Registration-based model reduction of parameterized PDEs

Tommaso Taddei Inria, Team MEMPHIS DDPS Seminar, Lawrence Livermore Virtually (from Bordeaux), April 15th 2021

Institut de Mathématiques de Bordeaux

Joint work with L Zhang (Inria)

Collaborators:¹

- A Ferrero (Politecnico di Torino)
- A Iollo (Inria)
- C Goeury, A Ponçot (EDF)

Sponsors:

 IdEx Bordeaux (projet émergence)
 2020 - 2021

 EDF
 2020 - 2021

ANDRA

2019 - 2022

¹TT would also like to thank Y Maday, P Mounoud, AT Patera and M Yano for fruitful discussions.

Objective

Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the **marginal** cost associated with the solution to parameterized problems.

pMOR is motivated by *real-time* and *many-query* problems design and optimization, UQ, control.

Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the **marginal** cost associated with the solution to parameterized problems.

- pMOR is motivated by *real-time* and *many-query* problems design and optimization, UQ, control.
- Given the **manifold** $\mathcal{M} = \{U_{\mu} : \mu \in \mathcal{P}\} \subset \mathcal{X}$, where $\mathcal{P} \subset \mathbb{R}^{P}$ is a compact set, and $(\mathcal{X}, \|\cdot\|)$ is an Hilbert space over $\Omega \subset \mathbb{R}^{d}$,

the goal of pMOR is to determine a **low-rank approx**imation \widehat{U}_{μ} of U_{μ} that can be rapidly computed for any $\mu \in \mathcal{P}$.

pMOR: general recipe

Pb: find $U_{\mu} \in \mathcal{X} : R_{\mu}(U_{\mu}, \mathbf{v}) = 0, \quad \forall \mathbf{v} \in \mathcal{Y}, \mu \in \mathcal{P}$ **Approx:** $\widehat{U}_{\mu} = Z(\widehat{\alpha}_{\mu}), \quad Z : \mathbb{R}^{n} \to \mathcal{X}, \ \widehat{\alpha} : \mathcal{P} \to \mathbb{R}^{n}$

Offline stage: (performed once) compute high-fidelity estimates of U, $\{U_{\mu^k}^{hf}\}_{k=1}^{n_{\text{train}}}$; determine the low-rank approximation $Z : \mathbb{R}^n \to \mathcal{X}$.

Online stage: (performed for any new $\mu' \in \mathcal{P}$) solve a reduced-order model (ROM) to estimate $\widehat{\alpha}_{\mu'}$; estimate the error $\|\widehat{U}_{\mu'} - U_{\mu'}\|$.

pMOR literature: Patera, Maday, Farhat, Quarteroni, Ohlberger,... *Recent review:* Handbook on MOR, De Gruyter, 2021.

Problem of interest: hyperbolic conservation laws

Goal: model reduction for hyperbolic systems of PDEs. In this talk, we consider:

• 1D shallow water equations over a bump with parametric inflow;

• 2D compressible Euler equations with varying freestream velocity over a parametric bump.

Major challenges

Application of pMOR to hyperbolic PDEs presents unique challenges.

- CFD simulations are expensive ⇒ ROMs need to be trained using few snapshots.
 small data pb
- 2. Linear approximations are inadequate for transport.
- 3. Mesh should be refined close to shocks; ROMs must be defined over a common mesh.

Devise a registration-based projection-based multi-fidelity MOR approach for parameterized conservation laws. Devise a registration-based projection-based multi-fidelity MOR approach for parameterized conservation laws.

Registration: given snapshots $\{U_{\mu^k}^{hf}\}_k$, seek a mapping $\Phi: \Omega \times \mathcal{P} \to \Omega$ to align moving structures in a reference configuration.

Projection-based MOR provides a rigorous framework to build the ROM for $\hat{\alpha}_{\mu}$.

- LSPG projection Carlberg et al., 2011
- Element-wise empirical quadrature Farhat et al., 2015; Yano, 2019.
- **Multi-fidelity training** offers a systematic framework to reduce offline costs.

- 1. Registration.
- 2. Projection-based model reduction.
- 3. Multi-fidelity training.
- 4. Numerical results.
 - Euler equations past a bump.
 - Shallow water equations.
- 5. Analysis: expressivity of nonlinear approximations.
- 6. Conclusions.

Registration

- Spectral (element) maps
- Optimization statement
- Parametric registration (Greedy+POD)

General plan

Task: given $\{U_{\mu^k}\}_{k=1}^{n_{\text{train}}}$, compute $\Phi : \Omega \times \mathcal{P} \to \mathbb{R}^d$. 1. Choose approximation $\mathcal{N} : \mathcal{A}_{\text{bj}} \subset \mathbb{R}^M \to \text{Lip}(\Omega; \mathbb{R}^d)$. Desiderata: high expressive power; easy to enforce bijectivity.

