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Objective
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Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost
associated with the solution to parameterized problems.

pMOR is motivated by real-time and many-query problems
design and optimization, UQ, control

Given the manifoldM = {uµ : µ ∈ P} ⊂ X ,
where P ⊂ RP is a compact set, and
(X , ‖ · ‖) is an Hilbert space over Ω ⊂ Rd ,

the goal of pMOR is to determine a low-rank approx-
imation ûµ of uµ that can be rapidly computed for any
µ ∈ P .
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pMOR: general recipe

Pb: find uµ ∈ X : Aµ(uµ, v) = F (v) ∀ v ∈ Y µ ∈ P
Approx: ûµ =

∑N
n=1 α̂

n
µ ζn, α̂n : P → R, ζn ∈ X

Offline stage: (performed once)
compute uµ1, . . . , uµntrain using a FE (or FV...) solver;
construct {ζn}Nn=1 and define ZN = span{ζn}Nn=1.

Online stage: (performed for any new µ̄ ∈ P)
estimate the solution coefficients α̂1

µ̄, . . . , α̂
N
µ̄ .

estimate ‖ûµ̄ − uµ̄‖.

N � Nhf = dofs of the Full Order Model
(

FOM︸ ︷︷ ︸
=FE,...

)
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pMOR: challenges

Pb: find uµ ∈ X : Aµ(uµ, v) = F (v) ∀ v ∈ Y µ ∈ P
Approx: ûµ =

∑N
n=1 α̂

n
µ ζn, α̂n : P → R, ζn ∈ X

Offline stage: (performed once)
compute uµ1, . . . , uµntrain using a FE (or FV...) solver;
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µ̄, . . . , α̂
N
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Successful applications of pMOR methods

Past and current research on pMOR focuses on
1. data compression ZN

2. generalization ZN ⇒ α̂µ̄

3. a posteriori error estimation ‖ûµ̄ − uµ̄‖

PR-scRBE: Patera, Huynh, Knezevic, Akselos S.A.
Port-Reduced static condensation RB Element method
component-based structures, solid mechanics.

LRB-Ms: Ohlberger, Schindler, ....
Localized RB Multiscale method
multiscale problems, porous media.

Akselos is a software company that provides a commercial implementation of

PR-scRBE.
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pMOR for fluid problems

Data compression
Challenges: turbulence (wide spectrum of scales),
approximation of shocks, boundary/internal layers...

nonlinear approximation procedures.

Generalization
Challenges: fragility of Galerkin models, nonlinearities.

stabilized formulations;
hyper-reduction.

Error estimation
Challenge: need for estimates of averaged QOIs.

time-averaged error indicators.
7



Aim of this talk: focus on data compression

Abstract goal: given snapshots {uk}ntrain
k=1 , determine a

low-rank approximation of u : P → X .
Key feature: registration.
Related questions: not covered in this talk.
1. Adaptive sampling; choice of {µk}k
2. Online prediction of uµ for given µ ∈ P .

Taddei; A registration method for model order reduction: data
compression and geometry reduction; SISC, 2020.
Taddei, Zhang; Space-time registration-based model reduction of
parameterized one-dimensional hyperbolic PDEs; submitted, 2020.

Iollo, Taddei, Zhang; Registration-based model reduction in complex
two-dimensional geometries; in preparation, 2020.
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Registration-based data compression
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Linear compression methods

Seek approximations s.t. ûµ := ZN α̂µ =
N∑

n=1

(α̂µ)n ζn.

ZN is learned through the snapshots {uµk}ntrain
k=1 ⊂M.

strong/weak-Greedy, POD,...

Notation: ZN = span{ζn}Nn=1 reduced space;

ZN : α 7→
∑
n

αnζn reduced operator.

Linear compression methods naturally fit within the
standard variational framework.

