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Abstract

We develop and analyze a parametric registration procedure for manifolds associated with the solutions
to parametric partial differential equations in two-dimensional domains. Given the domain Ω ⊂ R2 and
the manifold M = {uµ : µ ∈ P} associated with the parameter domain P ⊂ RP and the parametric field
µ 7→ uµ ∈ L2(Ω), our approach takes as input a set of snapshots from M and returns a parameter-dependent
mapping Φ : Ω × P → Ω, which tracks coherent features (e.g., shocks, shear layers) of the solution field
and ultimately simplifies the task of model reduction. We consider mappings of the form Φ = N(a) where
N : RM → Lip(Ω;R2) is a suitable linear or nonlinear operator; then, we state the registration problem
as an unconstrained optimization statement for the coefficients a. We identify minimal requirements for
the operator N to ensure the satisfaction of the bijectivity constraint; we propose a class of compositional
maps that satisfy the desired requirements and enable non-trivial deformations over curved (non-straight)
boundaries of Ω; we develop a thorough analysis of the proposed ansatz for polytopal domains and we
discuss the approximation properties for general curved domains. We perform numerical experiments for
a parametric inviscid transonic compressible flow past a cascade of turbine blades to illustrate the many
features of the method.
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1 Introduction

1.1 Registration in bounded domains

Numerical methods based on Lagrangian (registration-based) approximations have proven to be a promising
research direction in scientific computing, both for the numerical discretization of partial differential equations
(PDEs) [29, 39] and also for model order reduction of parametric systems (MOR, [11, 20, 21, 28, 32]). Given
the field of interest u defined over the domain Ω ⊂ R2, Lagrangian methods seek approximations of the solution
u of the form ũ ◦ Φ−1 where ũ belongs to a linear approximation space and Φ is a bijection Ω. This class of
methods is designed for problems with sharp features such as shocks, contact discontinuities or shear layers
in fluid mechanics and fractures in solid mechanics. The problem of finding the mapping Φ is dubbed as
registration problem and shares important features with geometry registration [18, 23] mesh morphing [31, 36]
techniques, and also optimal transportation [5, 13, 26]. The goal of this paper is to develop a general registration
procedure for parametric problems with emphasis on parametric MOR applications, and to provide a rigorous
mathematical analysis of the problem of registration in bounded two-dimensional domains.

We pursue an optimization-based approach to the problem of registration. We denote by µ a vector of P
parameters in the parameter domain P ⊂ RP ; given the domain Ω ⊂ R2, we denote by B the space of Lipschitz
bijections from Ω in itself, and by D the space of diffeomorphisms from Ω in itself. Given the mapping Φ, we
denote by J(Φ) the Jacobian determinant, and we denote by id : R2 → R2 the identity map in R2, id(x) = x
for all x ∈ R2. If we fix the value of µ ∈ P, our goal is to minimize a target function ftgµ over all possible
diffeomorphisms of Ω,

min
Φ∈D

ftgµ (Φ). (1)

Problem (1) is computationally intractable due to the fact that D is an highly non-convex subset of C1(Ω;R2):
research on registration should hence focus on the development of computational strategies to devise tractable
counterparts of the statement (1).
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1.2 Optimization-based registration

To devise a tractable registration procedure, we introduce an operator N : RM → Lip(Ω;R2) and a penalty
function fpen : RM → R+ such that

BN = {N(a) : fpen(a) ≤ C} ⊂ B, for some C > 0;

N(a = 0) = id, fpen(a = 0) < C;

N, fpen are Lipschitz continuous.

(2)

Equations (2)1 and (2)2 imply that the set BN is not empty; furthermore, exploiting (2)3 we find that the
interior of BN is not empty — that is, bijectivity of the mapping N(a) is preserved for small perturbations of

the mapping coefficients a. We further observe that, given the full rank matrix W ∈ RM×m, the pair (Ñ, f̃pen)

such that Ñ(·) = N(W·) and f̃pen(·) = fpen(W·) satisfies (2): we can hence apply linear compression methods
such as proper orthogonal decomposition (POD, [30, 37]) to the mapping coefficients a without fundamentally
changing the properties of our ansatz; as discussed in sections 2 and 4, this feature greatly simplifies the task
of dimensionality reduction for parametric problems.

Exploiting the previous definitions, we introduce the surrogate of (1):

min
a∈RM

fobjµ (a) := ftgµ (N(a)) + ξ fpen(a). (3)

Provided that ξ is sufficiently large, solutions a⋆ to (3) satisfy the condition fpen(a⋆) ≤ C. Note that (3) reads as
a nonlinear non-convex unconstrained optimization problem that can be tackled using standard gradient-descent
optimization algorithms.

The previous discussion highlights the two major questions in registration methods: (i) how to construct
(N, fpen) that satisfy (2) for a given domain Ω; (ii) how to establish a rigorous relation between the solutions
to (1) and to (3) in the limit M → ∞. Note that the second question concerns the ability of approximating
arbitrary elements of D using operators N that satisfy (2). We notice that even if we focus on the approximation
of diffeomorphisms we allow ourselves to consider approximations in a less regular space: this choice is justified
by the particular discretization method (the finite element (FE) method) employed in this work to represent
the operator N and, more fundamentally, by the strategy proposed here to define N.

1.3 Compositional maps for registration

The objective of this paper is to devise pairs (N, fpen) that satisfy (2) and study the approximation properties in
D for arbitrary curved Lipschitz domains Ω. In this work, we say that the boundary of Ω is curved if it cannot
be represented as the union of a finite number of straight lines; if ∂Ω is curved, we refer to Ω as to “curved
domain”.

Towards this end, we first show that for polytopal domains affine maps Np(a) = id+
∑M
i=1(a)iφi for suitably

chosen functions {φi : R2 → R2}i and a suitable penalty function fpen satisfy (2) (cf. Proposition 2.1 and
Corollary 2.3); the function {φi}i should be chosen so that their normal components vanish on ∂Ω, φi ·n|∂Ω = 0
for i = 1, . . . ,M , where n : ∂Ω → S1 = {x ∈ R2 : ∥x∥2 = 1} is the outward normal to Ω. We also prove that
affine maps of this form are dense for M → ∞ in a meaningful subspace of diffeomorphisms (cf. Proposition
2.2 and Corollary 2.4).

As rigorously shown in Lemma 3.1, affine maps are fundamentally ill-suited to approximate non-trivial
diffeomorphisms in curved domains; to address this issue, we propose and analyze compositional maps of the
form

N(a) = Ψ ◦ Np(a) ◦Ψ−1, (4)

where Ψ : Ωp → Ω is a bijection from the polytope Ωp to Ω and Np(a) : Ωp → Ωp satisfies Np(a) = id +∑M
i=1(a)iφi with φi · n|∂Ωp

= 0 for i = 1, . . . ,M . We propose an actionable strategy to define the polytope Ωp

and the mapping Ψ: our approach relies on the definition of a coarse-grained curved high-order FE mesh T of
Ω, and to a fully-automated procedure to define the polytope Ωp and the map Ψ based on the curved mesh T .

The bijection Ψ is independent of the mapping coefficients a and is designed to recast the registration problem
of interest into a polytope Ωp where affine maps can be employed. Figure 1 provides a graphic representation
of the sought mapping Ψ. Consider the problem of finding a bijection of the semicircular domain Ω such that
Φ(a) = b: first, we introduce the bijection Ψ from the polytope (triangle) Ωp to the curved domain Ω; then,
we seek a bijection Φp of Ωp such that Φp(ap) = bp with ap = Ψ−1(a) and bp = Ψ−1(b). By construction, the
resulting mapping Φ = Ψ ◦ Φp ◦Ψ−1 is a Lipschitz bijection of Ω that maps a into b.

We exploit the analysis of registration in polytopes to study the properties of maps of the form (4) and
we discuss the approximation power. We show (cf. Lemma 3.2) that single-layer compositional maps cannot
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Figure 1: compositional maps. The bijection Ψ is designed to recast the registration task from the curved
domain Ω to the polytope Ωp.

approximate arbitrary diffeomorphisms in curved domains. To improve the approximation power, we consider
the multi-layer generalization of (4) such that

N (a = [a1, . . . ,aℓ]) = N1 (a1) ◦ . . . ◦ Nℓ (aℓ) ; (5)

here, Ni (ai) = Ψi ◦ Np,i(ai) ◦ Ψ−1
i where Ψi : Ωp,i → Ω is a Lipschitz bijection and Ωp,i is a suitable polytope,

for i = 1, . . . , ℓ. In Lemma 3.3, we show the superior properties of the ansatz (5).
Our method is related to several previous works. A first extension of the registration procedure in [32] to

arbitrary domains was proposed in [34]: the work of [34] relies on the introduction of a coarse-grained partition
of the domain Ω and on Gordon-Hall maps to morph each element of the partition into the unit square. The
approach in [34] requires that each element of the partition is mapped in itself (local bijectivity) and relies on
Gordon-Hall maps: it is hence very sensitive to the choice of the coarse-grained partition, it is not dense in any
meaningful subset of diffeomorphisms and it cannot be extended to three-dimensional domains. We also recall
the work by Zahr and Persson [40] for high-order implicit shock tracking methods: the approach in [40] relies
on a local parameterization of boundary degrees of freedom; for this reason, it cannot be readily combined with
linear dimensionality reduction techniques to identify low-rank mapping spaces for parametric systems. We
finally remark that the multi-layer ansatz (5) is closely related to registration methods appeared in the image
processing literature [7, 8].

We here rely on a standard H1-conforming FE discretization to represent the mapping; on the other hand, as
in our previous works (e.g., [32, 34]), we aim to include an H2 penalization term in the objective fobj. Towards
this end, we propose a discrete H2 broken norm that is inspired by the work by Mozolevski and coauthors
[22] on discontinuous Galerkin (DG) discretizations of the biharmonic equation. Following the seminal work by
Argyris and coauthors [1], several researchers have considered H2-conforming FE spaces for the discretization
of fourth-order operators: the use of standard FE discretizations simplifies the implementation and also enables
the application of polynomial bases of arbitrary order.

The outline of the paper is as follows. Section 2 provides a complete analysis of registration in polytopes;
section 3 addresses the extension to curved domains; section 4 discusses the construction of the polytope
Ωp and the mapping Ψ and reviews the parametric registration method proposed in [34] and employed in
the numerical experiments; section 5 contains numerical investigations to illustrate the performance of the
registration method and its implications for model reduction. We here couple our registration procedure with
a non-intrusive (POD+regression) MOR procedure for state estimation; the integration of registration in the
offline-online computational paradigm of projection-based MOR is the subject of ongoing research (see [3]).
Section 6 concludes the paper.

2 Affine maps in polytopes

In order to find N and fpen that satisfy (2), we introduce the sets

A := {a ∈ RM : N(a) ∈ B}, Ajac := {a ∈ RM : inf
x∈Ω

J(N(a)) > 0}. (6)

Then, we require that the condition infx∈Ω J(Φ) > 0 implies bijectivity in Ω for any mapping Φ spanned by N,
that is Ajac ⊂ A. It is possible to construct maps Φ that are bijective in Ω for which infx∈Ω J(Φ) = 0 (cf. [27,
Theorem 1.1]); however, bijections Φ which satisfy infx∈Ω J(Φ) = 0 are of little practical interest for scientific
computing applications and in particular for (projection-based) MOR.

