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Objective
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Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost
associated with the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control.

Given the manifoldM = {Uµ : µ ∈ P} ⊂ X ,
where P ⊂ RP is a compact set, and
(X , ‖ · ‖) is an Hilbert space over Ω ⊂ Rd ,

the goal of pMOR is to determine a low-rank approx-
imation Ûµ of Uµ that can be rapidly computed for any
µ ∈ P .
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pMOR: general recipe

Pb: find Uµ ∈ X : Rµ(Uµ, v) = 0, ∀ v ∈ Y , µ ∈ P
Approx: Ûµ = Z(α̂µ), Z : Rn → X , α̂ : P → Rn

Offline stage: (performed once)
compute high-fidelity estimates of U , {Uhf

µk}ntrain
k=1 ;

determine the low-rank approximation Z : Rn → X .

Online stage: (performed for any new µ′ ∈ P)
solve a reduced-order model (ROM) to estimate α̂µ′;
estimate the error ‖Ûµ′ − Uµ′‖.

pMOR literature: Patera, Maday, Farhat, Quarteroni, Ohlberger,...

Recent review: Handbook on MOR, De Gruyter, 2021.
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Problem of interest: hyperbolic conservation laws

Goal: model reduction for hyperbolic systems of PDEs.
In this talk, we consider:
• 1D shallow water equations over a bump with para-
metric inflow;
• 2D compressible Euler equations with varying free-
stream velocity over a parametric bump.
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Major challenges

Application of pMOR to hyperbolic PDEs presents unique
challenges.
1. CFD simulations are expensive ⇒ ROMs need to be

trained using few snapshots. small data pb
2. Linear approximations are inadequate for transport.
3. Mesh should be refined close to shocks; ROMs must be

defined over a common mesh.

Mach = 1.7 Mach = 1.8 7



Objective of this work

Devise a registration-based projection-based multi-fidelity
MOR approach for parameterized conservation laws.

Registration: given snapshots {Uhf
µk}k , seek a mapping

Φ : Ω× P → Ω to align moving structures in a reference
configuration.

Projection-based MOR provides a rigorous framework
to build the ROM for α̂µ.
LSPG projection Carlberg et al., 2011
Element-wise empirical quadrature Farhat et al., 2015;

Yano, 2019.
Multi-fidelity training offers a systematic framework to
reduce offline costs.
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Agenda of the talk

1. Registration.

2. Projection-based model reduction.

3. Multi-fidelity training.

4. Numerical results.
• Euler equations past a bump.
• Shallow water equations.

5. Analysis: expressivity of nonlinear approximations.

6. Conclusions.
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Registration

Spectral (element) maps
Optimization statement
Parametric registration (Greedy+POD)
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General plan

Task: given {Uµk}ntrain
k=1 , compute Φ : Ω× P → Rd .

1. Choose approximation N : Abj ⊂ RM → Lip(Ω;Rd).
Desiderata: high expressive power;

easy to enforce bijectivity.
2. Compute Φk = N (akhf) for k = 1, 2, . . . , ntrain.

Solution to minimization pb.
3. Apply POD to obtain Φk ≈ N (Wak),

ak ∈ Rm, m� M .
4. Use regression algorithm (e.g., RBF) to learn

µ ∈ P 7→ âµ ∈ Rm ⇒ Φµ := N (Wâµ).

Taddei, SISC 2020; Taddei, Zhang, M2AN, 2021.
Taddei, Zhang, submitted, 2021.
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Registration

Spectral (element) maps
Optimization statement
Parametric registration (Greedy+POD)
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Choice of N for Ω = (0, 1)2: spectral maps

Condition ϕ · n
∣∣
∂Ω

= 0 allows tangential displacements.

Ω ΩΦ
X (1)

x (1) = Φ(X (1))

X (2) x (2) = Φ(X (2))

13

Thm: Consider Φ = id + ϕ where ϕ ∈ C 1, ϕ · n
∣∣
∂Ω

= 0.