2. Compute $\Phi^k = \mathcal{N}(\mathbf{a}_{hf}^k)$ for $k = 1, 2, ..., n_{train}$. Solution to minimization pb.

3. Apply POD to obtain $\Phi^k \approx \mathcal{N}(\mathbf{Wa}^k)$, $\mathbf{a}^k \in \mathbb{R}^m, \ m \ll M$.

4. Use regression algorithm (e.g., RBF) to learn $\mu \in \mathcal{P} \mapsto \widehat{\mathbf{a}}_{\mu} \in \mathbb{R}^{m} \Rightarrow \Phi_{\mu} := \mathcal{N}(\mathbf{W}\widehat{\mathbf{a}}_{\mu}).$

Taddei, SISC 2020; Taddei, Zhang, M2AN, 2021. Taddei, Zhang, *submitted*, 2021.

Registration

• Spectral (element) maps

- Optimization statement
- Parametric registration (Greedy+POD)

Choice of $\mathcal N$ for $\Omega = (0,1)^2$: spectral maps

Thm: Consider $\Phi = id + \varphi$ where $\varphi \in C^1$, $\varphi \cdot n|_{\partial\Omega} = 0$. Then, Φ is bijective in Ω if $\inf_{x \in \Omega} g(x) = \det(\nabla \Phi(x)) > 0$.

Condition $\varphi \cdot \mathbf{n}\Big|_{\partial\Omega} = 0$ allows tangential displacements.

Choice of $\mathcal N$ for $\Omega=(0,1)^2$: spectral maps

Thm: Consider $\Phi = \mathrm{id} + \varphi$ where $\varphi \in C^1$, $\varphi \cdot n|_{\partial\Omega} = 0$. Then, Φ is bijective in Ω if $\inf_{x \in \Omega} g(x) = \det(\nabla \Phi(x)) > 0$. Choice of \mathcal{N} : set $\mathcal{N}(\mathbf{a}) = \mathrm{id} + \sum_{i=1}^{M} (\mathbf{a})_i \varphi_i$, where $\varphi_1, \ldots, \varphi_M$ are tensorized polynomials, $\varphi_i \cdot n \Big|_{\partial \Omega} = 0$. **Bijectivity:** define the admissible class of mappings $\mathcal{A}_{\mathrm{bj}} := \left\{ \mathbf{a} \in \mathbb{R}^M : \inf_{x \in \Omega} g(x; \mathbf{a}) = \det \left(\nabla \mathcal{N}(\mathbf{a}) \right) > 0 \right\}$ and the proxy $\mathcal{A}'_{bi} := \left\{ \mathbf{a} \in \mathbb{R}^M : C(\mathbf{a}) \leq \delta \right\}$ with $\mathcal{C}(\mathbf{a}) := \int_{O} \exp\left(\frac{\epsilon - g(x; \mathbf{a})}{C_{\mathrm{orp}}}\right) + \exp\left(\frac{g(x; \mathbf{a}) - 1/\epsilon}{C_{\mathrm{orp}}}\right) dx.$

Limitation of affine mappings for non-rectangular domains

Example: $\Omega = \mathcal{B}_{R=1}(0)$, consider bijections Φ_1 , Φ_2 and assume that $\Phi_1(x) \neq \Phi_2(x)$ at $x \in \partial \Omega$.

Then, $\Phi_t := t\Phi_1 + (1-t)\Phi_2$ is not a bijection in Ω for any $t \in (0, 1)$.

Special case: annular domains.

Taddei, Zhang, 2021.

Partitioned approach based on spectral element maps (I)

Introduce a partition of Ω , $\{\Omega_q\}_{q=1}^{N_{\rm dd}}$ such that Ω_q is isomorphic to $\widehat{\Omega} = (0, 1)^2$. Define mappings $\Psi_q : \widehat{\Omega} \to \Omega_q$ (e.g., Gordon-Hall maps), $q = 1, \ldots, N_{\rm dd}$.

 Φ should be (i) globally continuous, and (ii) locally bijective, $\Phi(\Omega_q) = \Omega_q$, $q = 1, ..., N_{dd}$.

• Local bijectivity is equivalent to bijectivity of Φ_q in $\widehat{\Omega}$. admissible class naturally defined.

• Implementation borrows several elements from classic isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.

• Parameterized geometries: Consider $\Psi_q : \widehat{\Omega} \times \mathcal{P} \to \mathbb{R}^2$, and define $\overline{\mu} \in \mathcal{P}$, $\Omega_q = \Omega_{q,\overline{\mu}}$. Then,

$$\mathcal{N}_{\mu}(\mathbf{a}) = \sum_{q=1}^{N_{\rm dd}} \Psi_{q,\mu} \circ \Phi_q(\mathbf{a}) \circ \Psi_{q,\bar{\mu}}^{-1} \mathbb{1}_{\Omega_q} : \Omega_{\bar{\mu}} \to \Omega_{\mu}.$$
$$\Psi_{1,\bar{\mu}}^{-1}, \dots, \Psi_{N_{\rm dd},\bar{\mu}}^{-1} \text{ can be precomputed offline.}$$

Registration

- Spectral (element) maps
- Optimization statement
- Parametric registration (Greedy+POD)

Define the mesh $\mathcal{T}_{hf} = (\{x_j^{hf}\}_j, T)$, with nodes $\{x_j^{hf}\}_j$ and connectivity matrix T, and the associated FE space \mathcal{X}_{hf} .

