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AN ADAPTIVE PARAMETRIZED-BACKGROUND DATA-WEAK APPROACH

TO VARIATIONAL DATA ASSIMILATION
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Abstract. We present an Adaptive Parametrized-Background Data-Weak (APBDW) approach to the
steady-state variational data assimilation (state estimation) problem for systems modeled by partial
differential equations. The variational formulation is based on the Tikhonov regularization of the
PBDW formulation [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-
965] for pointwise noisy measurements. We propose an adaptive procedure based on a posteriori
estimates of the L2 state-estimation error to improve performance. We also present a priori estimates
for the L2 state-estimation error that motivate the approach and guide the adaptive procedure. We
provide numerical experiments for a synthetic acoustic problem to illustrate the different elements of
the methodology, and we consider an experimental thermal patch configuration to demonstrate the
applicability of our approach to real physical systems.

Résumé. Nous présentons une méthode variationelle d’assimilation de données pour des systèmes
modélisés par des équations aux dérivées partielles, nommément ”Adaptive-Parameterized-Background
Data-Weak” (APBDW). Cette approche est fondée sur la régularisation Tychonoff de la formulation
PBDW [Y Maday, AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965], et consiste en
une procédure adaptative pour considérer le bruit expérimental. Des estimations a priori et a posteriori
de l’état L2 (estimation d’erreur) motivent l’approche et servent de guide la procédure adaptative.
Nous présentons des résultats numériques pour deux problémes de modéle synthétique pour illustrer
les éléments de la méthodologie. Nous considérons aussi une configuration expérimentale de patch
thermique pour montrer que notre approche est applicable dans le cadre de systèmes physiques.
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1. Introduction

Data assimilation refers to the estimation of the state utrue of a physical system over the domain of interest
Ω ⊂ Rd by combining experimental data with a mathematical model of the dynamics of the system. For real-
time and in situ applications, data assimilation techniques should provide an estimate of the state rapidly with
little or no communication with extensive offline resources. Furthermore, for safety reasons, it is key to certify
the reliability of our estimate using either probabilistic (i.e., confidence intervals) or deterministic (i.e., error
bounds) approaches.
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The goal of this work is to develop a variational data assimilation procedure that combines a parameterized
best-knowledge (bk) mathematical model and experimental data to rapidly obtain a reliable estimate of the state
utrue ∈ U over Ω. In this work, we shall focus on steady-state data assimilation. We denote by {ym}Mm=1 the set
of experimental measurements, and we denote by ubk(µ) ∈ U the solution to our parameterized bk mathematical
model for the parameter value µ ∈ Pbk, Gbk,µ(ubk(µ)) = 0. Here, the space U = U(Ω) is a suitable Hilbert
space defined over Ω, Gbk,µ(·) denotes the parameterized bk mathematical model, and Pbk ⊂ RP reflects the
uncertainty in the value of the parameters associated with the model. Since experimental apparatuses are
typically affected by errors, measurements are in general of the form ym = `om(utrue) + εm, where `om : U → R is
a known functional and εm reflects the observational noise. On the other hand, the uncertainty in the parameters
of the model leads to the definition of the bk manifold Mbk := {ubk(µ) : µ ∈ Pbk} ⊂ U , which collects the
solution to the parameterized bk model for all values of the parameter in Pbk.

In [36,37], Maday et al. introduced the so-called Parameterized-Background Data-Weak (PBDW) approach.
The key idea of the PBDW formulation is to seek an approximation u? = z?+η? to the true field utrue employing
projection-by-data. The first contribution to u?, z? ∈ ZN , is the “deduced background estimate.” The linear
N -dimensional space ZN ⊂ U is informed by the bk manifold Mbk, which we hope is close to the true field.
The second contribution to u?, η? ∈ UM , is the “update estimate”. The linear M -dimensional space UM is the
span of the Riesz representations of the M observation functionals {`om}Mm=1. The pair (z?, η?) ∈ ZN × UM is
then computed by searching for η? of minimum norm subject to the observation constraints `om(z? + η?) = ym
for m = 1, . . . ,M . While the background estimate incorporates our a priori knowledge of the state, the update
addresses the deficiencies of the bk model by improving the approximation properties of the search space.

As discussed in the original papers, PBDW provides some new contributions. First, the variational for-
mulation facilitates the construction of a priori error estimates, which might guide the optimal choice of the
experimental observations. Second, the background space ZN accommodates anticipated uncertainty associated
with the parameters of the model; the construction of ZN based onMbk relies on the application of parametric
Model Order Reduction (pMOR) techniques. Third, unlike standard least-squares methods, PBDW provides
a mechanism — the update η? — to correct the deficiencies of the bk model. Finally, projection-by-data, as
opposed to projection-by-model, implies that the parameterized model is not directly used during the data as-
similation procedure. This feature significantly simplifies the computational procedure and guarantees real-time
responses.

We observe that several of these ingredients have appeared in different contexts. The variational formulation
is built upon least-squares ( [25, 30]); the correction of unmodeled physics through Riesz representation of
observation functionals is first introduced in the work by Bennett ([2,3]). On the other hand, the bk background
space ZN , as opposed to a background singleton element in the original 3D-VAR ([32, 33]), is found in the
context of gappy Proper Orthogonal Decomposition ( [17, 59]), Generalized Empirical Interpolation Method
(GEIM, [34,35]), and nearfield acoustical holography (NAH, [10,60]). Finally, the use of model order reduction
techniques within the context of data assimilation is found in the already-mentioned gappy-POD and GEIM,
and in a number of recent papers in the context of 4D-VAR ([9,14,49,50,54,62]).

In this paper, we present an adaptive Parameterized-Background Data-Weak (APBDW) approach that ex-
tends the original PBDW formulation to the case of pointwise noisy measurements; `om := δxm for some xm ∈ Ω,
m = 1, . . . ,M . Our approach is based on the Tikhonov regularization of the PBDW formulation; to explain
the connection with other data assimilation formulations, we derive APBDW from the 3D-VAR minimization
statement, and the partial-spline model ([56, Chapter 9]). The extension to pointwise measurements is based on
the theory of Reproducing Kernel Hilbert Spaces (RKHS, [1]) and exploits the connection with kernel methods
for regression ([42,53]).

We rely on an adaptive procedure for the selection of the hyper-parameters associated with the Tikhonov
penalization term, and with the characteristic length-scale of the kernel. The adaptive procedure chooses the
hyper-parameters that minimize an estimate of the L2 state-estimation error on a validation dataset. The
adaptive procedure employed in this work is based on holdout validation (see, e.g., [21, Chapter 7] and [27]),
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and relies on the Monte Carlo a posteriori error estimation procedure discussed in [51]. Adaptation allows us
to properly weight the trust in the best-knowledge model.

We further present a complete a priori analysis for the L2(Ω) state-estimation error in presence of noise. We
both consider the case of homoscedastic random noise and the case of systematic noise. This analysis motivates
the approach from a theoretical standpoint, and guides the adaptive procedure. We anticipate that our result
for systematic noise can be seen as a generalization of the a priori result proved in [28].

The theory of RKHS allows us to consider spaces U for which the Riesz representers {Kxm}m associated
with the observation functionals {δxm}m are explicitly known. We demonstrate that explicit expressions for the
representers greatly improve the flexibility of the approach; in addition, we find much faster convergence with
respect to the number of measurements M than in the approach presented in [36, 37]. We here remark that
pointwise measurements represent a convenient idealization. We have indeed that physical transducers estimate
averages over a finite spatial region. However, if the radius of the region is sufficiently small compared to the
characteristic length-scale of the field of interest, we can replace local averages with pointwise observations.

The outline of the paper is as follows. In section 2, we present the formulation and the well-posedness
analysis. We further relate our formulation to a number of other methods proposed in the data assimilation and
statistical learning literature. In section 3, we present a priori and a posteriori estimates for the L2(Ω) state-
estimation error. In section 4, we exploit the error analysis to design an adaptive procedure for the selection of
the parameters. In section 5, we present numerical results for a synthetic acoustic problem. Finally, in section
6, we present the results for a physical thermal patch configuration.

2. Formulation

2.1. Preliminaries

By way of preliminaries, we introduce notation used throughout the paper. Given the Lipschitz domain
Ω ⊂ Rd, we introduce the space of continuous functions over Ω, C(Ω). Then, we introduce the Hilbert space U
such that U ⊂ C(Ω); we endow U with the inner product (·, ·) and the induced norm ‖ · ‖ =

√
(·, ·). For any

closed linear subspace Q ⊂ U , we denote by ΠQ : U → Q the orthogonal projection operator onto Q, and we
denote by Q⊥ its orthogonal complement. Given x ∈ Ω, we denote by Kx ∈ U the Riesz element associated
to the corresponding point evaluation functional, (Kx, f) = f(x) for all f ∈ U , and we introduce the function
K : Ω× Ω→ R such that K(x, y) = (Kx,Ky) for all x, y ∈ Ω.

Given a random variable X, we denote by E[X] and by V[X] the mean and the variance, where E denotes
expectation. We denote by X ∼ N (m,σ2) a Gaussian random variable with mean m and variance σ2. Similarly,
we denote byX ∼ Uniform(Ω) an uniform random variable over Ω. Furthermore, we refer to an arbitrary random
variable ε such that E[ε] = 0 and V[ε] = σ2 using the notation ε ∼ (0, σ2).

2.2. Problem statement

We aim to estimate the deterministic state utrue ∈ U over the domain of interest Ω ⊂ Rd. We shall afford
ourselves two sources of information: a best-knowledge (bk) mathematical model

Gbk,µ(ubk(µ)) = 0, (1)

where µ ∈ Pbk ⊂ RP indicates a set of uncertain parameters associated with the model; and M experimental
observations YM = {y1, . . . , yM} associated to the M distinct observation centers XM = {x1, . . . , xM} ⊂ Ω

ym = utrue(xm) + εm, m = 1, . . . ,M. (2)

Here, Pbk ⊂ RP is a confidence region for the true values of the parameters of the model, while {εm}Mm=1

are unknown disturbances caused by either systematic error in the data acquisition system or experimental
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random noise. For purposes of exposition, we introduce the dataset DM = {(xm, ym)}Mm=1 associated with the
experimental observations (2), and the bk manifold Mbk = {ubk(µ) : µ ∈ Pbk} associated with (1).

If Pbk = {µ̄}, we propose to estimate the state utrue as follows:

u?ξ := arg min
u∈U

ξ‖u− ubk(µ̄)‖2 + VM (u), (3a)

where

VM (u) =
1

M

M∑
m=1

(u(xm)− ym)
2
. (3b)

The first term penalizes the distance of the state estimate from the background, while the second term penalizes
data misfit; here, the parameter ξ > 0 regulates the relative importance of the background ubk(µ̄) compared to
the data. We observe that if ε1, . . . , εM are independent identically distributed random disturbances such that
E[εm] = 0, E[εmεm′ ] = σ2δm,m′ then (3) corresponds to the 3D-VAR statement ([4, Chapter 2], [33]).