Then, Φ is bijective in Ω if inf
x∈Ω

g(x) = det(∇Φ(x)) > 0.



Choice of N for Ω = (0, 1)2: spectral maps

Choice of N : set N (a) = id +
∑M

i=1(a)iϕi , where
ϕ1, . . . , ϕM are tensorized polynomials, ϕi · n

∣∣
∂Ω

= 0.

Bijectivity: define the admissible class of mappings

Abj :=

{
a ∈ RM : inf

x∈Ω
g(x ; a) = det (∇N (a)) > 0

}
and the proxy A′bj :=

{
a ∈ RM : C(a) ≤ δ

}
with

C(a) :=

∫
Ω

exp
(
ε− g(x ; a)

Cexp

)
+ exp

(
g(x ; a)− 1/ε

Cexp

)
dx .
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Limitation of affine mappings for non-rectangular domains

Example: Ω = BR=1(0), consider bijections Φ1, Φ2 and

assume that Φ1(x) 6= Φ2(x) at x ∈ ∂Ω.

Then, Φt := tΦ1 + (1− t)Φ2 is not a bijection in Ω for
any t ∈ (0, 1).

Φ2(x)Φ1(x)
Φt(x)

Conclusion: affine mappings
— N (a) = id + WMa —
cannot properly capture finite
deformations over non-straight
edges.

Special case: annular domains. Taddei, Zhang, 2021.
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Partitioned approach based on spectral element maps (I)

Introduce a partition of Ω, {Ωq}Ndd
q=1 such that Ωq is

isomorphic to Ω̂ = (0, 1)2. Define mappings Ψq : Ω̂→ Ωq

(e.g., Gordon-Hall maps), q = 1, . . . ,Ndd.

Consider mappings of the form

N (·) =

Ndd∑
q=1

Ψq ◦ Φq ◦Ψ−1
q 1Ωq

where
Φq = id + W q

Ma : Ω̂→ Ω̂.

Φ should be (i) globally continuous, and (ii) locally

bijective, Φ(Ωq) = Ωq, q = 1, . . . ,Ndd.
15



Partitioned approach based on spectral element maps (II)

• Local bijectivity is equivalent to bijectivity of Φq in Ω̂.
admissible class naturally defined.

• Implementation borrows several elements from classic
isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.

• Parameterized geometries: Consider Ψq : Ω̂× P
→ R2, and define µ̄ ∈ P , Ωq = Ωq,µ̄. Then,

Nµ(a) =

Ndd∑
q=1

Ψq,µ ◦ Φq(a) ◦Ψq,µ̄
−1

1Ωq
: Ωµ̄ → Ωµ.

Ψ−1
1,µ̄, . . . ,Ψ

−1
Ndd,µ̄

can be precomputed offline.
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Registration

Spectral (element) maps
Optimization statement
Parametric registration (Greedy+POD)
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Preliminary definitions

Define the mesh Thf =
(
{xhf

j }j , T
)
, with nodes {xhf

j }j and
connectivity matrix T, and the associated FE space Xhf .

Given w ∈ Xhf , denote by w ∈ RN the associated vector
representation.

Given Φ : Ω→ Ω, define the mapped mesh Φ (Thf) =(
{Φ
(
xhf
j

)
}j , T

)
.

Definition. Φ is Thf-bijective if the element mappings

Ψhf
k,Φ(x) =

nlp∑
i=1

Φ(xhf
i ,k)φ̂i(x)

are invertible.
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Optimization statement (I)

Informal statement
Given snapshots {Uk := Uµk}k and the approximation
N : RM → Lip(Ω;Rd), we seek ak ∈ RM to minimize

min
ζ∈Zn

‖Uk ◦ Φk − ζ‖2L2(Ω) over all bijective maps.

Challenges

• Φk(Thf) should be a proper mesh of Ω.