Given $w \in \mathcal{X}_{hf}$, denote by $w \in \mathbb{R}^N$ the associated vector representation.

Given $\Phi: \Omega \to \Omega$, define the mapped mesh $\Phi(\mathcal{T}_{hf}) = (\{\Phi(x_j^{hf})\}_j, T).$

Definition. Φ is \mathcal{T}_{hf} -bijective if the element mappings

$$\Psi^{\mathrm{hf}}_{k,\Phi}(x) = \sum_{i=1}^{n_{\mathrm{lp}}} \Phi(x^{\mathrm{hf}}_{i,k}) \hat{\phi}_i(x)$$

are invertible.

Informal statement

Given snapshots $\{U^k := U_{\mu^k}\}_k$ and the approximation $\mathcal{N} : \mathbb{R}^M \to \operatorname{Lip}(\Omega; \mathbb{R}^d)$, we seek $\mathbf{a}^k \in \mathbb{R}^M$ to minimize $\min_{\zeta \in \mathcal{Z}_n} \|U^k \circ \Phi^k - \zeta\|_{L^2(\Omega)}^2$ over all bijective maps.

Informal statement

Given snapshots $\{U^k := U_{\mu^k}\}_k$ and the approximation $\mathcal{N} : \mathbb{R}^M \to \operatorname{Lip}(\Omega; \mathbb{R}^d)$, we seek $\mathbf{a}^k \in \mathbb{R}^M$ to minimize $\min_{\zeta \in \mathcal{Z}_n} \|U^k \circ \Phi^k - \zeta\|_{L^2(\Omega)}^2$ over all bijective maps.

Challenges

• $\Phi^k(\mathcal{T}_{hf})$ should be a proper mesh of Ω .

• the choice of Z_n is inherently coupled with the problem of finding Φ . more on this later.

Optimization statement(II)

Given the target $U \in \mathcal{X}$, the space $\mathcal{Z}_n \subset \mathcal{X}$, and \mathcal{N} , we seek $\Phi = \mathcal{N}(\mathbf{a})$ to minimize $\left(\min_{\psi \in \mathcal{Z}_n} \| U \circ \Phi - \psi \|_{L^2(\Omega)}^2\right) + \xi \| \mathbf{A}_{\mathrm{stab}}^{1/2} \mathbf{a} \|_2^2 + \xi' \mathfrak{R}_{\mathrm{msh}}(\Phi),$ subject to $\mathcal{C}(\Phi) \leq 0$.

Optimization statement(II)

Given the target $U \in \mathcal{X}$, the space $\mathcal{Z}_n \subset \mathcal{X}$, and \mathcal{N} , we seek $\Phi = \mathcal{N}(\mathbf{a})$ to minimize $\left(\min_{\psi \in \mathcal{Z}_n} \| U \circ \Phi - \psi \|_{L^2(\Omega)}^2\right) + \xi \| \mathbf{A}_{\mathrm{stab}}^{1/2} \mathbf{a} \|_2^2 + \xi' \mathfrak{R}_{\mathrm{msh}}(\Phi),$ subject to $\mathcal{C}(\Phi) \leq 0$.

 $f(\Phi; u) := \min_{\psi \in \mathcal{Z}_n} \| U \circ \Phi - \psi \|_{L^2(\Omega)}^2 \quad \text{proximity measure}$ measures approximability of the target in the mapped domain.

 $\|\mathbf{A}_{\text{stab}}^{1/2}\mathbf{a}\|_{2} = \sum_{q} |\Phi_{q}|_{H^{2}(\widehat{\Omega})}^{2} \text{ is a regularization term to}$ bound gradient and Hessian of Φ (and thus ∇g).

Optimization statement(II)

Given the target $U \in \mathcal{X}$, the space $\mathcal{Z}_n \subset \mathcal{X}$, and \mathcal{N} , we seek $\Phi = \mathcal{N}(\mathbf{a})$ to minimize $\left(\min_{\psi \in \mathcal{Z}_n} \| U \circ \Phi - \psi \|_{L^2(\Omega)}^2\right) + \xi \| \mathbf{A}_{\mathrm{stab}}^{1/2} \mathbf{a} \|_2^2 + \xi' \mathfrak{R}_{\mathrm{msh}}(\Phi),$ subject to $\mathcal{C}(\Phi) \leq 0$.

