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Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost
associated with the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control.



Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost
associated with the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems

design and optimization, UQ, control.

Given the manifold
where is a compact set, and
is an Hilbert space over

the goal of pMOR is to determine a low-rank approx-

imation U/, of U, that can be rapidly computed for any



pPMOR: general recipe

Pb: find U, « X - R, (U, v) =0, Yve)Y, ueP
Approx: U,, = Z(a,), Z:R" X, a:P—R"
Offline stage: (performed once)
compute high-fidelity estimates of U, { U/IIII'}Z‘L‘I‘“;
determine the low-rank approximation 7 : R"” — .

Online stage: (performed for any new /' < P)
solve a reduced-order model (ROM) to estimate cv,,;

estimate the error |[U,, — U,

pMOR literature: Patera, Maday, Farhat, Quarteroni, Ohlberger,...
Recent review: Handbook on MOR, De Gruyter, 2021.



Problem of interest: hyperbolic conservation laws

Goal: model reduction for hyperbolic systems of PDEs.

In this talk, we consider:
e 1D shallow water equations over a bump with para-
metric inflow:

e 2D compressible Euler equations with varying free-
stream velocity over a parametric bump.
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Major challenges

Application of pMOR to hyperbolic PDEs presents unique
challenges.

1. CFD simulations are expensive = ROMs need to be
trained using few snapshots. small data pb

2. Linear approximations are inadequate for transport.

3. Mesh should be refined close to shocks; ROMs must be

defined over a common mesh.
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Objective of this work

Devise a registration-based projection-based multi-fidelity
MOR approach for parameterized conservation laws.



Objective of this work

Devise a registration-based projection-based multi-fidelity
MOR approach for parameterized conservation laws.

Registration: given snapshots {U}}E}k, seek a mapping
® Q) x P — () to align moving structures in a reference
configuration.

Projection-based MOR provides a rigorous framework
to build the ROM for cv,,.

LSPG projection Carlberg et al., 2011
Element-wise empirical quadrature  Farhat et al., 2015;
Yano, 2019.

Multi-fidelity training offers a systematic framework to
reduce offline costs.



Agenda of the talk

Registration.
Projection-based model reduction.

Multi-fidelity training.

N

Numerical results.
e Euler equations past a bump.
e Shallow water equations.

5. Analysis: expressivity of nonlinear approximations.

6. Conclusions.



Registration

@ Spectral (element) maps
@ Optimization statement
@ Parametric registration (Greedy+POD)
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General plan

Task: given { U }/"", compute & : O x 7 — R7,
1. Choose approximation N\ = A, RY — Lip(Q; RY).
Desiderata: high expressive power;
easy to enforce bijectivity.
2. Compute ®F — /\/(aﬁf) for k = 1.2, . N
Solution to minimization pb.
3. Apply POD to obtain ®" ~ A/(Wa"),
ak e R™, m< M.

4. Use regression algorithm (e.g., RBF) to learn
peP—a,eR" = o,:=N(Wa,).

Taddei, SISC 2020; Taddei, Zhang, M2AN, 2021.

Taddei, Zhang, submitted, 2021.
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Registration

@ Spectral (element) maps
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Choice of N for Q = (0,1)?: spectral maps

Thm: Consider ® — id + » where »  C*, - ”‘zm =0.

Then, @ is bijective in 2 if inf g(x) = det(V®(x)) > 0.

S

Condition ¢ - ”‘z)Q — 0 allows tangential displacements.
I X©®) ¢ X = o(X)
x (1)

Q (D Q ® (1) — cp(X(l))

\
L4
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Choice of N for Q = (0,1)?: spectral maps

Thm: Consider ® — id + » where » ¢ C*, !()Q =0.
Then, @ is bijective in (2 if még( x) = det(V®(x)) > 0.
S

Choice of \: set \'(a) — id -+ > " (a)0;, where

01, ..., are tensorized polynomials, o, n’(m = 0.

Bijectivity: define the admissible class of mappings
Apj 1= {a cRM: ir]f g(x;a) = det (VN (a)) > O}

and the proxy A|. = {a c R C(a) < 0} with
: o 1
C(a) := / exp <(g(xa)> + exp (g(x,a) /(> dx.
JQ C‘?\']) CL‘,X])
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Limitation of affine mappings for non-rectangular domains

Example: () = 5, 1(0), consider bijections ®;, ®, and
assume that ©(x) # ©o(x) at x & 00,

Then, &, = t®; + (1 — t)d, is not a bijection in () for
any t < (0.1).