Aµ (ZN α̂µ,ZNα ) = F (ZNα) ∀α ∈ RN

Galerkin projection.
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Proper orthogonal decomposition (Lumley, Sirovich,...)[
ZN , {αk}k

]
= POD

(
{uk}k , (·, ·),N

)
, ZNα

k = ΠZN
uk

Method of snapshots (Sirovich, 1987)

1. Compute the Gramian matrix C ∈ Rntrain×ntrain,
Ck,k ′ = (uk , uk

′
)

2. Solve the eigenproblem: Cζn = λnζn, λ1 ≥ λ2 ≥ . . .

3. Return the linear operator ZN = [ζ1, . . . , ζN ], where

ζn =

ntrain∑
k=1

(ζn)k u
k , ‖ζ1‖ = . . . = ‖ζN‖ = 1,

and
{αk}ntrain

k=1 , s.t.
(
αk
)
n

:= (ζn, u
k), n = 1, . . . ,N .
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Proper orthogonal decomposition (Lumley, Sirovich,...)

Equivalence with other methods: SVD,
Karhunen–Loève expansion, principal component analysis.

Optimality:1 The space ZN satisfies

ZN ∈ arg inf
W⊂X ,dim(W)=N

ntrain∑
k=1

‖ΠW⊥uk‖2.

Furthermore,
ntrain∑
k=1

‖ΠZ⊥
N
uk‖2 =

ntrain∑
n=N+1

λn.

Practical performance: if u ∈ C∞(P ;X ), the
eigenvalues λn are expected to decay exponentially2.

1Volkwein, 2011. Schmidt-Eckart-Young theorem.
2See Cohen, DeVore, Schwab, 2010 for the analysis.
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Inadequacy of linear compression methods

Consider the parametric field
uµ(x) = sign (x − µ), x ∈ Ω = (0, 1), µ ∈ P =

[1
3 ,

2
3

]
.

Then, inf
W⊂X ,dim(W)=N

sup
µ∈P
‖ΠW⊥uµ‖L2(Ω) = O

(
N−1/2

)
.

Linear methods are ill-suited to deal with traveling fronts.

Reformulation based on mappings
If we introduce the affine bijection Φµ : Ω→ Ω,

Φµ(X ) = X +
(
µ− 1

2

) (
1−

∣∣2X − 1
∣∣)

we have that uµ ◦ Φµ = sign (2X − 1) is µ-independent .
⇒ Registration-based nonlinear compression

Taddei, Perotto, Quarteroni, 2015; Ohlberger, Rave, 2015.
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Two-level approximations

We seek approximations of the form

uµ ≈ ûµ ◦ Φ−1
µ where ûµ = ZNα̂µ, Φµ = id + WM âµ.

The mapping Φµ should be a bijection in Ω for all µ ∈ P
and should make the mapped manifold

M̃ :=
{
uµ ◦ Φµ : µ ∈ P

}
more amenable for linear compression methods (e.g.,
POD).

A few references:
Ohlberger, Rave, 2013; Iollo, Lombardi, 2014; Taddei,
Perotto, Quarteroni, 2015; Mojgani, Balajewicz, 2017;
Mowlavi, Sapsis, 2018.
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Overview

Objective develop a general registration-based
generalization of POD.[

ZN , {αk}k
]

= POD
(
{uk}k , (·, ·),N

)
⇒[

ZN ,WM , {αk}k , {ak}k
]

= RePOD
(
{uk}k , (·, ·),N ,M

)
.

Agenda:
1. Registration for Ω = (0, 1)2.
2. Application to 1D shallow water equations.
3. Beyond rectangular domains.
3. Conclusions and perspectives.

General = independent of the underlying PDE model. 15



Generalization

Task: given ZN ,WM , how can we compute αµ, aµ?

Consider the problem: find uµ ∈ X = H1
0 (Ω) s.t.∫

Ω

K
µ
∇uµ · ∇vdx =

∫
Ω

fµv dx ∀ v ∈ X .

Then, ũµ = uµ ◦ Φµ solves (G
µ

= ∇Φµ, gµ = det(G
µ
))∫

Ω

K̃
µ
∇ũµ · ∇vdx =

∫
Ω

f̃µv dx ∀ v ∈ X ,

with K̃
µ

= gµG
−1
µ

(
K
µ
◦ Φµ

)
G−T
µ

and f̃µ = gµ
(
fµ ◦ Φµ

)
.