Mesh distortion penalization: Zahr, Persson, 2018 $\Re_{\rm msh}(\Phi) = \sum_{k=1}^{N_{\rm e}} |D_k| \exp\left(\frac{\|\nabla \Psi_{k,\Phi}^{\rm hf}\|_{\rm F}^2}{|\det(\nabla \Psi_{k,\Phi}^{\rm hf})|} - \mathfrak{f}_{\rm msh,max}\right)$ enforces discrete bijectivity wrt $\mathcal{T}_{\rm hf}$.

Registration sensor

Pre-processing U improves performance and facilitates registration \Rightarrow

replace U with registration sensor $\mathfrak{s}(U) \in [L^2(\widehat{\Omega})]^{N_{\mathrm{dd}}}$.

 $\mathfrak{s}(U)$ should "highlight" moving features that are troubling for linear approximations. \leftrightarrow sensors for shock-capturing.

Registration sensor

Pre-processing U improves performance and facilitates registration \Rightarrow

replace U with registration sensor $\mathfrak{s}(U) \in [L^2(\widehat{\Omega})]^{N_{\mathrm{dd}}}$.

 $\mathfrak{s}(U)$ should "highlight" moving features that are troubling for linear approximations. \leftrightarrow sensors for shock-capturing.

Our choices: Shallow water eqs: $\mathfrak{s}(U) = h$.

Euler eqs: $\mathfrak{s}(U) = Ma$.

We define $\mathfrak{s}(U)$ over a structured mesh to speed up registration.

Registration sensor

Pre-processing U improves performance and facilitates registration \Rightarrow

replace U with registration sensor $\mathfrak{s}(U) \in [L^2(\widehat{\Omega})]^{N_{\mathrm{dd}}}$.

 $\mathfrak{s}(U)$ should "highlight" moving features that are troubling for linear approximations. \leftrightarrow sensors for shock-capturing.

Our choices: Shallow water eqs: $\mathfrak{s}(U) = h$.

Euler eqs: $\mathfrak{s}(U) = Ma$.

We define $\mathfrak{s}(U)$ over a structured mesh to speed up registration.

$$\mathfrak{f}(\Phi^{\star,k}; U) = \min_{\psi \in \mathcal{S}_n} \|\mathfrak{s}(U) \circ \Phi^{\star,k} - \psi\|_{L^2(\widehat{\Omega})}^2,$$
$$\mathcal{S}_n = \text{template space}$$

Registration

- Spectral (element) maps
- Optimization statement
- Parametric registration (Greedy+POD)

Parametric registration $\{\Phi^{\star,k}\}_k \leftarrow \{U^k\}_k, \mathcal{S}_{n_0}, \mathcal{N}$

1. Set
$$S_{n=n_0} = S_{n_0}$$
, $W_m = \mathbb{1}_M$.
For $n = n_0, \dots, n_{\max} - 1$
2. $[\mathbf{a}^{\star,k}, \mathfrak{f}_{n,m}^{\star,k}] = \text{registration} \left(U^k, S_n, \mathcal{N}(\mathbf{W}_m \bullet)\right)$
 $k = 1, \dots, n_{\text{train}}$.
3. $[\mathbf{W}_m, \{\mathbf{a}^k\}_k] = \text{POD} \left(\{\mathbf{a}^{\star,k}\}_{k=1}^{n_{\text{train}}}, tol_{\text{pod}}, (\cdot, \cdot)_{\star}\right)$
if $\max_k \mathfrak{f}_{n,m}^{\star,k} < \text{tol}$, break
else
4. $S_{n+1} = S_n \cup \text{span} \{\mathfrak{s}(U_{\mu^{k^\star}}) \circ \Phi^{\star,k^\star}\}$
 $k^\star = \arg \max_k \mathfrak{f}_{n,m}^{\star,k}$
EndIf

EndFor

$$\mathfrak{f}_{n,m}^{\star,k} = \mathfrak{f}(\Phi^{\star,k}; u^k) := \min_{\psi \in \mathcal{S}_n} \|\mathfrak{s}(U^k) \circ \Phi^{\star,k} - \psi\|_{L^2(\widehat{\Omega})}^2$$

Parametric registration: remarks

• The Greedy procedure iteratively constructs the space S_n and the mappings $\{\Phi\}_k$.

If $\mathcal{N} = id$ (no registration) \Rightarrow Strong Greedy.

• The algorithm is applied to the sensor $s(U) \Rightarrow$ it cannot be employed to build the reduced space for U.

• POD reduction inside the for loop preserves the structure of the map, $\mathcal{N}(\mathbf{a}) = \sum_{q=1}^{N_{\rm dd}} \Psi_q \circ \Phi_q \circ \Psi_q^{-1} \mathbb{1}_{\Omega_q}, \ \ \Phi_q = \mathrm{id} + W_M^q \mathbf{a}$

reduces dramatically the cost of subsequent iterations.