If we consider Pbk 6= {µ̄}, we can generalize (3) as follows:

(µ?ξ , u
?
ξ) := arg min

(µ,u)∈Pbk×U
ξ‖u− ubk(µ)‖2 + VM (u) (4)

Formulation (4) is known as partial spline model ([56, Chapter 9]), and can also be restated in terms of the
update η?ξ = u?ξ − ubk(µ?ξ):

(µ?ξ , η
?
ξ ) := arg min

(µ,η)∈Pbk×U
ξ‖η‖2 + VM (ubk(µ) + η). (5)

We observe that (4) (and equivalently (5)) is non-convex in µ; furthermore, evaluations of the map µ 7→ ubk(µ)
involve the solution to the bk model. Therefore, it is not suitable for real-time computations. We remark that
statement (4) is not the only possible variational formulation that incorporates parametric uncertainty in the
model. Here, the bk model enters in the objective function, in other approaches the model is employed as
constraint for the minimization of VM ; in the latter class of methods, the parameter ξ can be interpreted as a
Lagrangian multiplier, and enters directly into the minimization statement. We refer to [40] for a representative
example of the second class of approaches for cardiovascular applications.

If we introduce the rank-N approximation ([13]) of the bk field ubk(µ), ubk
N (x, µ) =

∑N
n=1 φn(µ) ζn(x), for

x ∈ Ω and µ ∈ Pbk, we can approximate statement (5) as

(µ?ξ , η
?
ξ ) := arg min

(µ,η)∈Pbk×U
ξ‖η‖2 + VM

(
N∑
n=1

φn(µ)ζn + η

)
(6)

Then, we can relax (6) as (φ?ξ , η
?
ξ ) = arg min(φ,η)∈RN×U ξ‖η‖2 + VM

(∑N
n=1 φn ζn + η

)
, which can also be

rewritten as
(z?ξ , η

?
ξ ) := arg inf

(z,η)∈ZN×U
Jξ(z, η) := ξ‖η‖2 + VM (z + η), (7)

where ZN = span{ζn}Nn=1 ⊂ U is the N -dimensional linear space induced by {ζn}Nn=1. We further denote by
u?ξ = z?ξ + η?ξ the corresponding state estimate.

Statement (7) is the Adaptive Parametrized-Background Data-Weak (APBDW) formulation, and u?ξ = z?ξ+η?ξ
is the APBDW state estimate. We observe that APBDW is a (convex) relaxation of the partial spline model for
a parametric affine background: instead of penalizing the distance between the state estimate and the manifold
Mbk = {ubk(µ) : µ ∈ Pbk}, we penalize the distance from the linear space ZN . Our derivation allows us
to interpret z?ξ as the deduced background : z?ξ is the component of the state informed by the prior knowledge
of the system, and represents anticipated uncertainty in the mathematical model. Similarly, we can interpret
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η?ξ as the update, the component of the state that accommodates unanticipated or non-parametric uncertainty.
Consistently, we refer to ZN as the background space. Finally, we observe that the parameter ξ should be chosen
based on the accuracy of the background space — hence on the accuracy of the bk mathematical model — and
on the magnitude of the disturbances ε1, . . . , εM . In section 4, we propose an adaptive strategy to select ξ.

2.3. Well-posedness analysis

Given the background space ZN ⊂ U , and the observation centers XM = {xm}Mm=1, we introduce the update
space UM as

UM = span{Kxm}Mm=1, (8)

and the stability constant βN,M as

βN,M := inf
z∈ZN

sup
q∈UM

(z, q)

‖z‖‖q‖
. (9)

We observe that for perfect measurements (i.e., ym = utrue(xm)) the inner product (utrue, q) is a weighted sum
of experimental observations(

utrue, q =

M∑
m=1

αmKxm

)
=

M∑
m=1

αm(utrue,Kxm) =

M∑
m=1

αmym, (10)

for any q ∈ UM . For this reason, we say that UM is experimentally observable. We further observe that the
stability constant βN,M is a non-increasing function of background span (N), and a non-decreasing function of
observable span (M). Furthermore, βN,M = 0 for M < N .

In the remainder of the paper, we assume that the observation centers x1, . . . , xM ∈ Ω are distinct. This
assumption has two important consequences: first, the update space UM is M -dimensional; second, the matrix
K ∈ RM,M , Km,m′ = K(xm, xm′), is symmetric positive definite. The proof of the first statement is straight-
forward, while the proof of the second statement is provided in [58, Theorem 10.4]. We extensively use these
results in the proofs of this section.

Next Proposition contains the main result of this section.

Proposition 2.1. Suppose that ZN ⊂ U , and let βN,M be defined in (9). Let us further suppose that the
observation sites x1, . . . , xM ∈ Ω are distinct. Let ξ > 0. Then, the following hold.

(i) Any solution (z?ξ , η
?
ξ ) to (7) belongs to ZN ×Z⊥N ∩ UM .

(ii) The pair (z?ξ , η
?
ξ ) is a solution to (7) if and only if u?ξ = z?ξ + η?ξ is a solution to the problem

u?ξ := arg inf
u∈U

J
(1)
ξ (u) := ξ‖ΠZ⊥

N
u‖2 + VM (u). (11)

(iii) If βN,M > 0, there exists a unique solution (z?ξ , η
?
ξ ) to (7). Furthermore, (z?ξ , η

?
ξ ) solves the following

problem:  2ξ(η?ξ , q) + 2
M

∑M
m=1

(
z?ξ (xm) + η?ξ (xm)− ym

)
q(xm) = 0 ∀ q ∈ UM ;

(η?ξ , p) = 0 ∀ p ∈ ZN .
(12)

In view of the proof of Proposition 2.1, we first present two lemmas. The first lemma is proven in [35,
Proposition Appendix A.1].

Lemma 2.2. Let UM := span{Kxm}Mm=1 and let βN,M be defined as in (9). Then, we have that

βN,M = inf
η∈U⊥

M

‖ΠZ⊥
N
η‖

‖η‖
. (13)
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Lemma 2.3. Let UM ′ := span{Kxm}M
′

m=1, M ′ ≤ M . Let us introduce βN,M ′ = infz∈ZN supv∈UM′
(z,v)
‖z‖‖v‖ , and

the matrix K(M ′) ∈ RM ′,M ′
, K(M ′)

m,m′ = K(xm, xm′). Let us further define

cN,M := max
M ′=1,...,M

ĉN,M ′ , ĉN,M ′ = min

(
1

2
λmin(K(M ′)),

λmin(K(M ′))

2 + λmin(K(M ′))
β2
N,M ′

)
, (14a)

where λmin(K(M ′)) denotes the minimum eigenvalue of the matrix K(M ′).
Then, the following bound holds:

J̃(u) = ‖ΠZ⊥
N
u‖2 +

M∑
m=1

(u(xm))
2 ≥ cN,M‖u‖2, ∀u ∈ U . (14b)

Proof. We first claim that for any M ′ such that βN,M ′ > 0 we have

J̃M ′(u) = ‖ΠZ⊥
N
u‖2 +

M ′∑
m=1

(u(xm))
2 ≥ ĉN,M ′‖u‖2, ∀u ∈ U . (15)

Given (15), we find that

J̃(u) ≥ J̃M ′(u) ≥ ĉN,M ′‖u‖2 ∀M ′ ≤M ⇒ J̃(u) ≥
(

max
M ′

ĉN,M ′

)
‖u‖2,

which is the thesis.
We now show (15). Given u ∈ U , we introduce u1 = ΠU⊥

M′
u, u2 = ΠUM′u =

∑M ′

m=1(u2)mKxm . Then, we

observe that
u1(xm) = (Kxm︸︷︷︸

∈UM′

, u1) = 0, m = 1, . . . ,M ′. (16)

We further observe that

M ′∑
m=1

(u2(xm))
2

= ‖K(M ′)u2‖22, ‖u2‖2 = uT2 K(M ′) u2,

which implies that

min
u2∈UM′

∑M ′

m=1 (u2(xm))
2

‖u2‖2
= min

u2∈RM′

‖K(M ′)u2‖22
uT2 K(M ′) u2

= λmin(K(M ′)). (17)

Combining (16) and (17), we obtain

M ′∑
m=1

(u(xm))
2

=

M ′∑
m=1

(u2(xm))
2 ≥ λmin(K(M ′)) ‖u2‖2.

Now, recalling the identity 2ab ≥ − 1
εa

2 − εb2 valid for any ε > 0, and Lemma 2.2, we obtain:

J̃M ′(u) = J̃M ′(u1 + u2) ≥ ‖ΠZ⊥
N
u1‖2 + ‖ΠZ⊥

N
u2‖2 + 2 (ΠZ⊥

N
u1,ΠZ⊥

N
u2) + λmin(K(M ′)) ‖u2‖2

≥ (1− ε)β2
N,M ′‖u1‖2 +

(
1− 1

ε

)
‖ΠZ⊥

N
u2‖2 + λmin(K(M ′))‖u2‖2
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Let us consider ε ∈
(

1
1+λmin(K(M′))

, 1
)

. Recalling that ‖ΠZ⊥
N
u2‖ ≤ ‖u2‖, we obtain

J̃M ′(u) ≥ (1− ε)β2
N,M ′ ‖u1‖2 +

(
λmin(K(M ′)) + 1− 1

ε

)
‖u2‖2

≥ min
(
λmin(K(M ′)) + 1− 1

ε , (1− ε)β2
N,M ′

)
(‖u1‖2 + ‖u2‖2)︸ ︷︷ ︸

=‖u‖2

.

Estimate (15) follows by considering ε = 2
2+λmin(K(M′))

. �

We observe that cN,M is monotonic increasing with M ; therefore, it is asymptotically bounded from below

in the limit M → ∞. We also recall that λmin(K(M ′)) > 0 since the sites x1, . . . , xM ′ are distinct. Therefore,
cN,M is strictly positive if βN,M is strictly positive.

Proof. (Proposition 2.1). We first prove that η?ξ ∈ UM ∩ Z⊥N (Statement (i)). Thesis follows by observing that

Jξ(z, η) = Jξ(z,ΠUM η) + ξ‖ΠU⊥
M
η‖2, and Jξ(z, η) = Jξ(z + ΠZN η,ΠZ⊥

N
η) + ξ‖ΠZN η‖2. We omit the details.

We now show that (z?ξ , η
?
ξ ) solves (7) if and only if u?ξ = z?ξ + η?ξ solves (11) (Statement (ii)). Exploiting

Statement (i), we have

min
(z,η)∈ZN×U

Jξ(z, η) = min
(z,η)∈ZN×Z⊥

N

Jξ(z, η).

Thesis follows by observing that J
(1)
ξ (u) = Jξ(ΠZNu,ΠZ⊥

N
u), and recalling that U = ZN ⊕Z⊥N .

