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Abstract. We present a localization procedure for addressing data assimilation tasks — state
estimation and parameter estimation — in which the quantity of interest pertains to a subregion of
the domain over which the mathematical model is properly defined. Given the domain Ωpb associated
with the full system, and the domain of interest Ω ⊂ Ωpb, our localization procedure relies on the
definition of an intermediate domain Ωbk such that Ω̄ ⊂ Ω̄bk ⊂ Ω̄pb. The domain Ωbk is chosen to
exclude many parameters associated with the parametrization of the mathematical model in Ωpb \Ω
and to thereby reduce the difficulty of the estimation problem. Our approach exploits a Model-Order-
Reduction (MOR) procedure to properly address (i) uncertainty in the value of the parameters in
Ω, and (ii) uncertainty in the boundary conditions at the interface between Ωbk and Ωpb \Ωbk. We
present theoretical results to demonstrate the optimality of our construction. We further present
two numerical synthetic examples in acoustics to demonstrate the effectiveness of our localization
procedure in reducing uncertainty dimensionality, and thus in simplifying the data assimilation task.
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1. Introduction. In practical applications, best-knowledge (bk) mathematical
models might be characterized by extremely high-dimensional parametric uncertainty.
In the process of defining the model, we must indeed specify potential variations in the
topology of the structure, material properties, and initial and boundary conditions,
just to mention a few; since all these quantities are typically subject to uncertainty,
the effective number of parameters associated with the mathematical model of a full
engineering system might number in the hundreds.

In many cases, we are interested in the solution to the mathematical model —
which in this paper corresponds to a Partial Differential Equation (PDE) — in a
subregion of the whole system: for acoustic applications, active systems for noise can-
cellation rely on the estimation of the sound pressure level in a particular region of
interest; in damage identification, engineers are often able to anticipate the region of
the structure of interest that is more likely prone to failure, and consequently monitor
only these parts of the structure. Once we restrict the model to the subregion of in-
terest, we must face two different sources of uncertainty in the model: (i) uncertainty
in the physical parameters within the subregion, and (ii) uncertainty in the bound-
ary conditions at the (artificial) interface — following [21], we here refer to model
uncertainty as to the uncertainty in the value of the parameters (parametric uncer-
tainty) and/or in source term and boundary conditions (non-parametric uncertainty).
While we might reasonably assume that the former source of uncertainty leads to a
low-dimensional parametrization, the latter clearly leads to a high-dimensional and
possibly infinite-dimensional parameter space.

To address the uncertainty related to boundary conditions, we propose a two-
stage localization procedure. If we denote by Ωpb the domain associated with the full
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system, and by Ω ⊂ Ωpb the domain of interest, we introduce the bk domain Ωbk such
that Ω̄ ⊂ Ω̄bk ⊂ Ω̄pb, where S̄ denotes the closure of the set S, S = Ω,Ωbk,Ωpb. We
denote by Γin ⊂ ∂Ωbk the interface between the domain Ωpb\Ωbk and the domain Ωbk

in which boundary conditions are uncertain. The domain Ωbk is chosen to exclude
many parameters associated with Ωpb \ Ω; however, we must also ensure that Γin

is separated from Ω, that is dist(Ω,Γin) > 0. We further denote by µ ∈ P the
parameters active in Ωbk, and by g ∈ T the unknown restriction of the true state
to the interface Γin: here, the parameter space P ⊂ RP represents a “confidence
region” for the true value of µ, while T is a suitable functional space defined over
Γin. Exploiting the previous definitions, we finally introduce the bk solution map
(g, µ) ∈ T × P 7→ ug(µ) ∈ V, where V is a suitable Hilbert space over Ωbk: ug(µ)
is the solution to the µ-parametrized bk differential equation in Ωbk with Dirichlet
boundary condition g on Γin. Figure 1 shows two possible instances of the localization
strategy proposed in this paper.

Γin

Ω

Ωbk

Ωpb \ Ωbk

(a) state estimation

Γin,1

Γin,2

Ω
(1)
d−1 Ω

(2)
d−1V

Ωbk

Ωpb \ Ωbk

Ωpb \ Ωbk

(b) parameter estimation

Fig. 1: Localization strategy. Figure (a): state estimation in Ω. Figure (b): parameter
estimation in V .

In this work, we propose and analyse a Model-Order-Reduction (MOR) procedure
for the construction of hierarchical local approximation spaces Z1 ⊂ . . . ⊂ ZNmax

⊂ Y
for the restriction of the solution manifold to the domain of interest, {ug(µ)|Ω : g ∈
T , µ ∈ P} ⊂ Y, where Y is a suitable Hilbert space on Ω. For P = {µ̄} (a param-
eter singleton), we define the space ZN as the span of the first N eigenmodes of a
transfer eigenproblem ([27]). For P 6= {µ̄}, we first build separately ntrain approxima-

tion spaces Z(1)
N , . . . ,Z(ntrain)

N associated with ntrain different values of the parameter
µ, {µi}ntrain

i=1 , and then we condense these spaces into a single approximation space
by applying a Proper Orthogonal Decomposition based on the method of snapshots
(POD, [3, 20, 33]). Our approach is applicable to a large class of elliptic linear PDEs
for both two-dimensional and three-dimensional domains. We can also consider the
case in which the global domain Ωbk is of dimension d and the local domain Ω is of
dimension d− 1; if the domain of interest is (d− 1)-dimensional, we use the notation
Ωd−1. For P = {µ̄}, and second-order PDEs, we prove that our approach is optimal
in a suitable Sobolev norm — H1(Ω) if Ω ⊂ Rd, H1/2(Ωd−1) if Ωd−1 ⊂ Rd−1 — in
the sense of Kolmogorov.

Our localization strategy relies on the filtering properties of the differential op-
erator associated with the mathematical model. From a physical standpoint, this is
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closely connected to the concept of evanescence ([5]). For elliptic problems, if Γin is
sufficiently far from the domain of interest Ω, we anticipate an exponential decay of
the high-order modes of the Dirichlet boundary conditions at Γin. This effectively
reduces the dimensionality of the solution manifold and permits its approximation
through a low-dimensional linear space. We emphasize that the reducibility of the so-
lution manifold is an intrinsic feature of the particular differential problem and system
configuration at hand: in [36, Chapter 5.1.2] an example of a semi-infinite waveguide
([13]) is presented to show that the localization strategy relies on the assumption
that the Kolmogorov N -width associated with the localized solution manifold decays
sufficiently fast. A priori estimates for the decay of the Kolmogorov N -width of local
solution manifolds are limited to the diffusion equation ([2, Theorem 3.3]): therefore,
the reducibility of the manifold should be assessed on a case-by-case basis.

We apply our localization strategy to state estimation within the framework of
the Parametrized-Background Data-Weak approach (PBDW, [21, 22]). Given M mea-
surements `obs

1 , . . . , `obs
M ∈ C in the domain Ω, we aim to estimate the state utrue over

Ω. PBDW formulation seeks an approximation u? = z? + η? to the true field utrue

over Ω employing projection-by-data based on M measurements {`obs
m }Mm=1 of the

form `obs
m = `om(utrue), where `o1, . . . , `

o
M ∈ Y ′ are suitably-chosen linear functionals

associated with the physical transducers. The first contribution to u?, z? ∈ ZN , is
the “deduced background estimate”: since ZN ⊂ Y is informed by the bk solution
manifold M, z? incorporates our prior knowledge of the state. The second contribu-
tion to u?, η? ∈ Z⊥N , is the “update estimate”: η? is a linear combination of the Riesz
representations of the M observation functionals {`om}Mm=1, and is designed to address
the deficiencies of the bk model. The approach has been extended to pointwise noisy
measurements in [35]. As discussed in the above-mentioned papers, the PBDW for-
mulation is well-posed only if N ≤ M : for this reason, it is key to construct spaces
{ZN}N that accurately approximate the solution manifold in Ω for moderate values
of N . This motivates the use of our localization strategy for the determination of the
background space ZN .

