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Abstract

We propose an automated nonlinear model reduction and mesh adaptation framework for rapid and reli-
able solution of parameterized advection-dominated problems, with emphasis on compressible flows. The key
features of our approach are threefold: (i) a metric-based mesh adaptation technique to generate an accurate
mesh for a range of parameters, (ii) a general (i.e., independent of the underlying equations) registration
procedure for the computation of a mapping Φ that tracks moving features of the solution field, and (iii) an
hyper-reduced least-square Petrov-Galerkin reduced-order model for the rapid and reliable estimation of the
mapped solution. We discuss a general paradigm — which mimics the refinement loop considered in mesh
adaptation — to simultaneously construct the high-fidelity and the reduced-order approximations, and we
discuss actionable strategies to accelerate the offline phase. We present extensive numerical investigations
for a quasi-1D nozzle problem and for a two-dimensional inviscid flow past a Gaussian bump to display the
many features of the methodology and to assess the performance for problems with discontinuous solutions.

Keywords: parameterized conservation laws; model order reduction; mesh adaptation; registration methods;
nonlinear approximations.

1 Introduction

1.1 Lagrangian model reduction of steady conservation laws

In the past few decades, there has been an increasing demand for rapid and reliable reduced-order models
(ROMs) for many-query and real-time applications such as design optimization, uncertainty quantification, real-
time control and monitoring. Despite the many contributions to the field, model order reduction of advection-
dominated partial differential equations (PDEs) remains a formidable task that requires major improvements of
state-of-the-art procedures. The goal of this paper is to devise an integrated model order reduction (MOR) mesh
adaptation (MA) procedure for nonlinear advection-dominated PDEs: our approach combines projection-based
MOR, mesh adaptation and registration techniques to simultaneously build a parsimonious yet accurate high-
fidelity (HF) discretization, a low-rank representation of the solution field that depends on a modest number of
generalized coordinates, and a ROM that can be rapidly solved for new values of the parameters.

We consider PDE problems that depend on a vector of P parameters. We denote by µ the vector of model
parameters in the region P ⊂ RP ; we denote by Ω ⊂ Rd the open computational domain1; given the parametric
field w : Ω × P → R, we also introduce notation wµ := w(·;µ) : Ω → R. Given µ ∈ P, we denote by
qtrueµ : Ω → RD the vector of D state variables that satisfies the hyperbolic conservation law:

∇ · Fµ(qtrueµ ) = Sµ(qtrueµ ) in Ω, (1)

where F : RD ×P → RD×d is the physical flux and S : RD ×P → RD is the source term. We further introduce
the Hilbert space X := [L2(Ω)]D endowed with the inner product (·, ·) and the induced norm ∥ · ∥ :=

√
(·, ·),

such that (w, v) =
∫
Ω
w · v dx for all w, v ∈ X ; we define the solution manifold M = {qtrueµ : µ ∈ P} ⊂ X

that collects the solutions to (1) for all parameter values in the prescribed parameter range. We denote by

Thf =
(
{xhfj }Nnd

j=1 , T
)

a mesh of the domain Ω with nodes {xhfj }j and connectivity matrix T (see section 2); given

the bijection Φ : Ω → Rd, we use notation Φ(Thf) to refer to the mesh with deformed nodes {Φ(xhfj )}j and the
same connectivity T as Thf .

1To simplify the presentation, in the introduction we assume that the domain does not depend on the parameters; however, in
the numerical examples, we shall consider the case of parameterized geometries.
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As extensively discussed in the MOR literature, effective model reduction of advection-dominated PDEs is
extremely challenging for state-of-the-art procedures. First, the vast majority of MOR methods rely on linear
or affine approximations, that is

qtrueµ ≈ q̂linµ = Zα̂µ, (2)

where Z : Rn → X is a linear or affine operator, and α̂ : P → Rn is a function of the parameter — in
the MOR literature, Z is typically dubbed reduced-order basis (ROB), while α̂µ are referred to as generalized
coordinates. As shown in several studies (e.g., [36]), linear methods are fundamentally ill-suited to deal with
parameter-dependent sharp gradients that naturally arise in the solutions to conservation laws of the form (1).
Second, MOR methods typically rely on a single HF mesh to describe all elements of the solution manifold M.
For advection-dominated problems, MA is of paramount importance for computational tractability. However, if
parametric variations strongly affect the location of sharp-gradient regions, we are forced to refine the mesh over
a vast portion of the domain Ω, which leads to HF discretizations of intractable size. Effective MOR procedures
for conservation laws should thus embed an effective parametric MA strategy to track moving structures.

The provable inadequacy of linear ansatzs (2) for conservation laws has motivated the development of
several nonlinear approximation methods [1, 3, 27, 38]; a promising class of nonlinear approximations is given
by Lagrangian methods [13, 23, 33, 34, 35, 45, 43] based on the ansatz

q̂µ = q̃µ ◦ Φ−1
µ , where q̃µ = Zα̂µ, Φµ = N (âµ) . (3)

As in (2), Z : Rn → X is a linear (or affine) operator, and α̂ : P → Rn is a vector-valued function of generalized
coordinates; on the other hand, N : Rm → Lip(Ω;Rd) is a suitable, possibly nonlinear, operator that is informed
by the domain Ω and â : P → Rm is a vector-valued function of generalized coordinates for the mapping.

Lagrangian approaches are motivated by the observation (see, e.g., [24] and [43]) that for many problems in
continuum mechanics coherent structures that are troublesome for linear approximations — such as shear layers,
wakes, shocks and cracks — vary smoothly with the parameter. The mapping Φ : Ω × P → Ω in (3) should
hence be designed to track moving features of the solution field and ultimately improve the compressibility of
the mapped solution manifold M̃ = {q̃trueµ := qtrueµ ◦ Φµ : µ ∈ P}. The task of finding the mapping Φ based
on approximate snapshots of the solution manifold M is referred to as registration problem [43]. Note that, by
tracking sharp features of the solution field, registration facilitates also the task of building a common mesh for
all elements of the (mapped) solution manifold: the mapping Φ hence provides a systematic way to perform
parameter-dependent r-adaptivity [9, 32].

1.2 Adaptive construction of Lagrangian reduced-order models

In this paper, we propose a general paradigm for the simultaneous construction of the HF and reduced-order
approximations, which mimics the refinement loop considered in MA. The general procedure is sketched in

Algorithm 1. Given an initial mesh T (0)
hf of Ω and the training set Ptrain = {µk}ntrain

k=1 ⊂ P, our method returns
an HF mesh Thf , a low-rank mapping Φ, a ROB Z and a ROM for the generalized coordinates α̂ (cf. (3)) based
on an iterative procedure that comprises four distinct steps.

1. Snapshot generation: (Thf ,Φ,Ptrain) →
{
qhfµ : µ ∈ Ptrain

}
. We generate snapshots of the solution field for

all values of the parameter µ in Ptrain based on the parametric mesh µ 7→ Φµ(Thf).

2. Mesh adaptation:
{
q̃hfµ := qhfµ ◦ Φµ : µ ∈ Ptrain

}
→ Thf . We exploit the available set of snapshots to gen-

erate an accurate yet parsimonious mesh for the elements of the mapped manifold M̃.

3. Registration:
({
qhfµ : µ ∈ Ptrain

}
, Thf

)
→ Φ. We exploit the available set of snapshots to find a paramet-

ric mapping Φ that tracks coherent, parameter-dependent structures of the solution field. The method
should ensure that the deformed mesh Φµ(Thf) is a proper mesh of Ω for all µ ∈ P.

4. Linear-subspace model reduction: (Thf , Φ, Ptrain) → (Z,ROM). We apply linear-subspace MOR to deter-
mine the low-rank expansion µ 7→ q̃µ, that is we build the ROB Z and the ROM for µ 7→ α̂µ.
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Algorithm 1 : adaptive training procedure.

1: Initialization: define the mesh T (0)
hf = T (1)

hf , the mapping Φ(0) = id (identity map), and the training set
Ptrain = {µk}ntrain

k=1 ⊂ P.

2: for k = 1, . . . , Nit do

3: Snapshot generation
(
T (k−1)
hf ,Φ(k−1),Ptrain

)
→
{
q
hf,(k)
µ : µ ∈ Ptrain

}
.

4: if k > 1 then
5: Mesh adaptation (cf. section 3)

{
q
hf,(k)
µ ◦ Φ

(k−1)
µ : µ ∈ Ptrain

}
→ T (k)

hf .

6: end if
7: Registration (cf. section 4)

({
q
hf,(k)
µ : µ ∈ Ptrain

}
, T (k)

hf

)
→ Φ(k).

8: Linear-subspace model reduction (cf. section 5)
(
T (k)
hf , Φ(k), Ptrain

)
→
(
Z(k),ROM(k)

)
.

9: end for

Similarly to the standard MA loop, our method relies on multiple iterations to address the inaccuracy of
the HF estimates at early iterations. We show that the iterative procedure in Algorithm 1 can be significantly
accelerated using information from previous iterations (cf. section 6).

The outline of the paper is as follows. In section 2, we introduce relevant notation and the two model problems
considered for numerical assessment. In sections 3, 4, and 5, we discuss the problems of mesh adaptation,
registration, and model reduction; in section 6 we discuss how to accelerate the training procedure by exploiting
information from previous iterations; in section 7, we present extensive numerical investigations to illustrate
the effectiveness of our approach. Section 8 concludes the paper.

1.3 Contributions and relation to previous works

This paper extends the work in [20] in several ways: first, we propose an adaptive, iterative procedure for the
simultaneous construction of the HF mesh, the mapping Φ, and the reduced-order approximation for the mapped
field; second, we incorporate an automated parametric mesh adaptation strategy that is directly informed by
the estimated solution fields; third, we discuss viable new strategies to accelerate the training procedure. As in
[20], the building blocks of Algorithm 1 exploit methodologies from previous works. The registration procedure
was first proposed in [43] and then extended in [47, 48], while we rely on a projection-based least-squares
Petrov-Galerkin (LSPG, [10, 11]) ROM with empirical test space chosen as in [48], hyper-reduction based on
a variant of the mesh-sampling/empirical quadrature procedures first proposed in [18, 54], and discretize-then-
map treatment of geometry variations (cf. [15, 46, 52]). We also observe that the idea of using ROMs and/or
HF models of variable fidelity at training stage to reduce training costs has been explored in [19, 25].

We rely on a metric-based approach ([29, 30]) to mesh adaptation. Given the HF field qhfµ , we compute
the Hessian of the Mach number in the reference configuration to determine the metric Mµ for the parameter
µ ∈ Ptrain; then, we resort to metric intersection [4, 5] to devise a common metric for the entire snapshot set.
In this work, we rely on the open-source mesh adaptation toolkit mmg2d ([2, 16]) to generate adapted meshes
from a (possibly anisotropic) metric M.