We now prove (iii). Applying Lemma 2.3, we find that the objective function J
(1)
ξ : U 7→ R is strictly convex

if βN,M > 0. Existence and uniqueness of the solution to (11) then follow from [16, Theorem 3, Chapter 8.2].
Exploiting Statement (ii), we find that the solution (z?ξ , η

?
ξ ) to (7) exists and is unique. Furthermore, recalling

that the solution u?ξ must be a zero of the first variation of J
(1)
ξ , we obtain

δJ(u?ξ , v) = 2ξ(ΠZ⊥
N
u?ξ , v) +

2

M

M∑
m=1

(
u?ξ(xm)− ym

)
v(xm) = 0. ∀ v ∈ U ,

which implies (12). Thesis follows. �

Before concluding, we present a number of observations. First, in Proposition 2.1, we rely on the assumption
that ZN ⊂ U . This is required to define βN,M in (9), and also the single-field formulation (11). In section
2.4, we derive sufficient conditions for the well-posedness of (7) that do not rely on the hypothesis ZN ⊂ U .
Second, statement (i) of Proposition 2.1 is extremely important from a practical standpoint since it provides
an a priori finite-dimensional representation formula for the solution to (7): we rely on this finite-dimensional
representation to derive an efficient algebraic counterpart of the variational statement.

2.4. Algebraic formulation

In this section, we present the PBDW algebraic formulation, and we study the stability properties of the
linear system. Then, as anticipated in section 2.3, we present a well-posedness result that does not rely on the
assumption that ZN ⊂ U .

2.4.1. PBDW algebraic statement

In view of the algebraic formulation, we first introduce the matrices K ∈ RM,M , Z ∈ RN,N , L ∈ RM,N such
that

Km,m′ = K(xm, xm′), Zn,n′ = (ζn, ζn′), Lm,n = ζn(xm), (18)

for m,m′ = 1, . . . ,M , and n, n′ = 1, . . . , N .
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Next Proposition shows the algebraic counterpart of the APBDW statement (7). We note that the compu-
tation of the solution to (7) does not require the computation of the matrix Z.

Proposition 2.4. Let βN,M > 0, and let ξ > 0. Then, the solution to (7) u?ξ = z?ξ + η?ξ is given by

u?ξ(·) =

N∑
n=1

z?ξ,nζn(·) +

M∑
m=1

η?ξ,mKxm(·), (19a)

where the pair (z?ξ ,η
?
ξ) ∈ RN × RM solves

[
ξMI + K L

LT 0

] [
η?ξ
z?ξ

]
=

[
yM
0

]
, yM =

 y1

...
yM

 (19b)

Proof. Recalling Proposition 2.1 (Statement (i)), we have that u?ξ is of the form (19a). Then, substituting (19a)

in (12) and choosing q = Kxm , p = ζn, we find[
2ξK + 2

MK2 2
MKL

LT 0

] [
η?ξ
z?ξ

]
=

[
2
MKyM

0

]
.

Since K is invertible, thesis follows by multiplying the first equation by M
2 K−1. �

We now wish to investigate the spectral properties of the linear system (19b). With this in mind, we first
present a standard result (see, e.g., [35, Lemma 3.3]).

Lemma 2.5. The inf-sup constant βN,M is the square root of the minimum eigenvalue of the following gener-
alized eigenproblem:

LT K−1 L zn = νn Z zn, n = 1, . . . , N. (20)

Next Proposition provides a bound for the minimum eigenvalue of the saddle point system (19b).

Proposition 2.6. Suppose that βN,M > 0, and let ζ1, . . . , ζN be an orthonormal basis of ZN . Let λmin
ξ be the

minimum (in absolute value) eigenvalue of the saddle point system (19b). Then, the following bound holds:

|λmin
ξ | ≥ min

(
λmin(K) + ξM, β2

N,M − ξM
λmax(LTL)

λmin(K)(ξM + λmin(K))

)
, (21)

and the bound holds with equality for ξ = 0.

Proof. Following the argument in [5, Section 3.4], we observe that the saddle-point system (19b) is congruent

to the block-diagonal matrix

[
K + ξMI 0

0 −LT (K + ξMI)−1L

]
. Therefore, we find:

|λmin
ξ | = min

(
λmin(K) + ξM, λmin

(
LT (K + ξMI)−1L

))
.

We now estimate λmin

(
LT (K + ξMI)−1L

)
. Towards this end, we first observe that

(K + ξMI)−1 = K−1 − ξMXξ, Xξ = (K + ξMI)−1 K−1.
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Therefore, recalling standard linear algebra results and Lemma 2.5, we find

λmin

(
LT (K + ξMI)−1L

)
= min

v

vTLT (K + ξMI)−1Lv

‖v‖22

≥ min
v

vTLTK−1Lv

‖v‖22
− ξM max

v

vTLTXξLv

‖v‖22
≥ β2

N,M − ξMλmax(Xξ)λmax(LTL).

Thesis follows by observing that

λmax(Xξ) = max
v

vT (K + ξMI)−1 K−1v

‖v‖22
≤ (λmin(K) + ξM)

−1 1

λmin(K)
.

�

2.4.2. An improved well-posedness result

Proposition 2.7 shows a well-posedness result that does not rely on the assumption ZN ⊂ U .

Proposition 2.7. Let ZN ⊂ C(Ω). Then, the solution (z?ξ , η
?
ξ ) ∈ ZN ×U to (7) exists and is unique if and only

if the matrix L has rank N . Furthermore, the state estimate u?ξ = z?ξ + η?ξ satisfies the representation formula

(19).

Proof. We observe that Jξ(z, η) = Jξ(z,ΠUM η) + ξ‖ΠU⊥
M
η‖2. Therefore, any solution η?ξ to (7) belongs to UM .

This implies that any solution to (7) is of the form (19a).
Substituting (19a) in the minimization statement, we find

min
(z?,η?)∈RN×RM

ξ ηT Kη +
1

M
‖Kη + Lz − `obs

M ‖22.

By deriving the stationary conditions, we find
(
ξK + 1

MK2
)
η? + 1

MKLz? = 1
MKy

LT Kη? + LTLz? = LTy
(22)

By premultiplying (22)1 by MK−1, we find

(ξMI + K)η? + Lz? = y. (23a)

If we now premultiply the latter equation by LT and we subtract (22)2, we obtain

LTη = 0. (23b)

Saddle system (23a) - (23b) is well-posed since K is invertible and L is full-rank by hypothesis. Thesis follows. �

We observe that if ZN ⊂ U , the condition rank(L) = N is equivalent to βN,M > 0 (cf. Lemma 2.5).
Therefore, Proposition 2.7 is equivalent to Proposition 2.1 if ZN ⊂ U .

2.5. Construction of the spaces

2.5.1. Construction of the background space ZN
If we denote by εbk

mod = infµ∈Pbk ‖utrue − ubk(µ)‖ the modeling error, and by εbk
N = infz∈ZN ‖utrue − z‖ the

best-fit error associated with ZN , we aim to choose ZN such that εbk
mod ≈ εbk

N . Since the stability of the APBDW



10 TITLE WILL BE SET BY THE PUBLISHER

formulation strongly depends on the value of N , we further wish to keep N small compared to the number of
observations M . We observe that we may bound the best-fit error as follows:

εbk
N = inf

z∈ZN
‖utrue − z‖ ≤ sup

µ∈Pbk

inf
z∈ZN

‖ubk(µ)− z‖ + inf
µ∈Pbk

‖ubk(µ)− utrue‖ = εbk
disc,N + εbk

mod, (24)

where εbk
disc,N = supµ∈Pbk infz∈ZN ‖ubk(µ) − z‖ is the discretization error. Therefore, if εbk

mod is small, we can

practically construct ZN to minimise εbk
disc,N .

If the bk model is defined over the domain of interest, we observe that the task of constructing the space
ZN is equivalent in objective to the task of constructing the reduced trial space in parametric Model Order
Reduction (pMOR). Therefore, we can resort to state-of-the-art techniques proposed in the pMOR literature to
generate ZN , such as Proper Orthogonal Decomposition (POD, [6, 24, 29]), Proper Generalized Decomposition
(PGD, [11,12]), Taylor expansions ([18]), and Greedy algorithms.

In this work, we rely on the Weak-Greedy algorithm for the construction of the space ZN . The algorithm
was first proposed in [43, 44] in the context of Reduced Basis method ([22, 45, 47]), and has been applied to
elliptic and parabolic, linear and nonlinear, differential equations. The convergence with respect to N of the
reduced space obtained using this Greedy procedure has been extensively studied in [7, 8, 15] and linked to the
so-called Kolmogorov N -width [41]. We refer to [45, Chapter 7] for a thorough overview of the computational
procedure; we further refer to [13, Section 8] for a review of the theoretical results.

We briefly address the more general case in which the bk model is defined in a super-domain Ωbk that

contains Ω. In this case, we might first appeal to one of the techniques presented above to build a space ẐN
for the manifold M̂bk = {ubk(µ) : Ωbk → R : µ ∈ Pbk}. Then, we might define ZN := {z|Ω : z ∈ ẐN}. If

the manifold M̂bk is low-dimensional and reducible1, this approach should guarantee accurate reduced spaces

for the bk manifold Mbk. However, if M̂bk is not reducible, and Ω is strictly contained in Ωbk, this approach
might either be unfeasible or lead to poor approximation spaces. This issue is subject of ongoing research.

2.5.2. Construction of the update space: Reproducing Kernel Hilbert Spaces

In [36, 37], authors first choose an inner product (·, ·) for the space U , and then appeal to a Finite Element
(FE) discretization to compute the Riesz representations of the observation functionals, Kx1

, . . . ,KxM . This
requires the solution to M FE problems. For pointwise measurements, we can exploit the theory of Reproducing
Kernel Hilbert Spaces (RKHS, [1]) to avoid the implicit construction of the update space.

An Hilbert space (U , ‖ · ‖) is a RKHS if the point evaluation functionals are continuous, i.e. δx ∈ U ′ for all
x ∈ Ω. This is equivalent (cf. [58, Theorem 10.2]) to assume that there exists a function K : Ω × Ω → R such
that (i) K(·, x) ∈ U for all x ∈ Ω, and (ii) (K(·, x), f) = f(x) for all x ∈ Ω and f ∈ U . The function K is
called Reproducing Kernel. For any x ∈ Ω, we observe that Kx is the Riesz element associated with the point
evaluation functional δx.

A function K : Ω × Ω → R is a symmetric positive definite (SPD) kernel if (i) K(x, y) = K(y, x) for all
x, y ∈ Ω, and (ii) for any set of N distinct points in Ω, {xn}Nn=1 ⊂ Ω, the matrix K ∈ RN,N defined as
Kn,n′ = K(xn, xn′) is positive definite. We already mentioned that if U is a RKHS such that point evaluation
functionals are linearly independent then the corresponding reproducing kernel is SPD. The converse is also
true: given the SPD kernel K there exists a RKHS for which K is the reproducing kernel, which is referred to
as native space of K. The latter result is known as Moore-Aronszajn theorem and was first proved in [1].

The duality between RKHS and SPD kernels has important implications for our discussion. We might first
propose an explicit SPD kernel — for instance, the csRBF kernel (25) — and then appeal to Moore-Aronszajn
theorem to recover the variational formulation. This prevents us from having to solve M FE problems to build
the update space UM .