• the choice of Zn is inherently coupled with the problem
of finding Φ. more on this later.
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Optimization statement(II)

20

Given the target U ∈ X , the space Zn ⊂ X , and N ,
we seek Φ = N (a) to minimize(

min
ψ∈Zn

‖U ◦ Φ− ψ‖2L2(Ω)

)
+ ξ ‖A1/2

staba‖
2
2 + ξ′Rmsh(Φ),

subject to C(Φ) ≤ 0.



Optimization statement(II)

f(Φ; u) := min
ψ∈Zn

‖U ◦ Φ− ψ‖2L2(Ω) proximity measure

measures approximability of the target in the mapped
domain.

‖A1/2
staba‖2 =

∑
q

∣∣Φq

∣∣2
H2(Ω̂)

is a regularization term to

bound gradient and Hessian of Φ (and thus ∇g).
20
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Optimization statement(II)

Mesh distortion penalization: Zahr, Persson, 2018

Rmsh(Φ) =

Ne∑
k=1

|Dk |exp

(
‖∇Ψhf

k ,Φ‖2F
|det(∇Ψhf

k ,Φ)|
− fmsh,max

)
enforces discrete bijectivity wrt Thf .
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Registration sensor

Pre-processing U improves performance and facilitates
registration ⇒
replace U with registration sensor s(U) ∈ [L2(Ω̂)]Ndd .

s(U) should “highlight” moving features that are troubling
for linear approximations. ↔ sensors for shock-capturing.

Our choices: Shallow water eqs: s(U) = h.

Euler eqs: s(U) = Ma.
We define s(U) over a structured mesh to speed up
registration.

f(Φ?,k ;U) = min
ψ∈Sn
‖s(U) ◦ Φ?,k − ψ‖2

L2(Ω̂)
,

Sn = template space
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Registration

Spectral (element) maps
Optimization statement
Parametric registration (Greedy+POD)
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Parametric registration {Φ?,k}k ← {Uk}k ,Sn0,N

1. Set Sn=n0 = Sn0, Wm = 1M .
For n = n0, . . . , nmax − 1

2. [a?,k , f?,kn,m] = registration
(
Uk ,Sn,N (Wm•)

)
k = 1, . . . , ntrain.

3. [Wm, {ak}k ] = POD
(
{a?,k}ntrain

k=1 , tolpod, (·, ·)?
)

if maxk f
?,k
n,m < tol, break

else
4. Sn+1 = Sn ∪ span{s(Uµk?) ◦ Φ?,k?}

k? = arg maxk f
?,k
n,m.

EndIf
EndFor
f?,kn,m = f(Φ?,k ; uk) := min

ψ∈Sn
‖s(Uk) ◦ Φ?,k − ψ‖2

L2(Ω̂)
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Parametric registration: remarks

• The Greedy procedure iteratively constructs the space
Sn and the mappings {Φ}k .

If N = id (no registration) ⇒ Strong Greedy.

• The algorithm is applied to the sensor s(U) ⇒ it cannot
be employed to build the reduced space for U .

• POD reduction inside the for loop
preserves the structure of the map,

N (a) =

Ndd∑
q=1

Ψq ◦ Φq ◦Ψ−1
q 1Ωq

, Φq = id + W q
Ma

reduces dramatically the cost of subsequent iterations.
24



Projection-based model order reduction
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Lagrangian (or registration-based) methods for pMOR

Lagrangian methods approximate the solution Uµ as:

Uµ ≈
n∑

i=1

(α̂µ)i ζi ◦ Φ−1
µ .

In FE/FV framework, this translates to

µ ∈ P 7→
(

Φµ(Thf), Ûµ = Zα̂µ

)

If Φ : Ω× P → Ω is given, Lagrangian methods
correspond to linear methods in parameterized domains:

well-understood problem;

simple to implement in FE/FV framework.
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Treatment of parameterized geometries

Two paradigms (cf. Taddei, Zhang, Arxiv, 2020):
• Map-then-discretize (MtD): mesh fixed; PDE modified;
• Discretize-then-map (DtM): mesh modified; PDE fixed.
Example: Laplace: −∆U = 0, U |∂Φµ(Ω) = g .