Projection-based model order reduction

Lagrangian (or registration-based) methods for pMOR

Lagrangian methods approximate the solution U_{μ} as:

$$U_{\mu}pprox \sum_{i=1}^n \left(\widehat{oldsymbol{lpha}}_{\mu}
ight)_i \zeta_i \circ \Phi_{\mu}^{-1}.$$

In FE/FV framework, this translates to

$$\mu \in \mathcal{P} \mapsto \left(\Phi_{\mu}(\mathcal{T}_{\mathrm{hf}}), \; \widehat{\mathsf{U}}_{\mu} = \mathsf{Z} \widehat{oldsymbol{lpha}}_{\mu}
ight)$$

Lagrangian (or registration-based) methods for pMOR

Lagrangian methods approximate the solution U_{μ} as:

$$U_{\mu} pprox \sum_{i=1}^{n} \left(\widehat{oldsymbol{lpha}}_{\mu}
ight)_{i} \zeta_{i} \circ \Phi_{\mu}^{-1}.$$

In FE/FV framework, this translates to

$$\mu \in \mathcal{P} \mapsto \left(\Phi_{\mu}(\mathcal{T}_{\mathrm{hf}}), \; \widehat{\mathsf{U}}_{\mu} = \mathsf{Z} \widehat{oldsymbol{lpha}}_{\mu}
ight)$$

If $\Phi : \Omega \times \mathcal{P} \to \Omega$ is given, Lagrangian methods correspond to *linear methods in parameterized domains*: well-understood problem;

simple to implement in FE/FV framework.

Treatment of parameterized geometries

Two paradigms (cf. Taddei, Zhang, Arxiv, 2020):

- Map-then-discretize (MtD): mesh fixed; PDE modified;
- Discretize-then-map (DtM): mesh modified; PDE fixed.

Example: Laplace: $-\Delta U = 0$, $U|_{\partial \Phi_{\mu}(\Omega)} = g$.

Define the residual $R^{eq}_{\mu}(u, v) = \sum_{k=1}^{\infty} \rho^{eq}_k r^k_{\mu}(u, v).$

MtD: $r_{\mu}^{k}(u, v) = \int_{\mathbb{D}_{k}} \det(\nabla \Phi_{\mu}) \nabla \Phi_{\mu}^{-1} \nabla \Phi_{\mu}^{-T} \nabla u \cdot \nabla v \, dx.$ DtM: $r_{\mu}^{k}(u, v) = \int_{\Phi_{\mu}(\mathbb{D}_{k})} \nabla u \cdot \nabla v \, dx.$

DtM allows to reuse element-wise assembling routines for residual evaluation \Rightarrow easier to implement.

Refs (DtM): Washabaugh et al. 2016; Dal Santo, Manzoni 2019.
Projection scheme: LSPG+EQ

Introduce reduced-order bases $Z \in \mathbb{R}^{N,n}$, $Y \in \mathbb{R}^{N,j_{es}}$. Define the weighted residual $R^{eq}_{\mu}(u,v) = \sum_{k=1}^{N_e} \rho^{eq}_k r^k_{\mu}(u,v)$. EQ LSPG ROM: find $\widehat{\mathbf{U}}_{\mu} \in \operatorname*{arg\ min}_{\boldsymbol{\zeta} \in \operatorname{col}(\mathbf{Z})} \sup_{\boldsymbol{\eta} \in \operatorname{col}(\mathbf{Y})} \frac{R^{eq}_{\mu}(\boldsymbol{\zeta},\boldsymbol{\eta})}{\|\boldsymbol{\eta}\|_{\mathcal{Y}}}$.

Projection scheme: LSPG+EQ

Introduce reduced-order bases $\mathbf{Z} \in \mathbb{R}^{N,n}$, $\mathbf{Y} \in \mathbb{R}^{N,j_{es}}$. Define the weighted residual $R^{eq}_{\mu}(u, v) = \sum_{k=1}^{N_e} \rho^{eq}_k r^k_{\mu}(u, v)$. EQ LSPG ROM: find $\widehat{\mathbf{U}}_{\mu} \in \arg\min_{\boldsymbol{\zeta} \in \operatorname{col}(\mathbf{Z})} \sup_{\boldsymbol{\eta} \in \operatorname{col}(\mathbf{Y})} \frac{R^{eq}_{\mu}(\boldsymbol{\zeta}, \boldsymbol{\eta})}{\|\boldsymbol{\eta}\|_{\mathcal{V}}}$.

Implementation requires to address several points.

- Choice of trial ROB Z.
- Choice of test ROB \mathbf{Y} and the norm $\|\cdot\|_{\mathcal{Y}}$.
- Choice of the EQ weights $ho^{
 m eq}$.

Taddei, Zhang, A discretize-then-map approach for the treatment of parameterized geometries in model order reduction, Arxiv, 2020.

Multifidelity training: offline-online decomposition

Registration

- addresses mesh adaptation and data compression;
- highly nonlinear;
- relies on regression for generalization
 - \Rightarrow needs extensive parameter explorations, $n_{
 m train} \gg 1$

Projection-based MOR (EQ LSPG)

- robust for small training sets;
- relies on linear approximations;

 \Rightarrow inadequate for advection-dominated pbs;

• does not address mesh issues.