An important class of kernels, which is employed in the numerical simulations, is given by the compactly
supported radial basis functions of minimal degree (csRBFs), also known as Wendland functions. This class of

1We refer to [45, Chapter 5] for a formal discussion about the reducibility of parametric manifolds.
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kernels was first proposed by Wendland in [57], and is defined as Kχ(x, y) = φd,k(γ‖x − y‖2) where χ = [k, γ]
and

φd,k(r) =

{
pd,k(r) 0 ≤ r ≤ 1;
0 r > 1.

(25a)

The polynomial pd,k has the following form for k = 0, 1 and for all d:

pd,k(r) =

{
(1− r)`d,k k = 0
(1− r)`d,k+1 ((`d,k + 1)r + 1) k = 1

(25b)

and `d,k =
⌊
d
2

⌋
+ k + 1. We observe that it is possible to generalize (25b) to the more general case k ∈ N; we

refer to [58, Table 9.1] for the explicit formulas.
Next result clarifies the connection between csRBF and Sobolev spaces. We refer to [58, Theorem 10.35] for

the proof.

Theorem 2.8. Let us consider the compactly supported RBF Kχ, Kχ(x, y) = φd,k(γ‖x − y‖2), introduced in
(25). Let Ω = Rd, and let either one of these conditions hold: (i) d ≥ 3, k ≥ 0, or (ii) d ≥ 1, k > 0. Then,
the native space for Kχ is the Sobolev space H(d+1)/2+k(Rd).

2.6. Computational procedure

Algorithm 1 summarises the computational procedure. As in [36,37], we exploit an Offline-Online computa-
tional decomposition. During the offline stage, which is performed before acquiring the experimental measure-
ments, we generate the background space ZN , we select the observation centers x1, . . . , xM and we assemble
the matrix L in (18). During the online stage, we first acquire data y1, . . . , yM , we choose the parameters of
the Kernel K and the constant ξ, and then we solve the linear system (19b). The offline stage is computation-
ally intensive since it requires the solution to the bk model for multiple values of the parameter; on the other
hand, the online stage is independent of the dimensionality of the FE mesh used to compute ZN , and is thus
computationally inexpensive for moderate values of M . We further observe that we have not discussed yet how
to select the observation centers during the offline stage, and how to select kernel parameters and the constant
ξ: we address these points in section 4.

Algorithm 1 APBDW approach. Offline-online computational procedure

Offline stage

1: Choose a family of kernels (e.g. (25))

2: Generate the background ZN ⊂ U (cf. section 2.5.1)

3: Select the observation centers x1, . . . , xM ∈ Ω (cf. section 4)

4: Compute the matrix L (18)

Online stage

1: Acquire the measurements y1, . . . , yM

2: Choose the parameters of the kernel and the regularizer weight ξ (cf. section 4)

3: Assemble the matrix (19b) and solve the linear system (19b)

4: (If needed) Evaluate the state using (19a).

2.7. Connection with other formulations

2.7.1. Connection with other data assimilation procedures

In the statistical learning literature, APBDW is closely related to the approach presented and analyzed in [26]
by Kimeldorf and Wahba. In more detail, the two approaches are equivalent if we choose ZN as the set of all
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polynomials of degree less or equal to κ, κ > d/2− 1, and U = Hκ+1(Ω) endowed with a proper inner product.
We also observe that, exploiting the connection with [26], we can re-interpret our formulation in a Bayesian
setting as a Gaussian linear system with improper prior (see [55]). In this work, we do not pursue this feature
of the approach.

Furthermore, for N = M APBDW formulation is equivalent to the solution to the Generalized Empirical
Interpolation Method (GEIM, [34]), while for ξ →∞ and ZN built using a Proper Orthogonal Decomposition
(POD, [29]), APBDW is asymptotically equivalent to Gappy-POD ([17, 59]). On the other hand, in the limit
ξ → 0+ our formulation (7) is asymptotically equivalent to the ”noise-free” formulation presented in [36]. Next
Proposition shows the two asymptotic results.

Proposition 2.9. Let βN,M > 0. Let u?ξ = η?ξ + z?ξ be the solution to (7). Then, we have

lim
ξ→0+

‖u? − u?ξ‖ = 0, (26)

and
lim
ξ→∞

‖u?ξ − zLS‖ = 0, (27)

where u? = z? + η? satisfies

(η?, z?) := arg min
(z,η)∈ZN×U

‖η‖ subject to z(xm) + η(xm) = ym, m = 1, . . . ,M ; (28)

and z?LS ∈ ZN satisfies
z?LS := arg min

z∈ZN
VM (z). (29)

Proof. Let us first consider the limit ξ → 0+. Recalling [36, Section 2.4], we have that u? is of the form (19a)
with coefficients η?0, z

?
0 satisfying [

K L
LT 0

] [
η?0
z?0

]
=

[
yM
0

]
,

Therefore, we just have to show that

lim
ξ→0+

(
u?ξ =

[
η?ξ
z?ξ

])
= u?ξ=0 =

[
η?ξ=0

z?ξ=0

]
Exploiting Proposition 2.6, we can show that each eigenvalue of the saddle-point system (19b) satisfies |λξ,j | ≥
1
2 min(λmin(K), β2

N,M ) > 0 for all ξ ≤ ξ̄, for some ξ̄ > 0. Therefore, we find ‖u?ξ‖2 ≤ C for all ξ ≤ ξ̄.
Let {ξj}j be a positive sequence such that ξj → 0+, and let u?ξj be the solution to (19b) for ξ = ξj . Since

{u?ξj}j is uniformly bounded, applying Bolzano-Weierstrass theorem, we obtain that, up to a subsequence,

u?ξ` → û. We further observe that[
yM
0

]
=

[
K L
LT 0

]
u?ξ` + ξ`M

[
I 0
0 0

]
u?ξ` →︸︷︷︸

`→∞

[
yM
0

]
=

[
K L
LT 0

]
û.

Since the linear system (19b) for ξ = 0 admits a unique solution, we must have û = u?ξ=0. Using the same

reasoning, we find that u?ξ=0 is the only limit point of the uniformly bounded sequence {u?ξj}j . Therefore, the

entire sequence is convergent (see, e.g., [38, page 67]).
We now consider the case ξ →∞. As for the previous case, we must prove that for ξ →∞

z?ξ → zLS = (LTL)−1 LT yM , η?ξ → 0.

The proof exploits the same argument of the previous case, ξ → 0+. We omit the details. �
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2.7.2. A two-stage regression procedure: connection with Kalman filter

We can rewrite the linear system (19b) as follows:{ LT (ξMI + K)−1L z?ξ = LT (ξMI + K)−1yM

(ξMI + K)η?ξ = yM − Lz?ξ .
(30)

Formulation (30) is the algebraic counterpart of the following two-stage procedure:
z?ξ := arg min

z∈ZN
‖LM (z)− yM‖Wξ

;

η?ξ := arg min
η∈U

ξ‖η‖2 +
1

M

M∑
m=1

(η(xm)− yerr
m )

2
, yerr

m := ym − z?ξ (xm),
(31)

where Wξ = (K+ ξMI)−1, LM (z) = [z(x1), . . . , z(xM )], and ‖d‖W =
√

dTWd. Problem (31)1 corresponds to a
weighted least-square regression problem, while (31)2 corresponds to a smoothing problem applied to the error
field utrue − z?ξ .

Equation (31) can be exploited to interpret the APBDW components z?ξ and η?ξ : the deduced-background

estimate z?ξ ∈ ZN represents our predicted state estimate based on prior knowledge (here encoded in the back-

ground space); on the other hand, the update η?ξ ∈ UM represents the innovation induced by the measurements

and only depends on the residuals yerr
m = ym− z?ξ (xm). This interpretation of the APBDW components clarifies

the connection between our approach and least-square statistical linear estimation (LSSLE, [52]), and thus with
Kalman filtering2 ([25,30]). We remark, however, that, while in LSSLE the predicted state estimate is uniquely
determined by prior knowledge and possibly by observations at previous times, in our approach both z?ξ and η?ξ
are determined through experimental data.

We further observe that — from the perspective of approximation theory — APBDW formulation introduces
a hierarchy between the approximation provided by the background space ZN , and the approximation provided
by UM . In more detail, the background space ZN should provide primary approximation, while the update
space UM is designed to complete any deficiency in ZN . This asymmetry between ZN and UM is motivated
by the underlying assumption that elements of ZN have better generalization properties (see, e.g., [53]) than
elements in UM , since ZN is directly informed by the mathematical model. In this respect, by adapting the
parameter ξ, we can properly tune the relative importance of primary and secondary approximation.

3. Error analysis

We present a priori and a posteriori estimates for the L2(Ω) state-estimation error ‖utrue − u?ξ‖L2(Ω). The
importance of the error analysis is twofold. First, it motivates our formulation from a theoretical viewpoint.
Second, it provides insights about the role of the different pieces of our formulation: the regularization parameter
ξ, the background space ZN , the kernel K and the centers XM .

3.1. A priori error analysis

In order to derive error bounds for the L2(Ω) state-estimation error ‖utrue−u?ξ‖L2(Ω), we must first introduce
assumptions on our dataset DM . To our knowledge, three different scenarios have been considered so far.

(1) Random-design regression: the pairs {(xm, ym)}Mm=1 are drawn independently from a joint unknown
distribution ρ(X,Y ). In this case, the objective of learning is to estimate the conditional expectation
E[Y |X = x].

2We recall that Kalman filter can be interpreted as a sequential form of statistical LSSLE (see, e.g. [52, section 4]).
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(2) Fixed-design regression: the centers XM = {x1, . . . , xM} are fixed (non-random) points in Ω, while the
responses YM = {ym}Mm=1 satisfy ym = utrue(xm) + εm, where utrue : Ω→ R is the deterministic field of
interest and ε1, . . . , εM are independent identically distributed (i.i.d.) random variables with zero mean
and variance σ2, εm ∼ (0, σ2).

(3) Scattered data approximation: both centers XM and responses YM are non-random, and we assume that
there exists some unknown δ > 0 such that |ym − utrue(xm)| ≤ δ for all m = 1, . . . ,M .

The first scenario has been extensively studied in the statistical learning literature (see, e.g., [42, 53]). We
refer to [20] for a complete review of the error bounds available. The second scenario has also been studied
in statistics; we refer to the survey [19] for further details about a specific class of kernels. Finally, the third
scenario has been studied in approximation theory and radial basis functions (see, e.g., [58]). From the modeling
perspective, the first scenario refers to the case in which we do not have control on the observation centers, the
second scenario addresses the problem of random error in the measurements, and the third scenario addresses
the problem of systematic deterministic error.

In the next two sections, we present error bounds for both the second and the third scenarios. Our analysis
for the third scenario exploits results first proved in a work of Krebs, Louis and Wendland ([28]). We state
upfront that in the remainder of this section we assume that ZN ⊂ U .

3.1.1. An a priori error bound for scattered data approximation

We state the main result of this section.