As discussed in section 4, the mapping coefficients âµ in (3) are computed using a non-intrusive (regression)
approach, while the solution generalized coordinates α̂µ are computed using projection; on the other hand,
Mirhoseini and Zahr in [33] have recently proposed a coupled Lagrangian MOR approach to simultaneously
learn solution and mapping generalized coordinates. As opposed to [33], our choice enables the use of standard
projection-based linear-subspace MOR methods for parameterized geometries: it hence has the potential to
achieve faster online predictions and much easier integration with existing HF and MOR routines, possibly at
the price of larger offline training costs.

Several authors have proposed to include (parametric) mesh adaptation procedures in the MOR framework.
Simultaneous adaptivity in space and in parameter — in effect, spatio-parameter adaptivity — was proposed by
Yano in [53] and further developed in [42]. The approaches in [42, 53] exploit h-MA and weak-greedy sampling
of the parameter space, and rely on the explicit instantiation of a super-mesh over the entire parameter domain;
the size of the super-mesh might hence be prohibitively large for advection-dominated problems. To address this
issue, Little and Farhat have proposed in [28] to combine h-MA with clustering in parameter domain — more
precisely in state space — to avoid the explicit definition of a super-mesh that is valid for all parameters. The
present work represents the first attempt to systematically combine parametric r-MA (induced by the mapping)
with parameter-independent h-MA, in the MOR framework.

We finally remark that several authors have considered ansatzs of the form

q̂µ = q̃µ ◦ Φµ, where q̃µ : Rd → RD, Φµ : Ω → Rd, (4)
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with q̃µ,Φµ possibly nonlinear low-rank operators (see, e.g., [7, 26]). Note that, unlike in (3), Φµ is not
necessarily a bijection from Ω in itself; note also that the field q̃µ needs to be defined over Rd. As shown in [26],
approximations of the form (4) can potentially handle shock topology changes; on the other hand, we remark
that (4) is inherently nonlinear and hence requires the development of specialized projection techniques.

2 Problem statement and finite element discretization

We consider the problem of approximating the solution to the parameterized Euler equations; we consider the
equations in non-dimensional form. We refer to [49] for a thorough introduction to the mathematical model and
to its physical interpretation. We denote by ρ the fluid density, by u the velocity field, by E the total energy
and by p the (static) pressure; we consider the following relationship between pressure and conserved variables:

p(q) = (γ − 1)

(
E − 1

2
ρ∥u∥22

)
, (5a)

where γ is the ratio of specific heats, which is set equal to 1.4. We further introduce the speed of sound a, the
Mach number Ma, the total temperature Ttot, the total pressure ptot and the total enthalpy Htot such that

a =

√
γ
p

ρ
, Ma =

∥u∥2
a

, T =
p

Rρ
, Ttot = T

(
1 +

γ − 1

2
Ma2

)
,

ptot = p

(
1 +

γ − 1

2
Ma2

) γ−1
γ

, Htot =
E + p

ρ
, R = γ − 1.

(5b)

We introduce the finite element (FE) mesh Thf =
(
{xhfj }Nhf

j=1, T
)

of the domain Ω ⊂ Rd: the points {xhfj }Nnd
j=1 ⊂

Ω are the nodes of the mesh, the matrix T ∈ Nnlp,Ne is the connectivity matrix where nlp is the number
of degrees of freedom in each element and Ne is the number of elements. We define the reference element
D̂ = {x ∈ (0, 1)d :

∑d
i=1 xi < 1}, the space Pp(D̂) of polynomials of degree lower or equal to p, the Lagrangian

basis {ℓi}
nlp

i=1 of the polynomial space Pp(D̂) associated with the nodes {x̃i}
nlp

i=1 ⊂ D̂; then, we define the elements

{Dk}Ne

k=1 as the images of the FE maps Ψhf
k : D̂ → Dk such that

Ψhf
k (x̃) =

nlp∑
i=1

xhfTi,k ℓi(x̃), k = 1, . . . , Ne. (6)

We also define the FE space associated with the mesh Thf ,

Xhf =
{
v ∈ [L2(Ω)]D : v ◦ Ψhf

k ∈ [Pp(D̂)]D, k = 1, . . . , Ne

}
, (7)

where D = d + 2 corresponds to the number of state variables. If u ∈ Xhf , we denote by u ∈ RNhf the
corresponding FE vector such that

u
∣∣∣
Dk

=

nlp∑
i=1

D∑
ℓ=1

(u)Ii,k,ℓ
ℓi,k eℓ, k = 1, . . . , Ne, Ii,k,ℓ = i+ (k − 1)nlp + (ℓ− 1)nlpNe, (8)

where e1, . . . , ed are the vectors of the canonical basis of RD, and Nhf = D · nlp ·Ne.

In view of the FE formulation, we introduce the facets Fhf = {Fj}Nf
j=1 of the mesh: for each facet, we denote

by n+ the positive normal2 to the facet and we define the element D+j that contains Fj and whose normal on

Fj is equal to n+; for internal facets, we also define the element D−j such that D+j ∩ D−j = Fj . We also define the

restriction operators Ek : Xhf → [L2(Dk)]D and E±
j : Xhf → [L2(D±j )]D such that Eku = u|Dk and E±

j u = u|D±j
for k = 1, . . . , Ne and j = 1, . . . , Nf .

Remark 2.1. Exploiting (8), we find that any FE field u ∈ Xhf is uniquely characterized by the pair (Thf ,u).

Given the bijection Φ : Ω → Rd, we introduce the deformed mesh Φ(Thf) =
(
{Φ(xhfj )}Nhf

j=1, T
)
, and the corre-

sponding FE maps {Ψhf
k,Φ}k and FE space Xhf,Φ: it is easy to verify that if (Φ(Thf),u) interpolates the field u

in the nodes of Φ(Thf), then (Thf ,u) interpolates u ◦Φ in the nodes of Thf . This implies that the ansatz (3) can
be stored as

µ ∈ P 7→ (Φµ(Thf),Zα̂µ) (9)

where Z ∈ RNhf×n is a parameter-independent matrix.

2The choice of the positive normal is arbitrary for internal facets and coincides with the outward normal to Ω for boundary
facets.

4



2.1 Finite element formulation

We consider a discontinuous Galerkin (DG) FE formulation of the compressible Euler equations. We rely on a
Laplacian artifical viscosity model (see, e.g., [39]) based on the piecewise-constant dilation-based viscosity:

ν|Dk = cν

(
hk
p

)2 ∫
Dk

(−∇ · u)+ dx, with hk = |Dk|1/d, cν > 0. (10)

We refer to [57] for a thorough review of artificial viscosity models for DG formulations. We consider the local
Lax-Friedrichs (Rusanov) convective flux, and symmetric interior penalty diffusive flux. If we denote by q the
vector of state variables, the DG formulation of the conservation law (1) can be stated as follows: find qhf ∈ Xhf

such that

Rhf(qhf , v) =

Ne∑
k=1

rek(Ekq
hf , Ekv) +

Nf∑
j=1

rfj(E
+
j q

hf , E+
j q

hf , E+
j v,E

−
j v), ∀ v ∈ Xhf ; (11a)

where the elemental residuals rek are given by

rek(q, v) =

∫
Dk

(−F (q) + ν(q)∇q) : ∇v − S(q) · v dx, k = 1, . . . , Ne, (11b)

while the facet residuals rfj are given by

rfj(q, v) =

∫
Fj

H(q,n+) · J(v) dx−
∫
Fj\∂Ω

{
ν(q)∇qn+

}
· J(v) +

{
ν(q)∇vn+

}
· J(q) − γip

|Fj |
J(q) · J(v) dx, (11c)

for j = 1, . . . , Nf . Here, q±(x) = limϵ→0+ q(x ∓ ϵn+), J(v) = v+ − v− and {v} = 1
2 (v+ + v−) if x /∈ ∂Ω, while

J(v) = {v} = v if x ∈ ∂Ω; finally, H(q,n+) is the convective numerical flux which embeds the definition of the
boundary conditions and for which we omit the explicit expression (see, e.g., [21, Appendix B] for the details).

In the numerical experiments, we consider polynomials of degree p = 2; we set cν = 0.1 for the model
problem of section 2.2.1 and cν = 10 for the model problem of section 2.2.2; on the other hand, we consider
γip = 10p2. Finally, we solve the discrete problem (11) using the pseudo-transient continuation (PTC) strategy
discussed in [56]; in the absence of prior information about the solution field, we initialize the iterative procedure
with the free-stream solution.

2.2 Model problems

2.2.1 Inviscid flow through a nozzle

We study the inviscid transonic flow of an ideal gas through a converging-diverging duct. We define the domain
Ω = (0, L), the area A : Ω → R+, the state q, the flux F and the source term S such that

q =

 Aρ
Aρu
AE

 , F (q) =

 Aρu
A(ρu2 + p)
Au(E + p)

 , S(q) =

 0
p∂xA
0

 , A(x) = 3 + 4(A0 − 3)
x

L

(
1 − x

L

)
. (12a)

Then, we consider the conservation law:

∂xF (qtrue) = S(qtrue) x ∈ Ω, (12b)

completed with a subsonic inlet condition where we prescribe total pressure ptot = 0.95 and total temperature
Ttot = 0.95, and a subsonic outlet condition where we prescribe the static pressure p0. Note that the free-stream
field is uniquely determined by the data ptot, Ttot, p0 through (5). We set L = 10; furthermore, we consider the
parameter vector µ = [A0, p0] in the region P = [0.5, 1.5] × [0.7, 0.85]. Figures 1(a) and (b) show the behavior
of the area throat and the Mach number for two parameter values.
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(a) (b)

Figure 1: inviscid flow through a nozzle. (a)-(b) throat area and Mach field for µ1 = [0.5, 0.7] and µ2 = [1.5, 0.7].

2.2.2 Inviscid flow over a Gaussian bump

We also consider the two-dimensional inviscid flow past a Gaussian bump. We introduce the domain Ω = {x ∈
(−1.5, 1.5) × (0, 0.8) : x2 > he−25x2

1} where h > 0 is a given parameter (cf. Figure 2(a)). We consider the
conservation law:

∇ · F (qtrue) = 0, where qtrue =

 ρtrue

ρtrueutrue

Etrue

 , F (q) =

 ρu⊤

ρuu⊤

(E + p)u⊤

 , (13)

completed with wall boundary conditions on top and bottom boundaries, subsonic inlet condition (total tem-
perature, total pressure and flow direction) at the left boundary and subsonic outlet condition (static pressure)
at the right boundary — the symbol (·)⊤ denotes the transposition operator. We express the free-stream field
q∞ in terms of the Mach number Ma∞,

T∞ = 1, p∞ =
1

γ
, ρ∞ = 1, u∞ = Ma∞e1.