We also apply our localization strategy to parameter estimation. Given M direct
and indirect measurements {`obs

m }Mm=1 of the state utrue in the domain V ⊂ Ωpb, pa-
rameter estimation techniques aim to approximate the parameter µ? ∈ P associated
with the current system. The state — and thus the observations — typically is not
uniquely determined by the local parameters µ, but might also depend on other pa-
rameters associated with the domain Ωpb \V , which might be difficult to characterize
or might lead to an extremely high-dimensional parametrization. For this reason,
the resulting inverse problem will be extremely difficult to solve, typically always ill-
posed. This motivates the use of our localization procedure: first, we define (i) Ωbk

such that V ⊂ Ωbk ⊂ Ωpb, (ii) Ωd−1 as the intersection between ∂V and Ωpb \ V ,
and (iii) the possibly high-dimensional uncertainty set T on Γin; then, we employ
our MOR technique to define an N -dimensional expansion for the restriction ḡ of the
state u to Ωd−1. We can then consider the restriction of the state to V as a function
of ḡ and of the parameter µ. We refer to Figure 1(b) for a graphical explanation of
the localization procedure. If N is modest compared to the global parametrization of
the differential model, this approach dramatically reduces the dimensionality of the
inverse problem.

The idea of employing a two-stage localization procedure based on the definition
of an intermediate domain Ωbk, Ω ⊂ Ωbk ⊂ Ωpb, is new in the field of Data Assim-
ilation. We remark that in Acoustics several authors have studied the problem of
estimating the acoustic pressure in a domain Ω based on local measurements, under
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the assumption that the pressure field satisfies the Helmholtz equation in a domain
Ωpb containing Ω ([28, 39]). Chardon et al. ([8]) and Moiola et al. ([25]) apply
Fourier-Bessel and plane-wave expansions to estimate the pressure field, and exploit
the fact that the pressure satisfies the Helmholtz equation for a specific value of the
wave number to derive a priori error estimates for the best-fit error in Sobolev norms.
While these approaches rely on explicit expansions, we employ here an empirical basis
which relies on the definition of the intermediate domain Ωbk. Approaches based on
explicit expansions are specialized to a specific parameter-independent equation, and
to specific choices of the domain Ω; on the other hand, our approach is applicable to
a wide class of equations and domains of interest, is guaranteed to be optimal in the
sense of Kolmogorov, and can also address the case in which the PDE model contains
uncertain parameters.

Our localization strategy is similar to the concept of oversampling in numerical
multiscale methods ( [18, 11, 15]). If we denote by TH = {Ti}nelem

i=1 the coarse mesh
of Ωpb, oversampling methods consist (i) in defining and solving a suitable local
problem for the coarse element Ti in the patch U(Ti), Ti ⊂ U(Ti) ⊂ Ωpb, and (ii)
in restricting the solution to the local problem to the element Ti: the element Ti
plays the role of Ω, and the patch U(Ti) plays the role of Ωbk. We remark that while
our localization approach aims at reducing model uncertainty for data assimilation
applications, oversampling aims at reducing the effect of resonance errors associated
with the multiscale formulation.

Computational procedures for the construction of local approximation spaces
based on the eigenmodes of a transfer eigenproblem are new in the context of data as-
similation, but have already been exploited in several other applications. The transfer
eigenproblem was first introduced and studied in the approximation theory literature
(see, e.g., [27]). More recently, Babuška and Lipton in [2] employed the transfer
eigenmodes to define local approximation spaces in the framework of the Generalized
Finite Element method ([24, 1]). Smetana and Patera in [34] exploited the eigenmodes
associated with the transfer eigenproblem in the context of Port-Reduced Static Con-
densation Reduced Basis Element (PR-scRBE, [19, 12]) Method for linear elasticity;
furthermore, they proposed a Greedy technique to address the parametric dependence.
More recently, Buhr and Smetana in [7] proposed to estimate the transfer eigenmodes
based on random sampling of the boundary conditions.

In this work, we extend the analysis presented in [2] and [34] to a wide class of
linear elliptic PDEs, and we also study the stability of the approach with respect
to the choice of the finite-dimensional discretization TNin

of T (cf. Proposition 3.5).
Furthermore, we rigorously show that for P = {µ̄} the eigenmodes of the transfer
eigenproblem correspond to the POD eigenmodes for a proper choice of the snap-
shots. The connection with POD allows us to interpret the combination of the transfer
eigenproblem for fixed parameter with POD for parameter variation as a Hierarchical
Approximate Proper Orthogonal Decomposition (HAPOD, [17, 26]). Using terminol-
ogy introduced in [17], our approach corresponds to a distributed approximated POD.
We exploit this connection in the analysis.

The paper is organized as follows. In section 2, we introduce our model reduction
(data compression) strategy. In section 3, we present a number of theoretical results
concerning the optimality of our construction. Then, we illustrate our localization
strategy for state estimation (section 4), and for parameter estimation (section 5),
through the vehicle of two acoustics examples. Finally, in section 6, we draw some
conclusions.
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2. Methodology.

2.1. Preliminaries. Let Ωbk ⊂ Rd be a Lipschitz domain, and let Γin ⊂ ∂Ωbk

be an open set. Let Ω be either a d-dimensional open subset of Ωbk, or a d − 1-
dimensional open subset of Ω̄bk; let us assume that dist(Ω,Γin) > 0. We define the
Hilbert spaces V = V(Ωbk), T = T (Γin), and Y = Y(Ω) endowed with the inner
products (·, ·)V , (·, ·)T and (·, ·)Y , and the induced norms ‖ · ‖V , ‖ · ‖T , and ‖ · ‖Y ,
respectively. We also denote by ΠYQ(·) the projection operator onto Q ⊂ Y in Y,

and by ΠTQ′(·) the projection operator onto Q′ ⊂ T in T . Finally, we introduce the
parameter space P, which is assumed to be compact in RP . We remark that, in the
data assimilation context, P represents a confidence region for the true value of µ
associated with the state.

Given g ∈ T and µ ∈ P, we denote by ug(µ) ∈ V the unique solution to the
variational problem

(1) Gµ(ug(µ), v) = f(v), ∀ v ∈ V0, ug|Γin = g, µ ∈ P, g ∈ T ,

where V0 := {v ∈ V : v|Γin ≡ 0}, and Gµ is an inf-sup stable bilinear form on V0 ×V0.
In the remainder of this paper, we assume that for any value of µ ∈ P and for any
g ∈ T problem (1) is well-posed in V, and ug(µ)|Ω belongs to Y. For simplicity, with
no loss of generality, we assume that f ≡ 0. We further introduce the solution maps
Â : T × P → V and A : T × P → Y such that

(2) Â(g;µ) = ug(µ), A(g;µ) = ug(µ)|Ω, ∀ g ∈ T , µ ∈ P.

Due to the assumptions on Gµ and f , it is straightforward to verify that A and Â are
linear and continuous operators in g such that A(0;µ) ≡ 0, and Â(0;µ) ≡ 0. Finally,
we introduce the manifolds

(3a) Â(T ) := {ug(µ) : µ ∈ P, g ∈ T } ⊂ V,

and

(3b) A(T ) := {ug(µ)|Ω : µ ∈ P, g ∈ T } ⊂ Y.

In the remainder of this section, we discuss the data compression strategy for the
construction of a linear approximation space ZN for the manifold A(T ). First, we
consider the case P = {µ̄}, and then we consider the extension to the general case
P 6= {µ̄}. In the case P = {µ̄}, to simplify notation, we omit the dependence on the
parameter.

2.2. The case P = {µ̄}. We introduce the transfer eigenproblem as follows: find
(φn, λn) ∈ (T ,R+) such that

(4) (A(φn), A(g))Y = λn(φn, g)T ∀ g ∈ T ,

where λ1 ≥ λ2 . . . ≥ 0 and (φn, φn′)T = δn,n′ . Then, for any N > 0, we define the
transfer eigenspace

(5) Zte
N := span{A(φn)}Nn=1.

If we introduce the finite-dimensional discretization of T , TNin = span{g1, . . . ,
gNin
} ⊂ T , we can define the semi-discrete transfer eigenproblem: find (φNin

n , λNin
n ) ∈

(TNin
,R+) such that

(6) (A(φNin
n ), A(g))Y = λNin

n (φNin
n , g)T ∀ g ∈ TNin

,
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where λNin
1 ≥ λNin

2 . . . ≥ λNin

Nin
≥ 0, and (φNin

n , φNin

n′ )T = δn,n′ . Then, for any N > 0,
we define the semi-discrete transfer eigenspace:

(7) Zte,Nin

N := span{A(φNin
n )}Nn=1.

