Registration-based model reduction of parameterized PDEs with sharp gradients

Tommaso Taddei
Inria, MEMPHIS Team

Trieste, SIAM Colloquia, June 18th 2020

Acknowledgements

Academic collaborators:
A lollo, M Bergmann, G Sambataro, L Zhang (Inria)
P Fischer (UIUC), Y Maday (Sorbonne), A Patera (MIT).

Sponsors:

Idex Bordeaux (projet émergence)
EDF
ANDRA

2020-2021
2020-2021
2019-2022

Special thanks to:
Pierre Mounoud (University of Bordeaux)
Masayuki Yano (University of Toronto)

Objective

Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost associated with the solution to parameterized problems. pMOR is motivated by real-time and many-query problems design and optimization, UQ, control

Parameterized Model Order Reduction (pMOR) for PDEs

The goal of pMOR is to reduce the marginal cost associated with the solution to parameterized problems.
pMOR is motivated by real-time and many-query problems design and optimization, UQ, control

Given the manifold $\mathcal{M}=\left\{u_{\mu}: \mu \in \mathcal{P}\right\} \subset \mathcal{X}$, where $\mathcal{P} \subset \mathbb{R}^{P}$ is a compact set, and
$(\mathcal{X},\|\cdot\|)$ is an Hilbert space over $\Omega \subset \mathbb{R}^{d}$,
the goal of pMOR is to determine a low-rank approximation \widehat{u}_{μ} of u_{μ} that can be rapidly computed for any $\mu \in \mathcal{P}$.

pMOR: general recipe

Pb: find $u_{\mu} \in \mathcal{X}: A_{\mu}\left(u_{\mu}, v\right)=F(v) \quad \forall v \in \mathcal{Y} \mu \in \mathcal{P}$ Approx: $\hat{u}_{\mu}=\sum_{n=1}^{N} \widehat{\alpha}_{\mu}^{n} \zeta_{n}, \quad \widehat{\alpha}^{n}: \mathcal{P} \rightarrow \mathbb{R}, \zeta_{n} \in \mathcal{X}$
$N \ll N_{\mathrm{hf}}=$ dofs of the Full Order Model ($\underbrace{\text { FOM }}$)
$=\mathrm{FE}, \ldots$

pMOR: general recipe

Pb : find $u_{\mu} \in \mathcal{X}: A_{\mu}\left(u_{\mu}, v\right)=F(v) \quad \forall v \in \mathcal{Y} \mu \in \mathcal{P}$
Approx: $\hat{u}_{\mu}=\sum_{n=1}^{N} \hat{\alpha}_{\mu}^{n} \zeta_{n}$,
$\widehat{\alpha}^{n}: \mathcal{P} \rightarrow \mathbb{R}, \zeta_{n} \in \mathcal{X}$
Offline stage: (performed once)
compute $u_{\mu^{1}}, \ldots, u_{\mu^{n} \text { train }}$ using a FE (or FV...) solver; construct $\left\{\zeta_{n}\right\}_{n=1}^{N}$ and define $\mathcal{Z}_{N}=\operatorname{span}\left\{\zeta_{n}\right\}_{n=1}^{N}$.

Online stage: (performed for any new $\bar{\mu} \in \mathcal{P}$) estimate the solution coefficients $\widehat{\alpha} \frac{1}{\bar{\mu}}, \ldots, \widehat{\alpha}_{\bar{\mu}}^{N}$. estimate $\left\|\hat{u}_{\bar{\mu}}-u_{\bar{\mu}}\right\|$.
$N \ll N_{\mathrm{hf}}=$ dofs of the Full Order Model $(\underset{=\mathrm{FE}, \ldots}{\mathrm{FOM}})$

pMOR: challenges

Pb: find $u_{\mu} \in \mathcal{X}: A_{\mu}\left(u_{\mu}, v\right)=F(v) \quad \forall v \in \mathcal{Y} \mu \in \mathcal{P}$
Approx: $\hat{u}_{\mu}=\sum_{n=1}^{N} \widehat{\alpha}_{\mu}^{n} \zeta_{n}$,
$\widehat{\alpha}^{n}: \mathcal{P} \rightarrow \mathbb{R}, \zeta_{n} \in \mathcal{X}$
Offline stage: (performed once)
compute $u_{\mu^{1}}, \ldots, u_{\mu^{n} \text { rrain }}$ using a FE (or FV...) solver;

1. construct $\left\{\zeta_{n}\right\}_{n=1}^{N}$ and define $\mathcal{Z}_{N}=\operatorname{span}\left\{\zeta_{n}\right\}_{n=1}^{N}$.