Registration

- addresses mesh adaptation and data compression;
- highly nonlinear;
- relies on regression for generalization
 - \Rightarrow needs extensive parameter explorations, $n_{
 m train} \gg 1$

Projection-based MOR (EQ LSPG)

- robust for small training sets;
- relies on linear approximations;

 \Rightarrow inadequate for advection-dominated pbs;

• does not address mesh issues.

Proposal: use "low-fidelity" snapshots for registration and "high-fidelity" snapshots for ROM generation.

Offline stage

- 1. Generate coarse snapshots $\{U_{\mu^k}\}_k$.
- 2. Generate a refined FE grid $\mathcal{T}_{\rm hf}$.
- **3**. Φ = registration ({ U_{μ^k} }, \mathcal{T}_{hf}).
- 4. Linear MOR: build the reduced basis Z and the ROM for $\mu \mapsto \widehat{\alpha}_{\mu}$. Greedy sampling.
- **Online stage** (for any $\mu \in \mathcal{P}$)

5. Find $\widehat{\alpha}_{\mu}$ using ROM, return $\left(\Phi_{\mu}(\mathcal{T}_{\mathrm{hf}}), \ \widehat{\mathbf{U}}_{\mu} = \mathbf{Z}\widehat{\alpha}_{\mu}\right)$.

Numerical results

- Euler equations (with A Ferrero)
- Shallow water equations (with C Goeury, A Ponçot)

Numerical results

- Euler equations (with A Ferrero)
- Shallow water equations (with C Goeury, A Ponçot)

Compressible inviscid supersonic flow past a bump

Consider $\mu = [\alpha, Ma_{\infty}] \in \mathcal{P} = [0.75, 0.8] \times [1.7, 1.8].$

Compressible inviscid supersonic flow past a bump

Consider $\mu = [\alpha, Ma_{\infty}] \in \mathcal{P} = [0.75, 0.8] \times [1.7, 1.8].$

Behavior of Mach number $Ma = \frac{\|u\|_2}{c}$ for $\mu = [0.75, 1.7]$.

Compressible inviscid supersonic flow past a bump

Consider $\mu = [\alpha, Ma_{\infty}] \in \mathcal{P} = [0.75, 0.8] \times [1.7, 1.8].$

Behavior of Mach number $Ma = \frac{\|u\|_2}{c}$ for $\mu = [0.8, 1.8]$.

Consider $n_{\text{train}} = 11^2$ snapshots for training and $n_{\text{test}} = 10$ snapshots for testing.

We measure performance using

$$egin{aligned} \mathcal{E}_{\mathrm{avg}} := rac{1}{m{n}_{\mathrm{test}}} \sum_{\mu \in \mathcal{P}_{\mathrm{test}}} & rac{\|m{U}_{\mu}^{\mathrm{hf}} - \widehat{m{U}}_{\mu}^{\mathrm{hf}}\|_{L^2(\Omega_{\mu})}}{\|m{U}_{\mu}^{\mathrm{hf}}\|_{L^2(\Omega\Omega_{\mu})}} \end{aligned}$$

We rely on a P2 DG discretization with $N_{\rm e}=8204$, N=197,856 dofs.

We consider a dilation-based artificial viscosity. cf. Nicoud, Ducros, 1999; Ye, Hesthaven, 2020.

Test 1: projection and LSPG errors (POD)

Construction of Z based on POD, $n_{\text{train}} = 121$.

Test 1: projection and LSPG errors (Greedy)

	Linear	Lagrangian
Projection error $(n = 10)$	$2.0 \cdot 10^{-3}$	$0.25 \cdot 10^{-3}$
LSPG error $(n = 10)$	$6.8 \cdot 10^{-3}$	$0.34 \cdot 10^{-3}$

Construction of Z based on weak Greedy.

Test 2: multifidelity training

Coarse: $N_e = 8204$, N = 197856. Fine: $N_e = 16752$, N = 402048

based on $U_{\bar{\mu}}$

Test 2: LSPG error

Registration based on coarse simulations leads to accurate ROMs for small n.

Test 2: mesh adaptation

Plot: Mesh density $h(x) = \sum_{k} \sqrt{|D_{k,\Phi}|} \mathbb{1}_{D_{k,\Phi}}$ vs Mach contour lines.

Registration + mesh refinement lead to accurate meshes for all parameters r+h adaptivity.

Test 2: mesh adaptation

Plot: Mesh density $h(x) = \sum_{k} \sqrt{|D_{k,\Phi}|} \mathbb{1}_{D_{k,\Phi}}$ vs Mach contour lines.

Registration + mesh refinement lead to accurate meshes for all parameters r+h adaptivity.