Eigenproblem (6) can also be restated in a fully algebraic form as

(8a) UφNin
n = λNin

n TφNin
n , for n = 1, . . . ,Nin,

where U,T ∈ RNin,Nin are given by

(8b) Ui,i′ = (A(gi), A(gi′))Y , Ti,i′ = (gi, gi′)T , i, i′ = 1, . . . ,Nin,

and the vectors {φNin
n }n are related to the transfer eigenmodes {φNin

n }n by the relation

(8c) φNin
n =

Nin∑
i=1

(φNin
n )i gi.

We observe that eigenproblem (8) is not fully actionable since evaluations of the map
A(·) involve the solution to a PDE: we should thus replace A with the correspond-
ing Finite Element (FE) counterpart AFE. To simplify notation, we here omit the
superscript FE.

The transfer eigenproblem is tightly connected to the eigenproblem obtained using
POD. In more detail, if we choose an orthonormal basis {gn}Nin

n=1 for TNin
, (8) reduces

to the eigenproblem

UφNin
n = λNin

n φNin
n , forn = 1, . . . ,Nin;

this corresponds to the eigenproblem obtained by applying POD based on the method
of snapshots ([33]) to the set {A(gn)}Nin

n=1. We observe that, unlike the reduced space

generated by POD1, the reduced space Zte,Nin

N is independent of the particular basis
of TNin

employed.
The connection between transfer eigenproblem and POD can also be established

in terms of SVD. It is indeed possible to show that the transfer eigenproblem computes
the truncated SVD of the operator A, whereas POD computes the truncated SVD
of the operator which maps the n-th canonical basis vector of RNin to A(gn) for a
given basis {gn}Nin

n=1. The choice of an orthonormal basis {gn}Nin
n=1 induces an isometry

between RNin and TNin
. Hence, both operators have the same left-singular vectors.

2.3. The case P 6= {µ̄}. If P 6= {µ̄}, we adopt a two-stage procedure based on
the combination of the method presented above and POD. We first consider a finite-
dimensional discretization of P, Ptrain = {µi}ntrain

i=1 . Then, we solve ntrain transfer
eigenproblems, one for each value of the parameter, to obtain ntrain N -dimensional
transfer eigenspaces {Zte,Nin

N (µi)}ntrain
i=1 . Finally, we generate the background space

ZN by applying POD — based on the Y inner product — to the set of snapshots
{A(φNin,i

n ;µi)}i,n, where ‖φNin,i
n ‖T = 1 for all i = 1, . . . , ntrain and n = 1, . . . , N .

Algorithm 1 summarises the computational procedure.

1More precisely, the POD space and the POD eigenvalues associated with {A(gn)}n are the same
for any orthonormal basis of TNin

. On the other hand, POD space and eigenvalues might vary for
different non-orthonormal bases of TNin

.
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Algorithm 1 Construction of the localized reduced space

Input Ptrain = {µi}ntrain
i=1 ⊂ P discretized parameter space

N dimension of the background space

Output ZN background space

1: Define the basis {g1, . . . , gNin
} for TNin

.

2: for i = 1 . . . ntrain do
3: Compute the first N normalized eigenmodes {φNin,i

n }Nn=1 associated with Ai :=
A(·;µi) using (6), (‖φNin,i

n ‖T = 1, i = 1, . . . , ntrain, n = 1, . . . , N).

4: end for
5: Apply POD to the set of snapshots {A(φNin,i

n ;µi)}i=1,...,ntrain, n=1,...,N to generate
ZN ⊂ Y.

We observe that

‖A(φNin,i
n ;µi)‖2Y = (A(φNin,i

n ;µi), A(φNin,i
n ;µi)) = λNin,i

n (φNin,i
n , φNin,i

n )T = λNin,i
n .

Therefore, the POD reduction implicitly takes into account the relative importance
— quantified by the value of the corresponding transfer eigenvalue — of the different
snapshots. Exploiting the relationship between POD modes and transfer eigenmodes
explained in the previous section, we can interpret Algorithm 1 as a distributed ap-
proximated POD ([17]) based on two layers: the first layer addresses the uncertainty
in the boundary conditions, the second layer addresses the parameter variation. We
further observe that we could keep Ñ > N POD modes: if parameter variation is
significant, we anticipate that λPOD

N � maxi λ
Nin,i
N where λPOD

N denotes the N -th
POD eigenvalue; for this reason, we could select N based on {λNin,i

n }i,n, and then

Ñ based on {λPOD
n }n. Finally, we observe that the construction of ZN requires the

solution to ntrain ×Nin PDEs in the bk domain Ωbk, the solution to ntrain eigenprob-
lems of size Nin, and the solution to an eigenproblem of size ntrain × N . Although
the computations can be trivially parallelized, we envision that Algorithm 1 is afford-
able only for moderate values of ntrain. Therefore, our technique can be applied only
to low-dimensional parameter spaces P. The latter of course does not include any
parameters outside Ωbk (i.e., in Ωpb \ Ωbk).

In [34], a different strategy to construct ZN for non-trivial parameter spaces is
presented. Rather than performing a POD (cf. step 5 Algorithm 1), in [34] the
authors propose a Greedy algorithm that iteratively augments the space ZN with the
transfer eigenspaces generated for a single value of the parameter. Both approaches
require the solution to the same number of transfer eigenproblems, and thus the
same number of PDE solves (equal to ntrain × Nin): since the solution to the ntrain

transfer eigenproblems is by far the most demanding step of both procedures, the two
approaches are nearly equivalent in terms of overall computational cost. The POD
reduction proposed here is easier to implement compared to the approach in [34]; on
the other hand, we envision that a comparison of the performance of the two methods
is extremely problem-dependent.

3. Analysis.

3.1. Optimal approximation spaces. In view of the analysis, we present a
first definition of optimality in the sense of Kolmogorov ([27]).
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Definition 3.1. Given N > 0, and A : T → Y, we say that Zkolm
N ⊂ Y is an

optimal N -dimensional approximation space for A(T ) := {A(g) : g ∈ T } if and only
if

(9a) Zkolm
N ∈ arg inf

ZN⊂Y, dimZN=N
d (A(T ), ZN ) ,

where d (A(T ), ZN ) is defined as

(9b) d (A(T ), ZN ) = sup
g∈T ,‖g‖T 6=0

‖A(g)−ΠYZN
A(g)‖Y

‖g‖T
.

We say that dN (A(T )) = d
(
A(T ), Zkolm

N

)
is the Kolmogorov N -width associated with

the manifold A(T ).

Several variants of Kolmogorov N -width have been proposed in the literature. In
the MOR literature, given the compact manifold M ⊂ Y, Kolmogorov N -width is
defined as (see, e.g., [9])

(10) d̄N (M) = inf
ZN⊂Y,dimZN=N

sup
u∈M

‖u−ΠYZN
u‖Y .

In Appendix A, we rigorously relate (9b) to (10) for a proper choice of M ⊂ A(T )
(cf. Proposition A.1).

Kolmogorov N -widths measure the performance of the best linear approximation
space of size N : they thus provide a lower bound for the best-fit error associated with
any N -dimensional linear space obtained using a model-reduction technique. For
this reason, we can interpret Kolmogorov N -widths as measures of the reducibility
of the manifold M. A priori results for the convergence of the N -width with N are
available for several classes of problems: see [14, Example 3.4], [31, Section 8.1.1],
[37, Example 2.5], [2, Theorem 3.3], and [10]. Several empirical studies suggest that
N -widths converge rapidly for diffusion-dominated problems, and significantly less
rapidly for advection-dominated problems; as discussed in [36, Chapter 5.1.2], this is
strongly related to the concept of evanescence.

We now provide another definition of optimality. For simplicity, we state the
definition for a finite set of snapshots rather than a continuous manifold. We refer
to [3, section 2.3] and to [38, section 1.3] for the generalization of this definition to
continuous manifolds.

Definition 3.2. Given N > 0, and the set of snapshots S = {ui}|S|i=1, we say that

Z`
2

N ⊂ Y is an optimal N -dimensional approximation space for S in the `2-sense if
and only if

(11) Z`
2

N ∈ arg inf
ZN⊂Y, dimZN=N

d`
2

(S, ZN ) :=
1

|S|

|S|∑
i=1

‖ui −ΠYZN
ui‖2Y .