Finally, we introduce the parameter vector µ = [h,Ma∞] and the parameter region P = [0.05, 0.065]×[0.58, 0.78].
Note that the computational domain Ω depends on the geometric parameter h; therefore, we should introduce
a geometric mapping to recast the problem over a parameter-independent configuration. We here resort to a
Gordon-Hall transformation; we refer to [20, section 2] for the details.

Ω

(a)

(b) (c)

Figure 2: inviscid flow over a Gaussian bump. (a) computational domain. (b)-(c) visualization of the Mach
field for µ = [0.05, 0.58] and µ = [0.065, 0.78].
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Figures 2(b) and (c) show the behavior of the Mach field for two values of the parameters in P: we observe
that the flow is completely subsonic for moderate values of Ma∞ and develops a normal shock over the bump
for Ma∞ ≳ 0.65 − 0.7.

3 Parametric mesh adaptation

We consider the problem of determining an adapted mesh Thf of the domain Ω based on a set of snapshots
S̃hf = {q̃hfµ : µ ∈ Ptrain} defined over a mesh T 0

hf . We here pursue a metric-based MA approach: first, we

resort to the snapshots in S̃hf to define a metric M; then, we resort to a MA toolkit to devise the P1 mesh
and subsequently we use standard FE routines to devise the high-order mesh. In section 3.1, we review the
key elements of anisotropic mesh adaptation; then, in section 3.2 we briefly comment on mesh adaptation
for one-dimensional problems; in section 3.3, we discuss an isotropic mark-then-refine strategy employed for
the two-dimensional problem of section 2.2.2; finally, in section 3.4, we review Hessian-based anisotropic mesh
adaptation, and we discuss metric intersection for parametric problems. We refer to [29, 30] for a thorough
introduction to metric-based MA.

3.1 Fundamentals of anisotropic metric-based mesh adaptation

A Riemannian metric field is derived from the error estimate and prescribes the size and shape of the mesh
elements.

Euclidean space. A scalar product is a symmetric positive definite (SDP) form, which can be represented
by an SPD matrix M, which is dubbed metric tensor or simply metric. The scalar product is then written:

(x, y)M = x⊤ M y where x, y ∈ Rd. (14)

A vector space with a scalar product is called an Euclidean space. The scalar product is associated with a
distance that can be used to compute lengths in the Euclidean space :

ℓM(x, y) =
√

(y − x)⊤ M (y − x) , (15)

from which we deduce classic geometrical quantities such as angles or volumes.
The metric M is diagonalizable in an orthonormal basis:

M = R⊤ ΛR , (16)

where Λ = diag (λ1, . . . , λd) is the diagonal matrix of eigenvalues of M and R = ( r1 | r2 | . . . |rd ) is the unitary
matrix (i.e. R⊤ R = Id) of eigenvectors of M. A metric tensor has an intuitive geometric representation: the
set of points that are at constant distance from a point x ∈ Rd is an ellipsoid centered in x whose axes are
aligned with the eigenvectors r1, . . . , rd of M. The set of points at distance one from a point (the unit ball of M),

is an ellipsoid for which the sizes of the axes are hi = λ
− 1

2
i . In other words, in the context of anisotropic mesh

adaptation, the eigenvectors of the metric tensor prescribe the orientation of the elements, while the eigenvalues
prescribe the sizes in these directions. In an Euclidean metric space, these sizes and orientations are constant
over all the domain; for mesh adaptation, we want them to vary in space depending on the solution features.
This observation motivates the introduction of Riemannian metric spaces.

Riemannian metric space. We now define a metric tensor field M : Ω → Rd×d such that M(x) is symmetric
positive definite for all x ∈ Ω. There is no notion of global scalar product; however, we can extend the notion
of distance. Given x, y ∈ Ω, we define the distance

ℓM(x, y) =

∫ 1

0

√
(y − x)⊤M((1 − t)x+ ty)(y − x) dt , (17)

and, given a set A ⊂ Ω, we define the volume:∣∣A∣∣
M

=

∫
A

√
det(M(x)) dx. (18)

Locally, the eigenvalues and the eigenvectors of the metric tensor M(x) define size and orientations, respectively.

7



Unit mesh. Given the mesh Thf of Ω with elements {Dk}Ne

k=1, we say that an element Dk is a quasi-unit
element with respect to M if the lengths (17) of all its edges are approximately equal to one and its volume is

approximately equal to
√
3
4 for d = 2 and

√
2

12 for d = 3. Similarly, we say that the mesh Thf is unit if all its
elements are quasi-unit. Adapting a mesh with respect to M comes to generating a mesh that is unit in that
metric field.

Remark 3.1. Exploiting the geometric interpretation of the metric tensor, we can devise a practical strategy
to identify the metric tensor M associated to the triangle D: we shall use this strategy in section 3.3. We
define the vertices {xv1, xv2, xv3} so that the longest (in Euclidean norm) edge is the one that connects xv1 and xv2.
First, we set λ1 equal to the square of the inverse of ∥xv2 − xv1∥2, and λ2 equal to the square of the inverse of

the distance between the vertex xv3 and the edge xv1x
v
2; second, we set n1 =

xv
2−x

v
1

∥xv
2−xv

1∥2
and n2 = [(n1)2,−(n1)1]⊤;

finally, we define R = [n1,n2], the diagonal matrix Λ = diag (λ1, λ2) and the metric M = R⊤ΛR.

3.2 Mesh adaptation for one-dimensional problems

For one-dimensional problems, we resort to the standard de Boor’s algorithm (see, e.g., [22, Chapter 2]): for
consistency with section 3.1, we present the method in a slightly different formalism than the one of [22]. Given
the metric M : Ω → R+, we define the mesh density function d : Ω → R+:

d(x) =
√
M(x) , x ∈ Ω. (19)

Our goal is to construct a (quasi-)unit mesh with N nodes {xhfi }Ni=1 with respect to the metric M, that is∫ xhf
N

xhf
1

d(x) dx = N and

∫ xhf
i+1

xhf
i

d(x) dx = 1 , i = 1, . . . , N − 1 . (20)

De Boor’s algorithm constructs a unit mesh for an approximate metric. First, we introduce an initial grid
xhf,01 ≤ . . . ≤ xhf,0N0

and the piecewise-constant approximation d̂ of d such that,

d̂(x) =
1

xhf,0i+1 − xhf,0i

∫ xhf,0
i+1

xhf,0
i

d(x) dx, x ∈
(
xhf,0i , xhf,0i+1

)
, i = 1, . . . , N − 1.

Then, we find the unique set of points {xi}Ni=1 that satisfies (20) for the mesh density function d̂: since d̂ is
piecewise-constant, we can obtain an explicit expression for {xi}Ni=1. We refer to [22] for the explicit formula.
Note that several iterations of this algorithm are typically required to obtain a good approximation of the
equidistributed mesh for d.

For the nozzle flow problem, we define the mesh density function d based on the second-order derivative
of the Mach number. Given the mapped fields {q̃hfµ : µ ∈ Ptrain}, we define the corresponding Mach fields

{M̃a
hf

µ : µ ∈ Ptrain} and the non-normalized density ρ

ρ(x) = max
µ∈Ptrain

max
{∣∣∂xxM̃a

hf

µ (x)
∣∣, Cµ} where Cµ = 10−2 sup

x∈Ω

∣∣∂xxM̃a
hf

µ (x)
∣∣. (21)

Finally, we define the normalized density:

d(x) =
N∫

Ω
ρ(x) dx

ρ(x).

The function ρ (and thus d) is well-defined in the interior of each element of the mesh T 0
hf ; in our implementation,

we rely on the evaluation of the sensor (21) in the elements’ quadrature points to define the piecewise-constant
function that is used by the de Boor’s algorithm.

3.3 Isotropic mark-then-refine mesh adaptation

For the Euler equations, the total enthalpy Htot (cf. (1)) is constant and can be computed exactly from the

boundary conditions for any µ ∈ P. Given the set of snapshots S̃hf defined over the mesh T 0
hf , we first compute

the average error in total enthalpy

ηµ,k =
1

|D0k|

∫
D0k

(
Hhf

tot,µ −Htrue
tot,µ

)2
dx, k = 1, . . . , N0

e , (22a)
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with Htrue
tot,µ := Htot(q

true
µ ) and Hhf

tot,µ := Htot(q
hf
µ ), and the maximum over the training set of parameters

ηmax
k = max

µ∈Ptrain

ηµ,k, k = 1, . . . , N0
e . (22b)

Second, given γref ∈ (0, 1), we mark the γref · N0
e elements that maximize {ηmax

k }k; we denote by Imax ⊂
{1, . . . , N0

e } the indices of the marked elements. Third, we extract the metric {M0
k}
N0

e

k=1 from the mesh T 0
hf using

the strategy in Remark 3.1 and we define the new metric as follows:

Mk = M0
k if k /∈ Imax, Mk = 4M0

k if k ∈ Imax. (23)

Multiplication by four in (23) corresponds to an isotropic reduction of the local mesh density by a factor of two.
Fourth, we define the metric M in the vertices of the mesh T 0

hf using the simple average:

Mi =
1

#Neighi

∑
k∈Neighi

Mk, i = 1, . . . , N0
v ,

where Neighi ⊂ {1, . . . , N0
e } contains the indices of the elements that contain the i-th vertex of T 0

hf . Finally, we
apply a mesh adaptation toolkit to generate the new mesh.

The choice of γref regulates how quickly we increase the size of the HF mesh. Since the mesh Thf should
be accurate for the mapped manifold {qtrueµ ◦ Φµ : µ ∈ P} where the mapping Φ changes at each outer-loop
iteration, it is not worth to refine the mesh if the mapping Φ is excessively inaccurate. On the other hand,
modest values of γref might require a large number of iterations in Algorithm 1. A thorough investigation of
the choice of γref on performance is beyond the scope of the present work; in the numerical experiments, we
mark 10% of the elements (i.e., γref = 10%) of the mesh at each iteration.

We observe that the computation of (22) for all µ ∈ Ptrain might be expensive: in the numerical experiments,
we hence run a strong greedy algorithm (cf. Appendix A) to identify the most relevant parameters in Ptrain.
We also notice that the choice of the error indicator (22) is specific to the Euler equations: several alternatives
have been considered in the literature such that the p + 1 residual or goal-oriented error estimates (e.g., [55]).
Finally, we observe that at each iteration of Algorithm 1 we generate a new mesh that is independent of
the previous meshes: the advantage of this choice is that we allow the mesh adaptation toolkit to perform
smoothing operations that ensure well-behaved meshes; clearly, the disadvantage is that we need to perform
mesh interpolation between unstructured meshes at several steps of our training phase.