Define the residual Req
µ (u, v) =

Ne∑
k=1

ρeq
k r

k
µ (u, v).

MtD: r kµ (u, v) =
∫
Dk

det(∇Φµ)∇Φ−1
µ ∇Φ−Tµ ∇u · ∇v dx .

DtM: r kµ (u, v) =
∫

Φµ(Dk) ∇u · ∇v dx .

DtM allows to reuse element-wise assembling routines for
residual evaluation ⇒ easier to implement.

Refs (DtM): Washabaugh et al. 2016; Dal Santo, Manzoni 2019.
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Projection scheme: LSPG+EQ

Introduce reduced-order bases Z ∈ RN,n, Y ∈ RN,jes.

Define the weighted residual Req
µ (u, v) =

Ne∑
k=1

ρeq
k r

k
µ (u, v).

EQ LSPG ROM: find Ûµ ∈ arg min
ζ∈col(Z)

sup
η∈col(Y)

Req
µ (ζ,η)

‖η‖Y
.

Implementation requires to address several points.
• Choice of trial ROB Z.
• Choice of test ROB Y and the norm ‖ · ‖Y .
• Choice of the EQ weights ρeq.
Taddei, Zhang, A discretize-then-map approach for the treatment of
parameterized geometries in model order reduction, Arxiv, 2020.
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Multifidelity training: offline-online decomposition
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Registration-based MOR: preliminary considerations

Registration
• addresses mesh adaptation and data compression;
• highly nonlinear;
• relies on regression for generalization
⇒ needs extensive parameter explorations, ntrain � 1

Projection-based MOR (EQ LSPG)
• robust for small training sets;
• relies on linear approximations;

⇒ inadequate for advection-dominated pbs;
• does not address mesh issues.

Proposal: use “low-fidelity" snapshots for registration
and “high-fidelity” snapshots for ROM generation.
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Offline/online workflow

Offline stage

1. Generate coarse snapshots {Uµk}k .
2. Generate a refined FE grid Thf .

3. Φ = registration
(
{Uµk}k , Thf

)
.

4. Linear MOR: build the reduced basis Z and the ROM
for µ 7→ α̂µ. Greedy sampling.

Online stage (for any µ ∈ P)

5. Find α̂µ using ROM, return
(

Φµ(Thf), Ûµ = Zα̂µ

)
.
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Numerical results

Euler equations (with A Ferrero)
Shallow water equations (with C Goeury, A Ponçot)
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Compressible inviscid supersonic flow past a bump

α

Ω

34

Consider µ = [α,Ma∞] ∈ P = [0.75, 0.8]× [1.7, 1.8].
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Behavior of Mach number Ma = ‖u‖2
c for µ = [0.75, 1.7].
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Compressible inviscid supersonic flow past a bump

Behavior of Mach number Ma = ‖u‖2
c for µ = [0.8, 1.8].

34

Consider µ = [α,Ma∞] ∈ P = [0.75, 0.8]× [1.7, 1.8].



Test 1: one-fidelity training

Consider ntrain = 112 snapshots for training and ntest = 10
snapshots for testing.

We measure performance using

Eavg :=
1

ntest

∑
µ∈Ptest

‖Uhf
µ − Ûhf

µ ‖L2(Ωµ)

‖Uhf
µ ‖L2(ΩΩµ)

.

We rely on a P2 DG discretization with Ne = 8204,
N = 197, 856 dofs.