We further define d`
2

N (S) := d`
2

(S, Z`2N )

3.2. The case P = {µ̄}. We first state the key result of this section. We refer to
[27, Chapter 4, Theorem 2.2] for the proof. As in section 2.2, we omit the dependence
on the parameter µ̄.
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Proposition 3.3. Let A : T → Y defined in (2) be a linear compact operator.
Then, for any N > 0 the space Zte

N defined in (5) is an optimal N -dimensional
approximation space for A(T ). Furthermore,

(12) d(A(T )) =
√
λN+1.

Remark 3.4. (sufficient conditions for compactness) Proposition 3.3 shows
that the reduced space built by solving the transfer eigenproblem is optimal in the sense
of Kolmogorov if the solution map A (2) is compact. Given a particular bk model, we
should thus assess whether the corresponding solution map A is compact. In Appendix
A, (cf. Proposition A.2), we provide sufficient conditions — which are satisfied by the
examples considered in this paper — under which the solution map associated with a
given mathematical model is compact.

The next Proposition provides an upper bound on the performance of the semi-
discrete transfer eigenspace Zte,Nin

N (7).

Proposition 3.5. Let TNin
= span{g1, . . . , gNin

} ⊂ T , and let Zte,Nin

N be the
corresponding semi-discrete transfer eigenspace (7) computed based on (8). For any
g ∈ T , we have

(13)
‖A(g)−ΠY

Zte,Nin
N

A(g)‖Y

‖g‖T
≤ ‖A‖L(T ⊥Nin

,Y)

‖ΠTT ⊥Nin

g‖T

‖g‖T
+
√
λNin

N+1,

where λNin

N+1 is the N + 1 eigenvalue of the semi-discrete eigenproblem (6).

Proof. Exploiting the linearity of the operator A and applying (12) in the finite
dimensional case, we find

inf
φ∈Zte,Nin

N

‖A(g)− φ‖Y

≤ inf
φ∈Zte,Nin

N

‖A(g)−A
(

ΠTTNin
g
)
‖Y + ‖A

(
ΠTTNin

g
)
− φ‖Y

≤ ‖A‖L(T ⊥Nin
,Y) ‖ΠTT ⊥Nin

g‖T + inf
φ∈Zte,Nin

N

‖A
(

ΠTTNin
g
)
− φ‖Y

≤ ‖A‖L(T ⊥Nin
,Y) ‖ΠTT ⊥Nin

g‖T + d(A(TNin),Zte,Nin

N )︸ ︷︷ ︸
=
√
λ
Nin
N+1

‖g‖T ,

Thesis follows.

Exploiting (13), we observe that the best-fit error ‖A(g) − ΠY
Zte,Nin

N

A(g)‖Y is

controlled by the sum of two contributions: the former — ‖A‖L(T ⊥Nin
,Y) ‖ΠTT ⊥Nin

g‖T

— takes into account errors in the choice of TNin
; the latter —

√
λNin

N+1‖g‖T— takes

into account the error associated with the truncation of the transfer eigen-expansion.
The first contribution in (13) shows the robustness of our approach to errors in the
choice of TNin

. In this respect, we observe that the discretization error associated
with the input space is multiplied by the operator norm A over T ⊥Nin

, ‖A‖L(T ⊥Nin
,Y).

By exploiting a separation-of-variable argument (see [34, Remark 3.6]), we expect
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that for several relevant applications2 highly-oscillatory modes on Γin decay fast in
the interior of the domain Ωbk. Therefore, if we choose a smooth input space (e.g.,
the space of polynomials of degree less than Nin), the operator norm ‖A‖L(T ⊥Nin

,Y)

should decay rapidly with Nin. This implies that even fields that have low regularity
on Γin can be well-approximated by the transfer eigenspace; in section 4.3, we present
numerical evidence that supports our claim.

The robustness of the approach to discretization error on Γin is important in the
context of data assimilation: in many engineering applications, the set of possible
inputs might be very high-dimensional, but it might be well-approximated by a lower
dimensional space. Proposition 3.5 shows that we can reduce the dimension of the
discrete input space without significantly deteriorating the approximation properties
of Zte,Nin

N .
We conclude this section with a remark.

Remark 3.6. (Optimality in the `2 sense) Let {ψn}Nin
n=1 be an orthonormal

basis of TNin
. Then, exploiting the connection between transfer eigenmodes and POD

eigenmodes shown in section 2, we have that

(14) Zte,Nin

N ∈ arg inf
ZN⊂Y, dimZN=N

d`
2

(S, ZN ),

where S = {A(ψn)}Nin
n=1 and d`

2

is defined in (11). We observe that (14) holds for
any orthonormal basis of TNin

.

3.3. The case P 6= {µ̄}. Exploiting the connection with Hierarchical Approxi-
mate Proper Orthogonal Decomposition, we can show the following Proposition.

Proposition 3.7. Let {g1, . . . , gNin} ⊂ T be an orthonormal basis of TNin . Let us

define εte,iN =
∑Nin

n=N+1 λ
Nin,i
n for i = 1, . . . , ntrain, where {λNin,i

n }Nin
n=1 are the transfer

eigenvalues associated with (6). Let us further define εPOD
N =

∑Nntrain

n=N+1 λ
POD
n , where

{λPOD
n }Nntrain

n=1 are the POD eigenvalues. Then, the following bound holds:

(15a)
1

Ninntrain

Nin∑
n=1

ntrain∑
i=1

‖A(gn;µi)−ΠYZN
A(gn;µi)‖2Y ≤

(
εte,pod

)2
,

where εte,pod is given by

(15b) εte,pod =
1√

Ninntrain

√
ntrain max

i
εte,iN + εPOD

N .

Furthermore, the number of POD modes associated with {A(gn;µi)}i,n required

to obtain the accuracy ε̃2 =
εPOD
N

ntrain·Nin
is greater or equal than N :

(15c) N ≤ min
{
N ′ ∈ {1, . . . , ntrain · Nin} : d`

2

N ′({A(gn;µi)}n,i) ≤ ε̃2
}
,

where d`
2

N is introduced in Definition 3.2.

2As for the decay of the Kolmogorov N -width discussed in the introduction, the behavior of
‖A‖L(T⊥Nin

,Y) with Nin is an intrinsic feature of the problem considered, and should thus be assessed

on a case-by-case basis.
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Proof. As observed in section 2.3, our algorithm corresponds to a distributed
approximate POD. Applying [17, Theorem 3.5], we find

1

Ninntrain

Nin∑
n=1

ntrain∑
i=1

‖A(gn;µi)−ΠYZN
A(gn;µi)‖2Y ≤ inf

ω∈(0,1)
(εte,pod(ω))2,

where εte,pod(ω) is given by

εte,pod(ω) =
1√

Ninntrain

max

{√
ntrain

1− ω2
max
i

εte,iN ,

√
εPOD
N

ω2

}
, ω ∈ (0, 1).

Thesis then follows by minimizing εte,pod(ω) with respect to ω. Table 1 clarifies the
link between the definitions appearing in [17, Theorem 3.5] and the corresponding
definitions of Proposition 3.7.

[17, Theorem 3.5] explanation Prop. 3.7

εT (ρT ) tolerance for the POD reduction step
√
εPOD
N

LT number of reduction stages 2

|S| cardinality of the snapshot set Nin × ntrain

|S̃α| cardinality of the snapshot set for a given µ Nin

εT (α) tolerance for the transfer eigenproblem
√
εte,αN

Table 1: explanation of the link between notation of [17, Theorem 3.5] and notation
of Proposition 3.7.

Proposition 3.7 is a suboptimal result. Estimate (15c) fixes a lower bound for
the number of POD modes required to obtain the same accuracy in a `2 sense. We
remark that in order to apply a global POD we must assemble a full matrix of size
ntrain × Nin; this might be unfeasible for practical applications. We observe that
εPOD
N ' maxi ε

te,i
N implies redundancy between different values of µ; on the other

hand, εPOD
N � maxi ε

te,i
N corresponds to the scenario in which parameter variation has

a major contribution in determining the final reduced space. Finally, we observe that
the proof does not exploit the optimality of the transfer eigenspace (cf. Proposition
3.3) for fixed µ. For this reason, we envision that the result might be improved in our
particular setting.