3.4 Anisotropic mesh adaptation

Anisotropic mesh adaptation refers to a class of methods where both the elements sizes and orientations are
optimized with respect to an error estimate. As explained in section 3.1, this can be achieved by generating a
unit mesh with respect to a prescribed metric field. In this work, we use the multiscale metric defined in [30]:

Ms(x) =

(
N∫

Ω
(det(|Hs(x̄)|)dx̄)

p
2p+d

)2/d

det(|Hs(x)|)
−1

(2p+d) |Hs(x)|, ∀x ∈ Ω , (24)

where s : Ω → R is a scalar field driving the adaptation, Hs : Ω → Rd×d is the Hessian matrix of s. Since
Hs is real-valued and symmetric, it can be diagonalized: Hs = R⊤

s ΛsRs where Rs is the orthogonal matrix of
eigenvectors and Λs = diag(λs,1, λs,2) is the diagonal matrix of eigenvalues. We further define |Hs| by taking
the absolute value of the eigenvalues: |Hs| := R⊤

s diag(|λs,1|, |λs,2|)Rs. The constant p is associated with the
Lp norm that is used to derive the error estimate and ultimately the metric. On the other hand, N is the
continuous complexity and is directly related to the target number of vertices of the mesh.

In this work, we do not only want to adapt to one field, but to as many fields as we have snapshots. Instead
of generating several meshes and taking the supermesh of several adapted meshes, we choose to construct one
metric based on the available fields and generate only one adapted mesh. A fairly common strategy is used to
construct that unique metric: the multiscale metric (from Eq. (24)) is computed for each snapshot, and those
metrics are then combined vertex-wise using metric intersection :

M(x) =

ntrain⋂
k=1

Msk(x) , (25)

where ntrain is the number of snapshots in Ptrain and Msk is the multiscale metric field computed for the chosen
scalar field of the k-th snapshot of the dataset.

A procedure to intersect two metrics is proposed in [4]. Geometrically, we have seen that the unit ball of a
metric is an ellipsoid. Intersecting two metrics is equivalent to finding the largest ellipsoid included in the two
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corresponding ellipsoids. Note that this method has limitations, which we aim to solve in future work. First,
metric intersection is not associative, which means that depending on the order in which the intersections are
carried out, the final result will slightly change, although it is not known to change significantly. Second, if
each metric field associated with each snapshot would result in a mesh with a certain prescribed number of
vertices, once the metrics are intersected, we do not control the new prescribed number of vertices. To avoid
this issue, we could intersect the Hessians and then apply the multiscale normalization. However, the geometric
interpretation of intersecting quantities with potentially very different orders of magnitudes is unclear.

3.5 Practical considerations

Good approximations of the gradient and the Hessian of the solution field are key in the implementation of the
metric. If the order of the solver is high enough (strictly greater than one), those quantities are computed exactly
in each element. Otherwise, we perform L2 projections based on Clement’s interpolation [14] to reconstruct a
P 1 gradient (resp. Hessian) from a P 0 gradient (resp. Hessian). Metric (24) depends on the choice of scalar
field s, and parameter p. We here use the Mach number field as sensor to drive the adaptation. In the numerical
simulations, we set p = 1, which is found to better capture small-scale features of the solution field.

The task of generating the adapted meshes is left to the anisotropic remesher mmg2d ([2, 16]). It takes as
input a mesh and a metric field defined on the mesh, and returns a unit mesh for the given metric. To do so,
it performs iteratively a series of local mesh operations : vertex addition, removal, smoothing and topology
changes. In this work, the default parameters of mmg2d are used. The eigenvalues of metric (24) are previously
truncated to avoid excessively small edge sizes.

Mesh adaptation is a non-linear problem, where the convergence of the mesh/solution couple has to be
considered: a better mesh gives a better solution, which in turns gives a better mesh, etc. This is addressed
in Algorithm 1: during each outer loop iteration, we indeed generate snapshots (cf. Line 3) associated to the
current mesh and we use them to adapt the mesh (cf. Line 4). We hence expect to converge to a final mesh —
and a reduced-order approximation — that is accurate for all parameters in P.

4 Registration

The second ingredient of our method is a registration algorithm that is designed to track coherent structures of
the solution field, to facilitate the tasks of mesh adaptation and linear-subspace model reduction; the algorithm
takes as input (i) a set of snapshots {qhfµ : µ ∈ Ptrain} and (ii) a mesh Thf of the domain Ω, and returns a
parameterized map Φ : Ω × P → Ω such that Φµ(Thf) is a proper mesh of Ω for all µ ∈ P. The development
and the analysis of registration methods for MOR remains a challenging task that requires many advances; in
this work, we briefly summarize the procedure employed in the numerical experiments and we refer to a future
work for a thorough discussion on registration methods.

4.1 Spectral maps

Given the family of domains {Ωµ : µ ∈ P}, we define the “reference” domain Ωp and the geometric map
Ψgeo : Ωp ×P → Rd such that Ψgeo

µ (Ωp) = Ωµ for all µ ∈ P. We denote by np the outward normal to ∂Ωp and
we define the space of tensorized polynomials QJ of degree at most J in each variable. For the nozzle problem,
we consider Ψgeo = id — where id(x) = x is the identity map — and Ωp = Ω; for the transonic bump problem,
we consider a Gordon-Hall map (cf. [20, section 2]) and Ωp = (0, 1)2; in the latter, we introduce the reference
parameter µ̄ ∈ P and we define Ω := Ωµ̄. Then, we consider mappings of the form

Nµ(a) = Ψgeo
µ ◦ Np(a) ◦ Λgeo

µ̄ , Np(a) = id +

m∑
i=1

(a)iφi, (26a)

where Λgeo
µ̄ :=

(
Ψgeo
µ̄

)−1
, {φi}mi=1 spans the space Up of tensorized polynomials such that

Up = span{φi}mi=1 ⊂ Uhf,p =
{
φ ∈ [QJ ]d : φ · np|∂Ωp = 0

}
. (26b)

We equip Uhf,p with the inner product

(φ,ψ)2H2(Ωp)
:=

∫
Ωp

 d∑
i,j,k=1

∂j,k(φ)i · ∂j,k(ψ)i + φ · ψ

 dx, (27)

and we assume that {φi}mi=1 is an orthonormal basis of Up. We observe that, if Np(a) is a bijection from Ωp in
itself, Nµ(a) is a bijection from Ω to Ωµ, for all µ ∈ P.
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We denote by Bµ the space of diffeomorphisms from Ω to Ωµ; exploiting the analysis in [43, 47], we can
prove that (i) for any µ ∈ P the model class N (26) is dense in a meaningful subspace of Bµ and (ii) the set
of admissible maps Abj,µ = {a ∈ Rm : Nµ(a) ∈ Bµ} has a non-empty interior for any choice of Up in (26b).
The latter is extremely important for the numerical robustness of registration methods. We remark that the
two results are currently restricted to domains that are diffeomorphic to the unit hyper-cube Ωp = (0, 1)d. The
extension of these results to a broader class of domains is the subject of ongoing research.

4.2 Optimization-based registration

Given the training set of snapshots {qhfµ : µ ∈ Ptrain}, we determine the mapping coefficients âµ (cf. (3)) by
solving the optimization problem:

min
a∈Rm

fobjµ (a) := ftgµ (a) + ξ
(∣∣Np(a)

∣∣2
H2(Ωp)

+ fmsh(Nµ(a)) + fjac(Np(a))
)
. (28)

Here, ftgµ denotes the target (or proximity) function that measures the degree of similarity between the available
estimate of the solution field qtrueµ and a suitable template solution or template reduced space, while the terms
multiplied by the weighting parameter ξ > 0 are regularization terms that promote the smoothness of the map

and ensure bijectivity. In more detail,
∣∣ · ∣∣2

H2(Ωp)
=
∫
Ωp

(∑d
i,j,k=1 ∂j,k(·)2i

)
dx is the H2 seminorm; fmsh controls

the quality of the deformed mesh (cf. [58]),

fmsh(Φ) =
1

|Ω|

Npb
e∑

k=1

|Dpbk |
∫
D̂

exp

(
qmsh
k (Φ)

qmsh
k (id)

− κmsh

)
dx, qmsh

k (Φ) :=
1

d2

(
∥∇Ψhf

Φ,k∥2F
(det(∇Ψhf

Φ,k))
2/d
+

)2

, (29)

where {Ψhf
Φ,k}k are the elemental maps (6) associated to the deformed mesh Φ(Thf); and fjac is designed to

ensure that the selected map is non-singular,

fjac(Φp) =
1

|Ωp|

∫
Ωp

exp

(
ϵ− det(∇Φp)

Cexp

)
dx, with ϵ ∈ (0, 1), Cexp ≪ ϵ. (30)

Note that (29) and (30) depend on several hyper-parameters: in the numerical experiments, we consider

ϵ = 0.1, Cexp = 0.025ϵ, κmsh = 10, ξ = 10−3.

We observe that qmsh
k (Φ) ≡ 1 for d = 1 dimensional problems that are discretized using linear elements: we

hence omit the mesh regularization term for the nozzle problem. Furthermore, we empirically found that the
regularization (30) is not strictly needed for two-dimensional problems based on discretize-then-map treatment
of geometry parameterizations (cf. section 5): in the numerical experiments we hence omit the regularization
(30) for the transonic bump test case. In the remainder of this section, we discuss the choice of the target
function for the two model problems considered in the numerical section.

Target function for the nozzle problem

Given the snapshot qhfµ , we compute the Mach field Mahfµ and we estimate the maximum of its derivative x⋆µ;
then, we consider the target

ftgµ (a) =
∣∣N(x⋆µ̄;a) − x⋆µ

∣∣2. (31)

In the numerical experiments, we estimate x⋆µ using the formula

x⋆µ =
1

#I+

∑
i∈I+

xhf,qdi , I+ =

{
i ∈ {1, . . . , Nhf,q} : |∂xMahfµ (xhf,qdi )| > δmax

j
|∂xMahfµ (xhf,qdi )|

}
, (32)

where {xhf,qdi }Nhf,q

i=1 are the quadrature points of the FE mesh and δ > 0 is a threshold that is set equal to
0.5. We observe that the definitions of (31) and (32) exploit the knowledge that the solution exhibits a single
discontinuity in Ω; we refer to [24] and [44] for a generalization to a more general setting.