Online stage: (performed for any new $\bar{\mu} \in \mathcal{P}$)
2. estimate the solution coefficients $\widehat{\alpha}_{\bar{\mu}}^{1}, \ldots, \widehat{\alpha}_{\bar{\mu}}^{N}$.
3. estimate $\left\|\hat{u}_{\bar{\mu}}-u_{\bar{\mu}}\right\|$.
$N \ll N_{\mathrm{hf}}=$ dofs of the Full Order Model $(\underbrace{\mathrm{FOM}}_{=\mathrm{FE}, \ldots})$

Successful applications of pMOR methods

Past and current research on pMOR focuses on

1. data compression
\mathcal{Z}_{N}
2. generalization
3. a posteriori error estimation
$\mathcal{Z}_{N} \Rightarrow \widehat{\boldsymbol{\alpha}}_{\bar{\mu}}$
$\left\|\hat{u}_{\bar{\mu}}-u_{\bar{\mu}}\right\|$

Successful applications of pMOR methods

Past and current research on pMOR focuses on

1. data compression
2. generalization
3. a posteriori error estimation

PR-scRBE: Patera, Huynh, Knezevic, Akselos S.A. Port-Reduced static condensation RB Element method component-based structures, solid mechanics.

LRB-Ms: Ohlberger, Schindler, Localized RB Multiscale method multiscale problems, porous media.

Akselos is a software company that provides a commercial implementation of PR-scRBE.

pMOR for fluid problems

Data compression
Challenges: turbulence (wide spectrum of scales), approximation of shocks, boundary/internal layers...
nonlinear approximation procedures.

Generalization

Challenges: fragility of Galerkin models, nonlinearities.

$$
\begin{aligned}
& \text { stabilized formulations; } \\
& \text { hyper-reduction. }
\end{aligned}
$$

Error estimation

Challenge: need for estimates of averaged QOls.
time-averaged error indicators.

Aim of this talk: focus on data compression

Abstract goal: given snapshots $\left\{u^{k}\right\}_{k=1}^{n_{\text {train }}}$, determine a low-rank approximation of $u: \mathcal{P} \rightarrow \mathcal{X}$.
Key feature: registration.
Related questions:

1. Adaptive sampling;
not covered in this talk. choice of $\left\{\mu^{k}\right\}_{k}$
2. Online prediction of u_{μ} for given $\mu \in \mathcal{P}$.

Taddei; A registration method for model order reduction: data compression and geometry reduction; SISC, 2020.
Taddei, Zhang; Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs; submitted, 2020. Iollo, Taddei, Zhang; Registration-based model reduction in complex two-dimensional geometries; in preparation, 2020.

Registration-based data compression

Linear compression methods

Seek approximations s.t. $\widehat{u}_{\mu}:=Z_{N} \widehat{\alpha}_{\mu}=\sum_{n=1}\left(\widehat{\alpha}_{\mu}\right)_{n} \zeta_{n}$.
Z_{N} is learned through the snapshots $\left\{u_{\mu^{k}}\right\}_{k=1}^{n_{\text {train }}} \subset \mathcal{M}$. strong/weak-Greedy, POD, ...

Linear compression methods

Seek approximations s.t. $\widehat{u}_{\mu}:=Z_{N} \widehat{\alpha}_{\mu}=\sum_{n=1}\left(\widehat{\alpha}_{\mu}\right)_{n} \zeta_{n}$.
Z_{N} is learned through the snapshots $\left\{u_{\mu^{k}}\right\}_{k=1}^{n_{\text {train }}} \subset \mathcal{M}$. strong/weak-Greedy, POD, ...

Notation: $\mathcal{Z}_{N}=\operatorname{span}\left\{\zeta_{n}\right\}_{n=1}^{N}$ reduced space; $Z_{N}: \alpha \mapsto \sum_{n} \alpha_{n} \zeta_{n}$ reduced operator.
Linear compression methods naturally fit within the standard variational framework.

$$
A_{\mu}\left(Z_{N} \widehat{\alpha}_{\mu}, Z_{N} \alpha\right)=F\left(Z_{N} \alpha\right) \quad \forall \alpha \in \mathbb{R}^{N}
$$

Galerkin projection.

Proper orthogonal decomposition (Lumley, Sirovich,...)

$$
\left[Z_{N},\left\{\alpha^{k}\right\}_{k}\right]=\operatorname{POD}\left(\left\{u^{k}\right\}_{k},(\cdot, \cdot), N\right), \quad Z_{N} \alpha^{k}=\Pi_{Z_{N}} u^{k}
$$

Method of snapshots (Sirovich, 1987)

1. Compute the Gramian matrix $C \in \mathbb{R}^{n_{\text {train }} \times n_{\text {train }}}$,

$$
\mathrm{C}_{k, k^{\prime}}=\left(u^{k}, u^{k^{\prime}}\right)
$$

2. Solve the eigenproblem: $\boldsymbol{C} \zeta_{n}=\lambda_{n} \zeta_{n}, \lambda_{1} \geq \lambda_{2} \geq \ldots$
3. Return the linear operator $Z_{N}=\left[\zeta_{1}, \ldots, \zeta_{N}\right]$, where

$$
\zeta_{n}=\sum_{k=1}^{n_{\text {train }}}\left(\zeta_{n}\right)_{k} u^{k},\left\|\zeta_{1}\right\|=\ldots=\left\|\zeta_{N}\right\|=1,
$$

and

$$
\left\{\alpha^{k}\right\}_{k=1}^{n_{\text {train }}}, \text { s.t. }\left(\alpha^{k}\right)_{n}:=\left(\zeta_{n}, u^{k}\right), \quad n=1, \ldots, N \text {. }
$$

Proper orthogonal decomposition (Lumley, Sirovich,...)