Note that the pointwise condition J(N(a))(x) > 0 for all x ∈ Ω cannot be directly translated into a penalty
term for (3): we address the construction of the penalty term in section 2.1. In section 2.2, we present two
technical results for affine maps in polytopes; in sections 2.3 and 2.4, we construct operators N that satisfy
Ajac ⊂ A and are dense in a meaningful subspace of diffeomorphisms; finally, in section 2.5 we comment on the
approximation of Lipschitz maps.
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2.1 Definition of the penalty function

We denote by ∥ · ∥F Frobenius norm, and by H(w) the Hessian of the field w. Given the polytope Ωp, the

constants ϵ > 0 and Cexp such that Cexp ≪ ϵ, we introduce the function f
(1)
pen(Φ) = fjac(Φ) + ∥∇J(Φ)∥L∞(Ωp)

with

fjac(Φ) =
1

|Ωp|

∫
Ωp

exp

(
ϵ− J(Φ)

Cexp

)
dx. (7)

We can show that there exist constants C,Cexp such that the condition f
(1)
pen(Φ) ≤ C implies that J(Φ) ≥ ϵ/2

for all x ∈ Ωp (cf. [32, section 2.2]), that is {a : f
(1)
pen(N(a)) ≤ C} ⊂ Ajac. Recalling Jacobi’s formula, we find

that ∥∇J(Φ)∥2 ≤ C∥∇Φ∥F∥H(Φ)∥F, for some constant C that is independent of ∇Φ; therefore, we can replace
∥∇J(Φ)∥L∞(Ωp) with ∥H(Φ)∥L∞(Ωp), to obtain

fthpen(Φ) = fjac(Φ) + ∥H(Φ)∥2L∞(Ωp)
. (8)

The penalty (8) is defined for elements of the Sobolev space W 2,∞(Ω) = {v ∈ L∞(Ω) : ∇v,H(v) ∈ L∞(Ω)}.
We anticipate that the penalty (8) is still not fully amenable for computations: we address the problem of
constructing an actionable penalty for (3) in section 4.

2.2 Mathematical background

We say that Ωp ⊂ R2 is a polytope if the boundary of Ωp, ∂Ωp, consists of a finite number of flat sides
(faces). The boundary of two-dimensional polytopes is described by a finite number of straight segments (edges)
connected to form (possibly several disjoint) closed polygonal chains; the points of ∂Ωp where two consecutive

non-parallel edges meet are dubbed vertices; the union of all vertices is here denoted by V = {xvi }
Nv
i=1. We

consider polytopes that satisfy the condition below: note that Definition 2.1 implies that each vertex xv of a
regular polytope is the intersection of two edges (cf. Figure 2).

Definition 2.1. The bounded polytope Ωp is said to be regular if there exist N +1 bounded polytopes Ωint,1, . . . ,

Ωint,N , Ωext such that (i) Ωp = Ωext \
⋃N
i=1 Ωint,i, (ii) Ωint,1, . . . ,Ωint,N are pairwise disjoint polytopes that are

compactly embedded in Ωext and (iii) Ωext,Ωint,1, . . . ,Ωint,N are isomorphic to the unit ball.

Ωp

(a)

Ωp

(b)

Figure 2: interpretation of Definition 2.1. (a) regular polytope. (b) irregular polytope.

We denote by n(x) the outward normal to Ωp at x ∈ ∂Ωp; we also denote by Ωp the closure of Ωp in R2.
Propositions 2.1 and 2.2 contain two important results for mappings in polytopes. The proof of Proposition 2.1
is technical and is postponed to Appendix A.

Proposition 2.1. Let Ωp be a regular bounded polytope. Define the space U0 = U0(Ωp) = {φ ∈ C1(Ωp;R2) :
φ · n|∂Ωp

= 0} and consider the vector-valued function Φ = id+ φ with φ ∈ U0. Then, Φ is a bijection in Ωp if
minx∈Ωp

J(Φ) > 0.

Proposition 2.2. Let Φ be a diffeomorphism in Ωp. Then, Φ(V ) = V . Furthermore, if Φ(xv) = xv for all
xv ∈ V , then Φ = id+ φ with φ ∈ U0.

Proof. Let xv ∈ V and define y = Φ(xv); recalling Nanson’s formula [19, page 7], we find that the normal to
Φ(Ωp) satisfies nΦ(y) ∝ J(Φ(x))(∇Φ(x))−Tn(x); therefore, if x ∈ ∂Ωp 7→ n(x) is discontinuous at xv, we must
have that x 7→ nΦ(x) is discontinuous at y. Recalling the definition of vertices, we conclude that y ∈ V for
any xv ∈ V , that is Φ(V ) ⊂ V . Since Φ is a bijection in Ωp, the image points {Φ(xv) : xv ∈ V } should all be
distinct and thus card(Φ(V )) = card(V ), which implies Φ(V ) = V .

Let Φ satisfy the condition xv = Φ(xv) for all xv ∈ V and define the displacement φ = Φ−id. Consider the
edge F ⊂ ∂Ωp and consider the parameterization γf : [0, 1] → F such that γf(s) = xv1 + s∥xv2 − xv1∥2tf . Since
∂Ωp is closed and Φ(∂Ωp) = ∂Ωp, we either have Φ(F ) = ∂Ωp \ F or Φ(F ) = F . Recalling the expression for
the normal nΦ, we find that nΦ is continuous in Φ(F ): since ∂Ωp \ F contains at least one vertex in addition
to xv1, x

v
2 (we here exploit the fact that two-dimensional polytopes have at least three vertices), we must have

Φ(F ) = F .
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The condition Φ(F ) = F implies that Φ(γf(s)) = xv1 +α(s)tf for all s ∈ [0, 1] and for some injective function
α : [0, 1] → [0, ∥xv2 − xv1∥2]. Given x ∈ F , since n(x) = nf and nf ⊥ tf , we find

n(x) · φ(x) = nf · (Φ(x)− x) = nf · (xv1 + α(s)tf − xv1 − s∥xv2 − xv1∥2tf) = 0,

which is the desired result.

2.3 Construction of finite-dimensional operators for registration

We introduce the finite-dimensional space U spanned by {φi}Mi=1 ⊂ U0, and the affine space id + U . We

introduce the operator Np : RM → id+ U such that Np(a) = id+
∑M
i=1(a)iφi. Exploiting Proposition 2.1 and

the discussion in section 2.1, we show in Corollary 2.3 that the operator Np and the penalty (8) satisfy (2): the
stronger regularity assumption is required by the choice of the penalty. The proof is straightforward and is here
omitted.

Corollary 2.3. Let U = span{φi}Mi=1 be an M -dimensional subspace of U0 ∩ W 2,∞(Ωp). Then, the affine
operator Np and the penalty a 7→ fthpen(Np(a)) (cf. (8)) satisfy (2).

2.4 Approximation properties of affine mappings

Proposition 2.2 shows that bijections are of the form Φ = id+φ with φ ∈ U0 if Φ(xv) = xv for all xv ∈ V (i.e.,
Φ|V = id). Since φ|V = 0 for all φ ∈ U0, diffeomorphisms Φ that do not satisfy Φ|V = id do not belong to
id + U0. It is easy to construct bijections that do not fulfill the requirement Φ|V = id: to provide a concrete
example, consider the map Φ(x) = −x for the polytope Ωp = (−1, 1)2. However, in the setting of MOR and also
geometry reduction, we are interested in parametric maps that are smooth deformations of the identity map:
since registration is applied with respect to an element of the solution manifold M = {uµ : µ ∈ P}, we can
indeed assume that there exists µ ∈ P such that Φµ = id. We hence have the following result, which follows
from Proposition 2.2.

Corollary 2.4. Let Φ : Ωp × P → Ωp be a continuous function of the parameter µ ∈ P and let Φµ be a
diffeomorphism for all µ ∈ P. Assume that Φµ′ = id for some µ′ ∈ P and that P is simply connected. Then,
Φµ = id+ φµ with φµ ∈ U0 for all µ ∈ P.

Proof. Exploiting the first statement of Proposition 2.2, we find that Φµ(V ) = V for all µ ∈ P. Since the set of
vertices V is a discrete closed set, if the function Φ : Ωp ×P → Ωp is continuous with respect to the parameter
µ ∈ P and is bijective in Ωp for all µ ∈ P, then the hypothesis Φµ′ |V = id for some µ′ ∈ P implies Φµ|V = id

for all µ ∈ P. Therefore, exploiting the second statement of Proposition 2.2, we conclude that Φµ = id + φµ
with φµ ∈ U0 for all µ ∈ P.

Given the parametric registration problem (3) with N = Np, we denote by aoptµ a solution to (3) for any

µ ∈ P and we define the corresponding manifold MΦ := {aoptµ : µ ∈ P} ⊂ RM . If MΦ is reducible — that is,

there exists an orthogonal matrix W ∈ RM×m whose columns approximate the elements of MΦ for m≪M —
we can restrict the search space in (3) to the image of W, col(W). As discussed in the introduction, since the
pair (N(·) = Np(W·), fthpen(Np(W·)) satisfies (2) for any full-rank matrix W, the choice of the latter can be made
solely based on approximation considerations.

2.5 Approximation of Lipschitz maps

The proof of Proposition 2.1 exploits the Hadamard’s global inverse function theorem (cf. [15, Theorem 6.2.8]);
it hence relies on the assumption that Φ is of class C1. Our numerical investigations suggest that a similar
result — possibly with further conditions — might hold for piecewise-smooth maps such as FE fields.

On the other hand, Proposition 2.2 does not hold for general Lipschitz maps, as shown in the next example.
First, we introduce the square domain Ω = (0, 1)2, and we define the map Φ1 : Ω = (0, 1)2 → R2 such that

Φ1(x) =

[
1/2 0
−1/2 1

]
x1x1<x2(x) +

[
1 −1/2
0 1/2

]
x1x1≥x2(x). (9)

It is easy to verify that Φ1 is a Lipschitz map from Ω in the unit triangle D = {x ∈ Ω : x1 + x2 < 1} with
Lipschitz inverse (cf. Figure 3(a)). Then, we introduce a smooth bijection Φ2 : D → D that maps x⋆ = [1/2, 1/2]
into y⋆ = [1/4, 3/4] (cf. Figure 3(b)): Φ2 can be constructed using an expansion of quadratic polynomials; we
omit the explicit expression. Finally, we define the map Φ = Φ−1

1 ◦ Φ2 ◦ Φ1: clearly, Φ is a bijection in Ω;
furthermore, Φ([1, 1]) = Φ−1

1 (Φ2([1/2, 1/2])) = Φ−1
1 ([1/4, 3/4]) = [1, 1/2]. We hence found a bijection Φ in Ω

such that Φ(V ) ̸= V .
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Figure 3: example of Lipschitz map with Φ(V ) ̸= V . (a) Lipschitz map from the unit square to the unit triangle
(cf (9)). (b) smooth map in the unit triangle D.

3 Nonlinear maps for general domains

We address the extension to non-polytopal domains. First, we justify the need for nonlinear ansätze; then, we
investigate the approximation properties of the nonlinear ansätze (4) and (5).

3.1 Inadequacy of affine maps for domains with curved boundaries

For many problems of interest, including the one considered in the numerical results of section 5, it is of
paramount importance to deform points that lie on curved edges or faces; we hence seek an operator N and a
penalty fpen that satisfy (2) and enable non-trivial deformations of points on curved boundaries. Next result,
which generalizes [34, Lemma 2.1], shows that non-trivial affine mappings for curved domains lead to admissible
sets A with empty interior: therefore, affine maps in combination with the penalty (8) do not satisfy (2). This
observation shows the inadequacy of affine maps for domains with curved boundaries and ultimately justifies
the need for a nonlinear ansatz.

Lemma 3.1. Let Ω ⊂ R2 be a domain with curved boundary Γ ⊂ ∂Ω; let N : RM → Lip(Ω;R2) be an affine

operator of the form N(a) = id +
∑M
i=1(a)iφi and let A ⊂ RM be the set of admissible (i.e., bijective in Ω)

maps. Suppose that there exists i ∈ {1, . . . ,M} and x ∈ Γ such that φi(x) ̸= 0. Then, 0 ∈ RM does not belong
to the interior of A. Furthermore, if Γ = ∂Ω, then A has empty interior.

Proof. By contradiction, there exists r > 0 such that Br(0) ⊂ A; therefore, there exists δ > 0 such that
Φt = id + tφi is a bijection in Ω for all t ∈ (−δ, δ). Since Φt is bijective in Ω, we must have Φt(∂Ω) = ∂Ω,
which implies that the linear segment Sδ = {x+ tφi(x) : t ∈ (−δ, δ)} is contained in ∂Ω. We conclude that ∂Ω
is flat in the neighborhood of x ∈ Γ. Contradiction.