Projection-based methods can be used for the
approximation of ũµ as is.
Simultaneous approximation of mapping and solution is
also possible. Zahr, Persson, 2018 (DG framework).
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Then, ũµ = uµ ◦ Φµ solves (G
µ

= ∇Φµ, gµ = det(G
µ
))∫

Ω

K̃
µ
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Registration for Ω = (0, 1)2

17



Plan

Inputs: solution snapshots {uk}k .
Outputs: ZN ,WM , {αk}k , {ak}k s.t. uk ◦ Φk ≈ ûk ,

Φk = id + ϕk , ϕk = WMak , ûk = ZNα
k .

1. Characterize a set of admissible mappings.

2. Optimization-based registration. Given ZN and
uk , determine Φk .

3. Parametric registration. Use 2 to simultaneously
build ZN and the mappings {Φk}k .

18



A class of admissible mappings: theoretical rationale

Consider Φ = id + ϕ where ϕ ∈ C 1, ϕ · n
∣∣
∂Ω

= 0. Then,

Φ is bijective in Ω if infx∈Ω g(x) := det(∇Φ(x)) > 0.

Condition ϕ · n
∣∣
∂Ω

= 0 allows tangential displacements.

Ω ΩΦ
X (1)

x (1) = Φ(X (1))

X (2) x (2) = Φ(X (2))

19



A class of admissible mappings: theoretical rationale

Consider Φ = id + ϕ where ϕ ∈ C 1, ϕ · n
∣∣
∂Ω

= 0. Then,

Φ is bijective in Ω if infx∈Ω g(x) := det(∇Φ(x)) > 0.

We consider a space of tensorized polynomials of degree
J + 1, that is ϕ ∈ Whf , dim(Whf) = Mhf = 2J2.

We replace the constraint infx∈Ω g(x) > 0 with C(ϕ) :=∫
Ω

exp
(
ε− g(x)

Cexp

)
+ exp

(
g(x)− 1/ε

Cexp

)
dx − δ ≤ 0,

which provides a sufficient condition for bijectivity, for
exp( ε

Cexp
)� 1 and moderate ‖∇g‖L∞(Ω).

19



Optimization-based registration

Given the target u ∈ X , the spaces ZN ⊂ L2(Ω),
WM ⊂ Whf , we seek Φ = id + ϕ to minimize(

min
ψ∈ZN

‖u ◦ Φ− ψ‖2L2(Ω)

)
+ ξ

∣∣ϕ∣∣2
H2(Ω)

,

subject to C(ϕ) ≤ 0.

f(Φ; u) := min
ψ∈ZN

‖u ◦ Φ− ψ‖2L2(Ω) proximity measure

measures approximability of the target in the mapped
domain.

ξ
∣∣ϕ∣∣2

H2(Ω)
is a regularization term to bound gradient
and Hessian of ϕ (and thus ∇g).
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Parametric registration {Φ?,k}k ,ZN ← {uk}k ,ZN0,Whf

1. Set ZN=N0 = ZN0, WM =Whf .
For N = N0, . . . ,Nmax − 1

2. [ϕ?,k , f?,kN,M ] = registration
(
uk ,ZN ,WM

)
k = 1, . . . , ntrain.

3. [WM , {ak}k ] = POD
(
{ϕ?,k}ntrain

k=1 , tolpod, (·, ·)?
)

if maxk f
?,k
N,M < tol, break

else
4. ZN+1 = ZN ∪ span{uµk? ◦ Φ?,k?}

k? = arg maxk f
?,k
N,M .

EndIf
EndFor
f?,kN,M = f(Φ?; uk) := min

ψ∈ZN

‖uk ◦ Φ− ψ‖2L2(Ω)
21



Parametric registration: remarks

The Greedy procedure simultaneously constructs the space
ZN and the mappings {Φ}k .

If Whf = ∅ (no registration), ⇒ Strong Greedy.