Conclusion: affine mappings

1 (x)p—e—m O(x)  — A(a) = id + Wya —
cannot properly capture finite
deformations over non-straight
edges.

Special case: annular domains.  Taddei, Zhang, 2021.
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Partitioned approach based on spectral element maps (1)

Introduce a partition of ), {Qq}gl‘j‘l such that (), is
isomorphic to () — (0.1)”. Define mappings V,, : Q — Q,
(e.g., Gordon-Hall maps), g = 1..... Ny,.

Consider mappings of the form

Z\U o® o\Uq Lo,

where

d,=id+ Wla: Q— Q.

@ should be (i) globally continuous, and (ii) locally
bijective, () =0, g =1... ., Nyq.

15



Partitioned approach based on spectral element maps (Il)

e Local bijectivity is equivalent to bijectivity of @ in Q.
admissible class naturally defined.

e Implementation borrows several elements from classic
isoparametric spectral element discretizations.
KZ Korczak, AT Patera, 1986.

e Parameterized geometries: Consider V, : QxP
— [®?, and define ji ¢ P, €y = g Then,

Nag
Nu(a) = Z Vouo®g(a)o Wy lg, : Qi — Q.
g=1

\Ulf/l_l ..... \UN}M can be precomputed offline.

16



Registration

@ Optimization statement
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Preliminary definitions

Define the mesh 7,; — ({x}‘f}j. T), with nodes {x' }; and
connectivity matrix T, and the associated FE space ;.

Given w © X, denote by w ¢ 2" the associated vector
representation.

Given ® - Q) — (), define the mapped mesh © (Tut) =
<{¢ (le'lf)}fvT)-

Definition. @ is 7 -bijective if the element mappings

Mmp

W (x) =) O(x})di(x)
i=1
are invertible.

18



Optimization statement (1)

Informal statement
Given snapshots { U == U .}, and the approximation

N RM o Tip(Q; RY), we seek a « R to minimize
m|7n HUk o dk

cLn

. o) over all bijective maps.
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Optimization statement (1)

Informal statement
Given snapshots { U == U .}, and the approximation

N RM o Tip(Q; RY), we seek a « R to minimize
min [|U* o &

cLn

. o) over all bijective maps.

Challenges
e O“(7;) should be a proper mesh of €.

e the choice of =, is inherently coupled with the problem
of finding ©. more on this later.
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Optimization statement(ll)

Given the target [J ¢ X, the space Z, C X, and /V/,
we seek & — A/(a) to minimize

(rgig [Uo® — 1 %zm)) + ¢lIAYSal3 + € Rua(®),

stab
subject to C(®) < 0.
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Optimization statement(ll)

Given the target [J ¢ X, the space Z, C X, and /V/,
we seek & — A/(a) to minimize

(”3'9 [Uo® m) elALZal3 + € R (@),
subject to C(®) < 0.
f(®;u) = min [[Uo® — v HLQ proximity measure

VeZ n

measures apprOX|mab|||ty of the target in the mapped
domain.

HAxt 1]>aH2 - Z ’(Dq

q
bound gradient and Hessian of ¢ (and thus Vg).

2 . o
H2(Q) is a regularization term to

20



Optimization statement(ll)

Given the target [J ¢ X, the space Z, C X, and /V/,
we seek & — A/(a) to minimize

(I,‘QLD |Uo® fzm) ¢IALRal3 + € Ruan(®),

subject to C(®) < 0.

Mesh distortion penalization: Zahr, Persson, 2018

VW |§
g‘ 1S Dile — f 1sh,max
n h Z ‘ k|€XDP ( (V\Ul}ilq})‘ Tn h,m

enforces a’lscrete bijectivity wrt ;.

20



Registration sensor

Pre-processing [/ improves performance and facilitates
registration —-

replace U with registration sensor s( /) ¢ [Lz(ﬁ)]’\"“' .

5( ) should “highlight” moving features that are troubling
for linear approximations. < sensors for shock-capturing.

21



Registration sensor

Pre-processing [/ improves performance and facilitates
registration —-

replace [/ with registration sensor s( (/)  [L2(Q))]M .
5( ) should “highlight” moving features that are troubling
for linear approximations. < sensors for shock-capturing.
Our choices: Shallow water egs: s(U/) = h.

Euler egs: s(U) = Ma.