Proposition 3.1. Let Ω be a Lipschitz domain and let U be the Sobolev space Hτ (Ω) with τ > d/2. Let βN,M
in (9) be strictly positive. Let us further assume that measurements are of the form ym = utrue(xm) + εm with
|εm| ≤ δ for m = 1, . . . ,M .

Then, if utrue ∈ U , the following holds:

‖utrue − u?ξ‖2L2(Ω) ≤ CN,XM

(
h2τ
XM

(
2‖ΠZ⊥

N
utrue‖+

δ

2

1√
ξ

)2

+ hdXMM

(
δ +

√
ξ

2
‖ΠZ⊥

N
utrue‖

)2
)
, (32a)

where CN,XM is defined as

CN,XM := sup
u∈U

‖u‖2L2(Ω)

h2τ
XM ‖ΠZ⊥

N
u‖2 + hdXM ‖u‖

2
`2(XM )

, (32b)

‖u‖`2(XM ) :=
√∑M

m=1 u(xm)2, and the fill distance hXM as

hXM = sup
x∈Ω

min
m=1,...,M

‖x− xm‖2. (32c)

Proof of Proposition 3.1 is technical and for this reason we present it in Appendix A. In the remainder of
this section, we state a number of remarks.

Remark 3.2. We observe that the constant CN,XM is associated with the maximum eigenvalue associated to
a generalized eigenproblem. Provided that the inf-sup constant βN,M > 0 and hXM < 1, the constant CN,XM
defined in (32b) can be estimated as follows:

CN,XM ≤
1

min{cN,M , 1− h2τ−d
XM }

C, (33)

where cN,M is defined in (14). We rigorously prove (33) in Appendix A. We remark that to practically estimate
CN,XM , we need to numerically approximate the maximum eigenvalue of the generalized eigenproblem associated
with CN,XM . Recalling the definition of cN,M (14), we find that CN,XM is asymptotically bounded as M →∞ for
fixed N ; on the other hand, the dependence on N heavily depends on the background ZN . Accurate estimates
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of CN,XM require the estimate of the matrix Z in (18); the latter requires that the basis ζ1, . . . , ζN can be

represented as ζn(·) =
∑Qn
q=1 an,qKx̃n,q (·) for some {an,q}q and {x̃n,k}q ⊂ Ω, n = 1, . . . , N .

Remark 3.3. For quasi-uniform grids, hXM ∼M−1/d, for M →∞, the right-hand side reduces to

‖utrue − u?ξ‖2L2(Ω) . O

(
‖ΠZ⊥

N
utrue‖2 h2τ

XM

(
1 +

1

Λ

)2

+ δ2 (1 + Λ)
2

)
(34a)

where

Λ =

√
ξ‖ΠZ⊥

N
utrue‖

δ
, (34b)

By minimizing with respect to Λ, we obtain that the asymptotically optimal choice of ξ is

ξ =

(
δ

‖ΠZ⊥
N
utrue‖

)2/3

h
4/3τ
XM . (35a)

The optimal value of ξ is directly proportional to δ, inversely proportional to the background best-fit error
‖ΠZ⊥

N
utrue‖ and decreases as M increases. For this choice of the hyper-parameter, we obtain:

‖utrue − u?ξ‖2L2(Ω) . O
(
‖ΠZ⊥

N
utrue‖2/3 h2/3τ

XM δ4/3 + δ2
)

M →∞. (35b)

We observe that for any finite δ > 0, we do not expect convergence in a L2 sense.

Remark 3.4. In the case of perfect measurements, estimate (32) reduces to

‖utrue − u?ξ‖2L2(Ω) ≤
1

4
CN,XM

(
16h2τ
XM + hdXMMξ

)
‖ΠZ⊥

N
utrue‖2. (36)

We can decouple the right-hand side of (36), as the product of two terms: (i) CN,XM ‖ΠZ⊥
N
utrue‖2, and (ii)

16h2τ
XM + hdXMMξ. Recalling that CN,XM is asymptotically independent of M (cf. Remark 3.2 and (14)), we

find that the first contribution is independent of the number of measurements M ; on the other hand, the
second contribution is independent of the background ZN . We thus observe a multiplicative effect between
M convergence (associated with the update) and N convergence (associated with the deduced background).
For ξ = 0, the M term is guaranteed to decrease as M increases since hXM is monotonic decreasing in M ; on
the other hand, it is not possible to guarantee that CN,XM ‖ΠZ⊥

N
utrue‖2 is monotonic decreasing with N . We

investigate this multiplicative effect in the numerical results.

3.1.2. A priori error bounds for fixed-design regression

We first introduce some notation. First, we define the matrix Aξ ∈ RN+M,N+M ,

Aξ :=

[
ξMI + K L

LT 0

]
, (37a)

associated with the linear system (19b). Then, we introduce Σ ∈ RN+M,N+M ,

Σ :=

[
I 0
0 0

]
. (37b)
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Finally, we introduce M ∈ RN+M,N+M such that

Mi,i′ :=

∫
Ω

ψi(x)ψi′(x) dx, ψi(x) =

{
Kxi i = 1, . . . ,M

ζi−M i = M + 1, . . . ,M +N
(37c)

We can now state the error bound.

Proposition 3.5. Let Ω be a Lipschitz domain and let U be the Sobolev space Hτ (Ω) with τ > d/2. Let βN,M
in (9) be strictly positive.

Then, if utrue ∈ U , the following holds:

E
[
‖utrue − u?ξ‖2L2(Ω)

]
≤ 1

2
CN,XM

(
16h2τ
XM + hdXMMξ

)
‖ΠZ⊥

N
utrue‖2 + 2σ2 T σ, (38)

where T σ = trace
(
A−1
ξ MA−1

ξ Σ
)

. Furthermore, if utrue ∈ ZN , we have

E
[
‖utrue − u?ξ‖2L2(Ω)

]
= σ2 T σ. (39)

Proof of Proposition 3.5 is presented in Appendix A. We observe that (38) can be easily extended to
correlated noise by appropriately modifying the matrix Σ. We further observe that, unlike in the previous case,
it is not evident how to provide explicit estimates for the optimal value of ξ. However, since T σ is computable,
if utrue ∈ ZN , we can estimate numerically the optimal value of ξ a priori. We investigate this aspect in the
numerical results.

3.2. A posteriori error analysis

Next result provides the identity of interest.

Proposition 3.6. Let {xi}Ii=1 be drawn independently from an uniform distribution over Ω. Let yi = utrue(xi)+
δi+εi, where ε1, . . . εI are i.i.d. random variables such that εi ∼ (0, σ2) and δ1, . . . , δI are deterministic unknown
disturbances. Let us further assume that {xi}Ii=1 and {εi}Ii=1 are independent random sequences.

Then, we have that the mean squared error

MSEI :=
1

I

I∑
i=1

(
yi − u?ξ(xi)

)2
(40)

satisfies

E[MSEI ] = E2
mean + σ2 +

1

I

I∑
i=1

δ2
i −

2

|Ω|I

I∑
i=1

δi

(∫
Ω

utrue(x)− u?ξ(x) dx

)
(41)

where E2
mean is defined as follows:

E2
mean :=

1

|Ω|

∫
Ω

(
utrue(x)− u?ξ(x)

)2
dx. (42)

Proof. To simplify notation, we introduce the random sequence {ei = utrue(xi)− u?ξ(xi)}Ii=1. We observe that

e1, . . . , eI are i.i.d. and E[e2
i ] = 1

|Ω|‖u
true−u?λ,ξ‖2L2(Ω). Then, exploiting linearity of the expected value operator

and the fact that {xi}Ii=1 and {εi}Ii=1 are independent, we find

E[MSEI ] = E
[
e2

1

]
+ E

[
ε21
]

+
1

I

I∑
i=1

δ2
i −

2

I

I∑
i=1

δi E[ei].
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Thesis follows. �

In absence of systematic noise (δi ≡ 0), identity (41) reduces to

E[MSEI ] = E2
mean + σ2. (43)

Estimate (43) shows that for random noise (δi ≡ 0) the mean squared error (40) can be used to asymptotically
bound the squared L2(Ω) error. Furthermore, since σ2 is independent of the state estimate, minimizing the
mean squared error is equivalent to minimize the L2(Ω) error. The latter observation motivates the adaptive
strategy presented in section 4.

4. Model adaptation

As observed in the previous sections, our procedure depends on a fair amount of design choices, which include
the choice of a number of hyper-parameters and the choice of the observation centers and background space
ZN . In section 4.1, we discuss how to exploit the error analysis to perform some design choices a priori. Then,
in section 4.2, we discuss the adaptive strategy used to tune the parameters of the formulation after having
acquired data.

4.1. A priori considerations

We recall that the APBDW state estimate u?ξ is given by

u?ξ := arg min
u∈U

ξ‖ΠZ⊥
N
u‖2 +

1

M

M∑
m=1

(u(xm)− ym)
2

(44)

where ZN = span{ζn}Nn=1. We observe that the formulation depends on the regularization parameter ξ, the
sensor locations XM = {xm}Mm=1 and the choice of the reproducing kernel K associated with (U , ‖ · ‖).

The hyper-parameter ξ > 0 controls the amount of regularization introduced: for ξ → 0+, the solution to
(44) interpolates exactly the data while for ξ →∞, the solution to (44) converges to the least-squares solution.
Our error analysis shows that the choice of ξ strongly depends on the noise variance σ2 and on the maximum
systematic error δ and also on the accuracy of the model ‖ΠZ⊥

N
utrue‖; in some applications, noise level can be

estimated from reanalysis, on the other hand, it is extremely difficult to estimate ‖ΠZ⊥
N
utrue‖ a priori.

Since in this work we employ csRBF kernels, the choice of the kernel K reduces to the choice of the hyper-
parameters k and γ in Kχ(x, y) = φd,k(γ‖x− y‖2), where φd,k is defined in (25). As stated in Proposition 2.8,
the parameter k determines the Sobolev regularity of the RKHS. Recalling estimate (35) and Proposition 2.8,

the optimal value of k should minimise ‖ΠZ⊥
N
utrue‖h(d+1)/2+k

XM : it is thus extremely problem-dependent. The

parameter γ regulates the length scale of the kernel functions. In our experience, for small values of M , the
choice of γ weakly influences the results; we can thus pick γ a priori such that the kernel functions {Kxm}m
share the same length scale with the elements of ZN . On the other hand, for larger values of M , the choice of
γ significantly influences the performance of the method and it must be adapted using data. We remark that
by changing k and γ we effectively modify the inner product (·, ·) and thus the penalization term ‖ · ‖ in (44).

If we neglect the effect of the sensor locations on the stability constant CN,XM , the error analysis suggests to
choose the observation centers to minimize the fill distance hXM in (32c). For N ' M , sensor location might
influence significantly the value of CN,XM . As a result, it might be worth to choose the observation centers to
maximize CN,XM for any given M . For the PBDW formulation, in [36], the authors propose a Greedy strategy
for the selection of the observation centers to maximize the inf-sup constant βN,M defined in (9). In this
respect, we observe that calculations of βN,M (and also CN,XM ) involve computation of the matrix Z in (18).
As observed in Remark 3.2, computation of accurate approximations of the matrix Z for general background



18 TITLE WILL BE SET BY THE PUBLISHER

spaces is unfeasible. Extension of the Greedy procedure proposed in [36] to our framework is the topic of ongoing
research.

