote by Yhf the matrix associated
with the |||·||| norm, we have that

Rhf
µ (α) :=

√
Rhf
µ (Zα)T Y−1

hf Rhf
µ (Zα), ∀µ ∈ P,α ∈ RN .

Computation of Rhf
µ (α) thus requires to assemble the hf residual Rµ(α) ∈ RNhf

and then solve a linear problem of size Nhf . Since the matrix Yhf is symmetric
positive definite and parameter-independent, we use Cholesky factorization to
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speed up computations of the inner loop in Algorithm 2 — we further use the
Matlab function symamd to reduce fill-in.

In the numerical results (cf. A), we show that Rhf
µ (·) is highly correlated

with the relative error. In order to use Rhf
µ (·) during the online stage, we shall

perform hyper-reduction: we refer to [60] for the details. In our experience, for
the value of ntrain and for the particular hf discretization considered, the cost
of the greedy search in Algorithm 2 is negligible compared to the cost of an
hf solve; as a result, hyper-reduction does not seem needed during the offline
stage.

3.3 Offline/online computational decomposition based on
two-fidelity sampling

As discussed in section 3.1, the registration procedure relies on a regression al-
gorithm to compute the mapping coefficients âµ for out-of-sample parameters.
Since the regression algorithm does not explicitly ensure that bijectivity is sat-
isfied for out-of-sample parameters, in practice we should consider sufficiently
large training sets Ptrain. To address this issue, we propose to use a multi-fidelity
approach, which relies on ntrain,c ∈ N hf solves on a coarser grid to learn the
parametric mapping Φ. Algorithm 3 summarizes the offline/online procedure
implemented in our code.

We state below several remarks.

• The snapshots {Uhf,c
µk
}ntrain,c

k=1 — the superscript (·)train,c highlights the fact
that computations are performed on the coarser grid — are exclusively
used to compute the sensors {sµk}

ntrain,c

k=1 that are then fed into the reg-
istration algorithm: we might then employ snapshots from third-party
solvers and we might also use different grids for different parameters.

• In this work, we propose to build the fine mesh Thf based on the coarse
snapshot Uhf,c

µ̄ ; we use here the open source mesh generator proposed in
[47] based on a suitable relative size function: we provide details concern-
ing the definition of the size function in B. As anticipated in the introduc-
tion, we expect that for more challenging problems it might be necessary
to adapt the mesh based on multiple snapshots.

• Computation of the ROB Z and of the ROM for the solution coefficients
and the online evaluation can be performed using standard pMOR algo-
rithms for linear approximations in parameterized geometries: we believe
that this represents a valuable feature of the proposed approach that al-
lows its immediate application to a broad class of problems.

• Our multi-fidelity procedure does not include any update of the sensors
as more accurate simulations become available during Step 5 of the offline
stage: as a result, it might lead to poor results if the initial discretization
is excessively inaccurate. In this work, we perform a convergence analysis
for a single parameter value, the centroid µ̄ = [0.775, 1.75], to identify the
hierarchy of two meshes Thf,c and Thf . Development of more sophisticated
multi-fidelity techniques is the subject of ongoing research.
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Algorithm 3 Offline online algorithm.

Offline stage

1: Generate the snapshots {Uhf,c
µk
}ntrain,c

k=1 based on the grid Thf,c and the map-
ping Φgeo.

2: Use the snapshots {Uhf,c
µk
}ntrain,c

k=1 to compute the sensors {sµk}
ntrain,c

k=1 using

(19).

3: Generate the fine mesh Thf .

4: Apply registration (cf. Algorithm 1) based on {sµk}
ntrain,c

k=1 and the mesh
Thf .

5: Generate the ROB Z and the ROM for the solution coefficients µ ∈ P 7→
α̂µ ∈ RN .

Online stage (for any given µ ∈ P)

1: Solve the ROM to compute α̂µ.

2: Compute the deformed mesh Φµ(Thf) and Ûµ = Zα̂µ.

4 Numerical results

We present below extensive numerical investigations for the model problem in-
troduced in section 2. Further numerical tests are provided in A.