Target function for the transonic bump problem

We consider the target

ftgµ (a) = min
ν∈Sn

1

|Ωp|

∫
Ωp

∣∣shfµ ◦ Np(a) − ν
∣∣2 det(∇Ψµ̄)dx + ∥Nµ(x⋆µ̄;a) − x⋆µ∥22, (33)
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where shfµ = Mahfµ ◦ Ψgeo
µ , and x⋆µ is equal to the maximum of the Mach number over the bump if the flow is

subsonic, and equal to the maximum of the tangential derivative of the Mach number — which is practically
estimated using (32) — if the flow is transonic. We observe that the evaluation of the target (33) requires the
evaluation of the field shfµ in arbitrary points of Ωp: it is thus important to define shfµ over a structured grid.

For completeness, we comment on the choice of the first term in (33). Given the reduced space S̃n ⊂ L2(Ωµ),
the goal of registration is to find a mapping Φ such that

min
ν∈S̃n

∫
Ωµ

∣∣Mahfµ ◦ Φ − ν
∣∣2 dx,

where the choice to consider the Mach number as registration sensor is justified by the observation that it is a
scalar quantity that exhibits relevant features (shocks, contact discontinuities) of the full field qtrueµ . Exploiting
the expression of Φ, Φ = Ψgeo

µ ◦ Φp ◦ Λgeo
µ̄ , and the change of variable x = Ψgeo

µ̄ (ξ), we find

min
ν∈S̃n

∫
Ωµ

∣∣shfµ ◦ Φ − ν
∣∣2 det(∇Ψµ̄)dx where Sn =

{
ν ◦ Ψgeo

µ : ν ∈ S̃n
}
, shfµ = Mahfµ ◦ Ψgeo

µ .

The space Sn ⊂ L2(Ωp) in (33) is dubbed template space and is built using the greedy procedure proposed in
[48].

4.3 Parametric registration

We combine the optimization statement discussed in the previous section with the greedy algorithm proposed
in [48] for the adaptive construction of the template space Sn in (33), and a standard regression procedure to
obtain the parametric mapping Φ — for completeness, we report the greedy method in Appendix A. For the
nozzle problem, the greedy procedure is not necessary: in this case we simply rely on [43, Algorithm 1]. In
both cases, the cost of the procedure is dominated by the solution to the optimization statement (28) for all
µ ∈ Ptrain,

âµ ∈ arg min
a∈Rm

fobjµ (a), µ ∈ Ptrain (34)

for the first iteration of the algorithm — which corresponds to the choice S1 = span{shfµ̄ } for the transonic
bump test case.

We rely on the Matlab function fminunc which implements a quasi-Newton method; since the problem is
non-convex, the choice of the initial condition for the optimizer is critical to achieve accurate performance.
Towards this end, following [43], we first reorder the parameters in Ptrain so that µ(1) = arg minµ∈Ptrain ∥µ− µ̄∥2
and

µ(k) = arg min
µ∈Ptrain\{µ(i)}k−1

i=1

(
min

µ′∈{µ(i)}k−1
i=1

∥µ− µ′∥2

)
, k = 2, . . . , ntrain;

then, we choose the initial condition as follows:

a0µ(1) = 0, a0µ(k) = âµ(nek) , with nek = arg min
j=1,...,k−1

∥µ(j) − µ(k)∥2, k = 2, . . . , ntrain.

We observe that this choice of the initial condition prevents the parallelization of the registration procedure.

Remark 4.1. In the numerical experiments for the two-dimensional test case, we consider polynomials of degree
J = 10 and we rely on a P1 61 × 21 Cartesian FE grid of the unit square to represent the sensors µ 7→ shfµ .

If we denote by {xhf,rj }Nnd,r

j=1 the nodes of the mesh on Ωp, computation of shfµ requires the interpolation of the

FE field Mahfµ in the points {Ψgeo
µ (xhf,rj )}Nnd,r

j=1 . To ensure that the objective function is sufficiently smooth for
gradient-based optimization, we post-treat the sensor by applying a low-pass filter (moving average) in each
spatial direction.

5 Linear-subspace projection-based model order reduction

In this section, we present the projection-based MOR procedure employed to estimate the mapped field q̃trueµ :=
qtrueµ ◦ Φµ. As anticipated in the introduction, we seek approximations of the form

q̃µ = Zα̂µ with α̂µ ∈ arg min
α∈Rn

max
ψ∈Ŷ

Req
µ (Zα, ψ)

|||ψ|||
(35a)
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where Z : Rn → Xhf is a suitable linear operator,

Req
µ (q, v) =

Ne∑
k=1

ρeq,ek rek,µ(Ekq, Ekv) +

Nf∑
j=1

ρeq,fk rfj,µ(E+
j q, E

−
j q, E

+
j v,E

−
j v), ∀ q, v ∈ Xhf , (35b)

is a weighted residual that depends on the sparse weights ρeq,e ∈ RNe and ρeq,f ∈ RNf , Ŷ ⊂ Xhf is a m-
dimensional linear space with m ≥ n, and |||·||| =

√
((·, ·)) is the norm associated to the test space. As in [20],

we consider a discrete L2 inner product for the trial space and a discrete H1 inner product for the test space
such that

(q, v) =

Ne∑
k=1

∫
Dk

q · v dx

((q, v)) =

Ne∑
k=1

∫
Dk

(∇q : ∇v + q · v) dx −
Nf∑
j=1

∫
Fj

{
∇qn+

}
· J(v) +

{
∇vn+

}
· J(q) − η{rj(J(q))} · J(v) dx

(36a)
where rj : [L2(Fj)]

D → Xhf is the BR2 lifting operator (cf. [6]) given by

(rj(w), v) = −
∫
Fj

w · {v} dx ∀w ∈ [L2(Fj)]
D, v ∈ Xhf j = 1, . . . , Nf , (36b)

and η > 0 is a stabilization parameter that is here set equal to d+1. In the remainder of this section, we discuss
the construction of the various pieces of the formulation.

5.1 Online solution method

We denote by {ψi}mi=1 an orthonormal basis of Ŷ; we introduce the set of indices Ieq,e = {k ∈ {1, . . . , Ne} :

ρeq,ek ̸= 0} and Ieq,f = {j ∈ {1, . . . , Nf} : ρeq,fj ̸= 0}. Then, we rewrite the minimization statement in (35a) as
the nonlinear least-square problem

min
α∈Rn

∥∥Req
µ (α)

∥∥
2
, with

(
Req
µ (α)

)
i

= Req
µ (Zα, ψi), i = 1, . . . ,m, (37)

which can be solved using the Gauss-Newton method (GNM). Note that the computation of the entries of
Req
µ (α) for any α ∈ Rn requires to compute the local elemental residuals {rek,µ}k for all k ∈ Ieq,e and the facet

residuals {rfj,µ}j for all j ∈ Ieq,f ; towards this end, we should store the trial and test ROBs in the sampled
elements

Ωeq :=

 ⋃
k∈Ieq,e

Dk

 ∪

 ⋃
j∈Ieq,f

D+j ∪ D−j

 . (38)

We conclude that online storage and computational costs scale linearly with the cardinality of |Ieq,e| and |Ieq,f |.
Our formulation enables a straightforward discretize-then-map treatment of geometry variations: the ele-

mental residual rek,µ(·, ·) depends on the nodes {xhfTi,k}
nlp

i=1 of the k-th element of the mesh; given a new value of
the parameter µ, it hence suffices to deform the nodes of the sampled elements through the mapping Φµ before
starting the GNM iterations. Similar reasoning applies to the facet integrals. As discussed in [54] this approach
enables the use of the routines of the DG HF code and is thus simple to implement.

Several variants of the present approach are available in the literature. In [54], Yano considered an element-
wise EQ procedure that guarantees relevant conservation properties, while in [17] Du and Yano proposed a
pointwise EQ procedure that generates sparse quadrature rules within each element and facet. Our approach
enables slightly larger reductions than the approach in [54] and, unlike the approach in [17] can cope with
elementwise terms such as the BR2 lifting operator (see (36b)) or elementwise artificial viscosities of the form
(10). A thorough comparison of our method with other EQ formulations is beyond the scope of this work.

We finally comment on the choice of the initial condition for GNM. We here rely on nearest-neighbor regres-
sion: given the training set of simulations {q̃hfµ : µ ∈ Ptrain}, we define the corresponding best-fit generalized

coordinates {αbf
µ : µ ∈ Ptrain} obtained by projecting the available snapshots on the ROB Z; then, for any

µ ∈ P, we initialize GNM with αbf
µnn

with µnn = arg minµ′∈Ptrain
∥µ − µ′∥2. We observe that the present ap-

proach might be highly suboptimal if the cardinality of Ptrain is modest: in section 6, we discuss how to improve
the initialization of GNM using information from the previous iterations of Algorithm 1.
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5.2 Construction of the empirical test space

As in [20], we here resort to the sampling strategy based on proper orthogonal decomposition (POD, [41, 51])

proposed in [48] to construct the test space Ŷ in (35). Given the training set Ptrain = {µk}ntrain

k=1 ⊂ P, the
associated snapshots {q̃hfµ : µ ∈ Ptrain}, and the trial ROB {ζi}ni=1, we compute the test snapshot set

((ψk,i, v)) = Jhfµk [q̃hfµk ](ζi, v), ∀ v ∈ Xhf ,

for i = 1, . . . , n and k = 1, . . . , ntrain, where Jhfµ [q] : Xhf × Xhf → R denotes the Fréchet derivative of the HF
residual at q. Then, we perform POD on the test snapshot set {ψk,i}k,i based on the ((·, ·)) inner product (36)

to obtain Ŷ. In all the numerical experiments, we consider test spaces of size jes = dim(Ŷ) = 2n; alternatively,

we might choose the dimension of Ŷ using an energy criterion. We refer to [48, Appendix C] for a rigorous
justification of our method for linear inf-sup stable problems.

5.3 Hyper-reduction

We seek ρeq,e ∈ RNe
+ and ρeq,f ∈ RNf

+ in (35b) such that

(i) (efficiency constraint) the number of nonzero entries in ρeq,e,ρeq,f , ∥ρeq,e∥ℓ0 and ∥ρeq,f∥ℓ0 , is as small as
possible;

(ii) (constant function constraint) the constant function is approximated correctly in Ω (for Φ = id),

∣∣∣ Ne∑
k=1

ρeq,ek |Dk| − |Ω|
∣∣∣≪ 1,

∣∣∣ Nf∑
j=1

ρeq,fj |Fj | −
Nf∑
j=1

|Fj |
∣∣∣≪ 1; (39)

(iii) (manifold accuracy constraint) for all µ ∈ Ptrain,eq = {µk}ntrain+ntrain,eq

k=1 , the empirical residual satisfies∥∥∥Rhf
µ (αtrain

µ ) − Req
µ (αtrain

µ )
∥∥∥
2
≪ 1. (40a)

where Rhf
µ corresponds to substitute ρeq,e1 = . . . = ρeq,eNe

= ρeq,f1 = . . . = ρeq,fNf
= 1 in (35b) and αtrain

µ

satisfies

αtrain
µ =


arg min

α∈Rn
∥Zα− q̃hfµ ∥2, if µ ∈ Ptrain;

arg min
α∈Rn

∥Rhf
µ (α)∥2, if µ /∈ Ptrain;

(40b)

and Ptrain = {µk}ntrain

k=1 is the set of parameters for which the HF solution is available.