Numerical results

- Euler equations (with A Ferrero)
- Shallow water equations (with C Goeury, A Ponçot)

Problem statement

Consider the problem: find $U = [h, q]^T$ such that $\begin{cases} \partial_t U + \partial_x f(U) = -gh\partial_x be_2, \quad (x, t) \in \Omega \\ q(0, t) = q_{\mathrm{in},\mu}(t), \quad h(L, t) = 2, \quad U(x, 0) = U_0(x), \end{cases}$ with $f(U) = [q, \frac{q^2}{h} + \frac{g}{2}h^2]^T$, $b(x) = -0.2 + e^{-0.125(x-10)^4}$, $\Omega = (0, L) \times (0, T)$, and $q_{\mathrm{in},\mu}(t) = q_0 \left(1 + \mu_1 t e^{-\frac{1}{2\mu_2^2}(t-0.05)^2}\right), \quad q_0 = 4.4,$ U_0 is the steady-state solution obtained for $q_{\text{in},\mu} \equiv q_0$. $\mu = [\mu_1, \mu_2] \in \mathcal{P} = [2, 8] \times [0.1, 0.2].$

Problem statement

Consider the problem: find $U = [h, q]^T$ such that $\begin{cases} \partial_t U + \partial_x f(U) = -gh\partial_x be_2, \quad (x, t) \in \Omega \\ q(0, t) = q_{\mathrm{in},\mu}(t), \quad h(L, t) = 2, \quad U(x, 0) = U_0(x), \end{cases}$ with $f(U) = [q, \frac{q^2}{h} + \frac{g}{2}h^2]^T$, $b(x) = -0.2 + e^{-0.125(x-10)^4}$, $\Omega = (0, L) \times (0, T)$, and $q_{\mathrm{in},\mu}(t) = q_0 \left(1 + \mu_1 t e^{-\frac{1}{2\mu_2^2}(t-0.05)^2}\right), \quad q_0 = 4.4,$

 U_0 is the steady-state solution obtained for $q_{\text{in},\mu} \equiv q_0$. $\mu = [\mu_1, \mu_2] \in \mathcal{P} = [2, 8] \times [0.1, 0.2].$

The problem shares relevant features with **dam-break studies** with non-constant bathymetry.

Behavior of the free surface z = h + b

We consider a **space-time** variational formulation: $\nabla \cdot F(U) = S(U)$ in Ω where $\nabla = [\partial_x, \partial_t]$, F(U) = [f(U), U].

Schwab, Stevenson, 2009; Urban, Patera, 2012.

We consider a **space-time** variational formulation:

 $\nabla \cdot F(U) = S(U)$ in Ω

where $\nabla = [\partial_x, \partial_t]$, F(U) = [f(U), U].

Space-time formulation is motivated by **approximation considerations**:

space-only registration does not deal effectively with shock interactions. cf. Taddei, Zhang, M2AN, 2021.

Space-time formulation also shows superior stability and allows sharper error bounds.

Schwab, Stevenson, 2009; Urban, Patera, 2012.

Two-fidelity sampling

We build the sensors $\{s_k\}_k$ for registration using a **time-marching RKDG** solver.

We consider an adapted space-time mesh with $N_{\rm e}=2314$.

Linear method (projection N = 5)

Details: $n_{\text{train}} = 100$, POD data compression.

Lagrangian (registration +EQ-LSPG, N = 5)

Details: $n_{\text{train}} = 100$, POD data compression.

Performance of the ROM: projection and LSPG errors

Registration offers remarkable improvements compared to linear methods.

EQ-LSPG is able to find nearly-optimal coefficients for $n_{\text{test}} = 10$ out-of-sample configurations.

Analysis: expressivity of nonlinear approximations

Nonlinear approaches to model reduction (I)

- We can distinguish between four classes of methods.
- 1. Adaptive partitioning of \mathcal{P} . Eftang et al., SISC, 2010.
- 2. Online basis refinement. Carlberg, IJNME, 2015; Peherstorfer, SISC, 2020;
- Reformulation of the problem and/or of the ROB. Amsallem, Farhat, AIAA, 2008; Gerbeau, Lombardi, JCP, 2014; Ohlberger, Rave, CR Math., 2013; this talk.
- 4. Fully-nonlinear approximations.

Lee, Carlberg, JCP, 2020; Kim et al, Arxiv 2020;

Ehrlacher et al, M2AN, 2020; Mojgani, Balajewicz, AIAA, 2017.

Approaches in 4. do not involve projection of a (modified) problem on a linear subspace.

Nonlinear approaches to model reduction (II)

All MOR approaches introduce an **approximation class** C where they seek the low-rank operator $Z : \mathbb{R}^q \to \mathcal{X}$.