4.1 Test 1: single-fidelity training

In this first test, we consider performance of our approach without multi-fidelity
training. Towards this end, we consider a p=2 DG FE discretization with Nhf =
197856 degrees of freedom (Ne = 8204): the FE mesh is depicted in Figure 5(a).
The mesh is refined for x1 > −0.5 where we expect to have shocks caused by
the interaction between the uniform flow and the bump; further refinement
is performed at the leading edge of the bump. For completeness, we provide
further details about the construction of the mesh in B.

We consider an equispaced grid of 11×11 parameters Ptrain := {µk}ntrain

k=1 ⊂ P
(ntrain = 121); we further consider ntest = 10 randomly-selected parameters for
testing. We measure performance of the ROM in terms of the average out-of-
sample relative prediction error :

Eavg :=
1

ntest

∑
µ∈Ptest

‖Uhf
µ − Ûhf

µ ‖L2(Ωµ)

‖Uhf
µ ‖L2(Ωµ)

. (29)

The mapping Φ that is obtained applying the registration procedure in Algo-
rithm 1 consists of three modes (M = 3): the R-squared associated with the
RBF regressors is above the threshold for all three modes.

Figure 3 shows performance of linear and Lagrangian approaches based on
POD data compression. Figure 3(a) shows the projection error, while Figure
3(b) shows the error associated with the EQ-LSPG ROM introduced in section
3.2. We observe that registration significantly improves performance for all val-
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ues of N . Figure 4 replicates the results for the ROM based on weak-Greedy2

compression: note that also in this case registration significantly improves per-
formance for all values of N considered. We further observe that our EQ-LSPG
ROM is able to achieve near-optimal performance compared to projection for
both linear and Lagrangian approaches and for both POD and Greedy compres-
sion.
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Figure 3: single-fidelity training. Comparison of linear and Lagrangian ap-
proaches. Trial ROB Z is built using POD.
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Figure 4: single-fidelity training. Comparison of linear and Lagrangian ap-
proaches. Trial ROB Z is built using weak-Greedy.

4.2 Test 2: multi-fidelity training

We now validate the full offline/online algorithm presented in section 3.3: to-
wards this end, we consider the same hf discretization and parameter set Ptrain

considered in the previous section to compute the mapping Φ (i.e., Nhf =

2We initialize the Greedy procedure with N0 = 4 equispaced samples. The Greedy search
is performed over the training set of ntrain = 121 parameters.
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197856, Ne = 8204); on the other hand, we use the refined grid depicted in
Figure 5(b) with Nhf = 402048 (Ne = 16752) to generate the hf snapshots.
The mesh is refined based on the hf solution for µ̄ = [0.775, 1.75] as discussed
in B.

(a) (b)

Figure 5: multi-fidelity training. (a) coarse mesh used for sensor generation.
(b) fine mesh used for MOR calculations.

As in the previous case, the mapping Φ that is obtained applying the reg-
istration procedure in Algorithm 1 consists of three modes (M = 3); all three
mapping coefficients are well-approximated through RBF regression. Note that
the mapping considered in this test differs from the one in the previous test due
to the fact that Algorithm 1 is fed with a different mesh. Nevertheless, we find
that the differences between the two mappings are moderate.

In Figure 6, we investigate the ability of the parametric mesh Φµ(Thf) to
track the sharp gradient regions. More in detail, in the background we show the
mesh density log10(hµ); in the foreground we show the contour lines of the Mach
number, for µmin = [0.75, 1.7] and µmax = [0.8, 1.8]. Here, the mesh density is
defined as hµ(x) :=

√
|Dk,Φµ | if x ∈ Dk,Φµ , where Dk,Φµ is the k-th element of the

mesh Φµ(Thf). We observe that the mesh “follows” the shocks of the solution
field: registration is thus able to correctly deform the mesh to track relevant
features of the parametric field.

(a) µmin (b) µmax

Figure 6: multi-fidelity training. Comparison of contour lines of Mach number
and mesh density log10(h) for two values of the parameter.

In Figure 7, we show performance of EQ-LSPG for POD (based on ntrain =
121 snapshots) and weak-Greedy data compression; to facilitate interpretation,
we further report the average error of the coarse solver. We observe that also in
this case the ROM is able to provide accurate predictions for extremely moderate
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values of the ROB size N . In particular, EQ-LSPG with weak-Greedy sampling
is able to achieve average out-of-sample errors below 10−3 with only N = 12 hf

solves.
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Figure 7: multi-fidelity training. Performance of EQ-LSPG for POD and weak-
Greedy data compression.