Equivalence with other methods: SVD, Karhunen-Loève expansion, principal component analysis.
Optimality: ${ }^{1}$ The space \mathcal{Z}_{N} satisfies

$$
\mathcal{Z}_{N} \in \arg \inf _{\mathcal{W} \subset \mathcal{X}, \operatorname{dim}(\mathcal{W})=N} \sum_{k=1}^{n_{\text {train }}}\left\|\Pi_{\mathcal{W} \perp} u^{k}\right\|^{2} .
$$

Furthermore, $\sum_{k=1}^{n_{\text {train }}}\left\|\Pi_{\mathcal{Z}_{N}} u^{k}\right\|^{2}=\sum_{n=N+1}^{n_{\text {train }}} \lambda_{n}$.
Practical performance: if $u \in C^{\infty}(\mathcal{P} ; \mathcal{X})$, the eigenvalues λ_{n} are expected to decay exponentially ${ }^{2}$.
${ }^{1}$ Volkwein, 2011. Schmidt-Eckart-Young theorem.
${ }^{2}$ See Cohen, DeVore, Schwab, 2010 for the analysis.

Inadequacy of linear compression methods

Consider the parametric field

$$
u_{\mu}(x)=\operatorname{sign}(x-\mu), x \in \Omega=(0,1), \mu \in \mathcal{P}=\left[\frac{1}{3}, \frac{2}{3}\right] .
$$

Then,

$$
\mathcal{W} \subset \mathcal{X}, \operatorname{dim}(\mathcal{W})=N \sup _{\mu \in \mathcal{P}}
$$

Linear methods are ill-suited to deal with traveling fronts.

Taddei, Perotto, Quarteroni, 2015; Ohlberger, Rave, 2015.

Inadequacy of linear compression methods

Consider the parametric field

$$
u_{\mu}(x)=\operatorname{sign}(x-\mu), x \in \Omega=(0,1), \mu \in \mathcal{P}=\left[\frac{1}{3}, \frac{2}{3}\right] .
$$

Then,

$$
\inf _{\mathcal{W} \subset \mathcal{X}, \operatorname{dim}(\mathcal{W})=N} \sup _{\mu \in \mathcal{P}}\left\|\Pi_{\mathcal{W} \perp} u_{\mu}\right\|_{L^{2}(\Omega)}=\mathcal{O}\left(N^{-1 / 2}\right) .
$$

Linear methods are ill-suited to deal with traveling fronts.
Reformulation based on mappings
If we introduce the affine bijection $\Phi_{\mu}: \Omega \rightarrow \Omega$,

$$
\Phi_{\mu}(X)=X+\left(\mu-\frac{1}{2}\right)(1-|2 X-1|)
$$

we have that $u_{\mu} \circ \Phi_{\mu}=\operatorname{sign}(2 X-1)$ is μ-independent .
\Rightarrow Registration-based nonlinear compression
Taddei, Perotto, Quarteroni, 2015; Ohlberger, Rave, 2015.

Two-level approximations

We seek approximations of the form

$$
u_{\mu} \approx \widehat{u}_{\mu} \circ \Phi_{\mu}^{-1} \text { where } \widehat{u}_{\mu}=Z_{N} \widehat{\alpha}_{\mu}, \Phi_{\mu}=\mathrm{id}+W_{M} \widehat{\mathrm{a}}_{\mu} .
$$

The mapping Φ_{μ} should be a bijection in Ω for all $\mu \in \mathcal{P}$ and should make the mapped manifold

$$
\widetilde{\mathcal{M}}:=\left\{u_{\mu} \circ \Phi_{\mu}: \mu \in \mathcal{P}\right\}
$$

more amenable for linear compression methods (e.g., POD).

Two-level approximations

We seek approximations of the form

$$
u_{\mu} \approx \widehat{u}_{\mu} \circ \Phi_{\mu}^{-1} \text { where } \widehat{u}_{\mu}=Z_{N} \widehat{\alpha}_{\mu}, \Phi_{\mu}=\mathrm{id}+W_{M} \widehat{\mathrm{a}}_{\mu} .
$$

The mapping Φ_{μ} should be a bijection in Ω for all $\mu \in \mathcal{P}$ and should make the mapped manifold

$$
\widetilde{\mathcal{M}}:=\left\{u_{\mu} \circ \Phi_{\mu}: \mu \in \mathcal{P}\right\}
$$

more amenable for linear compression methods (e.g., POD).

A few references:

Ohlberger, Rave, 2013; Iollo, Lombardi, 2014; Taddei, Perotto, Quarteroni, 2015; Mojgani, Balajewicz, 2017; Mowlavi, Sapsis, 2018.