We refer to the above-mentioned literature for a thorough motivation of the previous constraints. We remark
that several authors (see [54, Algorithm 1]) have observed that considering an augmented training set Ptrain,eq

in (40) might improve performance of the hyper-reduced ROM, particularly for small values of ntrain. However,
for the numerical experiments of this work, we empirically observed that the choice Ptrain = Ptrain,eq leads to
accurate results.

It is possible to show (see, e.g., [48]) that (i)-(ii)-(iii) lead to a sparse representation problem of the form

min
ρ∈RNe+Nf

∥ρ∥ℓ0 , s.t

{ ∥Gρ− b∥2 ≤ δ;

ρ ≥ 0;
(41)

for a suitable threshold δ > 0, and for a suitable choice of G,b. Following [18], we here resort to the non-
negative least-squares method to find approximate solutions to (41). In particular, we use the Matlab function
lssnonneq, which takes as input the pair (G,b) and a tolerance toleq > 0 and returns the sparse vectors
ρeq,e,ρeq,f ,

[ρeq,e,ρeq,f ] = lsqnonneg (G,b, toleq) . (42)

We refer to [12] for an efficient implementation of the non-negative least-squares method for large-scale problems.

5.4 Construction of the trial space via greedy sampling

We resort to the weak-greedy algorithm (cf. [50]) to build the ROM and the trial ROB Z; the weak-greedy
method relies on the repeated maximization of an error indicator to adaptively sample the parameter domain;
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Algorithm 2 summarizes the overall procedure, while Algorithm 3 summarizes the construction of the ROM. In
this work, we consider the residual-based error indicator (cf. [20, section 3.2.3]),

∆ : µ ∈ P 7→ sup
v∈Xhf

Rhf
µ (q̃µ, v)

|||v|||
. (43)

Note that the evaluation of (43) requires the solution to a linear system of size Nhf : it is hence ill-suited for
real-time online computations; nevertheless, in our experience the offline cost associated with the evaluation of
(43) is a fraction of the cost to perform hyper-reduction and to build the test space Ŷ. We refer to [20] and to
the references therein for a thorough discussion on the construction of an inexpensive surrogate of (43). Even
if we empirically observe that our residual-based error indicator is highly-correlated with the true error, it does
not provide a rigorous bound; for this reason, after having computed the new HF solution (cf. Line 5, Algorithm
2) we check if the relative error is below a given threshold for the parameter that maximizes the error indicator.

Algorithm 2 : weak-greedy algorithm.

Inputs: Ptrain,gr := {µk
gr}ntrain

k=1 training parameter set, Φ : Ω× P → Ω mapping; Thf mesh.

Outputs: Z trial ROB; µ ∈ P 7→ α̂µ ROM for the solution coefficients.

1: Choose P⋆ = {µ⋆,i}n0
i=1 and compute the HF solutions S⋆ = {q̃hfµ : µ ∈ P⋆}.

2: for n = n0 + 1, . . . , nmax do
3: Update the ROB Z and the ROM (cf. Algorithm 3).

4: Estimate the solution q̃hfµ and compute the indicator ∆µ in (43) for all µ ∈ Ptrain,gr.

5: Compute q̃hfµ⋆,n for µ⋆,n = arg maxµ∈Ptrain,gr ∆µ; update P⋆ and S⋆.
6: if ∥q̃hfµ⋆,n − q̃µ⋆,n∥ < tol∥q̃hfµ⋆,n∥ then
7: Update the ROB Z and the ROM.
8: break

9: end if
10: end for

Algorithm 3 : construction of the ROM.

Inputs: snapshot set S⋆ := {(µ, q̃hfµ ) : µ ∈ P⋆}.
Outputs: Z trial ROB; µ ∈ P 7→ α̂µ ROM for the solution coefficients.

1: Define the test space Ŷ (cf. section 5.2)

2: Define the EQ weights ρeq,e,ρeq,f (cf. section 5.3).

3: Store trial and test ROBs, and grid points in the reduced mesh (cf. (38)).

We observe that the weak-greedy algorithm requires multiple definitions of the ROM, which imply multiple
constructions of the test space Ŷ, the quadrature weights ρeq,e,ρeq,f and multiple greedy searches over the
training set Ptrain,gr (cf. Line 4, Algorithm 2). As reported in Table 1, the overhead costs of the greedy
procedure — that is, the total cost of the procedure minus the cost of the HF solves — might be significant.
This observation motivates the development of more sophisticated training strategies to reduce offline costs.
We address this issue in section 6.

6 Adaptive procedure

Each iteration of Algorithm 1 generates a large amount of data about the parametric problem, which can be
used to speed up offline computations. In the remainder of this section, we illustrate computational bottlenecks
of the training phase and we discuss actionable strategies to reduce the computational burden; in the numerical
investigations, we assess the impact of these choices.

• The construction of the snapshot set for registration (cf. Line 3, Algorithm 1) based on the HF model
is prohibitively expensive. Instead, we propose to rely on the ROM built at the previous iteration; for
the first iteration, we first execute the weak-greedy algorithm and then we use the ROM to generate the
dataset of simulations.
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• The GNM for (37) is sensitive to the choice of the initial condition. In our implementation, we initialize
GNM based on nearest-neighbor regression which is clearly highly inaccurate for modest values of n. To
face this issue, we propose to rely on a large dataset of initial conditions defined as follows:{

α̂0
µ : µ ∈ Ptrain

}
where α̂0

µ = arg min
α∈Rn

∥Zα− q̂oldµ ◦ Φ−1
µ ∥. (44)

Note that the fields {q̂oldµ : µ ∈ Ptrain} are generated for registration (cf. Line 3, Algorithm 1); nevertheless,

cost of (44) is significant due to the need to compute the composition of q̂oldµ with Φ−1
µ — which requires

mesh interpolation. In practice, we estimate the L2 norm ∥ · ∥ in (44) using 103 randomly-sampled points
in Ω to reduce offline costs.

• The PTC strategy employed to solve the HF problem (cf. section 2) might require many iterations to reach
convergence. To reduce the computational burden, we initialize the PTC solver with the reduced-order
solution q̂µ from the previous iteration, as opposed to the free-stream solution. Thanks to this choice, we
can consider a much larger initial CFL number3 without experiencing any stability issue.

• The registration procedure discussed in section 4 relies on multiple solutions to a nonlinear non-convex
optimization problem of size m = O(102) that is sensitive to the initial condition. In our experience,
the initialization strategy reviewed in section 4.3 leads to accurate performance; however, it requires a
sufficiently dense discretization of P and is not parallelizable. To address this issue, we propose to store
the mapping coefficients {âµ : µ ∈ Ptrain} obtained during the first iteration of the registration method
and then use them as initial conditions for the subsequent iteration: note that for this choice of the
initialization the solution to the problems (34) can be trivially parallelized; in addition, we can potentially
cope with much coarser discretizations of P.

• As discussed in section 5, the weak-greedy algorithm requires multiple constructions of the ROM and might
hence be expensive; in addition, it cannot be efficiently parallelized. To address this issue, we initialize
Algorithm 2 with the parameters {µ⋆,i}n0

i=1 obtained by applying the strong-greedy algorithm to the
snapshot set generated for registration (cf. Line 3, Algorithm 1). Since the snapshot set is generated using
the ROM, the strong-greedy algorithm can be applied to the generalized coordinates. For completeness,
we report the strong-greedy procedure in Appendix A.

7 Numerical results

We present below extensive numerical investigations for the model problems introduced in section 2.2. Further
numerical tests are provided in Appendix B. We assess performance based on ntest = 20 out-of-sample parame-

ters Ptest = {µjtest}
ntest
j=1 with µ1

test, . . . , µ
ntest
test

iid∼ Uniform(P); for each µ ∈ Ptest, we report the HF L2 error Ehf
µ ,

the sub-optimality index ηhfµ and the total enthalpy error E∞
µ such that

Ehf
µ =

∥qhfµ − q̂hfµ ∥L2(Ωµ)

∥qhfµ ∥L2(Ωµ)
, (45)

ηhfµ =
∥qhfµ − q̂hfµ ∥L2(Ωµ)

minζ∈Zn
∥qhfµ − ζ ◦ Φ−1

µ ∥L2(Ωµ)

, (46)

E∞
µ =

∥Htrue
tot,µ − Ĥtot,µ∥L2(Ωµ)

∥H∞
tot,µ∥L2(Ωµ)

. (47)

The relative error Ehf
µ measures the accuracy of the reduced-order estimate with respect to the HF model

employed for training — it is hence a measure of the overall ability of the MOR procedure to approximate
the truth model of the PDE. The suboptimality index ηhfµ measures the extent to which the LSPG projection
scheme is suboptimal compared to the best-fit error: it hence allows to directly evaluate the effectiveness of the
ROM, which encompasses the choice of the test space, initialization, and hyper-reduction. Finally, the total
enthalpy error (47) measures the accuracy of the state estimate with respect to the exact solution to the PDE,
in terms of enthalpy preservation. Simulations are performed in Matlab 2022a [31] based on an in-house code,
and executed over a commodity Linux workstation (RAM 32 GB, Intel i7 CPU 3.20 GHz x 12).

3In the numerical experiments, we set CFL0 = 100 instead of CFL0 = 1; see [56, section II.B].

16



7.1 Inviscid flow through a nozzle

We perform Nit = 3 iterations of Algorithm 1 without acceleration. We initialize the algorithm using an uniform
HF grid with Ne = 60 triangles and quadratic (p = 2) polynomials; then, we increase the size of the mesh by a
factor 1.5 at each iteration: this implies that the generated HF meshes have Ne = 60, Ne = 90 and Ne = 135
elements at iterations one, two and three, respectively. We consider a regular 15 × 15 grid of parameters Ptrain

for registration and a regular 10 × 10 grid of parameters Ptrain,gr in Algorithm 2. We rely on the HF solver
to generate the dataset of simulations at iteration one, while we rely on the ROM from previous iterations to
generate the snapshot set (cf. Line 3, Algorithm 1) for k = 2, . . . , Nit. We consider the tolerance tol = 10−3

in Algorithm 2 and we consider an initial regular 3× 3 grid of parameters to initialize the ROM: the algorithm
generates ROBs of size n = 15, n = 20 and n = 10.