4.3 Computational costs

In Table 1, we provide an overview of the offline computational costs; all sim-
ulations are performed using Matlab 2020b on a commodity desktop computer
(Intel i7-8700 @3.20 GHz x 12, RAM 32 Gb). We state upfront that all compu-
tations are performed in serial; we further observe that assembly of hf structures
is fully vectorized. To compute the solution on the fine mesh, we initialize the
implicit solver using the coarse solution: the computational cost in Table 1 com-
prises both computation of the initial condition — ≈ 650 [s] — and computation
of the hf solution — ≈ 220 [s]. We decompose the costs of the Greedy algorithm
in costs of building the ROM (construction of trial and test ROBs, construction
of the reduced quadrature rule) and costs of looping over the training set (i.e.,
greedy search). As explained in section 4, we initialize the Greedy procedure
with N0 = 4 equispaced parameters: we thus perform 8 Greedy searches and
9 ROM constructions; the ROM construction for N = 12 costs 580 [s]. In
conclusion, we can estimate the cost of single and two-fidelity approaches as
follows:

single fidelity = 30 + 110 + (650 + 220) · 121 + 190 + 4 · 103 + 580
≈ 1.10 · 105

two fidelity = 30 + 110 + (650) ∗ 121 + 12 ∗ 220 + 190 + 4000 + 1500 + 3800
≈ 0.91 · 105.

which corresponds a cost reduction of approximately 17.3%.
In Figure 8, we compare the average online costs of linear and Lagrangian

ROMs obtained using the weak-greedy algorithm for the single-fidelity case.
We observe that the linear ROM is slightly less efficient than the Lagrangian
ROM. The difference in cost is attributable to (i) the different size of the test
ROB (cf. Figure 9) and (ii) the different number of Gauss-Newton iterations
required to meet the convergence criterion. We recall that residual and Jacobian

24



unit cost [s] total cost [s]
Definition of the coarse mesh 30
Coarse solutions to Euler equations 650 7.8 · 104

Definition of the fine mesh 110 110
Computation of the registration sensors 1.6 190
Registration algorithm 4.0 · 103

Greedy algorithm (greedy search) 1.5 · 103

Greedy algorithm (ROM construction) 3.8 · 103

Greedy algorithm (hf solves) 650 + 220 (7.8 + 2.6) · 103

Table 1: offline computational cost; Greedy algorithm is run from N0 = 4 to
Nmax = 12.

assembly costs scale linearly with Jes; we further observe that the increased
number of Gauss-Newton iterations is due to the drop in accuracy of the non-
intrusive estimate based on nearest neighbor regression that is used to initialize
the iterative procedure.
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Figure 8: average online computational cost over ntest = 10 out-of-sample pa-
rameters.

4.4 Discussion

Numerical results clearly indicate the superiority of Lagrangian approximations
based on registration to standard linear methods for problems with shock (and
contact) discontinuities. By tracking the position of shocks, registration im-
proves the linear compressibility of the solution manifold and thus facilitates
the task of model reduction. The combination of multifidelity training and reg-
istration provides a framework to generate parsimonious hf discretizations that
are valid for all parameters (cf. Figure 6) and is beneficial in terms of overall
offline costs (cf. section 4.3).

However, the approach suffers from several limitations that need to be ad-
dressed. First, registration relies on the fact that shocks are smooth functions of
the parameter: in particular, shock topology should be approximately the same
for all parameters in P. Second, as discussed in section 3.3, our multi-fidelity
approach does not include a feedback control on the accuracy of the coarse sim-
ulations: it thus implicitly relies on the fact that the coarse discretization is
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sufficiently accurate to approximately locate shocks.

5 Conclusions

In this work, we developed and numerically assessed a multi-fidelity projection-
and registration-based MOR procedure for two-dimensional hyperbolic PDEs
in presence of shocks. The key features of our approach are (i) a general (i.e.,
independent of the underlying PDE) registration procedure for the computation
of the mapping Φ that tracks moving features of the solution field; (ii) an hyper-
reduced LSPG ROM for the computation of the solution coefficients; and (iii) a
multi-fidelity approach based on coarse simulations to train the mapping Φ and
Greedy sampling in parameter, to reduce offline costs. We illustrate the many
pieces of our formulation through the vehicle of a supersonic inviscid flow past
a bump.