Overview

Objective develop a general registration-based generalization of POD.

$$
\begin{aligned}
& {\left[Z_{N},\left\{\boldsymbol{\alpha}^{k}\right\}_{k}\right]=\operatorname{POD}\left(\left\{u^{k}\right\}_{k},(\cdot, \cdot), N\right) \Rightarrow} \\
& {\left[Z_{N}, W_{M},\left\{\boldsymbol{\alpha}^{k}\right\}_{k},\left\{\mathrm{a}^{k}\right\}_{k}\right]=\operatorname{RePOD}\left(\left\{u^{k}\right\}_{k},(\cdot, \cdot), N, M\right) .}
\end{aligned}
$$

Agenda:

1. Registration for $\Omega=(0,1)^{2}$.
2. Application to 1 D shallow water equations.
3. Beyond rectangular domains.
4. Conclusions and perspectives.

General = independent of the underlying PDE model.

Generalization

Task: given Z_{N}, W_{M}, how can we compute α_{μ}, a_{μ} ?

Generalization

Task: given Z_{N}, W_{M}, how can we compute α_{μ}, a_{μ} ?
Consider the problem: find $u_{\mu} \in \mathcal{X}=H_{0}^{1}(\Omega)$ s.t.

$$
\int_{\Omega} \underline{K}_{\mu} \nabla u_{\mu} \cdot \nabla v d \underline{x}=\int_{\Omega} f_{\mu} v d \underline{x} \forall v \in \mathcal{X}
$$

Then, $\tilde{u}_{\mu}=u_{\mu} \circ \underline{\Phi}_{\mu}$ solves $\quad\left(\underline{\underline{G}}_{\mu}=\nabla \underline{\Phi}_{\mu}, g_{\mu}=\operatorname{det}\left(\underline{\underline{G}}_{\mu}\right)\right)$

$$
\int_{\Omega} \widetilde{\widetilde{K}}_{\mu} \nabla \tilde{u}_{\mu} \cdot \nabla v d \underline{x}=\int_{\Omega} \widetilde{f}_{\mu} v d \underline{x} \forall v \in \mathcal{X}
$$

with $\underline{\underline{K}}_{\mu}=g_{\mu} \underline{\underline{G}}_{\mu}^{-1}\left(\underline{\underline{K}}_{\mu} \circ \underline{\Phi}_{\mu}\right) \underline{\underline{G}}_{\mu}^{-\top}$ and $\widetilde{f}_{\mu}=g_{\mu}\left(f_{\mu} \circ \underline{\Phi}_{\mu}\right)$.

Generalization

Task: given Z_{N}, W_{M}, how can we compute $\alpha_{\mu}, \mathrm{a}_{\mu}$?
Consider the problem: find $u_{\mu} \in \mathcal{X}=H_{0}^{1}(\Omega)$ s.t.

$$
\int_{\Omega} \underline{K}_{\mu} \nabla u_{\mu} \cdot \nabla v d \underline{x}=\int_{\Omega} f_{\mu} v d \underline{x} \forall v \in \mathcal{X}
$$

Then, $\tilde{u}_{\mu}=u_{\mu} \circ \underline{\Phi}_{\mu}$ solves $\quad\left(\underline{\underline{G}}_{\mu}=\nabla \underline{\Phi}_{\mu}, g_{\mu}=\operatorname{det}\left(\underline{\underline{G}}_{\mu}\right)\right)$

$$
\int_{\Omega} \widetilde{\widetilde{K}}_{\mu} \nabla \tilde{u}_{\mu} \cdot \nabla v d \underline{x}=\int_{\Omega} \widetilde{f}_{\mu} v d \underline{x} \forall v \in \mathcal{X}
$$

with $\underline{\underline{K}}_{\mu}=g_{\mu} \underline{\underline{G}}_{\mu}^{-1}\left(\underline{\underline{K}}_{\mu} \circ \underline{\Phi}_{\mu}\right) \underline{\underline{G}}_{\mu}^{-T}$ and $\widetilde{f}_{\mu}=g_{\mu}\left(f_{\mu} \circ \underline{\Phi}_{\mu}\right)$.
Projection-based methods can be used for the approximation of \widetilde{u}_{μ} as is.
Simultaneous approximation of mapping and solution is also possible. Zahr, Persson, 2018 (DG framework).

Registration for $\Omega=(0,1)^{2}$

Inputs: solution snapshots $\left\{u^{k}\right\}_{k}$.
Outputs: $Z_{N}, W_{M},\left\{\alpha^{k}\right\}_{k},\left\{\mathrm{a}^{k}\right\}_{k}$ s.t. $u^{k} \circ \Phi^{k} \approx \widehat{u}^{k}$,

$$
\underline{\Phi}^{k}=i d+\underline{\varphi}^{k}, \quad \underline{\varphi}^{k}=W_{M} \mathrm{a}^{k}, \quad \widehat{u}^{k}=Z_{N} \alpha^{k} .
$$

1. Characterize a set of admissible mappings.
2. Optimization-based registration. Given \mathcal{Z}_{N} and u^{k}, determine Φ^{k}.
3. Parametric registration. Use 2 to simultaneously build \mathcal{Z}_{N} and the mappings $\left\{\underline{\Phi}^{k}\right\}_{k}$.