4. Application to state estimation.

4.1. An acoustic model problem. We illustrate the application of our local-
ization procedure to state estimation. Towards this end, we introduce the following
model problem:

(16)


−(1 + εi)∆utrue(µ) − µ2utrue(µ) = f in Ωpb;

∂nu
true(µ) = 0 on ∂Ωpb \ Γ;

utrue(µ) = htrue on Γ;
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where Γ ⊂ ∂Ωpb is an open set, i =
√
−1 is the imaginary unit, ε = 10−4, f(x) =

101[−0.5,0](x1)1[1.25,1.75](x2). The function f can be interpreted as an acoustic vol-

umetric source associated with a speaker placed outside Ωbk. In our numerical sim-
ulations, we consider htrue = hk(x2) = sin(πkx2) for k = 1, 2, 3, we consider several
choices of µ in P = [2, 4], and we consider two different choices of the problem domain
Ωpb, Ωpb,1 and Ωpb,2, which are depicted in Figure 2. In this example, htrue, Ωpb and
f represent parameters outside our control, while we assume that µ belongs to the
confidence region P: the uncertainty in the value of µ represents the parametric un-
certainty in the system. We then introduce the domain of interest Ω = (2, 3)2, the bk
domain Ωbk = (0, 3)2, and the bk model:

(17)


−(1 + εi)∆ug(µ) − µ2ug(µ) = 0 in Ωbk;

∂nug(µ) = 0 on ∂Ωbk \ Γin;

ug(µ) = g on Γin;

where Γin = {0}× (0, 3). We remark that Ω,Ωbk, Γin, and the bk model are the same
for both choices of the problem domain Ωpb. If we denote by A the local bk solution
operator, since f |Ωbk ≡ 0, we find that utrue(µ)|Ω = A(utrue(µ)|Γin , µ); therefore,
utrue(µ)|Ω ∈ A(T ) := {ug|Ω : µ ∈ P, g ∈ T = H1/2(Γin)} for any htrue ∈ H1/2(Γ), for
any µ ∈ P, and for both choices of Ωpb in (16).

Our goal is to estimate the acoustic field utrue in the domain Ω based on M
measurements of the form

(18) `obs
m = `(utrue; xobs

m , rGauss) := C(xobs
m )

∫
Ω

utrue(y) exp

(
−|y − x

obs
m |2

2r2
Gauss

)
dy,

and on the knowledge of the bk model (17). The constant C is chosen such that
`(1; x, rGauss) ≡ 1 for all x ∈ Ω, the parameter rGauss is set equal to 0.1, while the
choice of the observation centers {xobs

m }Mm=1 is discussed in the next section. The
functional ` mimics the local average of the acoustic pressure as might be measured
by a physical transducer (see [21]).

We briefly motivate our model problem. As discussed in the introduction, for
practical problems, it might be difficult to develop a parametrized model for the full
system in Ωpb. Provided that the uncertainty associated with the shape of Ωpb is
confined to Ωpb \ Ωbk, and that the support of f is outside Ωbk, the uncertainty in
Ωpb and f (and htrue) can be fully addressed through the boundary condition on
Γin. This demonstrates that localization significantly simplifies the parametrization
of the problem. Furthermore, since Γin is sufficiently far from Ω, we can exploit
the procedure developed in this paper to obtain a low-dimensional reduced space
for A(T ), which will be accurate for the original system regardless of the shape of
Ωpb and of the precise form of the source f . Therefore, localization also leads to
significant uncertainty reduction. We numerically confirm these observations in the
next sections.

Computations are based on a P4 FE discretization with N pb = 12289 (N pb =
11825) degrees of freedom in Ωpb,1 ( Ωpb,2), N bk = 9409 degrees of freedom in Ωbk,
and N = 1089 degrees of freedom in Ω. Figures 3 and 4 show the field utrue(µ) for
different htrue and µ, and for the two problem domains Ωpb,1,Ωpb,2. Figure 5 shows
the variations in ‖utrue(µ)‖H1(Ωpb) as a function of µ for htrue = h1; note that there

are ten resonances for Ωpb,1 and eleven resonances for Ωpb,2 in the parameter range
P = [2, 4].
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Γin

Γ

Ωpb,1

ΩΩbk

(a)

Γin

Γ

Ωpb,2

ΩΩbk

(b)

Fig. 2: Application to state estimation: geometry. The filled region indicates the
support of the source f . The edges of the squares of the grid are of length 0.25.

(a) htrue = h1, µ = 2 (b) htrue = h2, µ = 2 (c) htrue = h3, µ = 2

(d) htrue = h1, µ = 4 (e) htrue = h2, µ = 4 (f) htrue = h3, µ = 4

Fig. 3: Application to state estimation: visualization of the real part of the true field
Re{utrue(µ)} for Ωpb,1.

4.2. Formulation: the PBDW approach. Given the measurements {`obs
m =

`om(utrue)}Mm=1 ⊂ C, and the N -dimensional background space ZN ⊂ Y := H1(Ω),
we define the PBDW state estimate u? = z? + η? as the solution to the following
minimization statement ([21, 22, 35]):

(19) min
(z,η)∈ZN×Y

‖η‖Y , subject to `om(z + η) = `obs
m , m = 1, . . . ,M ;

where ‖·‖Y =
√

(·, ·)Y , (u, v)Y =
∫

Ω
∇u ·∇v̄+uv̄ dx. We observe that the formulation

is well-posed only if N ≤M . We further observe that for any rGauss > 0 and xobs
m ∈ Ω,

`om ∈ Y ′. Here, the observation centers {xobs
m }Mm=1 ⊂ Ω are selected using the SGreedy-
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(a) htrue = h1, µ = 2 (b) htrue = h2, µ = 2 (c) htrue = h3, µ = 2

(d) htrue = h1, µ = 4 (e) htrue = h2, µ = 4 (f) htrue = h3, µ = 4

Fig. 4: Application to state estimation: visualization of the real part of the true field
Re{utrue(µ)} for Ωpb,2.

(a) Ωpb,1 (b) Ωpb,2

Fig. 5: Application to state estimation: behavior of ‖utrue(µ)‖H1(Ωpb) with µ, for

Ωpb,1 and Ωpb,2, and for htrue = h1.

plus algorithm with tolerance tol = 0.2 (see [36, Algorithm 3.2.1]).

It is possible to show that η? =
∑M
m=1 ηmRY`

o
m ∈ YM := span{RY`om }Mm=1,

η ∈ CM , where RY`
o
m ∈ Y is the Riesz element associated with the functional `om,

m = 1, . . . ,M . Substituting this expression for η in (19), we can compute u? by solving
a linear system of size N + M . Furthermore, if we introduce the stability constant

βN,M := infz∈ZN
supq∈YM

(z,q)Y
‖z‖Y ‖q‖Y , we can state the following a priori error estimate

(see [4, Remark 2.12] for the proof):

(20) ‖utrue − u?‖Y ≤
1

βN,M
inf

η∈YM∩Z⊥N
inf
z∈ZN

‖utrue − z − η‖Y .
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We observe that βN,M ≡ 0 for N > M and 1
βN,M

increases as N increases (i.e., more

measurements are required to stabilise the formulation), while infη∈YM∩Z⊥N
infz∈ZN

‖utrue − z − η‖Y decreases as N increases: this shows the importance of rapidly
convergent spaces {ZN}N .

By applying Algorithm 1, we can generate rapidly convergent spaces {ZN}N for
the manifold A(T ). We here consider Y = H1(Ω), V = H1(Ωbk), and T = H1/2(Γin)
endowed with the inner products:

(21a) (u, v)Y =

∫
Ω

∇u · ∇v̄ + uv̄ dx, ∀u, v ∈ Y;

(21b) (u, v)V =

∫
Ωbk

∇u · ∇v̄ + uv̄ dx, ∀u, v ∈ V;

and
(21c)

(u, v)T = (Ein(u), Ein(v))V , s.t.

 −∆Ein(u) + Ein(u) = 0 in Ωbk

∂nE
in(u) = 0 on ∂Ωbk \ Γin

Ein(u) = u on Γin

4.3. Numerical results.

4.3.1. The case P = {µ̄}. We first consider the case in which the value of
µ in (16) is known a priori. We consider a Nin = 20-dimensional discretization of
the input space T based on Legendre polynomials, and we apply a standard dense
eigensolver to compute the eigenvalues and eigenvectors of (4). We remark that,
since the bk model is independent of the particular choice of Ωpb, we generate a single
hierarchy of approximation spaces for both Ωpb,1 and Ωpb,2. We further observe that
the discretization of T implicitly filters out high-order modes on Γin.