In our numerical simulations, we choose adaptively the regularization parameter ξ and the kernel parameter
γ, while we pick k a priori, and we simply consider equispaced observation centers. We remark that equispaced
observation centers prevent us from considering N ' M . In the next section, we present the algorithm used
to perform online adaptation. We note that our adaptation procedure could be also applied to automatically
select the hyper-parameter k.

4.2. Adaptive procedure

In the Statistical Learning literature, several approaches have been presented to tune the design parameters
of regularized regression formulations; we refer to [21, Chapter 7] and to [27] for a thorough overview. The
adaptive strategy depends on the size of the dataset, which in our context corresponds to the amount of available
transducers. If we denote by L the number of available transducers and by DL = {(x`, y`)}L`=1 the corresponding
dataset, for large values of L, the holdout method is the most widely used approach. On the other hand, for
small values of L, κ-fold cross-validation is typically employed. In the remainder of this section, we briefly
review these techniques and we discuss their application to our problem.

The holdout method partitions the dataset DL into the two mutually exclusive subsets DM = {(xm, ym)}Mm=1

and DI = {(xi, yi)}Ii=1. Given the finite dimensional search space Hhyper for (ξ, γ), we generate the state estimate
u?ξ,γ based on the training set and then we compute the mean squared error over the validation set

MSEI(ξ, γ) =
1

I

I∑
i=1

(
yi − u?ξ,γ(xi)

)2
, (45)

for each (ξ, γ) in Hhyper. Finally, we choose the state estimate associated with the choice of (ξ, γ) that minimizes
MSEI(ξ, γ) over Hhyper. Recalling Proposition 3.6, if {xi}i are drawn from an uniform distribution over Ω and
the disturbances are homoscedastic, this choice of the hyper-parameters asymptotically minimizes the L2 state-
estimation error. This result holds independently of the strategy employed to compute the state estimate and
thus independently of the strategy employed to select the training observation centers. As discussed in [51], if
u?ξ,γ is an accurate description of the true field utrue, MSEI rapidly converges to its expected value. Therefore,
the number I of measurements that should be reserved for validation is modest.

Cross-validation is based on the partition of the dataset DL into κ equal-sized subsamples (folds) {D(k)
L }κk=1.

Of the κ folds, a single fold is retained for testing and the remaining κ − 1 folds are used for training. The
procedure is then repeated κ times with each of the κ folds used once as the validation dataset. In the
limit L = κ, the procedure is known as Leave-One-Out Cross-Validation (LOOCV). We observe that, even for
moderate L, κ-fold Cross-Validation can be quite expensive if κ ≈ L. For this reason, generalized cross-validation
strategies, which focus on computing computationally inexpensive approximations of the error indicator, have
been developed. We refer to [21, Chapter 7.10] and to the references therein for further details.

In this paper, we exclusively employ holdout validation and we refer to a future work for the application of
more advanced cross-validation strategies. Motivated by the previous discussion, we here choose the validation
sensors by sampling uniformly over Ω.

5. Numerical results for a synthetic problem

In this section, we illustrate the behavior of the APBDW formulation through a two-dimensional acoustic
Helmholtz problem3. We here employ csRBF with k = 1; recalling Proposition 2.8, this corresponds to U =
H2.5(R2). We appeal to the weak-Greedy algorithm to generate the background spaces {ZN}N . We rely on
holdout validation for the choice of ξ and of the kernel parameter γ: we consider uniform grids of training

3This model problem is the same considered in [36, Section 3].
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observation points {xm}Mm=1, and uniformly random generated validation points {xi}Ii=1. In all our tests, we
consider I = M

2 .

5.1. Problem definition

Given the domain Ω = (0, 1)2, we define the acoustic model problem:{ −(1 + iεµ) ∆ug(µ) − µ2ug(µ) = µ
(
2x2

1 + ex2
)

+ µg in Ω,

∂n ug(µ) = 0 on ∂Ω,
(46)

where µ > 0 is the wave number, ε = 10−2 is a fixed dissipation, and g ∈ L2(Ω) is a bias term that will be
specified later. Here, the parameter µ > 0 constitutes the anticipated, parametric uncertainty in the system,
which might model our uncertainty in the speed of sound, while the function g constitutes the unanticipated
and non-parametric uncertainty in the system.

To assess the performance of the APBDW formulation for various configurations, we define the true field
utrue as the solution to (46) for some µtrue ∈ Pbk and for the following two choices of the “bias” g

g :=

{
0 perfect model;

g̃ ≡ 0.5(e−x1 + 1.3 cos(1.3πx2)) imperfect model.
(47a)

On the other hand, we define the bk manifold as

Mbk := {ug=0(µ) : µ ∈ Pbk}. (47b)

Figure 1 shows (the real part of) the true field for three choices of the wave number µ and for the two choices
of the bias g. We approximate the solution using a triangular P5 finite element discretization (N = 3312). The
use of a high-order method is here motivated by the smoothness of the true field.

To assess the performance, we introduce the relative L2 error averaged over |Pbk
train| = ntrain fields associated

with different choices of the parameter µ:

Erel
avg(ntrain) :=

1

ntrain

∑
µ∈Pbk

train

‖utrue(µ)− u?ξ(µ)‖L2(Ω)

‖utrue(µ)‖L2(Ω)
. (48)

In all our numerical tests, we consider noisy observations with additive Gaussian noise:

y` = utrue(x`) + ε`, ε`

iid︷︸︸︷∼ N (0, σ2). (49)

5.2. Results of the data assimilation procedure (noise-free case)

We first visualize the APBDW state estimates for two distinct choices of utrue. We consider µ = 6.6, and we
consider utrue = ug=0(µ) and utrue = ug=g̃(µ); APBDW state estimates are based on the background ZN=5 and
on M = 25 equispaced measurements. We rely on holdout validation (I = 12) to choose the value of the hyper-
parameters ξ, γ. Figure 2 shows (the real part of) the true state, the APBDW state estimate u?ξ , the deduced

background z?ξ and the update η?ξ . For utrue = ug=0(µ) the update η?ξ is negligible; the reason is that the true

state is well-approximated by its projection over ZN . On the other hand, for utrue = ug=g̃(µ) we observe that
the update is appreciable, and plays a significant role in improving the accuracy of the state estimate u?ξ . These
results strengthen the interpretation of the components of the APBDW state estimate provided in section 2: z?ξ
addresses the parametric uncertainty in the model, while η? accommodates non-parametric uncertainty.
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(a) <(utrue), µ = 2, g = 0 (b) <(utrue), µ = 5, g = 0 (c) <(utrue), µ = 10, g = 0

(d) <(utrue), µ = 2, g = g̃ (e) <(utrue), µ = 5 , g = g̃ (f) <(utrue), µ = 10, g = g̃

Figure 1. Application to a synthetic acoustic problem: visualization of the truth solutions
associated with the synthetic Helmholtz problem for perfect (g = 0 ) and imperfect (g = g̃)
models.

Figure 3 shows the convergence of Erel
avg with N for fixed M and noise-free measurements. We compute Erel

avg

using (48) based on ntrain = 20 fields. We observe that convergence with N is in good qualitative agreement
with the behavior of the best-fit error

Erel
N :=

1

ntrain

∑
µ∈Pbk

train

‖utrue(µ)−ΠZN ,L2 utrue(µ)‖L2(Ω)

‖utrue(µ)‖L2(Ω)
,

where ΠZN ,L2 is the projection operator with respect to the L2 inner product. If utrue ∈Mbk, we observe fast

convergence with N ; on the other hand, if utrue /∈Mbk, we reach a strictly positive plateau.
Figure 4 shows the convergence with M for fixed N and noise-free measurements. We assess performance by

computing Erel
avg in (48) averaged over ntrain = 20 fields. We observe that the use of csRBF kernels guarantees

rapid convergence with M . We further observe that, with the exception of N = 5 for perfect model, the
rate of convergence with M weakly depends on the value of N : in this test, we observe Erel

avg ' M−s with
s ∈ [1.3, 1.5] for all cases considered. This empirically confirms the multiplicative effect between N convergence
and M convergence observed in Remark 3.4. A possible explanation for the contrasting results for the case
(N = 5, g = 0) is due to discretization effects: since in this case the error utrue − z?ξ is highly oscillatory, the
adaptive procedure selects large values of the parameter γ that are not well-resolved by the Finite Element
mesh used to estimate the norms and to compute the true solution.
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(a) <(utrue), g = 0 (b) <(u?ξ) (c) <(z?ξ ) (d) <(η?ξ )

(e) <(utrue), g = g̃ (f) <(u?ξ) (g) <(z?ξ ) (h) <(η?ξ )

Figure 2. Application to a two-dimensional acoustic problem: visualization of the PBDW
state estimates for N = 5, M = 25 (perfect measurements). The states in Figures (a) and (e)
correspond to µ = 6.6.

(a) L2-best fit (b) g = 0 (c) g = g̃

Figure 3. Application to a two-dimensional acoustic problem: convergence of Erel
avg with N

for fixed M for perfect (g = 0) and imperfect (g = g̃) model. Figure (a) shows the L2-best-fit
error.

5.3. Interpretation of the hyper-parameters γ and ξ

We investigate the connection between the optimal value of ξ and the signal-to-noise ratio. In Figure 5,
we compute the mean squared error over the validation set for the estimation of the state associated with
the parameter µ = 5.8. We consider M = 225 and we compute the mean squared error based on I = 110
measurements. We both consider the case of perfect model (g = 0), and the case of imperfect model (g = g̃).
For this test, we employ the background ZN=5. We observe that the optimal ξ depends on model error and on
noise level. In more detail, we observe that for g = 0, the adaptive procedure selects large values of ξ regardless
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(a) g = 0 (b) g = g̃

Figure 4. Application to a two-dimensional acoustic problem: convergence of Erel
avg with M

for fixed N for perfect (g = 0) and imperfect (g = g̃) model. Estimated convergence rates for
perfect model: −1.48 (N = 1), −1.30 (N = 3), and −1.00 (N = 5). Estimated convergence
rates for imperfect model: −1.46 (N = 1), −1.32 (N = 3), and −1.32 (N = 5).

of the noise level, while for g = g̃ it selects ξ ≈ 10−7 for σ = 0.05 and ξ ≈ 10−5 for σ = 0.4. Therefore, the
optimal ξ increases as noise increases, and decreases as best-fit error increases. The latter empirical observation
is in good agreement with (35a), although the latter has been rigorously shown only for systematic noise.

(a) σ = 0.05, g = 0 (b) σ = 0.05, g = g̃ (c) σ = 0.4, g = 0 (d) σ = 0.4, g = g̃

Figure 5. Application to a two-dimensional acoustic problem: interpretation of ξ. Results
correspond to utrue = ug(µ = 5.8). (M = 225, I = 112, N = 5).