A class of admissible mappings: theoretical rationale

Consider $\underline{\phi}=\mathrm{id}+\underline{\varphi}$ where $\underline{\varphi} \in C^{1},\left.\underline{\varphi} \cdot \underline{n}\right|_{\partial \Omega}=0$. Then, Φ is bijective in Ω if inf $\underline{x}_{\underline{x} \in \Omega} g(\underline{x}):=\operatorname{det}(\nabla \Phi(\underline{x}))>0$.

Condition $\left.\underline{\varphi} \cdot \underline{n}\right|_{\partial \Omega}=0$ allows tangential displacements.

A class of admissible mappings: theoretical rationale

Consider $\underline{\Phi}=\mathrm{id}+\underline{\varphi}$ where $\underline{\varphi} \in C^{1},\left.\underline{\varphi} \cdot \underline{n}\right|_{\partial \Omega}=0$. Then, Φ is bijective in Ω if inf $_{\underline{x} \in \Omega} g(\underline{x}):=\operatorname{det}(\nabla \Phi(\underline{x}))>0$.

We consider a space of tensorized polynomials of degree $J+1$, that is $\underline{\varphi} \in \mathcal{W}_{\mathrm{hf}}, \operatorname{dim}\left(\mathcal{N}_{\mathrm{hf}}\right)=M_{\mathrm{hf}}=2 J^{2}$.
We replace the constraint $\inf _{\underline{x} \in \Omega} g(\underline{x})>0$ with $\mathcal{C}(\underline{\varphi}):=$
$\int_{\Omega} \exp \left(\frac{\epsilon-g(\underline{x})}{C_{\exp }}\right)+\exp \left(\frac{g(\underline{x})-1 / \epsilon}{C_{\exp }}\right) d \underline{x}-\delta \leq 0$,
which provides a sufficient condition for bijectivity, for $\exp \left(\frac{\epsilon}{C_{\text {exp }}}\right) \gg 1$ and moderate $\|\nabla g\|_{L^{\infty}(\Omega)}$.

Optimization-based registration

Given the target $u \in \mathcal{X}$, the spaces $\mathcal{Z}_{N} \subset L^{2}(\Omega)$, $\mathcal{W}_{M} \subset \mathcal{W}_{\mathrm{hf}}$, we seek $\Phi=i d+\varphi$ to minimize

$$
\left(\min _{\psi \in \mathcal{Z}_{N}}\|u \circ \underline{\Phi}-\psi\|_{L^{2}(\Omega)}^{2}\right)+\xi|\underline{\varphi}|_{H^{2}(\Omega)}^{2},
$$

subject to $\mathcal{C}(\underline{\varphi}) \leq 0$.

Optimization-based registration

Given the target $u \in \mathcal{X}$, the spaces $\mathcal{Z}_{N} \subset L^{2}(\Omega)$,
$\mathcal{W}_{M} \subset \mathcal{W}_{\mathrm{hf}}$, we seek $\Phi=i d+\varphi$ to minimize

$$
\left(\min _{\psi \in \mathcal{Z}_{N}}\|u \circ \underline{\Phi}-\psi\|_{L^{2}(\Omega)}^{2}\right)+\xi|\underline{\varphi}|_{H^{2}(\Omega)}^{2},
$$

subject to $\mathcal{C}(\underline{\varphi}) \leq 0$.
$f(\underline{\Phi} ; u):=\min _{\psi \in \mathcal{Z}_{N}}\|u \circ \underline{\Phi}-\psi\|_{L^{2}(\Omega)}^{2}$
proximity measure measures approximability of the target in the mapped domain.
$\xi|\underline{\varphi}|_{H^{2}(\Omega)}^{2}$ is a regularization term to bound gradient and Hessian of φ (and thus ∇g).

Parametric registration $\left\{\underline{\Phi}^{\star, k}\right\}_{k}, \mathcal{Z}_{N} \leftarrow\left\{u^{k}\right\}_{k}, \mathcal{Z}_{N_{0}}, \mathcal{W}_{\mathrm{hf}}$