Figure 6(a) shows the behavior of
√
λNin

N+1 with N for three different values of µ̄,

while Figures 6(b) and 6(c) show the behavior of the relative H1 best-fit error

(22) Erel
N = max

k=1,2,3

‖utrue
k (µ̄)−ΠY

Zte,Nin
N

utrue
k (µ̄)‖Y

‖utrue
k (µ̄)‖Y

for Ωpb = Ωpb,1 and Ωpb = Ωpb,2, respectively, where utrue
k (µ̄) is the solution to (16)

for htrue = hk. We observe that
√
λNin

N+1 & Erel
N : this is in good agreement with the

result in Proposition 3.3. We also observe that the transfer eigenvalues increase as µ̄
increases: this is in good agreement with the discussion in [36, Chapter 5.1.2].

Figure 7 compares the behavior of the global POD eigenvalues associated with
{Â(gn; µ̄)}Nin

n=1 based on the V inner product with the transfer eigenvalues for µ̄ = 2
and µ̄ = 4. We observe that the decay of the global POD eigenvalues is significantly
slower than the decay of the transfer eigenvalues. This confirms that while the global
manifold Â(T ) cannot in general be approximated through a low-dimensional reduced
space, the local manifold is reducible.

In Figure 8, for µ̄ = 2 we compare the approximation properties of the empirical
basis generated using our method with the approximation properties of the polynomial
space
(23)

Z leg
N := span

{
(Li−1(x1) + αiLi(x1)) (Lj−1(x2) + αjLj(x2)) : 1 ≤ i, j ≤

√
N
}
,
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(a) (b) Ωpb,1 (c) Ωpb,2

Fig. 6: Application to state estimation: transfer eigenproblem. Behavior of
√
λNin

N+1

(Figure (a)), and of the H1 best-fit error (22) for three values of µ̄, and for Ωpb,1

(Figure (b)) and Ωpb,2 (Figure (c)) (Nin = 20).

(a) µ̄ = 2 (b) µ̄ = 4

Fig. 7: Application to state estimation: transfer eigenproblem. Eigenvalues of the
global POD, and eigenvalues of the transfer eigenproblem, for two values of µ̄.

where {Li}
√
N

i=0 are the one-dimensional Legendre polynomials, and {αi}
√
N

i=1 are chosen
such that ∂nζi,j = 0 on ∂Ω ∩ ∂Ωbk. As expected from the theory, our empirical basis
outperforms the Legendre basis.

(a) Ωpb,1 (b) Ωpb,2

Fig. 8: Application to state estimation: behavior of the relative H1 errors for the
empirical space and for the Legendre space (23) (µ̄ = 2).

In Figure 9(a), we compute the relative best-fit error associated with the field
ug?k(µ̄)|Ω where g?k(x2) = ek|x2−1.5| for k = 1, 2, 3. Unlike in the previous cases,
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the Dirichlet datum is directly imposed on Γin. Since g?k is not a polynomial, the
approximation properties of the transfer eigenspaces should be polluted by the error
in the input (cf. (13)):

‖ΠTT ⊥Nin

g?k‖T

‖g?k‖T
=

 0.0132 k = 1,
0.0068 k = 2,
0.0024 k = 3.

Results show that also in this case the relative H1 error EN converges extremely fast
with N , and is well-below the relative discretization error ‖ΠTT ⊥Nin

g?k‖T /‖g?k‖T . To

explain the rapid convergence for rough boundary data, recalling (13), we compute
the operator norm ‖A‖L(T ⊥Nin

,Y) with Nin for the same three values of µ̄: we observe

exponential convergence in Nin. This shows that highly-oscillatory modes on Γin

decay extremely fast in the interior of the domain, and ultimately motivates the use
of Legendre polynomials to discretize the input space.

(a) (b)

Fig. 9: Application to state estimation. Figure (a): behavior of the relative H1 errors
for the empirical space for rough data ( g?k(x2) = ek|x2−1.5|, Nin = 20). Figure (b):
behavior of the operator norm ‖A‖L(TNin

,Y) with Nin for three values of µ.

Figure 10 shows the performance of the data assimilation procedure. To assess
performance, we consider both L2 and H1 maximum relative error over the three
choices of the Dirichlet datum hk(x2) = sin(πkx2), k = 1, 2, 3. By comparing Figures
10 with Figures 6(b) and 6(c), we observe that, for M ' N , the state estimation error
is of the same order as ‖utrue−ΠYZN

utrue‖Y and then slowly decreases as M increases:
this is in agreement with the a priori result (20), and empirically demonstrates the
importance of considering accurate background spaces {ZN}N in the PBDW formu-
lation. For the problem at hand, the rate of convergence with M is approximately
O(M−1) in L2 norm, and O(M−1/2) in H1 norm.

4.3.2. The case P 6= {µ̄}. We first study the behavior of the eigenvalues asso-
ciated with the application of Algorithm 1. We here consider ntrain = 11 equispaced
training parameters {µi}ntrain

i=1 in P = [2, 4], we set Nin = 20, and we consider sev-
eral values of N . Figure 11(a) shows the behavior of the transfer eigenvalues λNin

n

for different values of µ ∈ P = [2, 4], while Figure 11(b) shows the behavior of the
POD eigenvalues λPOD

J with J for different choices of N . We observe exponential con-
vergence of the POD eigenvalues. We further observe that POD eigenvalues are only
weakly affected by the value N : this means that only the first few transfer eigenmodes
for each value of µ contribute to the final background ZN . As observed in section
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(a) L2, Ωpb,1 (b) L2, Ωpb,2

(c) H1, Ωpb,1 (d) H1, Ωpb,2

Fig. 10: Application to state estimation: behavior of the relative L2 and H1 errors
(µ = 2).

2.3, we could thus keep Ñ > N POD modes in Algorithm 1. We also observe that
λPOD
n � maxi λ

Nin,i
n for sufficiently large n: this means that parameter variations

dominate over variations in the boundary condition.

(a) (b)

Fig. 11: Application to state estimation: behavior of the eigenvalues computed in
Algorithm 1. Figure (a): behavior of the transfer eigenvalues λNin

n for different values
of µ ∈ P. Figure (b): behavior of the POD eigenvalues λPOD

J for different choices of
N , J = 1, . . . , ntrain ×N (ntrain = 11, Nin = 20).

Figure 12 shows the performance of the data assimilation procedure. To assess
performance, we compute the H1 maximum relative error (over Ω) for the two problem
domains Ωpb,1 and Ωpb,2, for three choices of the Dirichlet datum hk(x2) = sin(πkx2),
k = 1, 2, 3, and ntest = 5 different values of µ in P. To interpret the results, we also
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report the behavior of the relative H1 best-fit error. We observe that our procedure is
able to generate an extremely accurate background space for the bk manifold A(T ),
and thus for the true field.

(a) (b) H1 Ωpb,1 (c) H1 Ωpb,2

Fig. 12: Application to state estimation: data assimilation results. Figure (a): be-
havior of the H1 best-fit error with N . Figures (b) and (c): behavior of the PBDW
relative H1 error with M , for Ωpb,1 and Ωpb,2. (ntrain = 11, Nin = 20, ntest = 5).

In Table 2, we report the overall computational cost associated with Algorithm
1 for N = 15, and Nin = 20. Simulations are performed on a Mac OS 2.8GHz Intel
Core 7 with 16 GB memory. Reported times do not include the cost of generating
the FE mesh and the FE matrices (roughly 0.7 seconds); the reported times for the
transfer eigenproblem do include the cost of assembling the matrices U and T — the
latter requires the computation of the extension Ein, and is performed only once for
all values of µ. We observe that the cost of the second POD is negligible.

Nin × ntrain PDE solves ntrain TEs 1 POD overall

Ωpb,1 8.2 0.5 0.02 9.0− 9.1

Ωpb,2 8.2 0.5 0.02 9.0− 9.1

Table 2: Application of Algorithm 1: computational times ( ntrain = 11, N = 15,
Nin = 20) in seconds.