We define s(UJ) over a structured mesh to speed up
registration.
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Registration sensor

Pre-processing [/ improves performance and facilitates
registration —-

replace [/ with registration sensor s( (/)  [L2(Q))]M .
5( ) should “highlight” moving features that are troubling
for linear approximations. < sensors for shock-capturing.
Our choices: Shallow water egs: s(U/) = h.

Euler egs: s(U) = Ma.

We define s(UJ) over a structured mesh to speed up
registration.

f(*K; U) = min [|s(U) o &% —

Yeon

, = template space
21



Registration

@ Parametric registration (Greedy+POD)

22



Parametric registration {®*%}, < {U*}4, Snpy N

1. Set Snino = Sno, W,, = 1uy.

For n—=rnp,....000 — 1
2. [a**, fi% | = registration (U*, S, N(Wye))

k = 1, « ooy Nirain .-
3. [Wp, {a*}] =POD ({@**} w4, tohyod, (-, +)«)
if  max, |t < tol, break
else
4. S,.1=85,U spml{s(U/,u) o drK1

* e *. k
k* = arg max, 5.

EndIf
EndFor
ox. k x. k. ky . . k *. k 12
o = f(P°5 u") = min s(U") o ©*% — ) (@)

23



Parametric registration: remarks

e The Greedy procedure iteratively constructs the space
&, and the mappings {®},.

If A/ = id (no registration) = Strong Greedy.

e The algorithm is applied to the sensor s( /) = it cannot
be employed to build the reduced space for U.

e POD reduction inside the for loop
preserves the structure of the map,

Zw o b oW Mg, &, =id+ Wya

reduces dramatlcally the cost of subsequent iterations.

24



Projection-based model order reduction

25



Lagrangian (or registration-based) methods for pMOR

Lagrangian methods approximate the solution U, as:

n

U// ~ Z (a/z),‘ Gio q);,l

i=1
In FE/FV framework, this translates to

e P— <<D/,(7][')‘ lAJ/, = Z&,,)

26



Lagrangian (or registration-based) methods for pMOR

Lagrangian methods approximate the solution U, as:

n

U// ~ Z (&//),‘ Gi o qD;l

i=1
In FE/FV framework, this translates to
e P— <<D/,(7][')‘ lAJ/, = Z&,/>
It & x P — (is given, Lagrangian methods
correspond to linear methods in parameterized domains:
well-understood problem;

simple to implement in FE/FV framework.
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Treatment of parameterized geometries

Two paradigms (cf. Taddei, Zhang, Arxiv, 2020):
e Map-then-discretize (MtD): mesh fixed; PDE modified,;
e Discretize-then-map (DtM): mesh modified; PDE fixed.

Example: Laplace: — AU — 0. U\()(D =g.

Define the residual = (v, v) Z/)k r,

MtD: /(1. v) — [ det(V,) VCD Vo "Vu- Vv dx.
L JDg I 7
DtM: /(. v) — Jo 0 Vu- Vv dx.

DtM allows to reuse element-wise assembling routines for
residual evaluation = easier to implement.

Refs (DtM): Washabaugh et al. 2016; Dal Santo, Manzoni 2019.



Projection scheme: LSPG+EQ

Introduce reduced-order bases Z < RV Y c RNves

Define the weighted residual ) ( Z/}k r,

R:(¢,m)
EQ LSPG ROM: find U/, € arg min sup .
C%“’l( ) necol(Y) HUHJ

28



Projection scheme: LSPG+EQ

Introduce reduced-order bases Z < RV Y c RNves

Define the weighted residual /7 "(u. v) Z/)k r,

RA(C.m)
EQ LSPG ROM: find U/, € arg min sup ——.
C%“’l( ) necol(Y) HnHJ

Implementation requires to address several points.
e Choice of trial ROB Z.

e Choice of test ROB Y and the norm || - ||,

e Choice of the EQ weights p

Taddei, Zhang, A discretize-then-map approach for the treatment of

parameterized geometries in model order reduction, Arxiv, 2020.
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Multifidelity training: offline-online decomposition

J
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Registration-based MOR: preliminary considerations

Registration
e addresses mesh adaptation and data compression;
e highly nonlinear;

e relies on regression for generalization
needs extensive parameter explorations,

Projection-based MOR (EQ LSPG)
e robust for small training sets;

e relies on linear approximations;
inadequate for advection-dominated pbs;

e does not address mesh issues.