We consider a dilation-based artificial viscosity.
cf. Nicoud, Ducros, 1999; Ye, Hesthaven, 2020.
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Test 1: projection and LSPG errors (POD)

Linear Lagrangian
Projection error (n = 10) 0.9 · 10−3 0.10 · 10−3

LSPG error (n = 10) 2.8 · 10−3 0.14 · 10−3

Construction of Z based on POD, ntrain = 121.
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Test 1: projection and LSPG errors (Greedy)

Linear Lagrangian
Projection error (n = 10) 2.0 · 10−3 0.25 · 10−3

LSPG error (n = 10) 6.8 · 10−3 0.34 · 10−3

Construction of Z based on weak Greedy.
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Test 2: multifidelity training

Coarse: Ne = 8204, N = 197856.
Fine: Ne = 16752, N = 402048 based on Uµ̄

38



Test 2: LSPG error

Registration based on coarse simulations leads to accurate
ROMs for small n.

2 4 6 8 10 1210−4
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Test 2: mesh adaptation

Plot: Mesh density h(x) =
∑

k

√
|Dk ,Φ|1Dk,Φ vs Mach

contour lines.

Registration + mesh refinement lead to accurate meshes
for all parameters r+h adaptivity.
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Numerical results

Euler equations (with A Ferrero)
Shallow water equations (with C Goeury, A Ponçot)
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Problem statement

Consider the problem: find U = [h, q]T such that{
∂tU + ∂x f (U) = −gh∂xbe2, (x , t) ∈ Ω

q(0, t) = qin,µ(t), h(L, t) = 2, U(x , 0) = U0(x),

with f (U) = [q, q
2

h + g
2h

2]T , b(x) = −0.2 + e−0.125(x−10)4
,

Ω = (0, L)× (0,T ), and

qin,µ(t) = q0

(
1 + µ1 t e

− 1
2µ2

2
(t−0.05)2

)
, q0 = 4.4,

U0 is the steady-state solution obtained for qin,µ ≡ q0.
µ = [µ1, µ2] ∈ P = [2, 8]× [0.1, 0.2].

The problem shares relevant features with dam-break
studies with non-constant bathymetry.
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Behavior of the free surface z = h + b
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Space-time formulation

We consider a space-time variational formulation:

∇ · F (U) = S(U) in Ω

where ∇ = [∂x , ∂t], F (U) = [f (U),U].

Space-time formulation is motivated by approximation
considerations:

space-only registration does not deal effectively with
shock interactions. cf. Taddei, Zhang, M2AN, 2021.

Space-time formulation also shows superior stability and
allows sharper error bounds.

Schwab, Stevenson, 2009; Urban, Patera, 2012.
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Two-fidelity sampling

We build the sensors {sk}k for registration using a
time-marching RKDG solver.

We consider an adapted space-time mesh with Ne = 2314.
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Linear method (projection N = 5)

Details: ntrain = 100, POD data compression.
46



Lagrangian (registration +EQ-LSPG, N = 5)

Details: ntrain = 100, POD data compression.
47



Performance of the ROM: projection and LSPG errors

Registration offers remarkable improvements compared to
linear methods.

EQ-LSPG is able to find nearly-optimal coefficients for
ntest = 10 out-of-sample configurations.
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Analysis: expressivity of nonlinear approximations
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Nonlinear approaches to model reduction (I)

We can distinguish between four classes of methods.
1. Adaptive partitioning of P .

Eftang et al., SISC, 2010.

2. Online basis refinement.
Carlberg, IJNME, 2015; Peherstorfer, SISC, 2020;

3. Reformulation of the problem and/or of the ROB.
Amsallem, Farhat, AIAA, 2008; Gerbeau, Lombardi, JCP, 2014;
Ohlberger, Rave, CR Math., 2013; this talk.

4. Fully-nonlinear approximations.
Lee, Carlberg, JCP, 2020; Kim et al, Arxiv 2020;
Ehrlacher et al, M2AN, 2020; Mojgani, Balajewicz, AIAA, 2017.

Approaches in 4. do not involve projection of a (modified)
problem on a linear subspace. 50



Nonlinear approaches to model reduction (II)

All MOR approaches introduce an approximation class
C where they seek the low-rank operator Z : Rq → X .