We remark that the argument of the proof solely relies on the fact that Φt=0(x) ∈ Γ: if ∂Ω is entirely curved
(that is, if Γ = ∂Ω) we can replicate the same argument for any a ∈ A to prove that A has empty interior.

3.2 Approximation properties of compositional maps

Given the domain Ω, we introduce the polytope Ωp and the isomorphism Ψ from Ωp to Ω; we denote by

V = {xvi }
Nv
i=1 the vertices of Ωp and we denote by {F p

j }
Nf,p

j=1 the facets of Ωp; we also define the mapped facets

{Fj = Ψ(F p
j )}

Nf,p

j=1 . In the remainder, we assume that the pair (Ωp,Ψ) satisfies the following assumption; the
set Vang of angular points of Ω is the subset of ∂Ω where the normal n is discontinuous.

Hypothesis 1. The pair (Ωp,Ψ) satisfies the following conditions: (i) the vertices V of Ωp belong to ∂Ω; (ii)
the set Vang of angular points of Ω is contained in V ; (iii) the linear facets of ∂Ω belong to ∂Ωp; (iv) the field
Ψ is a Lipschitz bijection from Ωp to Ω that satisfies Ψ|V = id and J(Ψ) > 0 a.e..

By construction, any bijection Φ of the form (4) — that is, Φ = Ψ ◦ Φp ◦ Ψ−1 with Φp ∈ id + U0(Ωp)—
satisfies Φ|V = id and Φ(Fj) = Fj for j = 1, . . . , Nf . Conversely, we have the following result, which signifies
that nonlinear maps of the form (4) are dense in the space of diffeomorphisms that satisfy Φ|V = id.

Lemma 3.2. Let (Ωp,Ψ) satisfy Hypothesis 1. Let Φ be a diffeomorphism in Ω such that Φ|V = id. Then,

Φ̃ = Ψ−1 ◦ Φ ◦Ψ = id+ φ for some φ ∈ Lip(Ωp;R2) such that φ · n|∂Ωp
= 0.

Proof. Since Φ is a diffeomorphism, we must have Φ(∂Ω) = ∂Ω; furthermore, the condition Φ|V = id implies
that Φ preserves the orientation of the boundary. In conclusion, we find Φ(Fj) = Fj for j = 1, . . . , Nf . Therefore,

we have that Φ̃ = Ψ−1 ◦Φ ◦Ψ is a bijection in Ωp that satisfies Φ̃(F p
j ) = F p

j for j = 1, . . . , Nf . Then, exploiting

the same argument of the proof of Proposition 2.2, we find that Φ̃ = id + φ with φ · n|∂Ωp
= 0. We omit the

details.
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3.3 Multi-layer compositional maps

Lemma 3.2 shows that single-layer compositional maps cannot approximate arbitrary diffeomorphisms in curved
domains. To address this issue, we might consider more general multi-layer maps of the form (5). We here
study the approximation properties of (5) for ℓ = 2 layers

N(a1,a2) = N1(a1) ◦ N2(a2), Ni(ai) = Ψi ◦ Np,i(ai) ◦Ψ−1
i , i = 1, 2.

The extension of the analysis to arbitrary number of layers is the subject of ongoing investigations.
We denote by Ωp,1 and Ωp,2 the polytopes associated to the bijections Ψ1,Ψ2; we assume that (Ωp,1,Ψ1)

and (Ωp,2,Ψ2) satisfy Hypothesis 1. We also denote by V fict
i = {xvj,i}

Nv,i

j=1 the fictitious vertices of Ωp,i, that is,
the vertices of Ωp,i that do not correspond to angular points of ∂Ω. Finally, given x, y ∈ ∂Ω, we define the set
of curves

A∂Ω(x, y) =
{
γ ∈ C1([0, 1]; ∂Ω) : γ(0) = x, γ(1) = y, ∥γ̇∥2 ≡ const

}
(10a)

and the geodesic distance

dist∂Ω(x, y) =

 inf

{∫ 1

0

∥γ̇∥2 dt : γ ∈ A∂Ω(x, y)

}
if A∂Ω(x, y) ̸= ∅

+∞ if A∂Ω(x, y) = ∅
(10b)

Note that C1 curves cannot pass through a non-smooth point of the boundary (angular point): therefore,
if x, y ∈ ∂Ω are separated by angular points (e.g., points on two separate faces of a polytope), we have
A∂Ω(x, y) = ∅ and dist∂Ω(x, y) = +∞.

Next Lemma shows that two-layer maps can approximate arbitrary diffeomorphisms under the assumption of
small deformations. Note that boundary deformations should be smaller than (i) the minimum distance between
the fictitious vertices of Ωp,1 and Ωp,2 — minx∈V fict

1 ,y∈V fict
2

dist∂Ω(x, y); (ii) the minimum distance between two

vertices of Ωp,1 and Ωp,2 — minx,y∈Vi,x ̸=y dist∂Ω(x, y) with i = 1, 2.

Lemma 3.3. Let (Ωp,1,Ψ1) and (Ωp,2,Ψ2) satisfy Hypothesis 1. Let Φ be a diffeomorphism in Ω with positive
Jacobian determinant such that maxx∈∂Ω dist∂Ω (x,Φ(x)) < C where C = C(Ωp,1,Ωp,2) is given by

C := min
{

min
x∈V fict

1 ,y∈V fict
2

dist∂Ω(x, y), min
x,y∈V1,x ̸=y

dist∂Ω(x, y),

min
x,y∈V2,x ̸=y

dist∂Ω(x, y)
}
.

(11)

where V fict
1 , V fict

2 are the vertices of Ωp,1,Ωp,2 that do not correspond to angular points of ∂Ω. Then, there exist
Φ1 = id+ φ1 and Φ2 = id+ φ2 such that Φ = Ψ1 ◦ Φ1 ◦Ψ−1

1 ◦Ψ2 ◦ Φ2 ◦Ψ−1
2 and φi · n|∂Ωp,i

= 0 for i = 1, 2.

Proof. We assume that Ω has only one curved boundary Γ ⊂ ∂Ω with parameterization γ : [0, 1] → Γ. We
define Nv = Nv,1 +Nv,2, {yℓ}Nv

ℓ=1 ⊂ Γ and {tℓ}Nv

ℓ=1 ⊂ (0, 1) such that

{yℓ = γ(tℓ)}Nv

ℓ=1 = V fict
1 ∪ V fict

2 , with 0 < t1 < . . . < tNv
< 1.

Definition (11) implies that dist∂Ω(yℓ, yℓ+1) ≥ C, while the hypothesis maxx∈∂Ω dist∂Ω (x,Φ(x)) < C implies
that

Φ(yℓ) ∈ {γ(t) : t ∈ (tℓ−1, tℓ+1)} , for ℓ = 1, . . . , Nv, (12)

with tℓ=0 = 0, tℓ=Nv+1 = 1.
Exploiting (12) and the fact that Φ does not deform angular points of ∂Ω (cf. Proposition 2.2), we find that

there exists a diffeomorphism Φ̃1 such that Φ̃1(y) = y for all y ∈ V1 and Φ̃1(y) = Φ(y) for all y ∈ V2. Exploiting

Lemma 3.2, we find that Φ̃1 = Ψ1 ◦ Φ1 ◦Ψ−1
1 for some Φ1 ∈ id+ U0(Ωp,1). Similarly, since Φ̃−1

1 ◦ Φ(y) = y for

all y ∈ V2, we find that Φ̃−1
1 ◦ Φ =: Φ̃2 = Ψ2 ◦ Φ2 ◦ Ψ−1

2 for some Φ2 ∈ id + U0(Ωp,2). In conclusion, we find

that Φ = Φ̃1 ◦ Φ̃2 which is the desired result.

The extension to multiple layers enables the approximation of diffeomorphisms that involve larger defor-
mations over curved edges. Figure 4 illustrates the approximation power of multi-layer maps for deformations
over an airfoil: Figure 4(a) shows the two polytopes Ωp,1,Ωp,2 that are used to define the nonlinear ansatz and
two points x, y on the profile such that Φ(x) = y; Figures 4(b)-(c)-(d) show the action of the maps N3, N2 and
N1, respectively. In more detail, the map N3 — which is associated to Ωp,1 — maps the point x into the point
x1 (cf. Figure 4(b)); the map N2 — which is associated to Ωp,2 — deforms the point x1 into the point x2 (cf.
Figure 4(c)); the map N1 — which is associated to Ωp,1 — deforms the point x2 into the point y (cf. Figure
4(d)). In conclusion, the considered map satisfies N1(N2(N3(x))) = y.
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(d) N1

Figure 4: approximation of large deformations over curved boundaries using a multi-layer (ℓ = 3) compositional
map.

3.4 Discussion

The analysis of this section shows that compositional maps (4) and their multi-layer generalization (5) can
be employed for registration in curved domains. Since Ψ in (4) and Ψ1, . . . ,Ψℓ in (5) are independent of the
coefficients a, we can apply the penalty term (8) to the polytopal map Np(a) in (4), or {Np,i(ai}ℓi=1 in (5); then,
we can exploit Proposition 2.1 (see also the discussion in section 2.3) to prove that (4) and (5) satisfy (2).

Lemmas 3.2 and 3.3 investigate the approximation properties of the ansätze (4) and (5): the analysis shows
that multi-layer maps provide much more approximation power, even for moderate number of layers ℓ. We note,
however, that multi-layer maps are considerably more challenging to implement and might also be significantly
more expensive to evaluate: the solution to (3) requires indeed many evaluations of the mapping N(a) and its
gradient, which involve the evaluation of the bijections {Ψi}ℓi=1 and their inverses. In this work, we focus on
the implementation of registration strategies based on the more elementary ansatz (4) and we refer to a future
work for the implementation of registration methods based on the model class (5).

4 Methodology

Given the domain Ω ⊂ R2, we present a registration procedure based on compositional mappings of the form
(4). We recall (cf. (3)) that we consider the minimization problem

min
a∈RM

ftgµ (N(a)) + ξ fpen(a),

where N(a) = Ψ◦Np(a)◦Ψ−1, Ψ : Ωp → Ω is a bijection from the polytope Ωp to Ω and Np(a) : Ωp → Ωp satisfies

Np(a) = id +
∑M
i=1(a)iφi with φi · n|∂Ωp

= 0 for i = 1, . . . ,M . In section 4.1, we discuss the construction of
the polytope Ωp and the mapping Ψ in (4) based on a curved mesh of Ω; in section 4.2, we introduce the FE
space U = span{φi}i for the displacement field in the polytope Ωp and we discuss the choice of the functional
norm ∥ · ∥ for U that enters in the penalty fpen; then, in section 4.3, we discuss the definition of the curved mesh
of Ω. In sections 4.4, 4.5, and 4.6, we review the choice of the penalty fpen and target functions ftgµ proposed
in [32, 34] and the extension to parametric problems. To simplify the presentation, we here assume that the
domain Ω is parameter-independent.

We recall that our ultimate goal is to devise Lagrangian approximations of parametric fields. Given the
parametric field u : Ω× P → RDu , Lagrangian approximations read as

uµ ≈ ûµ := ũµ ◦ Φ−1
µ , (13)

where ũµ is a low-rank approximation of the mapped field uµ ◦ Φµ. If we denote by Tpb the high-fidelity
(HF) mesh used to approximate the mapped field, it might be important (see, e.g., [3]) to ensure that the
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deformed mesh Φµ(Tpb), which shares the connectivity matrix with Tpb but has deformed nodes according to
Φµ, is well-behaved for all µ ∈ P: in section 4.4, we discuss how to enforce this constraint in the registration
procedure.