30



Registration-based MOR: preliminary considerations

Registration
e addresses mesh adaptation and data compression;
e highly nonlinear;

e relies on regression for generalization
needs extensive parameter explorations,

Projection-based MOR (EQ LSPG)
e robust for small training sets;

e relies on linear approximations;
inadequate for advection-dominated pbs;

e does not address mesh issues.

Proposal: use “low-fidelity" snapshots for registration
and “high-fidelity” snapshots for ROM generation.

30



Offline/online workflow

Offline stage

1. Generate coarse snapshots { U, | .
2. Generate a refined FE grid 7.

3. ® = registration ({U//k}k. 7Tlf>.

4. Linear MOR: build the reduced basis Z and the ROM
for 11— v, Greedy sampling.

Online stage (for any /1 € 7)
5. Find cx,, using ROM, return <<D//(7]f), 0,, = Z&,,).

31



Numerical results

@ Euler equations (with A Ferrero)
@ Shallow water equations (with C Goeury, A Pongot)
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Numerical results

@ Euler equations (with A Ferrero)
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Compressible inviscid supersonic flow past a bump

Consider y1 = [a, May] € P =[0.75,0.8] x [1.7,1.8].

()

(0’
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Compressible inviscid supersonic flow past a bump

Consider ;1 = [a, May] € P =[0.75,0.8] x [1.7,1.8].

Behavior of Mach number Mo — 2 for ;o — [0.75.1.7].

C

1

0.5f
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Compressible inviscid supersonic flow past a bump

Consider ;1 = [a, May] € P =[0.75,0.8] x [1.7,1.8].

Behavior of Mach number Mo — 2 for ;; — [0.8,1.8].

C

1

0.5}
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Test 1: one-fidelity training

Consider 11,,.;,, — 117 snapshots for training and .., — 10
snapshots for testing.

\We measure performance using
1 Uhf T
Ez\\'g = H hf
Niest 1E P H U HL’ QQ
We rely on a P2 DG discretization with /. = 8204,
N — 197,856 dofs.

We consider a dilation-based artificial viscosity.
cf. Nicoud, Ducros, 1999: Ye, Hesthaven, 2020.

L2()
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Test 1: projection and LSPG errors (POD)

Linear Lagrangian
Projection error (n — 10) [ 0.9 10 *]0.10- 10 °
LSPG error (n = 10) 2.8-1073]0.14-10°

Construction of Z based on POD, n,.;, — 121.

Projection EQ LSPG
10 ‘ 100
10 ] 101 ]
: ol B\S\E\&&E\Ssgﬂ ] :/I ool D\S\E—E_E\EH;EEE i
W g3 1 W02 :
.|l Linear .= Linear
0 . ] 10 . ]
agrangian -+ Lagrangian
1075 = — 1075 = —
10° 10 10° 10
n n
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Test 1: projection and LSPG errors (Greedy)

Linear Lagrangian
Projection error (n — 10) | 2.0 - 10 *0.25 10 °
LSPG error (n = 10) 6.8-107°]0.34-10°

Construction of Z based on weak Greedy.

Projection EQ LSPG
10° ‘ ‘ ‘ 10° ‘ ‘ ‘
1071 E E 1071k ]
o0 1072 . 20 10 PE\E*E\E—B\E\E\N
CUREET ﬂm;\i_-\-\\i\ﬁ_a\g\s\m | ]
1o +|= Linear ] 1o +f= Linear I
-+ agrangian -+ Lagrangian
n—5 ! | , n—5 | L L
W% 8 10 1 W% 8 10 1
n n
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Test 2: multifidelity training

Coarse: N. — 8204, N — 197856.
Fine: N. — 16752, N — 402048 based on Uj
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Test 2: LSPG error

Registration based on coarse simulations leads to accurate
ROMs for small 7.

EQ LSPG

0

{ f

o0 102 \\\\ ]

ud 10 y G\;\H::‘\

I Greedy 4

<+ POD |
=L FEM

39



Test 2: mesh adaptation

Plot: Mesh density /(x ./ Deolly, , vs Mach
contour lines.

Registration + mesh refinement lead to accurate meshes
for all parameters r+h adaptivity.
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Test 2: mesh adaptation

Plot: Mesh density /(x ./ Deolly, , vs Mach
contour lines.