1. Set $\mathcal{Z}_{N=N_{0}}=\mathcal{Z}_{N_{0}}, \mathcal{W}_{M}=\mathcal{W}_{\text {hf }}$.

For $N=N_{0}, \ldots, N_{\max }-1$
2. $\left[\varphi^{\star, k}, f_{N, M}^{\star, k}\right]=$ registration $\left(u^{k}, \mathcal{Z}_{N}, \mathcal{W}_{M}\right)$

$$
k=1, \ldots, n_{\text {train }} .
$$

3. $\left[\mathcal{W}_{M},\left\{\mathrm{a}^{k}\right\}_{k}\right]=\operatorname{POD}\left(\left\{\underline{\varphi}^{\star, k}\right\}_{k=1}^{n_{\text {train }}}\right.$, tol $\left._{\text {pod }},(\cdot, \cdot)_{\star}\right)$
if $\max _{k} f_{N, M}^{\star, k}<$ tol, break
else

$$
\text { 4. } \mathcal{Z}_{N+1}=\mathcal{Z}_{N} \cup \operatorname{span}\left\{u_{\mu^{k^{*}}} \circ \underline{\Phi}^{\star, k^{*}}\right\}
$$

EndIf

EndFor

$\mathfrak{f}_{N, M}^{\star, k}=\mathfrak{f}\left(\underline{\Phi}^{\star} ; u^{k}\right):=\min _{\psi \in \mathcal{Z}_{N}}\left\|u^{k} \circ \underline{\Phi}-\psi\right\|_{L^{2}(\Omega)}^{2}$

Parametric registration: remarks

The Greedy procedure simultaneously constructs the space \mathcal{Z}_{N} and the mappings $\{\underline{\Phi}\}_{k}$.

If $\mathcal{W}_{\mathrm{hf}}=\emptyset$ (no registration), \Rightarrow Strong Greedy.
In practice, the algorithm is applied to the modified snapshots $\left\{s^{k}=\mathfrak{s}\left(u^{k}\right)\right\}_{k}$ where $\mathfrak{s}: \mathcal{X} \rightarrow L^{2}(\Omega)$ is a registration sensor. more on s later.
\Rightarrow We cannot use the algorithm to build \mathcal{Z}_{N}. Instead,

$$
\left[Z_{N},\left\{\alpha^{k}\right\}_{k}\right]=\operatorname{POD}\left(\left\{u^{k} \circ \underline{\Phi}^{\star, k}\right\}_{k},(\cdot, \cdot), N\right)
$$

POD reduction inside the for loop preserves the condition $\left.\underline{\varphi} \in \mathcal{W}_{M} \Rightarrow \underline{\varphi} \cdot \underline{n}\right|_{\partial \Omega}=0$; reduces dramatically the cost of subsequent iterations.

Application to 1D shallow water equations

Problem statement

Consider the problem: find $\underline{u}=[h, q]^{\top}$ such that
$\int \partial_{t} \underline{u}+\partial_{x} \underline{f}(\underline{u})=-g h \partial_{x} b \underline{e}_{2}, \quad(x, t) \in \Omega=(0, L) \times(0, T)$ $q(0, t)=q_{\mathrm{in}, \mu}(t), \quad h(L, t)=2, \quad \underline{u}(x, 0)=\underline{u}_{0}(x)$, with $\underline{f}(\underline{u})=\left[q, \frac{q^{2}}{h}+\frac{g}{2} h^{2}\right]^{T}, b(x)=-0.2+e^{-0.125(x-10)^{4}}$,

$$
q_{\mathrm{in}, \mu}(t)=q_{0}\left(1+\mu_{1} t e^{-\frac{1}{2 \mu_{2}^{2}}(t-0.05)^{2}}\right), \quad q_{0}=4.4
$$

\underline{u}_{0} is the steady-state solution obtained for $q_{\text {in }, \mu} \equiv q_{0}$.

$$
\mu=\left[\mu_{1}, \mu_{2}\right] \in \mathcal{P}=[2,8] \times[0.1,0.2] .
$$

Problem statement

Consider the problem: find $\underline{u}=[h, q]^{\top}$ such that $\int \partial_{t} \underline{u}+\partial_{x} \underline{f}(\underline{u})=-g h \partial_{x} b \underline{e}_{2}, \quad(x, t) \in \Omega=(0, L) \times(0, T)$

$$
q(0, t)=q_{\mathrm{in}, \mu}(t), \quad h(L, t)=2, \quad \underline{u}(x, 0)=\underline{u}_{0}(x)
$$

with $\underline{f}(\underline{u})=\left[q, \frac{q^{2}}{h}+\frac{g}{2} h^{2}\right]^{T}, b(x)=-0.2+e^{-0.125(x-10)^{4}}$,

$$
q_{\mathrm{in}, \mu}(t)=q_{0}\left(1+\mu_{1} t e^{-\frac{1}{2 \mu_{2}^{2}}(t-0.05)^{2}}\right), \quad q_{0}=4.4
$$

\underline{u}_{0} is the steady-state solution obtained for $q_{\text {in }, \mu} \equiv q_{0}$.

$$
\mu=\left[\mu_{1}, \mu_{2}\right] \in \mathcal{P}=[2,8] \times[0.1,0.2] .
$$

The problem shares relevant features with dam-break studies with non-constant bathymetry.