4.1 Definition of the Lipschitz map Ψ based on a curved mesh of Ω

Our point of departure is the definition of a triangular curved mesh T of degree κ > 0 of the domain Ω: the
mesh T is uniquely identified by the mesh nodes and the connectivity matrix. We define the reference (or

master) element D̂ = {x ∈ (0, 1)2 :
∑2
i=1(x)i < 1} with reference vertices and nodes {x̃pi }3i=1 ⊂ {x̃i}

nlp

i=1 ⊂ D̂,

and the associated Lagrangian bases {ℓfe,pi }3i=1 and {ℓfei }
nlp

i=1 for polynomials of degree one, P1, and degree κ,

Pκ. We denote by {Dk}Ne

k=1 the elements of the mesh, by {Fj}Nf
j=1 the facets of the mesh; for each element Dk

of the mesh T , we define the nodes {xhfi,k}i,k such that xhfi,k is the i-th node of the k-th element of the mesh

T for i = 1, . . . , nlp and k = 1, . . . , Ne; similarly, we define the vertices {xhf,vj,k }j,k of the curved triangles for
j = 1, . . . , 3 and k = 1, . . . , Ne.

We have now the elements to define the polytope Ωp and the mapping Ψ. We introduce the FE mappings

Ψk(x̃) =

nlp∑
i=1

xhfi,kℓ
fe
i (x̃), Ψk,p(x̃) =

3∑
i=1

xhf,vi,k ℓ
fe,p
i (x̃), k = 1, . . . , Ne; (14a)

for each k = 1, . . . , Ne, Ψk maps the reference element into the k-th element of the mesh, while Ψk,p is a linear
map whose image defines the k-th linearized element of the mesh, Dk,p := Ψk,p(D̂). Then, we define the polytope
Ωp such that

Ωp :=

Ne⋃
i=1

Dk,p, (14b)

the linear triangular mesh Tp with elements {Dk,p = Ψ−1(Dk)}Ne

k=1 and facets {Fj,p = Ψ−1(Fj)}Nf
j=1, and the FE

space
Xhf,p =

{
ϕ ∈ C(Ωp) : ϕ|Dk,p

∈ Pκ
}
. (14c)

Finally, we introduce the field Ψ from Ωp to Ω as

Ψ : Ωp → Ω s.t. Ψ(x)
∣∣
Dk,p

= Ψk

(
Ψ−1
k,p(x)

)
. (14d)

Since Ψk,p is a linear map, Ψ ∈ Xhf,p. If the local FE mappings (14a) are invertible with positive Jacobian
determinant, we find that the restriction of Ψ to Dk,p is a bijection from Dk,p to Dk with positive Jacobian
determinant (composition of bijections with positive Jacobian determinant), for k = 1, . . . , Ne: therefore, Ψ is
a bijection from Ωp to Ω. We further observe that by construction the restriction of Ψ to the vertices of T and
to linear facets of the mesh is the identity map: therefore, the pair (Ωp,Ψ) satisfies Hypothesis 1.

Figure 5 provides a graphical interpretation of our construction for a curved mesh with two elements. Figure
5(a) shows a curved mesh of the domain Ω, while Figure 5(b) shows the corresponding linearized mesh. The
mapping Ψ is the unique polynomial map of degree κ that maps each element Dk,p into the corresponding curved
element Dk. Notice that by construction the vertices of the mesh T are unchanged in Tp; notice also that linear
elements of T are preserved by Tp.

Ω
T

D1 D2
(a)

Ωp

Tp
D1,p D2,p

(b)

Figure 5: construction of the polytope Ωp and the mapping Ψ for a curved mesh with two elements.

The construction of Ψ outlined above might fail for excessively coarse meshes, as shown in the example
of Figure 6. Given the domain Ω depicted in Figure 6(a), we might be tempted to consider the coarse mesh
in Figure 6(b): even if the curved mesh T associated with this partition is a proper mesh of Ω, we find that
the resulting polytope Ωp is not isomorphic to Ω up to the boundary (since Ωp is a rectangle) and Ψ is not
continuous up to the boundary of Ωp. To fix this issue for this geometry, we should consider meshes with at
least three points on the profile (cf. Figure 6(c)).

We here rely on polynomial discretizations of very high-order (up to κ = 10): to ensure accurate and stable
computations, we rely on a nodal-based discretization that exploits Koornwinder polynomials to represent
the local shape functions and to a tensor product of Gauss and Gauss–Radau quadratures (see, e.g., [10, 14]).
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Instead, we consider regular (tensorized) nodes {x̃i}
nlp

i=1 ⊂ D̂; alternative selections that improve the conditioning
of the interpolation matrix can be found in [10, 14], see also [9].

In our framework, the use of high-order discretizations is motivated by two independent considerations.
First, coarse-grained meshes with relatively few elements enable rapid searches over the elements and hence
guarantee rapid evaluations of the mapping Ψ for new points in Ωp — this feature is crucial in optimization-
based registration as iterative algorithms for (3) require multiple evaluations of (4) for many values of a. Second,
since by construction N(xv;a) = xv for all vertices xv of Ωp and any a ∈ RM (cf. section 3.2), the reduction of
the number of vertices on curved facets of ∂Ω improves the expressiveness of the ansatz (4).

(a) (b) (c)

Figure 6: isolated profile in rectangular domain. (a) domain Ω. (b) inadmissible coarse-grained partition. (c)
admissible coarse-grained partition.

4.2 Finite element displacement space on polytopes

Given the polytope Ωp ⊂ R2 and the linear triangular mesh Tp defined in section 4.1, we denote by Iint ⊂
{1, . . . , Nf} the indices of the internal facets and we define the union of internal facets E int

p =
⋃
j∈Iint Fj,p. We

further introduce the positive1 normal n+ : E int
p → S1. Given the field ϕ ∈ Xhf,p and an arbitrary (possibly

differential) operator L (e.g., L(ϕ) = ϕ, L(ϕ) = ∇ϕ, or L(ϕ) = H(ϕ)), we define the limits

L(ϕ)±(x) = lim
ϵ→0+

L(ϕ)(x∓ ϵn+(x)), ∀x ∈ E int
p , (15a)

and the average and jump operators (we omit dependence on x)

{L(ϕ)} =
L(ϕ)+ + L(ϕ)−

2
, JL(ϕ)K =

(
L(ϕ)+ − L(ϕ)−

)
· n+, (15b)

for all x ∈ E int
p . We clarify that if L(ϕ) is a matrix-valued quantity the jump operator involves a matrix-vector

product.
We introduce the space U for the displacement field (cf. section 2):

U =
{
φ ∈ [Xhf,p]

2 : φ · n
∣∣
∂Ωp

= 0
}
. (16)

We observe that U (16) is contained in the space of Lipschitz functions in Ωp but it is not contained in C1(Ωp).
In view of the definition of the penalty function in (3) in section 4.4, we define discrete counterparts of the

H2 norm and seminorm. Since the FE space Xhf,p is not H2-conforming, the discrete approximation of the H2

inner product, should involve a direct control of the jump of the mapping derivatives across elements. We hence
equip U with the inner product

(w, v) =

Ne∑
k=1

∫
Dk,p

(H(w) : H(v) + w · v) dx

+
∑
j∈Iint

∫
Fj,p

(
βjJ∇wK · J∇vK + 1

βj
{H(w)} : {H(v)}

)
ds,

(17)

where H(w) : H(v) =
∑2
i,j,k=1 ∂i,jwk∂i,jvk, and βj = σβκ

2|Fj,p|−1 with σβ = 10 and j ∈ Iint; we further define

the induced norm ∥ · ∥ =
√
(·, ·). The choice of the inner product is inspired by the analysis in [22, section 4]

1The positive normal is chosen arbitrarily for internal facets and coincides with the outward normal to Ωp for boundary facets.

10



for the biharmonic equation: the authors of [22] consider the norm

|||w|||2 =
( Ne∑
k=1

∥∆w∥2L2(Dk,p)
+
∑
j∈Iint

∥
√
αJwK∥2L2(Fj,p)

+ ∥
√
βJ∇wK∥2L2(Fj,p)

+ ∥1/
√
β{∆w}∥2L2(Fj,p)

+ ∥1/
√
α{∇∆w}∥2L2(Fj,p)

)
,

for proper choices of α and β. Since we here consider continuous discretizations, we omit in (17) the first and
fourth terms in the facet integral and we consider the same expression for β as in [22]; furthermore, since we
wish to consider the full H2 norm, we replace ∆w with H(w) in the volumetric and surface integral.

We also define the seminorm

P (φ) =

Ne∑
k=1

∫
Dk,p

(H(φ) : H(φ)) dx

+
∑
j∈Iint

∫
Fj,p

(
βjJ∇φK · J∇φK +

1

βj
{H(φ)} : {H(φ)}

)
ds.

(18)

Note that P (Φ) = 0 for any linear map Φ = b+Ax; in particular, P (id) = 0. We also define the penalty

Pbrkn (φ) =

Ne∑
k=1

∫
Dk,p

(H(φ) : H(φ)) dx, (19)

which does not penalize discontinuities of the displacement derivative at elements’ interfaces.

4.3 Construction of the curved mesh of Ω

The polytope Ωp and the map Ψ are explicitly linked to the high-order mesh T : the problem of determining
Ωp and the map Ψ can be recast as the problem of generating a (coarse) high-order mesh T of the domain of
interest. We propose to first prescribe the polytope Ωp, then determine a linear triangulation Tp of Ωp and
finally compute the map Ψ by solving a suitable optimization problem. We introduce the parameterizations
{γk : (0, 1) → Fk}Nb

k=1 of the curved edges {Fk}Nb

k=1 and the Gauss-Lobatto points {tgli }
κ+1
i=1 ⊂ [0, 1]. Then, we

introduce the reference and deformed points

xji,k = γk(0)(1− tgli ) + γk(1) t
gl
i , yji,k = γk(t

gl
i ), where ji,k = i+ (k − 1)Nb,

for i = 1, . . . , κ+ 1, and k = 1, . . . , Nb, and the affine space W̃ with

W̃ =
{
id+ φ ∈ [Xhf,p]

2 : φ · n
∣∣
∂Ωp∩∂Ω

= 0
}
; (20)

the set ∂Ωp ∩ ∂Ω corresponds to the portion of ∂Ω that is the union of linear facets and that is hence shared

with ∂Ωp (see Hypothesis 1). Note that the affine space W̃ enables deformation of curved facets.
In conclusion, we consider the constrained optimization statement:

min
Ψ∈W̃

fjac(Ψ) + Pbrkn (Ψ) s.t ∥Ψ(xj)− yj∥∞ ≤ δ, j = 1, . . . , N = (κ+ 1)Nb, (21)

where fjac is introduced in (7) and is designed to enforce the bijectivity of the mapping, while Pbrkn is the
quadratic penalty term (19). The penalty (19) was found superior to (18) — that is, it led to more regular
meshes and to more rapid convergence of the optimizer — for the model problem of section 5.

The optimization statement (21) reads as a nonlinear non-convex optimization problem with linear inequality
constraints; in our numerical implementation, we resort to the Matlab function fmincon to solve (21) based on
an interior-point method. In the numerical experiments, we consider δ = 10−6.

4.4 Penalty function

We denote by Tpb the mesh used for HF calculations: Tpb is independent of the FE mesh Tp used in sections 4.1
and 4.2 to define the mapping space; it might also be associated to a different (spectral element, finite volume)
discretization method. For model reduction tasks, the registration procedure should ensure that the deformed
mesh Φ(Tpb) is well-behaved (see, e.g., [3]). The penalty fthpen (8) is not tailored to the discrete representation of

the FE fields {φi}Mi=1 that are not H2-conforming; furthermore, the penalty does not ensure that the deformed
mesh Φ(Tpb) is well-behaved. Below, we hence derive an alternative penalty function that is well-suited for
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model reduction tasks. We denote by {Dpbk }N
pb
e

k=1 and {Ψpb
k }N

pb
e

k=1 the elements and the elemental mappings of Tpb;
we use notation {Ψpb

Φ,k}
Npb

e

k=1 to refer to the elemental mappings of the deformed mesh (see, e.g., [34, Eq. (9)]).
We hence propose the penalty:

fpen(a) = fjac(Np(a)) + fmsh(N(a)) +P (Np(a)) (22a)

where P (c.f. (18)) promotes smoothness, fjac (cf. (7)) enforces local bijectivity, and the function fmsh controls
the quality of the deformed mesh,

fmsh(Φ) =
1

|Ω|

Npb
e∑

k=1

|Dpbk |
∫
D̂

exp

(
qmsh
k (Φ)

qmsh
k (id)

− κmsh

)
dx, (22b)

where

qmsh
k (Φ) :=

1

d2

(
∥∇Ψpb

Φ,k∥2F
(det(∇Ψpb

Φ,k))
2/d
+

)2

, d = 2. (22c)

We observe that the ratio qmsh
k measures the degree of anisotropy of the mesh and it can thus be interpreted

as a measure of the quality of the deformed mesh — we recall that the indicator qmsh
k was used in [41] in the

framework of DG methods. As discussed in [33], the decision to activate the penalty terms fjac and/or fmsh

depends on the particular way we treat parameterized geometries — map-then-discretize or discretize-then-map:
in the numerical experiments, we activate only fmsh with κmsh = 10. In (22), we employ an L2 penalization of
the Hessian rather than an L∞ penalization as in (8): this choice simplifies computations and is justified by the
fact that the ansatz Np consists of a finite expansion of modes.