In Figure 6, we investigate the influence of the kernel parameter γ. We study the behavior of Erel
avg with

M associated with ntrain = 10 different values of the parameter µ, for the five-dimensional background ZN=5

and for two different search spaces Hhyper: in more detail, in the first case we seek γ in {0.1, 0.5, 1}, and in
the second case we choose γ in {3, 3.5, 4}. Since we consider perfect measurements, results are not sensitive to
the choice of ξ. We observe that in the perfect-model case (Figure 6(a)) large values of γ significantly improve
performance; on the other hand, in the imperfect model case (Figure 6(b)), the first choice of Hhyper leads to
more accurate results for all values of M considered. This can be explained by observing that γ has to match
the length-scale of the field utrue − z?ξ , and strongly depends on the distance between observations (and thus

M). This test motivates the importance of adapting the value of γ. We remark that adaptation in γ relies on
the availability of explicit expressions for the Riesz elements Kxm .

5.4. Noisy measurements

We first study the behavior of the constant T σ introduced in (38). Figures 7(a) and (b) show the behavior
of T σ for equispaced measurements with respect to the value of ξ and for two values of γ. We observe that T σ
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(a) g = 0, N = 5 (b) g = g̃, N = 5

Figure 6. Application to a two-dimensional acoustic problem: interpretation of γ (N = 5, σ = 0).

is monotonic decreasing in ξ and reaches a lower bound for ξ →∞. Figure 7(c) shows the behavior of minξ T σ
with respect to the number of measurements: minξ T σ is independent of γ and converges to 0 with rate M−1.

(a) γ = 0.1 (b) γ = 2 (c) γ = 2

Figure 7. Application to a two-dimensional acoustic problem: T σ. Figures (a) and (b):
behavior of T σ with ξ for γ = 0.1 and γ = 2. Figure (c): behavior of minξ T σ with M for
several values of γ.

Figure 8 shows performance in presence of noise. As in the previous tests, we assess performance by computing
Erel

avg in (48) for ntrain = 1 (µ = 6.6); to take into account randomness in the results, we average over 24
realizations of the random noise. We consider the background ZN=5. In the case of perfect model, the estimated
convergence rate in the noisy case is roughly M−0.5 for all values of standard deviations σ considered: this is
in agreement with the results shown in Figure 7(c) and with the mathematical analysis. On the other hand, in
the case of imperfect model, the estimated convergence rate in the noisy case is roughly M−0.4. Interestingly,
also in this case, the convergence rate weakly depends on σ.

6. Application to a thermal patch configuration

6.1. Experimental apparatus

The thermal patch system consists of a 1.5[mm] thick acrylic sheet heated from behind by a resistive patch.
Heat is generated through an electrical resistance with input power equal to 0.667W . The goal of the data
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(a) g = 0, N = 5 (b) g = g̃, N = 5

Figure 8. Application to a two-dimensional acoustic problem: convergence with M for fixed
N for perfect (g = 0) and imperfect (g = g̃) model in presence of homoscedastic Gaussian noise.
Estimated convergence rates for perfect model: −0.5114 (σ = 0.1), −0.5091 (σ = 0.2), −0.5297
(σ = 0.4), and −0.4641 (σ = 1). Estimated convergence rates for imperfect model: −0.4759
(σ = 0.1), −0.3235 (σ = 0.2), −0.4155 (σ = 0.4), and −0.4443 (σ = 1).

assimilation procedure is to estimate the temperature field over a portion Ωobs,dim of the external surface of the
plate at the steady-state limit.

We use an IR camera (Fluke Ti 9) to take measurements in the rectangular region Ωobs,dim = [−23.85, 23.85]×
[−17.85, 17.85][mm] centered on the patch. Figure 9(a) shows the IR camera. After the patch power is turned
on, we take measurements using a sampling time of 4 seconds until steady state is reached; the total duration
of the experiment is roughly 5 minutes. The external temperature is about 20oC, roughly constant throughout
the experiment. Each surface measurement taken from the IR camera corresponds to 160 × 120 pixel-wise
measurements; the pixel size is roughly ∆hdevice = 0.3[mm], which is much smaller than the spatial length scale
of the phenomenon of interest.

In view of the mathematical description of the problem, we present formal definitions for the geometric
quantities involved. First, we introduce the domain Ωbk,dim ⊂ R3 corresponding to the three-dimensional
acrylic sheet. We denote by Γpatch,dim ⊂ R2 the surface of the sheet attached to the patch, and we denote
by Γin,dim the face of the sheet that contains Γpatch,dim. We recall that Ωobs,dim ⊂ ∂Ωbk,dim is the region in
which the IR camera takes measurements. Then, we introduce the Cartesian coordinate system xdim

1 xdim
2 xdim

3 ;
according to our definitions, the IR camera takes measurements in the xdim

1 xdim
3 plane. Figures 9(b) and (c)

clarify the definitions of Ωobs,dim, Ωbk,dim, Γpatch,dim and Γin,dim and show the characteristic dimensions of the
patch.

In order to estimate the noise level in the dataset, we compute the difference uobs,dim − ufilt,dim where the
field uobs,dim is obtained directly from the IR camera, and ufilt,dim is obtained applying a Wiener filter (see,
e.g., [31]) based on a 3 by 3 pixel averaging to the field uobs,dim. Figure 10 shows two spatial slices of the
difference uobs,dim − ufilt,dim. By comparing ufilt,dim and uobs,dim, we deduce that the magnitude of noise in the
measurements is approximately ±0.5oC, roughly independent of the spatial position.

6.2. Engineering motivation

We shall now motivate this model problem from the engineering standpoint. Full-field information is typically
not available; in practical applications, we envision a system with a local sensor or a small sensor array. For
this reason, we want to design a data assimilation state estimation procedure that is able to reconstruct the full
field based on a small amount of local measurements.

Since the IR camera provides full-field information, in this work, we synthetize local measurements – the
experimental input to our methods – from the IR camera to obtain `obs

m = `(uobs, xobs
m ) where the observation
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(a)

xdim
1

xdim
3

xdim
2

Ωobs,dim

Ωbk,dim

Γin,dim

Γin,dim

Γpatch,dim

Ĥ

L̂

Figure 9. Thermal patch experiment. Figure (a): IR camera. Figures (b) and (c): mathe-

matical description of the acrylic sheet. L̂ = 22.606mm, Ĥ = 9.271mm.

(a) uobs,dim (b) xdim3 = 0.2mm (c) xdim3 = −12.0mm

Figure 10. Thermal patch experiment: comparison between filtered and unfiltered fields.
Figure (a): observed thermal field uobs,dim. Figures (b) and (c): spatial slices of the difference
uobs,dim − ufilt,dim.

functional `(·, xobs
m ) is designed to represent a fictitious measurement in the sensor location xobs

m ∈ Ωobs. We
observe that the IR camera permits us to conduct convergence studies that would typically not be feasible in
actual field deployment.

6.3. Mathematical model and background space

We resort to a steady-state heat-transfer model in which the heat-exchange between the patch and the sheet
is described by means of a Robin boundary condition. In more detail, we consider the following bk model for
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the thermal field ubk,dim : Ωbk,dim → R:
−∆ubk,dim = 0, in Ωbk,dim,

κ∂nu
bk,dim + ψ(ubk,dim −Θroom,dim) = gdimχΓpatch,dim on Γin,dim,

κ∂nu
bk,dim = 0 on ∂Ωbk,dim \ Γin,dim,

(50)

where ψ is the convective heat transfer coefficient, κ is the thermal conductivity, Θroom,dim = 20oC is the room
temperature, and gdim is the incoming flux, which models the heat exchange between the patch and the plate.
Textbook values for the model parameters are κ = 0.2W/m, ψ = 10W/m2.

Given the thermal field ubk,dim, we introduce the non-dimensional counterpart

ubk(x) =
ubk,dim(L̂x)−Θroom,dim

∆Θ
, (51)

where ∆Θ = 50oC is a rough approximation of the temperature difference between the far-field and the center
of the patch, L̂ = 22.606mm is the length of the edge of the patch (see Figure 9). We observe that ubk = ubk(µ)
satisfies 

−∆ubk(µ) = 0, in Ωbk,

∂nu
bk(µ) + µubk(µ) = g on Γin,

∂nu
bk(µ) = 0 on ∂Ωbk \ Γin,

(52a)

where µ = L̂ψ/κ ≈ 1.13 and g is defined as follows:

g(x) = C χΓpatch(x). (52b)

We observe that ubk depends on the parameters µ and C. Since the model is linear with respect to C
and our ultimate goal is to define a linear space associated with the bk manifold, we can simply set C = 1.
On the other hand, assuming that the estimate of κ is accurate and that ψ ≈ 10 ± 5W/m2, we obtain that
µ ∈ Pbk = [0.5650, 1.650]. We can thus define the bk manifold as follows:

Mbk =
{
ubk(µ)|Ωobs : µ ∈ Pbk

}
. (53)

We observe that our parametrized model encodes the uncertainty in the material properties ψ and κ. On
the other hand, it does not take into account the nonlinear effects associated to natural convection, and to the
heat-exchange between the patch and the sheet. The latter represent the non-parametric uncertainty in the
model.

The background space ZN associated with (52)-(53) is built using the weak-Greedy algorithm. To compute
the solution to the bk model, we appeal to a P3 continuous Finite Element discretization based on N = 40000
degrees of freedom.

6.4. Numerical results

We interpret pixel-wise measurements as pointwise evaluations associated with the center of the pixel. As in
the previous test, we perform holdout validation for ξ and γ with I = M/2. We assess performance by computing
the relative mean squared error MSErel = ‖uobs − u?ξ‖2L2(Ω)/‖u

obs‖2L2(Ω) based on the full-field information.

Figure 11 shows the convergence of MSErel with M for three values of N . We observe that, while including
the first snapshot leads to a substantial improvement in the performances, considering N > 1 does not lead to
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any substantial improvement. We further observe that for M ≈ 100 we reach the estimated noise level

σest :=
‖ 0.5oC

∆Θ ‖L2(Ω)

‖uobs‖L2(Ω)
.

As M increases, MSErel becomes significantly lower than σ2
est: this can be explained by observing that for large

values of M the amount of pixels used for learning (training plus validation) is not negligible compared to the
entire dataset.

Figure 11. Application to the thermal patch experiment: convergence of the relative mean
squared error MSErel with M for fixed N .

7. Conclusions

In this paper, we extended the PBDW formulation first proposed in [36] to pointwise noisy measurements. The
extension relies on an adaptive procedure that properly takes into account the noise level, and the characteristic
length-scale of the difference utrue−z?ξ . The use of explicit kernels allows us to perform online adaptation to tune
the characteristic length-scale of the update functions. We presented a priori and a posteriori error estimates
for the L2 state-estimation error to motivate the approach from a theoretical standpoint. We presented several
numerical results to illustrate the different elements of the formulation. In more detail, numerical experiments
demonstrated (i) a multiplicative effect between N convergence (associated with the primary approximation
provided by the background ZN ) and M convergence (associated with the secondary approximation provided
by the update UM ), (ii) the practical importance of adapting the shape of the Riesz representers based on data,
and (iii) L2 convergence of the APBDW estimate to the true state even for noisy measurements.