Relevant examples: linear C lin
n ; Lagrangian C lag

n,m;
convolutional Cco

n,`.

C lin
n :=

{
Z : Zα =

n∑
i=1

(α)iζi

}

C lag
n,m :=

{
Z : Z(α, a) =

n∑
i=1

(α)iζi ◦ Φ(a)−1

}
Cco
n,` := {Z : Z(α1, ..,α`) = N` (N`−1 (·,α`−1) ,α`)}

Missing: transported/transformed methods (Welper, Reiss,...)
51



Choice of C: expressivity and learnability

Approximation class C should be chosen based on

expressivity: measured in terms of the Kolmogorov
width
d(M; C; ‖ · ‖) := inf

Z∈C
sup
w∈M

inf
β∈Rq
‖Z(β)− w‖;

learnability: measured in terms of
performance of training algorithms to identify Z ∈ C,
performance of ROMs to compute β̂µ.

Open problems in MOR:
estimate d(M; C; ‖ · ‖);
estimate performance of learning methods for given C.
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Analysis of linear and nonlinear methods

Most analysis is restricted to linear methods.
• Estimates of d(M; C lin

n ; ‖ · ‖).
Cohen, DeVore, IMA J. Numer. Anal., 2016.

• Performance of Greedy methods.
Binev et al., SINUM, 2011.

Several counter-examples show poor performance of linear
methods for advection-dominated problems.

Ohlberger, Rave, Arxiv, 2015.

The analysis for nonlinear approximations is extremely
limited.
• Estimates for convolutational approximations.

Rim et al., Arxiv, 2020.
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A working example (Taddei, SISC, 2020)

Define u : (0, 1)2 × P → {0, 1} s.t. uµ(x) = 1fµ(x1)<x2(x).

Assume fµ([0, 1]) ⊂ [δ, 1− δ] for all µ ∈ P . Define

C lag
n,m =

{
Z : Z = Zlin ◦ Φ−1, s.t.

Zlin(α) =
n∑

i=1

(α)iζi ,

Φ(a) = id +
m∑
i=1

(a)iϕi

}
fµ

uµ = 1

uµ = 0

⇒ d
(
M, C lag

n,m, ‖ · ‖L1(Ω)

)
≤ C

d
(
Mf , C lin

m , ‖ · ‖Lip([0,1])

)
√
n

,

Multiplicative effect between n and m convergence. 54



Conclusions and perspectives
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Summary

Summary

• We propose a general registration procedure for
parameterized PDEs. independent of the PDE model.

• We integrate registration into the offline/online
paradigm.

• We apply the approach to two hyperbolic systems of
PDEs to show the potential of the method.

Ongoing work

• Adaptive multi-fidelity training.

• Mathematical analysis: when is registration worth?
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Thank you for your
attention!

For more information, visit the website:

math.u-bordeaux.fr/~ttaddei/ .
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Backup slides

More results on Euler
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Backup slides

More results on Euler
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Empirical quadrature (test 1; POD training)
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Comparison between dual residual and relative error

We consider Y = H1(Ω). Results are associated with the
iterations of the weak-Greedy algorithm on training set.
Dual residual evaluation is inexpensive compared to the
other steps of the offline stage. ⇒ no hyper-reduction.
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Construction of the test space

POD-based construction of the empirical test space:
1. Find Riesz elements (ψk ,i , v)Y = DRhf

µk [Uhf
µk ](ζ i , v),

∀ v ∈ RN , i = 1, . . . , n, k = 1, . . . , ntrain

2. Y = POD
(
{ψk ,i}k ,i , toltest, ‖ · ‖Y

)
, toltest = 10−3.
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40

n

j e
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Linear
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Taddei, ACOM, 2019; Taddei, Zhang, M2AN 2021.
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Effect of discretization on hyper-reduction

The empirical quadrature procedure weakly depends on
the size of the mesh ⇒ larger speedup for large Ne.
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