4.5 Target function

The target ftgµ measures the degree of similarity between the available estimate of the solution field uµ to the
problem of interest and a suitable template solution or template reduced space; ftgµ relies on the introduction of
a sensor sµ := sµ(uµ) which should highlight the coherent structures we wish to track. We might distinguish
between point-set sensors and distributed sensors. The choice of the sensor might reflect the connection between
distributed sensors and the shock sensors that are used to activate artificial viscosities in high-order discretization
[24, 25]. We anticipate that in the numerical experiments we combine point-set and distributed sensors to take
into account different sources of information and to robustify the greedy procedure outlined in section 4.6 (cf.
(33)).

Target function based on point-set sensors

Point-set sensors are based on the introduction of a scalar testing function that selects the points of the mesh

{x⋆µ,j}
N⋆

µ

j=1 where the solution uµ satisfies a suitable user-defined criterion (cf. [12]), for any µ ∈ P. Given the

template point cloud {x̄⋆j}N
⋆

j=1 — which can be prescribed a priori or be chosen based on one specific value of
the parameters — and the parameter value µ ∈ P, we first rely on a standard point-set registration (PSR)

procedure that takes as inputs the point clouds {x̄⋆j}N
⋆

j=1 and {x⋆µ,j}
N⋆

µ

j=1, to determine the deformed point cloud

{x̂⋆j,µ}N
⋆

j=1 that approximates (in a suitable sense) the target cloud {x⋆µ,j}
N⋆

µ

j=1 (see, e.g., [23] for further details);
then, we solve the optimization problem (3) with

ftgµ (Φ) =
1

N
⋆

N
⋆∑

i=1

∥Φ(x̄⋆i )− x̂⋆i,µ∥22. (23)

As discussed in [12] and also [33], we can interpret the solution to (3) with objective (22)-(23) as an approximate
projection of the mapping returned by the PSR procedure — which is neither guaranteed to map the boundary
of the domain Ω in itself nor to be globally bijective — onto the space of admissible bijections in Ω.

In order to speed up calculations, it is important to exploit the structure of the mapping in (4) and precom-
pute Ψ−1 where needed before calling the optimizer. In more detail, in order to speed up the evaluation of ftgµ
in (23), we first compute and store z̄⋆j = Ψ−1(x̄⋆j ) for j = 1, . . . , N

⋆
and then we evaluate (23) as

ftgµ (Φ) =
1

N
⋆

N
⋆∑

i=1

∥Ψ(Φp(z̄
⋆
i ))− x̂⋆i,µ∥22.

Similar reasoning can be exploited for the evaluation of (22b).

12



Target function based on distributed sensors

A distributed sensor is a function of the solution field uµ that highlights the features of uµ that we wish to
track. Given the reduced n-dimensional space Zn embedded in a Hilbert space X defined over Ω, recalling (13),
we find that the parametric mapping Φ should minimize the target

ftg,optµ (Φ) := min
ζ∈Zn

∫
Ω

∥uµ ◦ Φ− ζ∥22 dx, (24)

over all values of µ in P: ftg,optµ (Φ) is the projection error in the mapped configuration. Note that ftg,optµ depends
on the choice of the reduced space Zn whose selection is inherently coupled with the problem of finding Φ: we
postpone the procedure for the construction of the reduced space to the next section.

The explicit use of the solution uµ in the optimization statement (3) is computationally unfeasible and
prone to instabilities: first, the solution uµ is typically defined over an unstructured grid for which function

evaluation at the deformed quadrature points {Φ(xqdq )}Nqd

q=1 is extremely expensive; second, we might exploit
prior knowledge about the problem of interest to identify a scalar function of uµ that better isolates the features
we wish to track (e.g., shocks) using registration, from the features we expect to be able to approximate through
a linear expansion of (mapped) snapshots.

Exploiting the form of Φ, and the change-of-variable x = Ψ(ξ), we find∫
Ω

∥uµ ◦ Φ− ζ∥22 dx =

∫
Ωp

∥uµ ◦Ψ ◦ Φp − ζ ◦Ψ−1∥22 J(Ψ)dξ.

If we replace uµ ◦ Ψ with a scalar sensor sµ defined over the domain Ωp and the reduced space Zn for the
solution with a space (dubbed template space) Sn ⊂ L2(Ωp) for the sensor, we obtain

ftgµ (Φ) := min
ν∈Sn

∫
Ωp

∣∣sµ ◦ Φp − ν
∣∣2J(Ψ) dx, (25)

which is the target function employed in the numerical experiments.
From the definition (25), we deduce that computation of ftgµ (Φ) requires to evaluate sµ in the deformed

quadrature points {Φp(x
qd,p
q )}q of the mesh Tp at each iteration of the optimization algorithm for (3). Since the

solution is discontinuous, we consider a P1 discretization of the sensor sµ over a linear mesh Tp,s of Ωp, which is
generated independently of Tp. Following [17], we rely on KD-trees to speed up mesh interpolation (cf. Matlab
function KDTreeSearcher): since Tp is a linear mesh with a modest number of elements, the evaluation of the
sensor sµ in the deformed quadrature points is still affordable. Notice that the same fast mesh interpolation
routine should also be used to evaluate the FE mapping Ψ in (22b).

4.6 Construction of the parametric map

The target function (25) depends on the template space Sn ⊂ L2(Ωp). Following [34, 35], given a set of sensor
snapshots {sµ : µ ∈ Ptrain} with Ptrain = {µk}ntrain

k=1 , we propose an iterative procedure that performs registration
over the entire training set and then exploits the results to update the template space Sn in a greedy fashion.
Algorithm 1 summarizes the computational procedure.

Algorithm 1 Registration algorithm

Inputs: {sµ : µ ∈ Ptrain} snapshot set, Sn0 = span{sµ⋆,(i)}n0
i=1 initial template space; Tpb mesh for HF computations.

Outputs: Sn template space, W ∈ RM×m mapping space, {a⋆
µk}k ⊂ Rm optimal mapping coefficients.

1: Initialization: Sn=n0
= Sn0

, Ξ⋆ = {µ⋆,(i)}n0
i=1, W = 1M .

2: for n = n0, . . . , nmax − 1 do
3:

[
a⋆µ, f

⋆
µ

]
= registration

(
sµ, Sn, W, Tpb, Ψ,a0µ

)
for all µ ∈ Ptrain

see Remark 4.1 for definition of a0µ

4: [W, {aprojµ }µ∈Ptrain ] = POD
(
{a⋆µ}µ∈Ptrain , tolpod, (·, ·)2

)
,

5: if maxµ∈Ptrain f
⋆
µ < tol then

6: break

7: else
8: Ξ⋆ = Ξ⋆ ∪ {µ⋆,(n+1)} with µ⋆,(n+1) = argmaxµ∈Ptrain

f⋆µ.

9: Sn+1 = span{sµ⋆,(i) ◦ Np(aprojµ⋆,(i))}n+1
i=1 .

10: end if
11: end for
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Given the orthonormal basis {φi}i of U and the operator N, we define the orthogonal matrix W ∈ RM×m

and the low-rank map N̂(a) := N(Wa); by construction, we have ∥a∥2 = ∥
∑
i(Wa)φi∥ for any a ∈ Rm. Then,

we introduce notation: [
a⋆µ, f

⋆
µ

]
= registration

(
sµ, Sn, W, Tpb, Ψ, a0µ

)
to refer to the function that takes as inputs (i) the target sensor sµ : Ωp → R, (ii) the template space Sn, (iii)
the orthogonal matrix W, (iv) the mesh Tpb, (v) the geometric mapping Ψ : Ωp → Ω and (vi) the initial guess
a0µ ∈ Rm for the optimizer, and returns (I) the mapping coefficients a⋆µ that minimize the (reduced) objective

a 7→ fobjµ (Wa⋆µ), and (II) the value of the target function f⋆µ = ftgµ (Wa). Note that the objective fobjµ : RM → R+

of (3) depends on the mesh Tpb through the term fmsh in (22b). We also introduce the function

[Wnew, {aprojµ }µ∈Ptrain
] = POD

(
{Wolda

⋆
µ}µ∈Ptrain

, tolpod, (·, ·)2
)
,

which implements POD based on the method of snapshots with Euclidean inner product (·, ·)2: the tolerance
tolpod > 0 drives the selection of the number of modes m based on the energy criterion

m := min

m′ :

m′∑
j=1

λj ≥ (1− tolpod)

ntrain∑
i=1

λi

 , (26)

where λ1 ≥ . . . ≥ λntrain
≥ 0 are the eigenvalues of the Gramian matrix C ∈ Rntrain×ntrain such that (C)k,k′ =

a⋆µk · a⋆
µk′ . The function POD returns also the mapping coefficients associated with the projected displacements

aprojµ = W⊤
newWolda

⋆
µ; the latter are used to initialize the iterative method for the optimization problem for the

subsequent iterations.

Remark 4.1. Further implementation details. Since the optimization problem is highly non-convex, the
choice of the initial condition is extremely important to avoid convergence to unsatisfactory local minima. For
n = n0+1, n0+2, . . . , nmax−1, we simply use a0µ = aprojµ (cf. Line 4). On the other hand, for the first iteration,

we first reorder the parameters in Ptrain so that µ(1) = argminµ∈Ptrain ∥µ− µ⋆,(1)∥2 and

µ(k) = arg min
µ∈Ptrain\{µ(i)}k−1

i=1

(
min

µ′∈{µ(i)}k−1
i=1

∥µ− µ′∥2

)
, k = 2, . . . , ntrain;

then, we choose the initial condition as follows:

a0µ(1) = 0, a0µ(k) = a⋆
µ(nek) with nek = arg min

j=1,...,k−1
∥µ(j) − µ(k)∥2,

for k = 2, . . . , ntrain. In a previous implementation of the procedure, we also included box constraints in the
optimization statement (cf. [32, section 3.1.2]) to control the sensitivity of the mapping coefficients to parameter
variations;

∥a⋆µ(k) − a0µ(k)∥∞ ≤ C∞∥µ(k) − µ(nek)∥2, with C∞ = 10; (27)

however, in the numerical experiments of the present work, we found that the solution to the unconstrained
problem satisfied the constraints (27) for all the experiments considered. We further observe that Algorithm 1
depends on several hyper-parameters. In our tests, we set Sn0=1 = span{sµ̄}, where µ̄ is the centroid of P;
furthermore, we set nmax = 6, tolpod = 5 · 10−3 and tol = 10−4.

Remark 4.2. Generalization. Given the dataset {(µk,a⋆µk)}ntrain

k=1 as provided by Algorithm 1, we resort to a

multi-target regression algorithm to learn a regressor µ 7→ âµ for the mapping coefficients, and ultimately define
the parametric mapping

Φ : Ω× P → Ω, Φµ := N (Wâµ) . (28)

We here resort to radial basis function (RBF, [38]) approximation: other regression algorithms could also be
considered. Similarly to [32, 35], to avoid overfitting, we verify the statistical significance of the RBF esti-
mators. We randomly split the dataset {(µk,a⋆µk)}ntrain

k=1 into the learning and test sets {(µk,a⋆µk)}k∈Dlearn
and

{(µj ,a⋆µj )}j∈Dtest
with Dlearn ∩ Dtest = ∅ and Dlearn ∪ Dtest = {1, . . . , ntrain} (we here consider a 80%-20%

learning/test split); we compute the RBF approximation â : P → Rm based on the learning set and we compute
the out-of-sample R-squared coefficient for each component:

R2i = 1−

∑
j∈Dtest

(
a⋆µj − âµj

)2
i∑

j∈Dtest

(
a⋆µj − ā

)2
i

, ā =
1

|Dlearn|
∑

k∈Dlearn

a⋆µk , i = 1, . . . ,m. (29)

Then, we retain exclusively modes for which R2i is above the threshold Rmin = 0.70.