Behavior of the free surface $z=h+b$

Application of the registration procedure

We train our model based on $n_{\text {train }}=10^{2}$ samples; we assess performance based on $n_{\text {test }}=20$ samples.
We consider the registration sensor $\mathfrak{s}(\underline{u})=h$.
We initialize the template space $\mathcal{T}_{N_{0}=2}=\operatorname{span}\left\{h_{0}, h_{\bar{\mu}}\right\}$, we set $\xi=10^{-4}, M_{\mathrm{hf}}=128$, tol $_{\text {pod }}=10^{-4} \quad \Rightarrow M=5$

Application of the registration procedure

We train our model based on $n_{\text {train }}=10^{2}$ samples; we assess performance based on $n_{\text {test }}=20$ samples.
We consider the registration sensor $\mathfrak{s}(\underline{u})=h$.
We initialize the template space $\mathcal{T}_{N_{0}=2}=\operatorname{span}\left\{h_{0}, h_{\bar{\mu}\}}\right\}$, we set $\xi=10^{-4}, M_{\text {hf }}=128$, tol pod $=10^{-4} \quad \Rightarrow M=5$
Generalization (for out-of-sample μ)
Mapping coefficients: RBF-based regression.
Wendland, 2004.
Solution coefficients: Petrov-Galerkin proj + EQ.
Farhat et al. 2015; Yano, 2019.

Taddei, Zhang, 2020 (submitted).

Behavior of the registered free surface $z=h+b$

Performance of the registration procedure

Performance of the ROM

Beyond rectangular domains

Extension to non-rectangular domains

Example: $\Omega=\mathcal{B}_{R=1}(\underline{0})$, consider bijections Φ_{1}, Φ_{2} and assume that $\underline{\Phi}_{1}(\underline{x}) \neq \underline{\Phi}_{2}(\underline{x})$ at $\underline{x} \in \partial \Omega$.
Then, $\underline{\Phi}_{t}:=t \underline{\Phi}_{1}+(1-t) \underline{\Phi}_{2}$ is not a bijection in Ω for any $t \in(0,1)$.

Extension to non-rectangular domains

Example: $\Omega=\mathcal{B}_{R=1}(\underline{0})$, consider bijections $\underline{\Phi}_{1}, \Phi_{2}$ and assume that $\underline{\Phi}_{1}(\underline{x}) \neq \underline{\Phi}_{2}(\underline{x})$ at $\underline{x} \in \partial \Omega$.
Then, $\underline{\Phi}_{t}:=t \underline{\Phi}_{1}+(1-t) \underline{\Phi}_{2}$ is not a bijection in Ω for any $t \in(0,1)$.

Conclusion: affine mappings $-\Phi=i d+W_{\text {Ma }}-$ cannot properly capture finite deformations over non-straight edges.

Extension to non-rectangular domains

Example: $\Omega=\mathcal{B}_{R=1}(\underline{0})$, consider bijections Φ_{1}, Φ_{2} and assume that $\underline{\Phi}_{1}(\underline{x}) \neq \underline{\Phi}_{2}(\underline{x})$ at $\underline{x} \in \partial \Omega$.
Then, $\underline{\Phi}_{t}:=t \underline{\Phi}_{1}+(1-t) \underline{\Phi}_{2}$ is not a bijection in Ω for any $t \in(0,1)$.

Conclusion: affine mappings $-\Phi=i d+W_{M}$ a cannot properly capture finite deformations over non-straight edges.
Question: how can we characterize admissible mappings?

Model problem: potential flow past an airfoil

Consider the problem: $-\Delta u_{\mu}=0$ in $\Omega,\left.u_{\mu}\right|_{\partial \Omega}=h_{\mu}$, $\mu=\left[\mu_{1}, \mu_{2}\right], \Omega=\Omega_{\text {box }} \backslash \Omega_{\text {naca }}$.

Define $G_{\text {naca }}$ s.t. $\partial \Omega_{\text {naca }}=\left\{\underline{x}: G_{\text {naca }}(\underline{x})=0\right\}$.

Strategy 1: constrained approach (I)

We consider mappings $\Phi=i d+\underline{\varphi}$ over $\Omega_{\text {box }}$ such that

$$
\begin{array}{lr}
\text { 1. } \underline{\varphi} \cdot \underline{n} \mid \partial \Omega_{\mathrm{box}}=0, \mathcal{C}(\underline{\varphi}) \leq 0 & \text { same as before } \\
\text { 2. } \sum_{i}\left|G_{\text {naca }}\left(\underline{\Phi}\left(\underline{x}_{i}\right)\right)\right|^{2}-\text { tol } \leq 0 . & \text { new } \\
\text { 3. } \Phi\left(\underline{x}_{j}^{\mathrm{fix}}\right)=\underline{x}_{j}^{\mathrm{fix}} . & \text { new }
\end{array}
$$

Constraints in 1. enforce bijectivity in $\Omega_{\text {box }}$.
Constraint in 2. controls $\max _{\underline{x} \in \partial \Omega} \operatorname{dist}(\underline{\Phi}(\underline{x}), \partial \Omega)$.
Constraint in 2 is nonlinear and non-convex \Rightarrow similar per-iteration cost
Constraint in 3. deals with "difficult points".