Registration + mesh refinement lead to accurate meshes
for all parameters r+h adaptivity.
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Numerical results

@ Shallow water equations (with C Goeury, A Pongot)
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Problem statement

Consider the problem: find / = [h. g]” such that
{ 0:U + O0,f(U) = —ghdsbey, (x,t) € Q

q(0,t) = g u(t), h(L,t) =2, U(x,0)= Up(x),

with 7(U) = [q. %2 +£17, b(x) = —0.2 + e 0125(<~10)"
= (0,L)=(0,7), and

55 (t-0.05)
qin./z(t) = Qo I+ pte 2 ) do = 44

Uy is the steady-state solution obtained for ¢, , = qo.
= [p1, o] € P =1[2,8] x [0.1,0.2].

42



Problem statement

Consider the problem: find / = [h. g]” such that
{ 0:U + O, f(U) = —ghdsbey, (x,t) € Q

Q(O t) — Qin.//(t), h(L t) =2, U(X, O) — UO(X)-
with 7(U) = [q. % +£17, b(x) = —0.2 + e 0125(<~10)"
Q= (0,L) (0. 7), and

55 (t-0.05)
qin./z(t) = qo 1"‘/11 te 2 ,  go = 44

Uy is the steady-state solution obtained for ¢, , = qo.
= [p1, o] € P =1[2,8] x [0.1,0.2].

The problem shares relevant features with dam-break

studies with non-constant bathymetry.
42



Behavior of the free surface z=h+ b

24 " H= 2,0.1]
- p=1[8,0.2]
2.2
g
w 2
1.8

0 5 10 15 20 25
T
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Space-time formulation

We consider a space-time variational formulation:
V-F(U)=S5U) in Q
where V = [0,.0:|, F(U) = [f(U), U].

Schwab, Stevenson, 2009: Urban, Patera, 2012.
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Space-time formulation

We consider a space-time variational formulation:
V-F(U)=S5U) in Q
where V = [0,.0:|, F(U) = [f(U), U].

Space-time formulation is motivated by approximation
considerations:

space-only registration does not deal effectively with
shock interactions. cf. Taddei, Zhang, M2AN, 2021.

Space-time formulation also shows superior stability and
allows sharper error bounds.

Schwab, Stevenson, 2009: Urban, Patera, 2012.
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Two-fidelity sampling

We build the sensors {s; | for registration using a
time-marching RKDG solver.

We consider an adapted space-time mesh with /. — 2314,

45



Linear method (projection N = 5)

24

23

22

21

(=)o)

Details: 7., — 100, POD data compression.
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Lagrangian (registration +EQ-LSPG, N = 5)

24

23

22

21

2

19

18-

17r

(=)o)

Details: 7., — 100, POD data compression.
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Performance of the ROM: projection and LSPG errors

Registration offers remarkable improvements compared to
linear methods.

EQ-LSPG is able to find nearly-optimal coefficients for

Niest = 10 out-of-sample configurations.

E;l\'g

100

10 1L
10 2L
10 3k

1074

5

10

Projection

= Linear

-+ Lagrangian \ ]

100 10!
n

107t

1073 l

10 3L

1074

EQ LSPG

4

“tol=10"""
-+ hf quad

— proj error ||
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Analysis: expressivity of nonlinear approximations

J
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Nonlinear approaches to model reduction (1)

We can distinguish between four classes of methods.
1. Adaptive partitioning of

Eftang et al., SISC, 2010.
2. Online basis refinement.

Carlberg, IJNME, 2015; Peherstorfer, SISC, 2020;

3. Reformulation of the problem and/or of the ROB.
Amsallem, Farhat, AIAA, 2008; Gerbeau, Lombardi, JCP, 2014;
Ohlberger, Rave, CR Math., 2013; this talk.

4. Fully-nonlinear approximations.

Lee, Carlberg, JCP, 2020; Kim et al, Arxiv 2020;
Ehrlacher et al, M2AN, 2020; Mojgani, Balajewicz, AIAA, 2017.

Approaches in 4. do not involve projection of a (modified)
problem on a linear subspace.
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Nonlinear approaches to model reduction (Il)

All MOR approaches introduce an approximation class
C where they seek the low-rank operator 7 : R9 — .
lag .

n,m?