14



Remark 4.3. Parametric registration based on point-set sensors. The greedy procedure in Algorithm
1 is motivated by the need to construct the template space Sn. If we rely on point-set sensors, we do not have
to perform multiple iterations. However, we empirically found that performing two iterations of the for loop in
Algorithm 1 does not hinder computational efficiency — since the cost is dominated by the high-dimensional
registration problems solved during the first iteration — and has a beneficial effect on generalization outside the
training set.

5 Application to an inviscid flow past an array of LS89 turbine
blades

We consider the problem of estimating the solution to the two-dimensional Euler equations past an array of
LS89 turbine blades.

5.1 Model problem

We consider the computational domain depicted in Figure 9(a); we prescribe total temperature, total pressure
and flow direction at the inflow, static pressure at the outflow, non-penetration condition on the blade and
periodic boundary conditions on the lower and upper boundaries. We study the sensitivity of the solution with
respect to two parameters: the free-stream Mach number Ma∞ and the height of the channel H, i.e. µ =
[H,Ma∞]. We consider the parameter domain P = [0.95, 1.05] × [0.9, 0.95]. We refer to [3] for a detailed
presentation of the employed nondimensionalization, HF DG formulation and pseudo-transient continuation
strategy.

Figure 7 shows the distribution of the Mach field for µmin = [0.95, 0.9] and µmax = [1.05, 0.95]; Figure 8(a)
shows the behavior of the Mach number on the upper side of the blade for four parameter values, while Figure
8(b) shows the behavior of the entropy profile E = log(p) − γ log(ρ) where p is the pressure field, γ = 1.4
is the ratio of specific heats, and ρ is the density field. The solution develops a normal shock on the upper
side of the blade for sufficiently large values of Ma∞ and H; furthermore, the entropy E exhibits several peaks
that correspond to the blade wakes. The solution develops two shocks at the trailing edge, which are highly
undesirable for turbomachinery applications: we expect that at the trailing edge viscous effects might not be
negligible; for this reason, a more thorough investigation should rely on a model that accounts for viscous
effects. We observe that the shock location and the entropy peaks are sensitive to the value of the parameter:
this justifies the application of registration procedures.

(a) (b)

Figure 7: inviscid flow past an array of LS89 turbine blades. (a)-(b) Mach field for µ = [0.95, 0.9] and µ =
[1.05, 0.95].

5.2 Definition of the mapping ansatz

We deal with geometry variations through a piecewise-smooth mapping associated with the partition in Figure
9(b). We set Href = 1 and we define the curve x1 7→ fbtm(x1) that describes the lower boundary Γbtm of the

domain Ω = Ω(H = Href); then, we define H̃ > 0 such that x1 7→ fbtm(x1) + H̃ and x1 7→ fbtm(x1) +H − H̃
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(a) (b)

Figure 8: inviscid flow past an array of LS89 turbine blades. (a) Mach profile over the upper side of the blade for
four values of the parameter in P. (b) entropy profile on the bottom boundary for four values of the parameter
in P. The parameter s denotes the normalized curvilinear coordinate, s ∈ [0, 1].

do not intersect the blade for any H ∈ [0.95, 1.05]; finally, we define the geometric mapping

Ψgeo
H (x = [x1, x2]) =

[
x1
ψgeo
H (x)

]
, x ∈ Ω, (30a)

where

ψgeo
H (x) =

 o1(x1) + C(H) (x2 − o1(x1)) x2 < o1(x1),
o2(x1) + C(H) (x2 − o2(x1)) x2 > o2(x1),
x2 otherwise,

(30b)

with o1(x1) = fbtm(x1) + H̃, o2(x1) = fbtm(x1) + Href − H̃ and C(H) = H−Href

2H̃
+ 1. Then, we consider

computational maps (4) from the domain Ω = Ω(H = Href) to Ωµ = Ω(H) such that

N(x,a, µ) = Ψgeo
H ◦Ψ ◦ Np(a) ◦Ψ−1(x), (31)

for a proper choice of the mapping Ψ and the polytope Ωp. Note that Ñ(a) = Ψ ◦Np(a) ◦Ψ−1 defines a bijection
in Ω.

The polytope Ωp and the mapping Ψ : Ωp → Ω should be designed to ensure the periodicity constraint

N(x+ [0, Href ],a, µ) = N(x,a, µ) + [0, H], ∀x ∈ Γbtm. (32)

The geometric mapping Ψgeo satisfies the periodicity constraint; it is thus sufficient to enforce that Ñ(x +
[0, Href ],a, µ) = Ñ(x,a, µ) + [0, Href ] for all x ∈ Γbtm. Towards this end, (i) we define the polytope Ωp with ver-
tices V such that V ∩Γbtm,p = V ∩Γtop,p+[0, Href ], where Γbtm,p,Γtop,p denote the lower and upper boundaries of
the polytope (i.e. for every vertex on the lower boundary there exists a corresponding vertex on the upper bound-
ary); (ii) we define the linear mesh Tp in Figure 9(c) with matching nodes on the periodic boundaries2; (iii) we de-

fine the mapping Ψ by solving (21) in the affine space W̃ =
{
id+ φ ∈ [Xhf,p]

2 : φ · n
∣∣
∂Ωp∩∂Ω

= 0, φ|Γbtm,p
= φ|Γtop,p

}
and we set U (cf. (16)) as U =

{
φ ∈ [Xhf,p]

2 : φ · n
∣∣
∂Ωp

= 0, φ|Γbtm,p
= φ|Γtop,p

}
. The resulting curved mesh

is provided in Figure 9(d); in the experiments, we consider polynomials of degree ten, which implies M = 1359.

Note that, since W̃ and U are spaces of piecewise polynomials, it suffices to enforce the periodicity constraint
at mesh nodes.

5.3 Definition of the sensor

We consider a target function ftg that combines a point-set sensor and a distributed sensor

ftgµ =
1

4

4∑
i=1

∥N(x̄i,a, µ)− x̂i,µ∥22 + min
ν∈Sn

∫
Ωp

∣∣sµ ◦ Np(a)− ν
∣∣2J(Ψ) dx, (33)

2The same condition is enforced in the HF mesh.
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(a) (b)

(c) (d)

Figure 9: inviscid flow past an array of LS89 turbine blades. (a) computational mesh Tpb for DG calculations;
red dots denote the nodes on the upper blade side; blue squares denote the nodes on the lower boundary. (b)
partition associated with the geometric map (30). (c)-(d) coarse-grained linear mesh Tp and curved mesh T for
registration.

where the distributed sensor sµ is obtained from the Mach field, the template space Sn is built adaptively using
Algorithm 1, and the salient points {x̂i,µ}i correspond to the first three peaks of the entropy profile on the lower
boundary (cf. Figure 8(b)) and the shock location on the upper boundary (cf. Figure 8(a)).

We identify the entropy peaks by computing the local maxima of the entropy profile on Γbtm,µ. We detect
the shock location on the upper blade side using the following procedure: first, we compute the mean values
{Maj}j and {dMaj}j of the Mach number and its tangential derivative on each facet {Fj}j of the select boundary;
second, we find the index j⋆ such that Maj⋆ > 1 > Maj⋆+1 and dMaj⋆ < − 10−2

|Fj⋆ |
and we return the estimate

xrawshk,µ equal to the midpoint of the selected facet.
Given the raw estimates {xrawi,µ : i = 1, . . . , 4, µ ∈ Ptrain} of the point sensors, we apply radial basis function

(RBF) regression to find smoother estimates that facilitate the generalization step (cf. Remark 4.2); in order
to ensure that the points are on the boundary, we apply RBF to the curvilinear coordinates of the points. As
shown in Figure 8(a), the solution does not exhibit any shock for several parameter values; we do not consider
these points to train the RBF surrogate, and we rely on the surrogate itself to find a fictitious estimate of x̂shk,µ
for all µ ∈ P.

5.4 Performance of the registration procedure

We apply Algorithm 1 based on a regular 11× 6 grid of parameters Ptrain. Figure 10 compares the location of
the sensors {x̃i,µ = (Ψgeo

H )
−1

(x̂i,µ) : i = 1, . . . , 4, µ ∈ Ptrain} and their mapped counterparts {x̃′i,µ = Φ−1
µ (x̂i,µ) :

i = 1, . . . , 4, µ ∈ Ptrain}; similarly, Figure 11 reproduces the results in Figure 8 for the mapped solution field.
We observe that the peaks of the mapped entropy field on Γbtm and the shock on the upper side of the blade
are nearly insensitive to the parameter value. For all in-sample and out-of-sample configurations considered,
the quality of the deformed mesh — which is measured by (22c) — is comparable with the one of the original
mesh.
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A thorough analysis of the computational cost of the procedure is beyond the scope of the present paper. We
observe that the execution time of Algorithm 1 is 54 minutes on a commodity Linux workstation; for comparison,
the generation of the training set of HF simulations (66 simulations) requires 7 hours and 33 minutes on the
same machine.

(a) (b)

Figure 10: inviscid flow past an array of LS89 turbine blades. (a) sensor points used in the registration procedure
for ntrain = 66 configurations. (b) mapped sensor points.

(a) (b)

Figure 11: inviscid flow past an array of LS89 turbine blades. (a) mapped Mach profile over the upper side of
the blade for four values of the parameter in P. (b) mapped entropy profile on the bottom boundary for four
values of the parameter in P. Unmapped profiles are provided in Figure 8.

5.5 Model reduction

We rely on POD+regression to estimate the solution field. POD solution coefficients are estimated using the
same RBF regression method that is employed for the mapping coefficients (cf. Remark 4.2). We denote by uhfµ
the HF solution, and by ûµ the POD+RBF estimate. To assess performance, we consider a dataset of ntest = 20
randomly-selected parameters Ptest and we compute the L2 maximum relative errors

Emax = max
µ∈Ptest

∥ûµ − uhfµ ∥L2(Ωµ)

∥uhfµ ∥L2(Ωµ)
, Ebnd

max = max
µ∈Ptest

∥ûµ − uhfµ ∥L2(Γbld)

∥uhfµ ∥L2(Γbld)
, (34)

where Γbld denotes the boundary of the blade. Figure 12 shows the results for the “linear” ROM and the
“registered” ROM — both approaches involve the application of a geometric mapping; the difference is that for
the linear ROM the mapping is chosen a priori and corresponds to Ψgeo (30), while for the registered ROM the
mapping is chosen through the registration procedure discussed in the paper. Both linear and registered ROMs
reach a plateau for n ≈ 10 due to the limited amount of datapoints. We observe that registration improves
performance by a factor 2.04 for the global error and a factor 8.04 for the error on the blade, for the same
amount of HF data.
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Figure 12: inviscid flow past an array of LS89 turbine blades; model reduction. Behavior of the out-of-sample
errors (34) for the linear ROM and the registered ROM for ntrain = 66 and several values of n.

6 Summary and discussion

We addressed the problem of parametric registration for manifolds associated to the solution to parametric
PDEs: registration is designed to track coherent structures of the solution field, and ultimately simplify the task
of MOR. We proposed and analyzed a new class of compositional maps (4) for registration in two-dimensional
domains. We provided sufficient conditions to ensure the bijectivity of the mapping Φ (cf. Proposition 2.1
and Corollary 2.3) and we studied the approximation properties: we found that the ansatz (4) is dense in
a meaningful subspace of diffeomorphisms only for polytopal domains (Corollary 2.4, Lemma 3.2); on the
other hand, the multi-layer generalization (5) is dense for arbitrary domains under the assumption of small
deformation (cf. Lemma 3.3). We discussed an actionable procedure to determine the ansatz (4) for arbitrary
domains, which exploits a coarse-grained high-order FE mesh; finally, we illustrated the performance of the
method for a parametric compressible flow past a cascade of turbine blades.