Figure 3 shows the performance of the ROM. Figure 3(a) shows the relative error over the test set, which
mildly depends on the size of the mesh. Figure 3(b) shows the suboptimality index: interestingly, we observe that
the performance of the projection scheme deteriorates as we increase the size of the mesh: we plan to investigate
this behavior in a subsequent work; nevertheless, we observe that ηhfµ ≲ 10 for all numerical experiments. Figure
3(c) shows the total enthalpy error: as expected, the error decreases as we increase the size of the mesh. Figure
3(d) shows the wall-clock online cost: thanks to hyper-reduction, results do not depend on the size of the
underlying mesh but they clearly depend on the size n of the ROB.

(a) (b)

(c) (d)

Figure 3: nozzle flow. Performance of the ROM for three iterations of the adaptive (basic) procedure.

Figure 4 shows the behavior of the modified density ρ̄ := Aρ in the proximity of the shock for four parameter
values, for three iterations of the algorithm, and for both physical and reference configurations. We observe
that registration is effective to track the position of the discontinuity.

In Figure 5, we investigate the effect of registration on solution manifold compressibility and mesh adaptation.
Towards this end, we consider the adaptive reduced-order and HF models associated with the third iteration
of Algorithm 1, and a HF model defined over a Cartesian “static” mesh with the same number of elements,
Ne = 135. First, in Figure 5(a), we compare the behavior of the normalized POD eigenvalues associated
with the snapshot set in physical (“unreg”) and reference (“reg”) configurations. We observe that registration
significantly improves the convergence of the POD eigenvalues that can be regarded as a “proxy” of the linear
complexity of the corresponding solution manifold. Figure 5(b) shows the behavior of the error in total enthalpy
for the final registered ROM and the static HF model based on an uniform mesh: we clearly notice that the HF
model — which has the same number of degrees of freedom as the HF model used to generate the ROM — is
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significantly less accurate than the adapted ROM. Finally, Figure 5(c) shows the behavior of the mesh density
h : Ω → R+ such that h|Dk = |Dk| for the sequence of meshes generated during Algorithm 1: we observe that
registration allows us to refine the mesh over a very narrow portion of the computational domain and hence
enables significant computational savings.

(a) it = 1 (b) it = 2 (c) it = 3

(d) it = 1 (e) it = 2 (f) it = 3

Figure 4: nozzle flow. Behavior of the (modified) density field in physical (cf. (a)-(b)-(c)) and reference (cf.
(d)-(e)-(f)) configuration for four values of the parameter and three iterations of the adaptive algorithm (basic
version).

(a) (b) (c)

Figure 5: nozzle flow. Effect of registration on compressibility and mesh adaptation. (a) POD eigenvalues in
reference and physical configurations. (b) total enthalpy error for registered ROM and unregistered HFM on
regular mesh with Ne = 135 elements. (c) mesh density h : Ω → R+, h|Dk = |Dk| for the sequence of considered
meshes.

7.2 Inviscid flow over a Gaussian bump

We perform Nit = 3 iterations of Algorithm 1 without and with acceleration; we consider both isotropic and
anisotropic mesh adaptation based on the software mmg2d and on the metrics introduced in section 3. As in
the previous case, we rely on a regular 15 × 15 grid of parameters Ptrain for registration and a regular 10 × 10
grid of parameters Ptrain,gr in Algorithm 2. We set tol = 10−3 in the termination condition of Algorithm 2.
To reduce training costs of the first snapshot generation, we first perform a weak-greedy algorithm to generate
a ROM that is later used to generate the snapshot set. In all our tests, we consider the initial grid depicted in
Figure 8(a) with Ne = 3448, and we rely on a quadratic approximation. We state upfront that the registration
algorithm returns a low-rank mapping with m = 2 modes for all runs considered.
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7.2.1 Basic approach

We first study the performance of the standard (without acceleration) approach based on isotropic mesh adap-
tation. Figure 6 replicates the results in Figure 3 for the transonic bump problem. We observe that the ROM
achieves accurate performance over the test set with respect to the HF estimate for all three iterations: results
are hence in good agreement with the selected tolerance (tol = 10−3) of Algorithm 2. The suboptimality index
ranges from one to three for all experiments: this indicates that our projection scheme is extremely effective
for this model problem. The total enthalpy error decreases as we increase the size of the mesh, while the
computational cost is nearly the same for all iterations.

(a) (b)

(c) (d)

Figure 6: transonic bump. Performance of the ROM for three iterations of the adaptive (basic) procedure.

Figure 7 shows the behavior of the density field over the bump in physical and reference configuration for
four values of the parameter and three iterations of the adaptive algorithm. We clearly notice the effect of the
registration to nearly “freeze” the position of the shock — when present — in the reference configuration. We
also notice that mesh adaptation is effective to sharpen the approximation of the shock as we increase the size
of the mesh.
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(a) it = 1 (b) it = 2 (c) it = 3

(d) it = 1 (e) it = 2 (f) it = 3

Figure 7: transonic bump. Behavior of the (modified) density field in physical (cf. (a)-(b)-(c)) and reference
(cf. (d)-(e)-(f)) configuration for four values of the parameter and three iterations of the adaptive algorithm
(basic version).

Figure 8 shows the reference mesh in the proximity of the bump, for three iterations of the adaptive algorithm;
red dots indicate the centers of the marked elements at iterations it = 2 and it = 3. Interestingly, we observe
that the mesh is adapted in the proximity of the shock and in the proximity of the lower wall, in the area
downstream of the bump: as for the previous example, registration facilitates the task of parametric mesh
adaptation by “freezing” the coherent flow structure in the reference domain.

(a) it = 1 (b) it = 2 (c) it = 3

Figure 8: transonic bump. Visualization of the reference mesh in the proximity of the bump, for three iterations
of the adaptive algorithm (basic). Red dots indicate the centers of the marked elements.

Table 1 provides an overview of the offline costs. We notice that the costs are dominated by snapshot
generation at iteration it = 1 — which involves the construction of the ROM — and by the weak-greedy
algorithms. We also observe that in our implementation the overhead costs of the greedy method are significant,
while the cost of mesh adaptation is completely negligible. For the registration algorithm, we distinguish
between the cost to estimate the sensors {shfµ : µ ∈ Ptrain} in (33) (cf. Remark 4.1) and the cost of solving
the parametric registration problem: the former involves mesh interpolation over a curved HF mesh and is
embarrassingly parallel, while the latter is dominated by the solution to the optimization problems (34) for the
first iteration.
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it = 1 it = 2 it = 3
basic acc. basic acc. basic acc.

avg nbr its 18.64 8.28 20.53 8.71 29.00 8.62
avg cost 54.44 25.57 90.58 42.66 208.48 68.26

Table 2: performance of the HF solver for two initialization strategies.

it = 1 it = 2 it = 3

ROB size: 14 17 19

mesh size: 3448 4653 6667

snapshot generation: 1459.37 43.86 59.59

registration (sensor def.): 197.44 202.13 216.09

registration (optimization): 402.93 508.71 770.13

mesh adaptation: 0.00 0.35 0.57

greedy alg (HF solves): 762.15 1539.81 3961.10

greedy alg (overhead): 295.36 632.19 1200.36

Table 1: transonic bump. Offline training costs (in seconds) of the adaptive (basic) approach.

7.2.2 Acceleration of training through multi-fidelity strategies

We investigate the effect of the acceleration strategy discussed in section 6; to facilitate the comparison with the
results of the previous section, we consider isotropic mesh adaptation. First, Table 2 investigates the effect of
the initialization strategy on the convergence of the HF solver; the computational cost includes the interpolation
cost. We observe that our initialization strategy reduces the number of iterations required for convergence by
roughly a factor three and computational costs by roughly a factor three for the final iteration.

Table 3 provides an overview of the two approaches in terms of the two metrics (45) and (47). Note that
the acceleration strategy reduces offline costs by roughly 30% mostly due to the reduction of the cost of the
HF solves; it also slightly reduces the online costs by providing a more accurate initialization for GNM. Further
numerical investigations are provided in Appendix B. We insist that the current implementation does not exploit
parallel computing: since the acceleration strategy enables a much more efficient parallelization (cf. section 6),
we expect more significant gains for the accelerated procedure when combined with parallel computing.

L2 error (avg) enthalpy error (avg)
1 2 3 1 2 3

Basic 0.53 · 10−3 0.44 · 10−3 0.48 · 10−3 0.58 · 10−3 0.35 · 10−3 0.23 · 10−3

Accelerated 0.29 · 10−3 0.31 · 10−3 0.49 · 10−3 0.59 · 10−3 0.37 · 10−3 0.23 · 10−3

ROB size online cost (avg) offline cost
1 2 3 1 2 3

Basic 14 17 19 0.20 0.28 0.36 03:24:13
Accelerated 18 17 21 0.25 0.25 0.36 02:11:47

Table 3: Comparison of the performance of the basic and accelerated adaptive procedures.

Figure 9 investigates the performance of the greedy strategy. We perform the strong-greedy algorithm on the
snapshot sets generated at iterations one, two and three to identify the “optimal” parameters Pit,n⋆ = {µ⋆,it,i}ni=1

for it = 1, 2, 3. Then, we compute the projection error

Eproj,µ :=
minζ∈Zit,n

⋆
∥q̃hfµ − ζ∥

∥q̃hfµ ∥
, where Zit,n

⋆ = span
{
q̃hfµ : µ ∈ Pit,n⋆

}
over the test set of ntest = 20 simulations; here, q̃hfµ refers to the HF estimate obtained using the DG model
at the final (it = 3) iteration. To provide a concrete reference, we compare the results obtained using regular
grids (2 × 2, 3 × 3, 4 × 4) of parameters. We observe that the strong greedy algorithm based on iteration it = 2
provides results that are nearly as good as the results obtained based on the snapshot set of iteration it = 3.
This empirical finding suggests that the application of the strong-greedy method to a lower-fidelity snapshot
set might provide an inexpensive yet effective sampling strategy for model reduction.
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Figure 9: transonic bump. Performance of greedy sampling based on datasets of different fidelity over the test
set.