In practice, the algorithm is applied to the modified
snapshots {sk = s(uk)}k where s : X → L2(Ω) is a
registration sensor. more on s later.
⇒ We cannot use the algorithm to build ZN . Instead,[

ZN , {αk}k
]

= POD
(
{uk ◦ Φ?,k}k , (·, ·),N

)
,

POD reduction inside the for loop
preserves the condition ϕ ∈ WM ⇒ ϕ · n|∂Ω = 0;

reduces dramatically the cost of subsequent iterations.
22



Application to 1D shallow water equations
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Problem statement

Consider the problem: find u = [h, q]T such that{
∂tu + ∂x f (u) = −gh∂xbe2, (x , t) ∈ Ω = (0, L)× (0,T )

q(0, t) = qin,µ(t), h(L, t) = 2, u(x , 0) = u0(x),

with f (u) = [q, q
2

h + g
2h

2]T , b(x) = −0.2 + e−0.125(x−10)4
,

qin,µ(t) = q0

(
1 + µ1 t e

− 1
2µ2

2
(t−0.05)2

)
, q0 = 4.4,

u0 is the steady-state solution obtained for qin,µ ≡ q0.
µ = [µ1, µ2] ∈ P = [2, 8]× [0.1, 0.2].

The problem shares relevant features with dam-break
studies with non-constant bathymetry.
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Behavior of the free surface z = h + b
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Application of the registration procedure

We train our model based on ntrain = 102 samples; we
assess performance based on ntest = 20 samples.
We consider the registration sensor s(u) = h.
We initialize the template space TN0=2 = span{h0, hµ̄}, we
set ξ = 10−4,Mhf = 128, tolpod = 10−4 ⇒ M = 5

Generalization (for out-of-sample µ)
Mapping coefficients: RBF-based regression.

Wendland, 2004.
Solution coefficients: Petrov-Galerkin proj + EQ.

Farhat et al. 2015; Yano, 2019.

Taddei, Zhang, 2020 (submitted).
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Behavior of the registered free surface z = h + b
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Performance of the registration procedure
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Performance of the ROM
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Beyond rectangular domains
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Extension to non-rectangular domains

Example: Ω = BR=1(0), consider bijections Φ1, Φ2 and

assume that Φ1(x) 6= Φ2(x) at x ∈ ∂Ω.

Then, Φt := tΦ1 + (1− t)Φ2 is not a bijection in Ω for
any t ∈ (0, 1).

Conclusion: affine mappings — Φ = id + WMa —
cannot properly capture finite deformations over

non-straight edges.

Question: how can we characterize admissible
mappings?
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Model problem: potential flow past an airfoil

Consider the problem: −∆uµ = 0 in Ω, uµ|∂Ω = hµ,
µ = [µ1, µ2], Ω = Ωbox \ Ωnaca.

Define Gnaca s.t. ∂Ωnaca = {x : Gnaca(x) = 0}.

32



Strategy 1: constrained approach (I)

We consider mappings Φ = id + ϕ over Ωbox such that

1. ϕ · n|∂Ωbox = 0, C(ϕ) ≤ 0 same as before

2.
∑

i |Gnaca(Φ(x i))|2 − tol ≤ 0. new

3. Φ(xfixj ) = xfixj . new

Constraints in 1. enforce bijectivity in Ωbox.

Constraint in 2. controls max
x∈∂Ω

dist (Φ(x), ∂Ω).

Constraint in 2 is nonlinear and non-convex ⇒
similar per-iteration cost

Constraint in 3. deals with "difficult points".
xfix1 = [0, 0], [1, 0].

33



Strategy 1: constrained approach (II)

The additional constraints should ultimately control the
Hausdorff distance distH(Φ(∂Ω), ∂Ω) =

max

{
max
x∈∂Ω

dist (Φ(x), ∂Ω) , max
x∈∂Ω

dist (x ,Φ(∂Ω))

}
.

Theoretical rationale: under proper assumptions on
the domain Ω and the mapping Φ, we can control
distH(Φ(∂Ω), ∂Ω) in terms of maxx∈∂Ω dist (Φ(x), ∂Ω).