Relevant examples: linear C_n^{lin} ; Lagrangian $C_{n,m}^{\text{lag}}$; convolutional $C_{n,\ell}^{\text{co}}$.

$$egin{split} \mathcal{C}_n^{ ext{lin}} &:= \left\{ ext{Z}: ext{Z}oldsymbollpha = \sum_{i=1}^n (oldsymbollpha)_i \zeta_i
ight\} \ \mathcal{C}_{n,m}^{ ext{lag}} &:= \left\{ ext{Z}: ext{Z}(oldsymbollpha, oldsymbol a) = \sum_{i=1}^n (oldsymbollpha)_i \zeta_i \circ \Phi(oldsymbol a)^{-1}
ight\} \ \mathcal{C}_{n,\ell}^{ ext{co}} &:= \left\{ ext{Z}: ext{Z}(oldsymbollpha_1, ..., oldsymbollpha_\ell) = ext{N}_\ell \left(ext{N}_{\ell-1} \left(\cdot, oldsymbollpha_{\ell-1} \right), oldsymbollpha_\ell
ight)
ight\} \end{split}$$

Missing: transported/transformed methods (Welper, Reiss,...)

Choice of \mathcal{C} : expressivity and learnability

Approximation class *C* should be chosen based on **expressivity**: measured in terms of the Kolmogorov width

$$\mathfrak{d}(\mathcal{M}; \mathcal{C}; \|\cdot\|) := \inf_{Z \in \mathcal{C}} \sup_{w \in \mathcal{M}} \inf_{eta \in \mathbb{R}^q} \|Z(eta) - w\|;$$

learnability: measured in terms of performance of training algorithms to identify $Z \in C$, performance of ROMs to compute $\hat{\beta}_{\mu}$.

Choice of \mathcal{C} : expressivity and learnability

Approximation class *C* should be chosen based on **expressivity**: measured in terms of the Kolmogorov width

$$\mathfrak{d}(\mathcal{M}; \mathcal{C}; \|\cdot\|) := \inf_{Z \in \mathcal{C}} \sup_{w \in \mathcal{M}} \inf_{eta \in \mathbb{R}^q} \|Z(eta) - w\|;$$

learnability: measured in terms of performance of training algorithms to identify $Z \in C$, performance of ROMs to compute $\hat{\beta}_{\mu}$.

Open problems in MOR: estimate $\mathfrak{d}(\mathcal{M}; \mathcal{C}; \|\cdot\|)$; estimate performance of learning methods for given \mathcal{C} .

Analysis of linear and nonlinear methods

Most analysis is restricted to linear methods.

- Estimates of ∂(M; C^{lin}_n; || · ||). Cohen, DeVore, IMA J. Numer. Anal., 2016.
- Performance of Greedy methods.

Binev et al., SINUM, 2011.

Several counter-examples show poor performance of linear methods for advection-dominated problems. Ohlberger, Rave, Arxiv, 2015.

The analysis for nonlinear approximations is extremely limited.

• Estimates for convolutational approximations.

Rim et al., Arxiv, 2020.

A working example (Taddei, SISC, 2020)

Define $u: (0,1)^2 \times \mathcal{P} \to \{0,1\}$ s.t. $u_{\mu}(x) = \mathbb{1}_{f_{\mu}(x_1) < x_2}(x)$. Assume $f_{\mu}([0,1]) \subset [\delta, 1-\delta]$ for all $\mu \in \mathcal{P}$. Define

Conclusions and perspectives
Summary

- We propose a general registration procedure for parameterized PDEs. independent of the PDE model.
- We integrate registration into the offline/online paradigm.
- We apply the approach to two hyperbolic systems of PDEs to show the potential of the method.

Summary

- We propose a <u>general</u> registration procedure for parameterized PDEs. independent of the PDE model.
- We integrate registration into the offline/online paradigm.
- We apply the approach to two hyperbolic systems of PDEs to show the potential of the method.

Ongoing work

- Adaptive multi-fidelity training.
- Mathematical analysis: when is registration worth?

Thank you for your attention!

For more information, visit the website:

math.u-bordeaux.fr/~ttaddei/ .

Backup slides

• More results on Euler

Backup slides

• More results on Euler

Empirical quadrature (test 1; POD training)

Comparison between dual residual and relative error

We consider $\mathcal{Y} = H^1(\Omega)$. Results are associated with the iterations of the weak-Greedy algorithm on training set. Dual residual evaluation is inexpensive compared to the other steps of the offline stage. \Rightarrow no hyper-reduction.

Construction of the test space

POD-based construction of the empirical test space: 1. Find Riesz elements $(\boldsymbol{\psi}_{k,i}, \mathbf{v})_{\mathcal{Y}} = DR_{\mu^k}^{\text{hf}}[\mathbf{U}_{\mu^k}^{\text{hf}}](\boldsymbol{\zeta}_i, \mathbf{v}),$ $\forall \mathbf{v} \in \mathbb{R}^N, i = 1, ..., n, k = 1, ..., n_{\text{train}}$

2. $\mathbf{Y} = \text{POD}\left(\{\boldsymbol{\psi}_{k,i}\}_{k,i}, \textit{tol}_{\text{test}}, \|\cdot\|_{\mathcal{Y}}\right), \textit{tol}_{\text{test}} = 10^{-3}.$

The empirical quadrature procedure weakly depends on the size of the mesh \Rightarrow larger speedup for large $N_{\rm e}$.