5. Application to parameter estimation.

5.1. An acoustic waveguide. We apply our localization procedure in the con-
text of parameter estimation. Figure 13(a) shows an acoustic waveguide with an
expansion chamber. We assume that (i) the input is time-harmonic of known fre-
quency, (ii) the material properties of the medium in Ωbk \ V un are known, and (iii)
the material properties are unknown in V un. Our goal is to estimate the wavenumber
κ in the region V un inside the chamber based on local measurements of the acoustic
pressure in the region V in Figure 13(b) — which is referred to as the observable
domain. As in the previous example, we intend Ωbk to be part of a larger system to
which is connected at the ports Γin,1 and Γin,2. We refer to Figure 13 for a quantitative
description of the bk and observable domains.

In view of the mathematical definition of the inverse problem, we define the
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mathematical model3 (in non-dimensional form)

(24a)


−(1 + iε) ∆ug(µ)− κ(µ)2ug(µ) = 0 in Ωbk,

ug(µ) = g on Γin := Γin,1 ∪ Γin,2,

∂nug(µ) = 0 on ∂Ωbk \ Γin,

where ε = 10−4,

(24b) κ(x;µ) :=

{
3 if x ∈ Ωbk \ V un,
3
√
µ if x ∈ V un,

and µ ∈ P = [0.5, 2]. We further define the M observation functionals `om(v) =
`(v, xobs

m , rGauss) + εm: here, ε1, . . . , εM are M independent identically distributed
(iid) Gaussian random variables with zero mean and variance σ2 = 0.12; on the other
hand, ` is given by

(25) `(v; x, rGauss) := C(x)

∫
V

v(y) exp

(
−|y − x|

2

2r2
Gauss

)
dy,

where {xobs
m }Mm=1 ⊂ V , rGauss = 0.05, and C is a normalization constant. We summa-

rize the parameter estimation problem in the box below.

Given the M measurements `obs
m := `om(ug(µ)) + εm where µ ∈ P, g ∈ T :=

H1/2(Γin), and εm

iid︷︸︸︷∼ N (0, σ2), for m = 1, . . . ,M , estimate the value of µ.

Γin,1

Γin,2

Ωbk

d′
h′

Hh

a

b

V

Lbk

(a) bk domain

Ω
(1)
d−1 Ω

(2)
d−1

a

V un

L?

V

(b) observable domain

Fig. 13: Application to parameter estimation: geometry (h = 1, H = 2, Lbk = 5,
L? = 2, a = 1, h′ = 2.5, d′ = 0.5, b = 1).

5.2. Formulation: a deterministic approach. In this work, we consider a
deterministic approach to solve the inverse problem at hand. As we will discuss later,
this requires the estimation of the pair (µ, g). Since the boundary condition g on Γin

is unknown, the effective dimensionality of the inverse problem stated in the previous

3Unlike in the previous example, we here directly define the mathematical model in the bk
domain. For this reason, we do not distinguish between true model and bk model.
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section is extremely large. For this reason, we wish to reduce the dimensionality of
the problem by resorting to the localization procedure proposed in this paper. With
this in mind, we observe that for any g ∈ T and µ ∈ P, ug(µ)|V is the unique solution
to the problem:

(26)


−(1 + iε) ∆uḡ(µ)− κ(µ)2uḡ(µ) = 0 inV

uḡ(µ) = ḡ on Ωd−1 := Ω
(1)
d−1 ∪ Ω

(2)
d−1

∂nug(µ) = 0 on ∂V \ Ωd−1,

where ḡ = ug(µ)|Ωd−1
, and Ωd−1 = Ω

(1)
d−1 ∪ Ω

(2)
d−1 = {|x1| = L?/2} ∩ ∂V is defined in

Figure 13.
By applying Algorithm 1, we can determine an effective parametrization for the

Dirichlet datum ḡ in (26): this leads to a dramatic reduction of the dimensionality of
the inverse problem. We here choose T = H1/2(Γin), V = H1(Ωbk), Y = H1/2(Ωd−1)
endowed with the inner products:

(27a) (u, v)V =

∫
Ωbk

∇u · ∇v̄ + uv̄ dx, ∀u, v ∈ V,

(27b)

(u, v)T = (Ein(u), Ein(v))V , s.t

 −∆Ein(u) + Ein(u) = 0 in Ωbk

∂nE
in(u) = 0 on ∂Ωbk \ Γin

Ein(u) = u on Γin
,

and

(27c) (u, v)Y = (Eout(u), Eout(v))V , s.t

 −∆Eout(u) + Eout(u) = 0 in Ωbk

∂nE
out(u) = 0 on ∂Ωbk

Eout(u) = u on Ωd−1

.

If we denote by ZN = span{ζn}Nn=1 ⊂ Y the reduced space obtained by applying
Algorithm 1, we can state the optimization statement associated with our parameter
estimation problem as follows: given the measurements {`obs

m }Mm=1, find (µ?, z?) ∈
P ×G ⊂ R× CN such that

(28) (µ?, z?) ∈ arg min
(µ,z)∈P×G

M∑
m=1

|`obs
m − `om(uḡN (µ))|2, subject to ḡN =

N∑
n=1

zn ζn.

Problem (28) is a nonlinear non-convex problem of real dimension 2N + 1. We
resort to an off-the-shelf Matlab optimizer to solve (28). In more detail, we resort to
fmincon ([23]), and we consider a sequential quadratic programming (SQP, see e.g.
[6]) method for non-convex optimization. The gradient of the objective function is
estimated through finite difference. Since the problem is non-convex, we consider ten
initial conditions chosen randomly in P×G, and then we select (µ?j , z

?
j ), j = 1, . . . , 10,

that minimizes the objective. The numerical results are not particularly sensitive to
the choice of G: in all our numerical simulations, we first solve a state estimation
problem for ḡ using only the observations on Ωd−1, then we set G = {z = x + iy :
xn ∈ [x̂n± 1

2 max(|x̂n|, tol)], yn ∈ [ŷn± 1
2 max(|ŷn|, tol)]}, where tol = 1, and ẑ = x̂+iŷ

is the vector of coefficients associated with the estimate of ḡ.
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We appeal to a Finite Element solver4 to generate the data {`obs
m }Mm=1 and to

compute the solution uḡN (µ) at each iteration of the optimization algorithm. Since
the solution to (28) involves many evaluations of the objective, we envision that for
more challenging problems model reduction techniques are necessary to reduce the
computational burden. For the particular class of problems considered in this paper,
the Reduced Basis method ([16, 29, 31]) can be employed to speed up computations.

5.3. Numerical results. Figure 14 shows the behavior of the eigenvalues com-
puted in Algorithm 1. We set ntrain = 15, and we consider a Nin = 40-dimensional
discretization of the input space T based on Legendre polynomials. Figure 14(a) shows
the behavior of the transfer eigenvalues λNin

n for three different values of µ ∈ P, while
Figure 14(b) shows the behavior of the POD eigenvalues λPOD

J with J for different
choices of N . As in section 4, we observe very rapid convergence of the eigenvalues.
For J ≥ 5, and for all values of N , λPOD

J ≤ 10−3: for this reason, in all our tests,
we consider N = 5 in (28). Since our FE discretization has 98 degrees of freedom
associated with Ωd−1, our localization procedure reduces the real dimension of the
inverse problem from 197 to 11.

(a) (b)

Fig. 14: Application to parameter estimation: behavior of the eigenvalues computed in
Algorithm 1. Figure (a): behavior of the transfer eigenvalues λNin

n for three different
values of µ ∈ P. Figure (b): behavior of the POD eigenvalues λPOD

J for different
choices of N , J = 1, . . . , ntrain ·N (ntrain = 15, Nin = 30).

Figure 15 shows the performance of the parameter estimation technique. In order
to generate the data {`obs

m = `om(ug(µ)) +εm}Mm=1 ⊂ C, we here consider ε ∼ N (0, σ2)
with σ = 0.1, eight different values of µ in P, and two distinct Dirichlet boundary
conditions on Γin:

g1(x) =

{
x1 + 1

2Lbk x ∈ Γin,1,
1 + sin(πx2) x ∈ Γin,2,

g2(x) =

{
0 x ∈ Γin,1,
exp (−|x2|) x ∈ Γin,2.

Finally, we consider an uniform grid of M = 36 observations: Figure 15(a) shows the
position of the observation sites {xobs

m }Mm=1. Figures 15(b) and (c) show the results
for g = g1 and g = g2, respectively. We observe that for all values of µ and for the
two boundary conditions considered we are able to accurately estimate the value of
µ: the relatively large number of measurements in V mitigates the effect of noise.