Observation: constraint 3 plays a decisive role when
there are corners.

Iollo, Taddei, Zhang, (in preparation)
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Strategy 2: partitioned approach (I)

Introduce a partition of Ω, {Ωq}Ndd
q=1 such that Ωq is

isomorphic to Ω̂ = (0, 1)2.

Consider mappings of the form

Φ =

Ndd∑
q=1

Ψq ◦ Φq ◦Ψ−1
q 1Ωq

where Ψq : Ω̂→ Ωq, and Φq =

id + W q
Ma.

Φ should be (i) globally continuous, and (ii) locally

bijective, Φ(Ωq) = Ωq, q = 1, . . . ,Ndd.
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Strategy 2: partitioned approach (II)

Local bijectivity is equivalent to bijectivity of Φq in Ω̂.
admissible class naturally defined.

Implementation borrows several elements from classic
isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.

Pro: possibility to approximate exactly the geometry with
polynomials of moderate order.

Con: local bijectivity implies global bijectivity but it is a
much stronger condition ⇒ limited approximation power.

36



Strategy 2: partitioned approach (II)

Local bijectivity is equivalent to bijectivity of Φq in Ω̂.
admissible class naturally defined.

Implementation borrows several elements from classic
isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.

Pro: possibility to approximate exactly the geometry with
polynomials of moderate order.

Con: local bijectivity implies global bijectivity but it is a
much stronger condition ⇒ limited approximation power.

36



Numerical results: description of the test

Consider ntrain = 50 snapshots for training and ntest = 100
snapshots for testing.

Consider a fully non-intrusive approach (RBF regression
for α̂µ, âµ).

We measure performance using

E geo
Φ (µ) = max

i∈Inaca

∣∣Gnaca
(
Φµ(xhfi )

) ∣∣,
E sol

Φ (µ) =
‖uµ − ûµ ◦ Φ−1

µ ‖H1(Ω)

‖uµ‖H1(Ω)
.

{xhfi }i∈Inaca nodes of the FE mesh on the airfoil.
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Numerical results: geometrical error

Constrained Partitioned

Constrained approach: tol = 10−4, |Inaca| = 100,
Mhf = 1250.
Partitioned approach: Mhf = 600.
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Numerical results: solution error

Linear Constrained Partitioned
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Conclusions and perspectives
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Summary

We propose a
general = independent of the underlying PDE model

registration-based compression strategy for pMOR,

uµ ≈ ûµ ◦ Φ−1
µ with ûµ = ZNαµ and Φµ = id+ WMaµ

We illustrate the application to one-dimensional systems
of hyperbolic PDEs (shallow-water equations).

We illustrate the extension to non-rectangular domains
(potential flow).
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Perspectives

Several theoretical and methodological challenges need to
be addressed.

1. Development of fully-intrusive schemes for the
simultaneous prediction of α̂µ and âµ.

Link with Zahr, Persson, JCP, 2018.

2. Investigation of performance for relevant problems.
in CFD self-similarity, transport.

3. Mathematical analysis.
for what problems shall registration help?
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Geometry reduction

Given the parameterized domains {Ωµ}µ∈P ⊂ Rd ,
the goal of geometry reduction is to determine a
low-rank mapping Φ and a domain Ω̂ such that

Φµ is invertible in Ω̂ and Φµ(Ω̂) ≈ Ωµ, ∀µ ∈ P .

This is equivalent to reducingMgeo := {uµ := 1Ωµ
}µ∈P

to a singleton û = 1Ω̂.
Joint work with F Ballarin, E Delgado, A Mola, and G
Rozza.

pMOR techniques in parameterized domains:
AE Løvgren, Y Maday, and EM Rønquist. M2AN, 2006;
G Rozza, DBP Huynh, AT Patera, ARCME, 2008;
A Manzoni, A Quarteroni, G Rozza, IJNME, 2012.

and many others. 43
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Thank you for your
attention!

Please visit math.u-bordeaux.fr/~ttaddei/ for further
information.
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