We wish to extend the present work in several directions. First, we wish to to
deal with parametric variations of the shock topology: towards this end, we wish
to extend the approach in [19] to registration-based approximations. Second,
we wish to devise robust multi-fidelity strategies that are able to correct the
inaccuracies of the coarse simulations. Third, we wish to relax the bijectivity-
in-Ω constraint in the registration algorithm by suitably extending the field
outside the domain of interest: this would allow to increase the flexibility of
our approach — particularly, in the presence of fictitious boundaries in the
computational domains — and ultimately improve performance. Fourth, as
stated in the introduction, we wish to combine our r-type, registration-based,
parametric mesh adaptivity technique with h-type adaptivity.
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A Further numerical investigations

We present here further numerical results to better illustrate the performance
of our method. We state upfront that in the results of Figures 9, 10, 11, we
show results for POD data compression.

In Figure 9 we show the size of the test ROB Y as obtained using the
Algorithm described in section 3.2 for both linear and Lagrangian ROMs. We
observe that Jes is considerably larger for the linear ROM: registration thus also
helps reduce the size of the test space required for stability.

Figure 10 investigates performance of the hyper-reduction procedure: we
show the behavior of the out-of-sample error Eavg for different EQ tolerances in
(27); we further show the percentage of sampled elements Q/Ne · 100 selected
by the EQ procedure. We remark that EQ ensures accurate performance for
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Figure 9: single-fidelity training; size of the empirical test space for toles = 10−3

for linear and Lagrangian ROMs.

toleq ≤ 10−10 for all values of N considered and for both linear and Lagrangian
ROMs. Interestingly, the linear ROM requires slightly more sampled elements:
we conjecture that this is due to the larger size of the test space.
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Figure 10: single-fidelity training; hyper-reduction for linear and Lagrangian
ROMs. (a)-(b) behavior of relative error Eavg for various tolerances toleq (cf.
(27)). (c)-(d) percentage of sampled elements Q/Ne ·100 for the same tolerances
toleq.
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In Figure 11, we illustrate the effect of discretization on hyper-reduction:
we show the percentage of sampled elements Q/Ne · 100 selected by the EQ
procedure for two tolerances, several values of the trial ROB size N , and for the
two meshes considered in this work (cf. Figure 5). We find that the absolute
value of sampled elements weakly depends on the underlying FE mesh; as a
result, hyper-reduction becomes more and more effective as Ne increases.
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Figure 11: effect of discretization on hyper-reduction. Percentage of sampled
elementsQ/Ne·100 for two tolerances toleq and for fine and coarse discretizations
(cf. Figure 5).

In Figure 12, we investigate the relationship between dual residual (28) and
relative L2 error for linear and Lagrangian ROMs. More precisely, during each
step of the weak-greedy algorithm, we compute both dual residual and relative
L2 error for all training points; then, we show the results for all N = 4, . . . , 12.
We observe that there is a strong correlation between error and dual residual:
this motivates the use of dual residual norm to drive the Greedy algorithm
and also as error indicator during the online stage. We remark that the points
associated with the relative error below 10−5 correspond to parameters that are
sampled by the greedy procedure (see Algorithm 2).
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Figure 12: single-fidelity training; dual residual norm estimation. Comparison
between dual residual norm and exact relative error for various ROMs and
µ ∈ Ptrain.
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In Figure 13, we study the sensitivity of the registration procedure to the
choice of ξ and ξmsh in Algorithm 1. First, we solve (17) with SN=1 = span{sµ̄}
with µ̄ = [0.775, 1.75],WM =Whf (i.e., M = 388), and µ = [0.75, 1.8] for several
values of ξ and ξ = ξmsh; in Figure 13(a), we show the values of the proximity
measure, H2 seminorm, and Rmsh for the optimal solutions {âµ,ξk}k. The
parameter µ maximizes the proximity measure at the first iteration of the greedy
procedure (cf. Line 7). More in detail, given 10−8 = ξ1 < . . . < ξNξ = 10−1 with
Nξ = 15, we first solve (17a) for ξ = ξmsh = ξNξ and initial condition a0 = 0;
then, for ξ = ξmsh = ξk, we prescribe a0 = âµ,ξk+1

: this choice ensures that
the proximity measure is monotonic increasing in ξ. As expected, Rmsh(âµ,ξ;µ)
and ‖WM âµ,ξ‖H2(Ω̂) are monotonic decreasing in ξ.