4 We use a P8 FE discretization with Nbk = 8417 degrees of freedom in Ωbk, N = 98 degrees of
freedom in Ωd−1, and N v = 3713 degrees of freedom in V .
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(a) (b) g = g1 (c) g = g2

Fig. 15: Application to parameter estimation: performance of the parameter esti-
mation technique for two Dirichlet data g, and for several values of µ. Figure (a):
observation centers {xobs

m }m associated with the measurements. Figures (b) and (c):
comparison between true and predicted value of the parameter µ.

6. Conclusions. We present a two-stage localization procedure for addressing
data assimilation tasks in which the quantity of interest pertains to a subregion of
the domain where the mathematical model is properly defined. The approach relies
on a MOR procedure for the construction of local approximation spaces associated
with parametric manifolds. In state estimation, given the domain of interest Ω, we
employ the MOR technique to generate a background space ZN associated with the
domain of interest; the background is then employed to estimate the state based on
local experimental measurements in the PBDW framework. In parameter estimation,
we employ our MOR technique to determine a low-dimensional parametrization of
the boundary conditions associated with the PDE in the observable domain V , and
thus reduce the dimensionality of the inverse problem to be solved.

Theoretical and numerical results are presented to demonstrate the effectivity
of our model reduction approach. If the uncertainty is confined to the boundary
conditions of the PDE model, we proved that our approach is optimal in the sense
of Kolmogorov for a wide class of linear inf-sup stable elliptic operators. In addition,
numerical results for two acoustic problems demonstrate that, for moderate wave
numbers, it is possible to generate accurate local approximation spaces even in the
presence of high-dimensional uncertainty at the boundaries of the bk domain.

The localization strategy proposed in this paper can be applied to a wide class
of data assimilation methods. In more detail, our localization procedure can be in-
tegrated with any state-estimation procedure that relies on projection-by-data (as
opposed to projection-by-model). In parameter estimation, localization only aims at
reducing the number of unknowns in the optimization statement; therefore, it can be
incorporated in both deterministic and statistical approaches to inverse problems. As
explained in the introduction, practical performance of the approach depends on the
convergence of the Kolmogorov N -width, which should be assessed on a case-by-case
basis.

We identify a number of open problems that are subject of ongoing research. From
a theoretical perspective, we wish to study the optimality of our construction in the
general case P 6= {µ̄}. We wish also to extend our computational procedure and, more
ambitiously, the analysis to nonlinear problems. Furthermore, we wish to develop a
weak Greedy technique to adaptively select the parameters µ1, . . . , µntrain for which
solving the transfer eigenproblem: this will help us reduce the number of transfer
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eigenproblems that should be solved during the offline stage. In this respect, we recall
that efficient Greedy techniques rely on inexpensive a posteriori error estimators that
are currently unavailable in this framework. From the engineering perspective, we
wish to demonstrate the applicability of our technique to more realistic engineering
applications.

Appendix A. Theoretical remarks. We present two theoretical results
related to the discussion in section 3.

Proposition A.1. (Relation between (9b) and (10)) Let T̃ be the ball of
radius C in T , let A : T → Y be a linear continuous operator, and let us consider the
bk manifold M = A(T̃ ). Then,

Zkolm
N ∈ arg inf

ZN⊂Y, dimZN=N
sup
u∈M

‖u−ΠYZN
u‖Y .

Furthermore, d̄N (M) = C d(A(T )).

Proof. Since A−ΠYZN
A : T → Y is a linear operator, we have

Zkolm
N ∈ arg

(
inf

ZN⊂Y, dimZN=N
sup
g∈T

‖A(g)−ΠYZN
A(g)‖Y

‖g‖T

)

= arg

(
inf

ZN⊂Y, dimZN=N
sup

g∈T ,‖g‖T =C

‖A(g)−ΠYZN
A(g)‖Y

C

)

= arg
1

C

(
inf

ZN⊂Y, dimZN=N
sup

g∈T ,‖g‖T ≤C
‖A(g)−ΠYZN

A(g)‖Y

)

Since C is constant, recalling the definition of M, this proves the first statement of
the proof. The second statement can be shown using the same argument.

Proposition A.2. (Sufficient conditions for compactness) Let Ωbk ⊂ Rd

be a d-dimensional Lipschitz domain, let Γin ⊂ ∂Ωbk be an open set. Let Ω ⊂ Ω
bk

be
either (i) a d-dimensional open set, or (ii) a (d − 1)-dimensional open set such that
there exists a d-dimensional Lipschitz domain Ω? ⊂ Ωbk which satisfies Ω ⊂ ∂Ω?. Let
us introduce the space V = Hs(Ωbk), the space T = Hs−1/2(Γin), and the space Y
to be either Hs(Ω) if Ω is d-dimensional or Hs−1/2(Ω) if Ω is (d − 1)-dimensional,
where s ≥ 1.

Let the following hypotheses hold.
• ( geometry) The domains Ω and Γin satisfy the condition

(29) dist(Ω,Γ
in

) = min
x∈Ω

min
y∈Γ

in
‖x− y‖2 > 0.

• ( solution operators) The operator Â : T → V is linear and continuous,

Â ∈ L(T , V); the bilinear form G : V × V0 → R is continuous; and for

any d-dimensional domain Ω? ⊂ Ωbk, dist(Ω
?
,Γ

in
) > 0, there exists C =

C(Ω,Ω?) > 0 such that for any g ∈ T

(30) ‖Â(g)‖Hs(Ω?) ≤ C(Ωbk,Ω?)‖Â(g)‖Hs−1(Ωbk).

Then, the operator A is compact from T to Y.
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Proof. We must show that given the sequence {gn}n ⊂ T , ‖gn‖T ≤ C, then
the sequence {A(gn)}n admits a strongly convergent subsequence in Y. Recalling

that Â ∈ L(T ,V), the sequence {Â(gn)}n is bounded in V. Then, due to the Banach

Alaoglu theorem (see, e.g., [32, Theorem 6.12]), there exists a subsequence {Â(gnm
)}m

that converges weakly to ū ∈ V. Recalling the definition of weak convergence, and
recalling that for any φ ∈ V0, G(·, φ) ∈ V ′, we have that

0 = G
(
Â(gnm

), φ
)
→ G (ū, φ) = 0 ∀φ ∈ V0.

This implies that ū = Â(ū|Γin). Then, exploiting (30), we find that for any Ω? ⊂ Ωbk,

dist (Ω
?
,Γ

in
) > 0,

‖ū− Â(gnm
)‖Hs(Ω?) ≤ C(Ωbk,Ω?)‖ū− Â(gnm

)‖Hs−1(Ωbk).

Since V = Hs(Ωbk) is compactly embedded in Hs−1(Ωbk) (see, e.g., [30, Theorem

1.3.5]), ‖ū− Â(gnm
)‖Hs−1(Ωbk) converges to 0 as m → ∞. As a result, Â(gnm

)|Ω? →
ū|Ω? in Hs(Ω?).

In order to complete the proof, we must distinguish two cases. If Ω ⊂ Rd, then
thesis follows by substituting Ω? = Ω and observing that ‖ū− Â(gnm)‖Hs(Ω) = ‖ū−
A(gnm)‖Y . On the other hand, if Ω ⊂ Rd−1, thesis follows by considering Ω? such
that Ω ⊂ ∂Ω? and then invoking the continuity of the trace operator from Hs(Ω?) to
Hs−1/2(Ω).

We remark that the proof of Proposition A.2 follows the same argument of [2,
Lemma A.1] and [34, Proposition B.2], although the latter are specialized to a specific
class of problems. Exploiting Proposition A.2, given a particular bk model, we can
assess whether or not the reduced space based on the transfer eigenmodes is optimal
by verifying conditions (29), and (30). We observe that the former depends only on
the geometry and can be trivially checked. On the other hand, it is possible to show
that (30), known as Caccioppoli’s inequality, is satisfied by the solution to (i) linear
damped elastodynamics, (ii) Stokes flow, (iii) advection-diffusion-reaction equation,
and (iv) Helmholtz equation. We refer to [36, Appendix C], [2, Lemma A.1], and [34,
Lemma 3.4] for the proofs.
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