7.2.3 Accelerated training with anisotropic mesh adaptation

We execute three iterations of Algorithm 1 with anisotropic mesh adaptation (cf. section 3). We initially set
the parameter N in (24) equal to 750 and we increase it at each iteration by a factor 1.5. Figure 10 shows
the sequence of meshes generated by Algorithm 1. We observe that the meshes are nearly isotropic in the
proximity of the shock while they exhibit elongated elements in the downstream region (the minimum radius
ratio is roughly 0.05). We notice that the adapted mesh for a single field is significantly more anisotropic in the
proximity of the shock, but it becomes less and less anisotropic as we combine metrics associated with different
parameters. This is likely due to the fact that the shock is not sharply tracked in the reference configuration.

(a) it = 1 (b) it = 2 (c) it = 3

Figure 10: transonic bump. Visualization of the reference mesh in the proximity of the bump, for three iterations
of the adaptive algorithm (accelerated) with anisotropic mesh adaptation (Ne = 3448, Ne = 4440, Ne = 6389).

Table 4 compares performance of the accelerated training strategy based on isotropic and anisotropic MA:
we observe that the two approaches lead to comparable performance for this model problem. We notice that
the HF model requires slightly more PTC iterations to converge for anisotropic meshes: the difference is much
more significant when we initialize the solver with the free-stream flow. This observation shows the importance
of exploiting prior information to properly initialize the HF solver.

L2 error (avg) enthalpy error (avg)
1 2 3 1 2 3

Isotropic MA 0.29 · 10−3 0.31 · 10−3 0.49 · 10−3 0.59 · 10−3 0.37 · 10−3 0.23 · 10−3

Anisotropic MA 0.29 · 10−3 0.36 · 10−3 0.50 · 10−3 0.59 · 10−3 0.36 · 10−3 0.26 · 10−3

ROB size online cost (avg) offline cost
1 2 3 1 2 3

Isotropic MA 18 17 21 0.25 0.25 0.36 02:11:47
Anisotropic MA 18 17 16 0.26 0.26 0.24 01:58:48

Table 4: comparison of the performance of the accelerated adaptive procedures with isotropic and anisotropic
mesh adaptation.
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8 Summary and discussion

We developed and numerically validated an adaptive strategy for the simultaneous construction of high-fidelity
and reduced-order approximations for parametric problems with discontinuous solutions. The approach relies
on registration to track moving features of the solution field, metric-based mesh adaptation to devise an accurate
mesh for the solution over a range of parameters, and projection-based model reduction to effectively estimate
the (mapped) solution field. We show that registration is key to improve the compressibility of the solution
manifold (cf. Figure 5) and enables parsimonious yet accurate HF approximations by complementing parameter-
independent h-adaptation with parameter-dependent r-adaptation (cf. Figures 5 and 8). We also show that our
adaptive training strategy provides increasingly more accurate approximations of the solution field (cf. Figures
4 and 7) and can be significantly accelerated by exploiting information from previous iterations (cf. section 6
and Tables 3 and 4).

We plan to extend our work in several directions. First, we wish to apply our framework to a broad range
of problems in nonlinear mechanics, viscous compressible flows, and hydraulics: towards this end, we should
extend our approach to unsteady PDEs and we should devise effective mesh and registration sensors for a broad
range of solution features of interest. Second, we plan to leverage clustering techniques to further improve the
quality of the HF mesh: even if MA allows us to optimize the size of the mesh, the HF meshes can still be
large, in particular in the presence of parameter-induced topology changes that cannot be captured by a single
parametric deformation; by resorting to clustering techniques, we hence expect to better control the distribution
of the degrees of freedom in the spatio-parametric space.
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A Further greedy procedures employed at training stage

In this section, we provide two greedy algorithms that are used during the execution of Algorithm 1. Algorithm
4 summarizes the parametric registration procedure for the transonic bump test case; on the other hand,
Algorithm 5 outlines the strong greedy procedure employed to initialize Algorithm 2 and to select a subset of
relevant solutions for mesh adaptation (cf. section 3).

We use notation [
âµ, f

⋆
µ

]
= registration

(
shfµ , Sn, Wp, Thf , Ψgeo

µ , a0µ
)

to refer to the function that takes as inputs (i) the target sensor shfµ : Ωp → R, (ii) the template space Sn, (iii)
the ROB Wm associated with the mapping space Up ⊂ Uhf,p, (iv) the HF mesh Thf , (v) the geometric mapping
Ψgeo
µ : Ωp → Ωµ and (vi) the initial guess a0µ ∈ Rm for the optimizer, and returns (I) the mapping coefficients

âµ associated with a local minimum of the problem (28), and (II) the value of the target function f⋆µ = ftgµ (âµ).
We also introduce the function

[Wm, {aprojµ }µ∈Ptrain
] = POD ({âµ}µ∈Ptrain

, tolpod, (·, ·)2) ,

which implements POD based on the method of snapshots with Euclidean inner product (·, ·)2: the tolerance
tolpod > 0 drives the selection of the number of modes m based on the energy criterion

m := min

m′ :

m′∑
j=1

λj ≥ (1 − tolpod)

ntrain∑
i=1

λi

 , (48)

where λ1 ≥ . . . ≥ λntrain
≥ 0 are the eigenvalues of the Gramian matrix C ∈ Rntrain×ntrain such that (C)k,k′ =

a⋆µk · a⋆
µk′ . The function POD returns also the mapping coefficients associated with the projected displacements

aprojµ onto the POD space; the latter are used to initialize the iterative method for the optimization problem in
the subsequent iterations.
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Algorithm 4 : registration algorithm ([48]).

Inputs: {sµ : µ ∈ Ptrain} snapshot set, Sn0 = span{shf
µ⋆,(i)}n0

i=1 initial template space; Thf mesh for HF computations.

Outputs: Sn template space, Wm : Rm → Up mapping ROB, {φ⋆
p,µk = Wma⋆

µk}k optimal mappings.

1: Initialization: Sn=n0
= Sn0

, Ξ⋆ = {µ⋆,(i)}n0
i=1, Up = Uhf,p.

2: for n = n0, . . . , nmax − 1 do
3:

[
âµ, f

⋆
µ

]
= registration

(
shfµ , Sn, Wp, Thf , a0µ

)
for all µ ∈ Ptrain,

see sections 4.3 and 6 for definition of a0µ

4: [Wm, {aprojµ }µ∈Ptrain ] = POD ({âµ}µ∈Ptrain , tolpod, (·, ·)2) ,

5: if maxµ∈Ptrain f
⋆
µ < tol then, break

6: else
7: Ξ⋆ = Ξ⋆ ∪ {µ⋆,(n+1)} with µ⋆,(n+1) = arg maxµ∈Ptrain

f⋆µ.

8: Sn+1 = span{shfµi,⋆ ◦ Φp,µi,⋆}n+1
i=1 .

9: end if
10: end for

Algorithm 5 : strong-greedy algorithm (see, e.g., [40, section 7.3]).

Inputs: {α̂µ : µ ∈ Ptrain} ⊂ Rn snapshot set, n0 ≤ n size of the desired reduced space.

Outputs: P⋆ = {µ⋆,i}n0
i=1 selected parameters.

1: Choose Z = ∅, P⋆ = ∅.

2: for i = 1, . . . , n0 do
3: Compute µ⋆,i = arg maxµ∈Ptrain

minα∈Z ∥α− α̂µ∥2
4: Update Z = Z ∪ span{α̂µ⋆,i} and P⋆ = P⋆ ∪ {µ⋆,i}
5: end for

B Further numerical results for the transonic bump

In this section, we provide detailed results of the accelerated iterative procedure discussed in section 6. We
distinguish between results obtained using isotropic and anisotropic mesh adaptation.

B.1 Acceleration with isotropic mesh adaptation

Figures 11, 12 and 13 replicate the results of Figures 6, 7 and 8: we observe that the results of the accelerated
procedure are consistent with the ones obtained using the basic approach.
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(a) (b)

(c) (d)

Figure 11: transonic bump. Performance of the ROM for three iterations of the adaptive (accelerated) procedure
with isotropic mesh adaptation.

(a) it = 1 (b) it = 2 (c) it = 3

(d) it = 1 (e) it = 2 (f) it = 3

Figure 12: transonic bump. Behavior of the (modified) density field in physical (cf. (a)-(b)-(c)) and reference
(cf. (d)-(e)-(f)) configuration for four values of the parameter and three iterations of the adaptive algorithm
(accelerated version) with isotropic mesh adaptation.
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(a) it = 1 (b) it = 2 (c) it = 3

Figure 13: transonic bump. Visualization of the reference mesh in the proximity of the bump, for three iterations
of the adaptive algorithm (accelerated). Red dots indicate the centers of the marked elements.

Table 5 shows the details of the offline training costs. We observe that the vast majority of the computational
gain is due to the reduction in the costs of the HF solves and also in the overhead of the greedy algorithm.
We further remark that the acceleration strategy enables a much more efficient parallelization of the offline
stage. First, the computation of the initial set of HF solutions (cf. Line 1, Algorithm 2) is embarrassingly
parallel; second, the solution to the registration problems (34) based on the proposed initialization method is
also parallel.

it = 1 it = 2 it = 3

ROB size: 18 17 21

mesh size: 3448 4659 6663

snapshot generation: 1455.19 51.90 54.51

registration (sensor def.): 195.00 187.80 212.40

registration (optimization): 390.30 448.93 728.93

mesh adaptation: 0.00 0.36 0.61

greedy alg (HF solves): 460.26 725.28 1433.38

greedy alg (overhead): 282.49 284.42 994.63

PTC iterations (avg): 8.28 8.71 8.62

Table 5: transonic bump. Offline training costs (in seconds) of the adaptive (accelerated) approach.

B.2 Acceleration with anisotropic mesh adaptation

Figure 14 shows the performance of the ROM on the test set for the adaptive training procedure with anisotropic
mesh adaptation: results are in good agreement with the results obtained using isotropic mesh adaptation.
Similarly, Table 6 details the offline costs. As discussed in the main body of the paper, anisotropic MA leads
to a slight increase in the number of PTC iterations required for convergence. Note, however, that the number
of iterations is still much lower than the one obtained with free-stream solution initialization.
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(a) (b)

(c) (d)

Figure 14: transonic bump. Performance of the ROM for three iterations of the adaptive (accelerated) procedure
with anisotropic mesh adaptation.

it = 1 it = 2 it = 3

ROB size: 18 17 16

mesh size: 3448 4440 6389

snapshot generation: 1426.79 51.47 55.77

registration (sensor def.): 177.64 186.56 191.43

registration (optimization): 388.84 442.69 692.53

mesh adaptation: 0.00 1.01 1.64

greedy alg (HF solves): 459.32 910.38 1357.74

greedy alg (overhead): 282.83 270.21 228.78

PTC iterations (avg): 8.28 11.65 10.19

Table 6: transonic bump. Offline training costs (in seconds) of the adaptive (accelerated) approach with
anisotropic mesh adaptation.
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