We aim to extend our approach in several directions. First, we aim to extend Proposition 2.1 to (a class of)
Lipschitz maps. Second, we wish to automate the construction of the polytope Ωp; we also wish to devise effective
implementations of the ansatz (5). Third, we wish to extend our method to three-dimensional domains: this
extension likely requires the development of specialized optimization routines to cope with high-dimensional
mapping spaces (i.e., large M), and efficient mesh interpolation routines to speed up the evaluation of the
objective function in (3).

As extensively discussed in section 3.4, our choice of the ansatz (4) is a compromise between approximation
power and simplicity of implementation. In the future, we aim to investigate generalizations of (4) to improve
the approximation power of our model class; in this respect, we plan to develop registration techniques based
on the ansatz (5).

Finally, we remark that registration procedures constitute a key elements of MOR techniques based on
Lagrangian approaches. The results of this paper contribute to motivate the interest in this class of methods
for problems with coherent localized structures. Nevertheless, their inadequacy to cope with topology changes
(e.g., two shocks that merge into one shock [35, Appendix E.1]) might justify the use of different nonlinear
proposals (see, e.g., [2, 4]). It is hence of paramount importance to perform thorough comparative studies
to study the strengths and the weaknesses of Lagrangian methods and to compare performance with other
nonlinear approaches.
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A Proof of Proposition 2.1

The key challenge of the proof is that the domain Ωp is not in general simply connected: it is hence not possible
to directly employ the result in [32] based on Hadamard’s global inverse function theorem. To address this issue,
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(i) we first prove a variant of Proposition 2.1 in [32] (cf. Proposition A.1) that addresses the case of simply
connected domains (cf. Proposition A.1); (ii) we prove that the restriction of Φ to ∂Ωp is a diffeomorphism (cf.
Lemma A.1); (iii) we prove a technical result to glue together C1 maps with positive Jacobian determinants (cf.
Lemma A.2); (iv) we exploit the previous results and a well-known extension theorem in differential geometry
to prove the desired result. Below, we present a number of preliminary results that address (i), (ii) and (iii)
and then we discuss the proof of Proposition 2.1.

Proposition A.1. Let Ωp ⊂ R2 be a polytope isomorphic to the unit ball. Consider the vector-valued function
Φ : Ωp → R2 that satisfies (i) Φ ∈ C1

(
Ωp;R2

)
; (ii) |J(Φ)(x)| =

∣∣det (∇Φ(x))
∣∣ ≥ ϵ > 0 for all x ∈ Ωp and a

given ϵ > 0; (iii) Φ(∂Ωp) ⊆ ∂Ωp. Then, Φ is a bijection that maps Ωp into Ωp.

Proof. This result is a variant of Proposition 2.1 in [32] for polytopes Ωp isomorphic to the unit ball; the proof
follows the exact same steps of the one in [32]; details are omitted. In [32] we assumed that Φ is of class C1

in a δ-neighborhood of Ωp; since Ωp is a Lipschitz domain, if Φ is of class C1 up to the boundary, then there
exists a C1 extension of Φ to R2 (cf. [6, section 2.5]): we can thus replace the hypothesis (i) of [32, Proposition
2.1] with the hypothesis Φ ∈ C1

(
Ωp;R2

)
. Furthermore, we replace J(Φ)(x) ≥ ϵ > 0 for all x ∈ Ωp with the

more general assumption |J(Φ)(x)| ≥ ϵ > 0: since J(Φ) is continuous, this condition means that J(Φ) is either
strictly positive or strictly negative in Ωp.

Lemma A.1. Let Φ = id + φ be a C1(Ωp;R2) field such that infx∈Ωp J(Φ) > 0 and φ · n|∂Ωp = 0. Then,
Φ(∂Ωp) = ∂Ωp, and Φ|∂Ωp

is a diffeomorphism in ∂Ωp.

Proof. It suffices to prove that each edge F is mapped in itself and that the restriction of Φ to F is a bijection.
Towards this end, we define the vertices xv1, x

v
2 of F , the tangent and normal vectors tf ,nf and the parameteri-

zation γf : [0, 1] → F such that γf(s) = xv1 + s∥xv2 −xv1∥2tf . We also introduce the normal vectors n−
f ,n

+
f of the

neighboring edges that meet F at xv1, x
v
2, respectively.

We first observe that φ(xv1) = φ(xv2) = 0: since F meets with the neighboring edges, the pairs of normals
n−
f ,nf and n+

f ,nf should be linearly independent (i.e., they should span R2); then, exploiting the continuity
of φ up to the boundary of Ωp — and in particular on ∂Ωp — we find φ(xv1) · n−

f = φ(xv1) · nf = 0 and
φ(xv2) · nf = φ(xv2) · n+

f = 0, which imply φ(xv1) = φ(xv2) = 0.
By contradiction, Φ(F ) ̸⊂ F . Given x ∈ F , we find

φ(x) = (φ(x) · nf)nf + (φ(x) · tf)tf = (φ(x) · tf)tf

and thus Φ(γf(s)) = xv1 + α(s)tf with α(s) = (Φ(γf(s)) − xv1) · tf . Since φ(xv1) = φ(xv2) = 0, we find α(0) =
0, α(1) = ∥xv2 − xv1∥2: exploiting the intermediate value theorem, we find that [0, 1] ⊂ α([0, 1]) and thus
F ⊂ Φ(F ). The condition Φ(F ) ̸⊂ F implies that α(s) /∈ [0, 1] for some s ∈ [0, 1] and thus α′(s⋆) = ∥xv2 −
xv1∥2tTf ∇Φ(γf(s

⋆))tf = 0 for some s⋆ ∈ [0, 1]. Note that Φ(γf(s)) ·nf = xv1 ·nf for any s ∈ [0, 1]; if we differentiate
left- and right-hand sides of the previous identity with respect to s we obtain ∥xv2 −xv1∥2n⊤

f ∇Φ(γf(s))tf = 0 for
all s ∈ [0, 1]. Therefore, if we set x⋆ = γf(s

⋆), we find ∇Φ(x⋆)tf =
(
t⊤f ∇Φ(x⋆)tf

)
tf +

(
nTf ∇Φ(x⋆)tf

)
nf = 0,

which implies that ∇Φ is singular at x⋆ and thus minx∈Ωp
J(Φ) ≤ J(Φ)(x⋆) = 0. Contradiction.

So far, we proved that the C1 function α : [0, 1] → R is surjective in [0, 1] and is monotonic increasing.
Therefore, α is bijective in [0, 1] and thus Φ|F is a bijection in F .

Lemma A.2. Let Ω = Ωext \
⋃N
i=1 Ωint,i be a polytope that satisfies the conditions of Definition 2.1. We

define Ωint =
⋃N
i=1 Ωint,i. Let Φ+ : Ω → R2 and Φ− : Ωint → R2 be C1 maps up to the boundary that

coincide on Γ := ∂Ωint and satisfy J(Φ+)(x) ≥ ϵ > 0 for all x ∈ Ω, J(Φ−)(x) ≥ ϵ > 0 for all x ∈ Ωint.
We define Φ : Ωext → R2 that is equal to Φ+ in Ω and is equal to Φ− in Ωint. Then, there exists a sequence
{Φj}j ⊂ C1(Ω;R2) such that (i) Φj = Φ on ∂Ωext, (ii) limj→∞ ∥Φj −Φ∥L∞(Ωext) = 0, (iii) minx∈Ω J(Φj) ≥

1
2ϵ

for j = 1, 2, . . ..

Proof. We assume that Ωint is isomorphic to the unit ball (that is, Ωint = Ωint,1 and N = 1); the proof
can be extended to N > 1 through an inductive process, iteratively incorporating one subdomain at each
step. We define the piecewise-linear parameterization γ : (0, 1) → Γ; we denote by t the tangent vector
to Γ, by n the normal vector that points towards Ω, and by Vint the vertices of Ω on Γ; distH(A,B) is
the Hausdorff distance between the sets A and B. Given δ > 0, we define the set Vint,δ =

⋃
x∈Vint

Bδ(x),
and the C1 approximation Γδ of Γ such that distH(Γδ,Γ) ≤ δ and distH(Γδ \ Vint,δ,Γ \ Vint,δ) = 0. Then,
we introduce the C1 parameterization γδ : (0, 1) → Γδ, the corresponding unit normal nδ and the set
Γη,δ = {γδ(u) + ηvnδ(γδ(u)) : v ∈ (−f(u), 1− f(u)) , u ∈ (0, 1)}, where f : (0, 1) → [0, 1] is a suitable smooth
function that will be introduced below. Figure 13 provides a graphic explanation of the quantities introduced
so far.
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Exploiting the previous definitions, we define ψη,δ : R2 → [0, 1] such that (i) ψη,δ(γδ(u)+ηvnδ) = ϕ(v+f(u))
for all u ∈ (0, 1), v ∈ (−f(u), 1− f(u)), with ϕ(t) = −2t3+3t2, (ii) ψη,δ|Ωext\Γη,δ

= 1, and (iii) ψη,δ|Ωint\Γη,δ
= 0.

It is straightforward to verify that ψη,δ is of class C1, and that

∇ψη,δ(x) =


1

η
(αψ,δ(x)n+ o(1)) ∀x ∈ Γη,δ \ Vint,δ,

O
(
αψ,δ(x)

η
nδ +

βψ,δ(x)

δ
tδ

)
∀x ∈ Vint,δ,

where αψ,δ(x) ∈ (0,maxv∈R ϕ
′(v)) = (0, 3/2) and βψ,δ(x) belongs to a bounded interval that is independent of

δ > 0. In the previous expression, we used the fact that nδ = n for x ∈ Γη,δ \ Vint,δ, since distH(Γδ \ Vint,δ,Γ \
Vint,δ) = 0.

We define the positive vanishing sequences {ηj}j , {δj}j ⊂ R+; for j = 1, 2, . . ., we introduce the function
ψj = ψηj ,δj and the field Φj = (Φ+

e − Φ−
e )ψj + Φ−

e , where Φ+
e ,Φ

−
e are C1 extensions of Φ+,Φ− to R2 (cf. [6,

section 2.5]). Clearly, {Φj}j satisfies the conditions (i) and (ii); furthermore, J(Φj) ≥ ϵ in Ωext \ Γηj ,δj ; in the
remainder, we prove that J(Φj) ≥ ϵ/2 in Γηj ,δj .

Let x ∈ Γηj ,δj \ Vint,δj . Since Φ+ = Φ− on Γ, we have (∇(Φ+
e − Φ−

e )) t = 0 for all x ∈ Γ. We define

tΦ =
∇Φ+

e t

∥∇Φ+
e t∥2

and nΦ = [(tΦ)2,−(tΦ)1]. Given x ∈ Γηj ,δj , x = γ(u) + ηjvn, we define x̄ = γ(u) and

ȳ = Φ+
e (x̄) = Φ−

e (x̄). Then,

Φ±
e (x) ≈ ȳ +∇Φ±

e (x̄)(x− x̄)

= ȳ +∇Φ±
e (x̄)t(x̄)t

⊤(x̄)(x− x̄) +∇Φ±
e (x̄)n(x̄)n

⊤(x̄)(x− x̄)

= ȳ +
(
α(x̄)tΦ(x̄)t

⊤(x̄) + β±(x̄)tΦ(x̄)n
⊤(x̄) + γ±nΦ(x̄)n

⊤(x̄)
)
(x− x̄),

which implies ∇Φ±
e = αtΦt

T + β±tΦn
T + γ±nΦn

T , where α, β±, γ±, tΦ depend on x̄. Exploiting the latter, we
find

∇Φj(x) =
(
∇Φ+

e (x)−∇Φ−
e (x)

)
ψj(x) +

(
Φ+

e (x)− Φ−
e (x)

)
(∇ψj(x))⊤ +∇Φ−

e (x)

≈ α(x̄)tΦ(x̄)t
⊤(x̄) +

(
β−(x̄) + Jβ(x̄)Kψj

)
tΦ(x̄)n

⊤(x̄)+(
γ−(x̄) + Jγ(x̄)Kψj(x̄)

)
nΦ(x̄)n

⊤(x̄) + vαψ(x̄) (Jβ(x̄)KtΦ(x̄) + Jγ(x̄)KnΦ(x̄))n
⊤(x̄),

for all x ∈ Γη. Since {t,n} and {tΦ,nΦ} are orthonormal bases of R2, we must have

J(Φj) = α
(
γ− + JγK (ψj + vαψ)

)
+ o(1).