Second, in Figure 13(b), we compare performance of Algorithm 1 for ξ =
ξmsh = 10−3 and ξ = ξmsh = 10−5. As discussed in the main body of the
paper, for ξ = ξmsh = 10−3, the registration algorithm terminates after three
iterations and returns M = 3 modes whose coefficients are all significant (i.e.,
R2
m > 0.75 for m = 1, . . . ,M); for ξ = ξmsh = 10−5, the registration algorithm

terminates after two iterations and returns M = 8 modes whose coefficients
are all significant. In Figure 13(b), we show the behavior of the out-of-sample
relative L2 error (cf. (29)) for projection associated with the POD spaces:
interestingly, the choice ξ = ξmsh = 10−5 is beneficial for N = 1, 2, but it is
significantly suboptimal for larger values of N . This empirical result is coherent
with the results in [57, Figure 5] and with the discussion in Remark 3.1.
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Figure 13: sensitivity to choice of hyper-parameters in Algorithm 1. (a) be-
havior of proximity measure f(âµ,ξ;µ), H2 seminorm ‖WM âµ,ξ‖H2(Ω̂), and

Rmsh(âµ,ξ;µ) for the optimal solutions âµ,ξ to (17a) for SN=1 = span{sµ̄}
with µ̄ = [0.775, 1.75], WM = Whf (i.e., M = 388), and µ = [0.75, 1.8], for
several values of ξ and ξ = ξmsh. (b) behavior of the projection relative error of
Lagrangian approximation for two choices of ξ and ξ = ξmsh in Algorithm 1.

B Mesh generation

For completeness, we provide the definition of the mesh size function employed
to generate the meshes in Figures 5(a) and 5(b). We here use the Matlab
suite distmesh that relies on the definitions of a distance function to identify
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the domain and a size function for the definition of the grid: we refer to the
documentation available at persson.berkeley.edu/distmesh/ for further de-
tails. We envision that the present approach might be greatly improved both
in terms of accuracy and in terms of offline computational costs; the use of
state-of-the-art adaptive FE techniques might also be important to automatize
the refinement procedure.

In order to define the coarse grid, we define the size function

h(x) = min {h0 + 0.5dist(x,Ωlead), 6h0 + 0.6dist(x,Ωwake)} ,

where h0 = 0.008, Ωwake = {x ∈ Ω : x1 > −0.6} and Ωlead = {x ∈ Ω :
‖x−xlead‖2 ≤ 0.5h0}. Then, we define the coarse mesh Thf,c in Figure 5(a) using
distmesh followed by one iteration of uniform refinement (see the distmesh

routine uniref).

Given the coarse simulation (Thf,c,U
hf,c
µ̄ ), we define the Mach number Mahf,c

and we compute the local averages sc
1, . . . , s

c
Nc

e
such that

sc
k :=

∫
Dck

‖∇Mahf,c‖22 dx, k = 1, . . . , N c
e .

We then reorder the elements so that sc
1 ≥ sc

2 ≥ . . .; given n1 = n2 = 0.1 ·N c
e ,

we define the barycenters {xc
j}j and the size function

htmp(x) = min

{
3h0 +

1

4
min

{
dist

(
x, {xc

j}
n1
j=1

)
, 2h0 + dist

(
x, {xc

j}
n1+n2
j=n1+1

)}
, h̄(x)

}
where h0 = 0.007,

h̄(x) = min {2h0 + distbump(x), 6h0 + (−0.6− x1)+} ,

and distbump(x) is the distance of the point x from the semicircular bump. The
size function htmp measures the proximity to the regions where the gradient of
the Mach number is large: it thus leads to mesh refinement in the proximity of
the shocks.

The size function htmp is excessively irregular for mesh generation purposes:
for this reason, we project htmp over a 100× 100 p = 2 structured uniform grid
over Ωbox = (−1, 1.5) × (0, 1) and we compute a moving average with respect
to both coordinates; the resulting FE field h? is passed to the mesh generation
routine distmesh2d to generate the p = 1 FE grid; finally, we perform an
iteration of uniform refinement to obtain the mesh in Figure 5(b).
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