Relevant examples: linear C; Lagrangian C
convolutional (.

clin = {Z Zo = Z(a)/c,}

i=1

clee = {z Z(a,a) =Y (a)iGio ¢<a>l}

i=1
Coy = {Z : Z(ab --~0é() = Ny (N/f1 (-.a(,l) : a/)}

Missing: transported/transformed methods (Welper, Reiss,...)
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Choice of C: expressivity and learnability

Approximation class C should be chosen based on

expressivity: measured in terms of the Kolmogorov
width

MG -1} = nf sup inf, 12(8) = wil;

3 1

learnability: measured in terms of

performance of training algorithms to identify 7 € C,

performance of ROMs to compute /7.
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Choice of C: expressivity and learnability

Approximation class C should be chosen based on

expressivity: measured in terms of the Kolmogorov
width

O(M;Ci |- |]) == émf su& /Jqu
WE

Z(B) — wl|

learnability: measured in terms of
performance of training algorithms to identify 7 € C,

~

performance of ROMs to compute /7.

Open problems in MOR:
estimate 0( M, C; | - 1);
estimate performance of learning methods for given (.
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Analysis of linear and nonlinear methods

Most analysis is restricted to linear methods.

e Estimates of .
Cohen, DeVore, IMA J. Numer. Anal., 2016.

e Performance of Greedy methods.
Binev et al., SINUM, 2011.

Several counter-examples show poor performance of linear
methods for advection-dominated problems.
Ohlberger, Rave, Arxiv, 2015.

The analysis for nonlinear approximations is extremely
limited.
e Estimates for convolutational approximations.
Rim et al., Arxiv, 2020.
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A working example (Taddei, SISC, 2020)

Define u: (0,1)* x P — {0,1} s.t. uu(x) = Ly ()< (X)-
Assume 7,([0.1]) < [0.1 — 0] for all ;1 « . Define

che — {z Z=7ZMo o7l sit.
. n U = .
2™ (a) =) ()¢, fy
i=1
d(a) = id + Z(a),p,}
i=1 u, = 0

(M, Cots | - Hlip(o.p)

Multiplicative effect between n and m convergence.

o 0
=0 (M. Cots [l - liney) < €

,m



Conclusions and perspectives
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Summary

e We propose a general registration procedure for
parameterized PDEs. independent of the PDE model.

e \We integrate registration into the offline/online
paradigm.

e We apply the approach to two hyperbolic systems of
PDEs to show the potential of the method.
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Summary

e We propose a general registration procedure for
parameterized PDEs. independent of the PDE model.

e \We integrate registration into the offline/online
paradigm.

e We apply the approach to two hyperbolic systems of
PDEs to show the potential of the method.

Ongoing work
e Adaptive multi-fidelity training.

e Mathematical analysis: when is registration worth?
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Thank you for your
attention!

For more information, visit the website:

57


math.u-bordeaux.fr/~ttaddei/

Backup slides

@ More results on Euler
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Backup slides

@ More results on Euler
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Empirical quadrature (test 1; POD training)

EQ LSPG Linear EQ LSPG Lagrangian

10 ! 10 1
2k i R 10 2 ¢ \ 4
;f, = 10 7
L7 1010
o i 10 3L -+ 10 12 i
-+ HF - HF
N 10t

104 b= — 104 b=
107 10 10
n

0 8 0 8
= =
o 5 =107
% g 6 7"‘10 10
© o +10 12
o B 4
(] (]
o o
E E o1 /K/A i
(9] (4]
%) %)
o o
< o> 0 _mg_g_g_

2 4 6 8 10
n
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Comparison between dual residual and relative error

We consider )V — H'(€)). Results are associated with the
iterations of the weak-Greedy algorithm on training set.

Dual residual evaluation is inexpensive compared to the
other steps of the offline stage. = no hyper-reduction.

10" Hlo  Linear

10 ||sLagrangian

107}

rel error

1074

105 F

E E.'.',:ﬂ ST A

1079 10°° 10*4. 1072 1072
dual residual

10 6
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Construction of the test space

POD-based construction of the empirical test space:

1. Find Riesz elements (1, ;. v), = DR};{[UEH(C/.V),
VveRN i=1,....nk=1,..., Nirain

2. Y =POD ({tby;}k,is tohest, || - [|y), tohest = 1073

40

= Linear
-+ Lagrangian

301

£ 20}

10 F
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Effect of discretization on hyper-reduction

The empirical quadrature procedure weakly depends on
the size of the mesh = larger speedup for large /..

. .
tol, = 10 10 toly = 10 12
wn 8 %) 8 T T T T
= =
g ||= finediscr. g ||= finediscr.
Q@ -+ coarse discr. o -+coarse discr.
() ()
- 4 1 - 4
< Q@
o o
5 M | o
9] - © Z
(V2] (V]
) °
o 0 T L L L L o L L
‘ 2 4 6 8 10 4 6 8 )
n n
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