Let α be positive; the case α < 0 is analogous. If JγK > 0, we find

γ− + JγK
(
ψη︸︷︷︸
≥0

+ v︸︷︷︸
≥−f(u)

αψ︸︷︷︸
≤3/2

)
≥ γ − 3

2
JγKf(u),

which exceeds γ−/2 if f(u) ≤ γ−

3JγK . If JγK < 0, we find that J(Φη) ≥ αγ+2 provided that f(u) ≥ 1− γ+

3|JγK| . Note

that for JγK = 0 the bounds reduce to −∞ ≤ f(u) ≤ ∞: we can hence find a smooth function f such that
J(Φj) ≥ α

2 min{γ+, γ−} ≥ ϵ
2 .

Let x ∈ Γηj ,δj ∩ Vint,δj ; we assume that ηj = O(δj) for j = 1, 2, . . .. Exploiting the same argument as before,
we find ∇Φ+

e = ∇Φ−
e for x̄ ∈ Vint, which implies that Φ+

e (x) = Φ−
e (x) + o(δ) for any x ∈ Vint. Therefore, by

considering a Taylor expansion centered in x ∈ Vint, we find

∇Φj(x) =
(
∇Φ+

e (x)−∇Φ−
e (x)

)
ψj(x) +

(
Φ+

e (x)− Φ−
e (x)

)
(∇ψj(x))⊤ +∇Φ−

e (x)

= o(1)O(1) + o(δ)O
(
αψ,δ(x)

η
nδ(x) +

βψ,δ(x)

δ
tδ(x)

)
+∇Φ−

e (x̄)
(i)
= ∇Φ−

e (x̄) + o(1)

which implies J(Φj)(x) ≳ ϵ. In (i), we exploited the hypothesis ηj = O(δj) for j = 1, 2, . . ..

Proof. (Proposition 2.1). Exploiting Lemma A.1, we find that Φ|∂Ωint
is a diffeomorphism in ∂Ωint. Therefore,

exploiting Cerf’s theorem (see, e.g., [16]), we find that, for i = 1, . . . , N , there exists a diffeomorphism Ψi :

Ωint,i → Ωint,i such that Ψi = Φ on ∂Ωint,i and |J(Ψi)| does not vanish in Ωint,i. If we define Ωint =
⋃N
i=1 Ωint,i

and Ψ : Ωint → Ωint such that Ψ|∂Ωint,i = Ψi, we hence find that Ψ is a diffeomorphism in Ωint. Exploiting the
same argument as in Lemma A.2, we find that ∇Ψ = ∇Φ on the vertices of ∂Ωint; therefore, J(Ψ) is strictly
positive in Ωint. We set ϵ = {infx∈Ωp

J(Φ), infx∈Ωint
J(Ψ)}. We now define the extended map Φext : Ωext → R2
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(a) (b)

Figure 13: proof of Lemma A.2. (a) example of regular polytope. (b) visualization of Γ, Γδ, Γδ,η, Vint,η in the
proximity of one vertex.

that is equal to Φ in Ωp and is equal to Ψ in Ωint. Below, we prove that Φext is a bijection (injective and
surjective) in Ωext: since Ψ is bijective in Ωint, this implies that Φ is bijective in Ωp. Towards this end,
we introduce a sequence {Φj}j ⊂ C1(Ωext;R2) such that (i) Φj = Φ on ∂Ωext, (ii) limj→∞ δj = 0 with
δj = ∥Φj − Φext∥L∞(Ωext) = 0, (iii) minx∈Ωext

J(Φj) ≥ 1
2ϵ for j = 1, 2, . . . (cf. Lemma A.2). For any j > 0, Φj

satisfies the hypotheses of Proposition A.1: it is hence bijective in Ωext.
Injectivity of Φext. By contradiction, assume that Φext is not injective, that is, there exist x, y ∈ Ωext such

that Φext(x) = Φext(y). We distinguish between the case in which x, y ∈ ∂Ωint and the case in which x /∈ ∂Ωint

(the case y /∈ ∂Ωint is analogous to the latter): since Φ|∂Ωint
is a diffeomorphism in ∂Ωint (cf. Lemma A.1), the

first scenario is impossible; we hence focus on the second case.
We denote by Bx the ball centered in x of radius η > 0. Since x /∈ ∂Ωint, there exists η > 0 such that y /∈ Bx

and ∂Ωint ∩ Bx = ∅. Therefore, recalling notation introduced in Lemma A.2, there exists j0 ∈ N such that
Γηj ,δj ∩ Bx = ∅ for all j > j0: this implies that, for any j > j0, Φj(x

′) = Φ(x′) for any x′ ∈ Bx; furthermore,
since Φ is a local diffeomorphism, there exist c > 0 such that ∥Φj(x′)−Φj(x)∥2 = ∥Φ(x′)−Φ(x)∥2 ≥ cη for any
x′ ∈ ∂Bx; finally, since Φj is a global diffeomorphism, we also have ∥Φj(x′)− Φj(x)∥2 ≥ cη for any x′ /∈ Bx.

Exploiting the previous identities and the reverse triangle inequality, we find

0 = ∥Φ(y)− Φ(x)∥2 = ∥Φ(y)− Φj(x)∥2 = ∥Φ(y)− Φj(y) + Φj(y)− Φj(x)∥2

≥ ∥Φ(y)− Φj(y)∥2 − ∥Φj(y)− Φj(x)∥2

⇒ ∥Φj(y)− Φj(x)∥2 ≤ ∥Φ(y)− Φj(y)∥2.

Since ∥Φj(y) − Φj(x)∥2 ≥ cη and ∥Φ(y) − Φj(y)∥2 ≤ δj , we find cη ≤ δj for any j > j0, and thus cη = 0.
Contradiction.

Surjectivity of Φext. In order to prove that Φext is surjective in Ωext, that is, Φext(Ωext) = Ωext, we first
observe that Φext(Ωext) ⊂ Ωext. We have indeed that, for any y ∈ Ωext,

dist (y,Φext(Ωext)) = dist (Φj(xj),Φext(Ωext)) ≤ dist (Φj(xj),Φext(xj)) ≤ δj ,

where xj ∈ Ωext is the preimage of y through Φj ; since the latter holds for any j, we must have dist
(
y,Φext(Ωext)

)
=

0. Second, we observe that Ωext ⊂ Φext(Ωext). We find indeed that for any x ∈ Ωext

dist
(
Φext(x),Ωext

)
= dist

(
Φext(x),Φj(Ωext)

)
≤ δj ,

for j = 1, 2, . . ., which implies dist
(
Φext(x),Ωext

)
= 0. In conclusion, we find Φext(Ωext) = Ωext: since

Φext(∂Ωext) = ∂Ωext, we must have Φext(Ωext) = Ωext.

B Notation

To ease the presentation, we distinguish between basic definitions, definitions associated with the parametric
problem of interest, definitions associated with the optimization statement, and definitions associated with the
finite element approximation of the compositional map. Below, ω denotes a generic domain in R2, which is
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either Ω or Ωp in the main body of the manuscript. To shorten notation, the explicit dependence on the domain
ω is omitted if not strictly necessary.
Basic definitions.

• Ω ⊂ R2 Lipschitz domain.

• id : R2 → R2 identity map.

• B(ω) set of Lipschitz bijections from the domain ω in itself.

• D(ω) set of diffeomorphisms from the domain ω in itself.

• J(Φ) = det(∇Φ) Jacobian determinant of the vector-valued field Φ : ω → R2; H(Φ) Hessian of Φ.

• nω : ∂ω → S1 = {x ∈ R2 : ∥x∥2 = 1} outward normal to the domain Ω.

• U0(ω) = {φ ∈ C1(ω;R2) : φ · n|∂ω = 0}.

• Ωp ⊂ R2 polytope isomorphic to the domain Ω.

• V = {xvi }
Nv
i=1 minimal set of vertices of Ωp.

• Ψ : Ωp → Ω bijection from the polytope Ωp to Ω.

• {F p
j }

Nf,p

j=1 facets of Ωp; {Fj = Ψ(F p
j )}

Nf,p

j=1 mapped facets.

• Vang(ω) angular points of ∂ω (discontinuities of the normal nω).

• ω closure of ω.

• distH(ω, ω
′) Hausdorff distance between ω and ω′.

• col(W) subspace of RM spanned by the columns of the matrix W ∈ RM×m.

Parametric problem.

• µ vector of parameters in the parameter domain P ⊂ RP .

• u : Ω× P → RDu parametric field of interest, uµ(·) := u(·, µ).

• M = {uµ : µ ∈ P} solution manifold.

• M̃ = {uµ ◦ Φ−1
µ : µ ∈ P} mapped solution manifold.

• Tpb high-fidelity mesh with elements {Dpbk }N
pb
e

k=1 and facets {Ψpb
k }N

pb
e

k=1 employed to approximate the elements

of M̃.

Optimization statement (I): general definitions and analysis.

• Minimization statement: (3).

• ftg : B(Ω)× P → R target function.

• fpen : RM → R penalty function.

• N : RM → Lip(Ω;R2) mapping operator.

• A (cf. (6)) admissible set for the operator N.

• Ajac (cf. (6)) maps with strictly positive Jacobian determinant.

• (4) compositional maps. The pair (Ωp,Ψ) satisfies Hypothesis 1.

• fthpen (cf. (8)) penalty function used for the analysis of section 2

• (5) multi-layer compositional maps. The pairs (Ωp,1,Ψ1), . . . , (Ωp,ℓ,Ψℓ) satisfy Hypothesis 1.

Finite-element discretization of the mapping operator (cf. section 4).

• Pκ(R2) space of two-variable polynomials of total degree less or equal to κ.
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• D̂ = {x ∈ (0, 1)2 :
∑2
i=1(x)i < 1} reference (or master) element. {ℓfei }

nlp

i=1 Lagrangian basis of Pκ(R2)

associated with the nodes {x̃i}
nlp

i=1 ⊂ D̂; the nodes include the vertices {x̃pi }3i=1 of the triangle D̂.

• {ℓfe,pi }3i=1 Lagrangian basis of P1 associated with the vertices {x̃pi }3i=1 of D̂.

• T curved mesh employed to define the polytope Ωp (cf. (14b)) and the mapping Ψ (cf. (14d)); {Dk}Ne

k=1

elements of the mesh, {Fj}Nf
j=1 facets of the mesh, {xhfi,k}i,k nodes of the mesh (xhfi,k is the i-th node of the

k-th element of the mesh).

• Ψk FE mapping from D̂ to the k-th element of the mesh, k = 1, . . . , Ne (cf. (14a)).

• Ψk,p FE mapping from D̂ to the k-th linearized element of the mesh, k = 1, . . . , Ne (cf. (14a)).

• Tp linear mesh with elements {Dk,p}Ne

k=1 and facets {Fj,p}Nf

k=1.

• E int
p =

⋃
j∈Iint Fj,p internal facets of Tp.

• n+ : E int
p → S1 positive normal.

• U (16) FE displacement space equipped with the inner product (17).

Optimization statement (II): practical definitions.

• fpen penalty function (22a): P (18) smoothing term; fjac (7) bijectivity-enforcing penalty term; fmsh (22b)
discrete bijectivity-enforcing penalty term;

• (21) optimization problem for the construction of Ψ: W̃ (20) search space; Pbrkn smoothing term (19).

• Target function based on point-set sensor (23); target function based on distributed sensor (25), Sn ⊂
L2(Ωp) template space for the distributed sensor s : P → L2(Ωp).
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