We now identify four extensions to the approach, which are subjects of future work. First, we wish to design
strategies for the selection of the observation centers that address both stability and approximation. This would
allow us to consider the case N ' M , and would tighten the connection between our approach and the design
of the experiment. In this respect, we wish to combine the Greedy procedure presented in [36, Algorithm 2]
with techniques developed in the kernel methods’ literature for collocation methods for PDEs ([23, 48]) and
scattered data approximation ([39, section 3.1.1], [61]). Second, we wish to consider more general observation
functionals of the form ym = `om(utrue) + εm. This would allow us to take into account different sources of
information. In this respect, we observe that the well-posedness analysis can be trivially extended to the case
in which `o1, . . . , `

o
M ∈ U ′, while the error analysis relies on the form of the observation functionals. Third, we

wish to exploit the interpretation of APBDW as convex relaxation of the partial spline model for a particular
choice of the background to derive new probabilistic and deterministic error bounds and possibly improve the
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performance of the state-estimation procedure. Finally, we wish to extend our technique to time-dependent
problems.
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Appendix A. Proofs of the error bounds

In this appendix, we provide the proofs of the results presented in section 3. The appendix is organized as
follows. In section A.1, we introduce a regularized formulation and we show the connection with our formulation.
In section A.2, we exploit the results for the regularized problem to prove Proposition 3.1. Finally, in section
A.3, we prove the result for fixed-design regression.

A.1. Preliminaries

We introduce a regularized formulation of the APBDW statement proposed in this work: given λ ≥ 0, ξ > 0,
find u?λ,ξ ∈ U such that

u?λ,ξ = arg min
u∈U

J
(1)
λ,ξ(u) := ξ‖u‖2λ,N + VM (u), (54)

where the seminorm ‖ · ‖λ,N is defined as

‖w‖2λ,N = λ‖ΠZNw‖2 + ‖ΠZ⊥
N
w‖2. (55)

We observe that for any λ > 0, the function ‖ · ‖λ,N is a norm equivalent to ‖ · ‖. We also observe that for
λ = 0, problem (54) corresponds to (11).

Next Proposition summarizes a number of properties of problem (54) that are crucial to prove the error
bounds for u?ξ .

Proposition A.1. Let βN,M > 0. Then, the following hold.

(1) For any λ > 0, the solution to (54) exists and is unique. Furthermore, if we introduce η?λ,ξ = ΠZ⊥
N
u?λ,ξ,

z?λ,ξ = ΠZNu
?
λ,ξ, we have that η?λ,ξ ∈ span{ΠZ⊥

N
Kxm}Mm=1 and z?λ,ξ ∈ span{ΠZN Kxm}Mm=1.

(2) For any ξ > 0, the solution u?λ,ξ converges to the solution u?ξ to (11) when λ→ 0+.

(3) For any λ ≥ 0, the following bounds hold:

‖utrue − u?λ,ξ‖λ,N ≤ 2‖utrue‖λ,N +
δ

2
√
ξ
, (56a)

and

‖utrue − u?λ,ξ‖`2(XM ) ≤
√
M

(
δ +

√
ξ

2
‖utrue‖λ,N

)
. (56b)

We prove each statement separately.

Proof. (statement 1 ) For any λ > 0, u 7→ ‖u‖2λ,N is strictly convex, while u 7→ VM (u) is convex. This implies

that for any ξ > 0 the objective function Jλ,ξ(u) = ξ‖u‖2λ,N + VM (u) is strictly convex. Therefore, existence

and uniqueness of the solution to (54) follow from [16, Theorem 3, Chapter 8.2].
We observe that x ∈ Ω 7→ Φλ,Nx = 1

λΠZNKx + ΠZ⊥
N
Kx, is the feature map associated with (U , ‖ · ‖λ,N ). We

have indeed that for all v ∈ U and x ∈ Ω

(Φλ,Nx , v)λ,N =
λ

λ
(ΠZNKx, v) + (ΠZ⊥

N
Kx, v) = (Kx,ΠZN v + ΠZ⊥

N
v) = (Kx, v) = v(x).
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Exploiting the representer theorem (see, e.g., [58, Theorem 16.1]), we have that u?λ,ξ ∈ span{Φλ,Nxm }
M
m=1. As

a result, we have that η?λ,ξ ∈ span{ΠZ⊥
N

Φλ,Nxm }
M
m=1, and z?λ,ξ ∈ span{ΠZN Φλ,Nxm }

M
m=1 for any λ > 0. �

Proof. (statement 2 ) Let {λj}j be a real sequence such that λj → 0+. Exploiting the first statement of
Proposition A.1, we have that sequences {η?λj ,ξ}j , {z

?
λj ,ξ
}j belong to finite dimensional spaces that do not

depend on λ. Furthermore, applying Lemma 2.3, it is possible to verify that they are uniformly bounded for all
j. Applying Bolzano-Weierstrass theorem, the sequence {u?λj ,ξ = η?λj ,ξ + z?λj ,ξ}j admits a strongly convergent

subsequence {u?λk,ξ}k to û?ξ ∈ U .
We now show that û?ξ = u?ξ . We first observe that

J
(1)
λk,ξ

(u?λk,ξ) = λk ‖z?λk,ξ‖
2︸ ︷︷ ︸

≤C

+‖η?λk,ξ‖
2 + VM (u?λk,ξ)→ J

(1)
ξ (û?ξ), k →∞.

We further observe that for any λk > 0

J
(1)
λk,ξ

(u?λk,ξ) ≤ J
(1)
λk,ξ

(u?ξ), k = 1, 2, . . . ,

and by taking the limit on both sides, we obtain

J
(1)
ξ (û?ξ) ≤ J

(1)
ξ (u?ξ)

Since u?ξ is the unique minimizer of (11), we must have u?ξ = û?ξ . Furthermore, by the same argument, u?ξ must
be the only limit point of the sequence; therefore, the entire sequence converges to û?ξ . Thesis follows. �

Proof. (statement 3 ) For λ > 0, ‖ · ‖λ,N is a norm for U ; therefore, estimates (56a) and (56b) follow directly
from [28, Corollary 4.3] and [28, Lemma 4.5].

The extension to λ = 0 follows by observing that u?λ,ξ converges to u?ξ when λ→ 0+. �

Before proving the error bounds, we prove (32b).

Lemma A.2. Let Ω be a Lipschitz domain and let U be the Sobolev space Hτ (Ω) with τ > d/2. Let us assume
that inf-sup constant βN,M defined in (9) is strictly positive and hXM < 1.

Then,

CN,XM ≤
1

min{cN,M , 1− h2τ−d
XM }

C,

where cN,M is defined in (14) and C depends on the domain Ω and on (·, ·).

Proof. Let us define the constant

ĈXM := sup
u∈U

‖u‖2L2(Ω)

h2τ
XM ‖u‖

2 + hdXM ‖u‖
2
`2(XM )

.

Recalling [28, Theorem 4.8], ĈXM is bounded from above by a constant C that does not depend on M .
Since βN,M > 0, recalling Lemma 2.3, we have that

‖ΠZ⊥
N
u‖2 + ‖u‖2`2(XM ) ≥ cN,M‖u‖

2,
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where cN,M > 0 is given by the expression in (14). Then, we observe that

h2τ
XM ‖ΠZ⊥

N
u‖2 + hdXM ‖u‖

2
`2(XM ) = h2τ

XM

(
‖ΠZ⊥

N
u‖2 + ‖u‖2`2(XM )

)
+
(
hdXM − h

2τ
XM
)
‖u‖2`2(XM )

≥ cN,Mh
2τ
XM ‖u‖

2 +
(
1− h2τ−d

XM

)
hdXM ‖u‖

2
`2(XM )

≥ min{cN,M , 1− h2τ−d
XM }

(
h2τ
XM ‖u‖

2 + hdXM ‖u‖
2
`2(XM )

)
.

As a result,

CN,XM = sup
u∈U

‖u‖2L2(Ω)

h2τ
XM ‖ΠZ⊥

N
u‖2 + hdXM ‖u‖

2
`2(XM )

≤
(

sup
u∈U

‖u‖2L2(Ω)

h2τ
XM ‖u‖

2 + hdXM ‖u‖
2
`2(XM )

)
︸ ︷︷ ︸

=C

1

min{cN,M , 1− h2τ−d
XM }

Thesis follows. �

A.2. Proof of the error bound for scattered data

Proof. (Proposition 3.1) The proof replicates the argument of [28, Theorem 4.11]. Recalling the definition of
CN,XM , we have

‖utrue − u?ξ‖2L2(Ω) ≤ CN,XM
(
h2τ
XM ‖ΠZ⊥

N
(utrue − u?ξ)‖2 + hdXM ‖u

true − u?ξ‖2`2(XM )

)
.

Then, using (56a) and (56b), we obtain

‖utrue − u?ξ‖2L2(Ω) ≤ CN,XM

(
h2τ
XM

(
2 ‖ΠZ⊥

N
utrue‖2 +

δ

2

1√
ξ

)2

+ hdXMM

(
δ +

√
ξ

2
‖ΠZ⊥

N
utrue‖

)2
)
,

which is the thesis. �

A.3. Proof of the error bound for fixed-design regression

We first introduce some notation and preliminary definitions. We decompose the datum yM as

yM = ytrue
M + ε, ytrue

M = [utrue(x1), . . . , utrue(xM )], ε = [ε1, . . . , εM ],

and we define εaug =

[
ε
0

]
∈ RM+N . We observe that V[εaug] = σ2Σ, where Σ is defined in(37). Then,

we introduce the solution u?,σ=0
ξ to (11) for yM = ytrue

M . We further introduce the vectors of coefficients

u?,u?,σ=0 ∈ RM+N ,

u? =

[
η?

z?

]
, u?,σ=0 =

[
η?,σ=0

z?,σ=0

]
,

associated with u?ξ and u?,σ=0
ξ .

We have now the elements to prove Proposition 3.5.

Proof. (Proposition 3.5) We observe that

‖u?ξ − u
?,σ=0
ξ ‖2L2(Ω) = (u? − u?,σ=0)T M (u? − u?,σ=0) = εTaug

(
A−1
ξ MA−1

ξ

)
εaug.
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Then, applying [46, Theorem C, Chapter 14.4], we find

E
[
‖u?ξ − u

?,σ=0
ξ ‖2L2(Ω)

]
= σ2 trace

(
A−1
ξ MA−1

ξ Σ
)
. (57)

We now distinguish two cases. If utrue ∈ ZN , then u?,σ=0
ξ = utrue and (57) implies (39). On the other hand,

if utrue /∈ ZN thesis follows by observing that

E
[
‖u?ξ − utrue‖2L2(Ω)

]
≤ 2 ‖utrue − u?,σ=0

ξ ‖2L2(Ω) + 2E
[
‖u?ξ − u

?,σ=0
ξ ‖2L2(Ω)

]
and then combining estimates (36) and (57). �
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