$$
\underline{x}_{1}^{\mathrm{fix}}=[0,0],[1,0] .
$$

Strategy 1: constrained approach (II)

The additional constraints should ultimately control the Hausdorff distance dist $_{H}(\underline{\Phi}(\partial \Omega), \partial \Omega)=$
$\max \left\{\max _{\underline{x} \in \partial \Omega} \operatorname{dist}(\underline{\Phi}(\underline{x}), \partial \Omega), \max _{\underline{x} \in \partial \Omega} \operatorname{dist}(\underline{x}, \underline{\Phi}(\partial \Omega))\right\}$.
Theoretical rationale: under proper assumptions on the domain Ω and the mapping Φ, we can control $\operatorname{dist}_{H}(\underline{\Phi}(\partial \Omega), \partial \Omega)$ in terms of $\max _{\underline{x} \in \partial \Omega} \operatorname{dist}(\underline{\Phi}(\underline{x}), \partial \Omega)$.
Observation: constraint 3 plays a decisive role when there are corners.
Iollo, Taddei, Zhang, (in preparation)

Strategy 2: partitioned approach (I)

Introduce a partition of $\Omega,\left\{\Omega_{q}\right\}_{q=1}^{N_{\text {dd }}}$ such that Ω_{q} is isomorphic to $\widehat{\Omega}=(0,1)^{2}$.

Consider mappings of the form

$$
\underline{\Phi}=\sum_{q=1}^{N_{\mathrm{dd}}} \underline{\Psi}_{q} \circ \underline{\Phi}_{q} \circ \underline{\Psi}_{q}^{-1} \mathbb{1}_{\Omega_{q}}
$$

where $\underline{\psi}_{q}: \widehat{\Omega} \rightarrow \Omega_{q}$, and $\underline{\Phi}_{q}=$ $i d+W_{M}^{q}$ a.

Φ should be (i) globally continuous, and (ii) locally
bijective, $\Phi\left(\Omega_{q}\right)=\Omega_{q}, q=1, \ldots, N_{\text {dd }}$.

Strategy 2: partitioned approach (II)

Local bijectivity is equivalent to bijectivity of Φ_{q} in $\widehat{\Omega}$. admissible class naturally defined.
Implementation borrows several elements from classic isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.

Strategy 2: partitioned approach (II)

Local bijectivity is equivalent to bijectivity of Φ_{q} in $\widehat{\Omega}$. admissible class naturally defined.
Implementation borrows several elements from classic isoparametric spectral element discretizations.

KZ Korczak, AT Patera, 1986.
Pro: possibility to approximate exactly the geometry with polynomials of moderate order.
Con: local bijectivity implies global bijectivity but it is a much stronger condition \Rightarrow limited approximation power.

Numerical results: description of the test

Consider $n_{\text {train }}=50$ snapshots for training and $n_{\text {test }}=100$ snapshots for testing.
Consider a fully non-intrusive approach (RBF regression for $\widehat{\alpha}_{\mu}, \widehat{a}_{\mu}$).
We measure performance using

$$
\begin{aligned}
& E_{\phi}^{\text {geo }}(\mu)=\max _{i \in I_{\text {naca }}}\left|G_{\text {naca }}\left(\underline{\Phi}_{\mu}\left(\underline{\mathrm{x}}_{i}^{\mathrm{hf}}\right)\right)\right|, \\
& E_{\phi}^{\text {sol }}(\mu)=\frac{\left\|u_{\mu}-\widehat{u}_{\mu} \circ \Phi_{\mu}^{-1}\right\|_{H^{1}(\Omega)}}{\left\|u_{\mu}\right\|_{H^{1}(\Omega)}} .
\end{aligned}
$$

$\left\{\underline{x}_{i}^{\text {hf }}\right\}_{i \in I_{\text {nace }}}$ nodes of the FE mesh on the airfoil.

Numerical results: geometrical error

Constrained approach: tol $=10^{-4},\left|\mathcal{I}_{\text {naca }}\right|=100$, $M_{\mathrm{hf}}=1250$.
Partitioned approach: $M_{\mathrm{hf}}=600$.

Numerical results: solution error

Partitioned

Conclusions and perspectives

Summary

We propose a
general $=$ independent of the underlying PDE model registration-based compression strategy for pMOR ,

$$
u_{\mu} \approx \widehat{u}_{\mu} \circ \Phi_{\mu}^{-1} \text { with } \widehat{u}_{\mu}=Z_{N} \alpha_{\mu} \text { and } \Phi_{\mu}=\mathrm{id}+W_{M} \mathrm{a}_{\mu}
$$

We illustrate the application to one-dimensional systems of hyperbolic PDEs (shallow-water equations).
We illustrate the extension to non-rectangular domains (potential flow).

Perspectives

Several theoretical and methodological challenges need to be addressed.

1. Development of fully-intrusive schemes for the simultaneous prediction of $\widehat{\alpha}_{\mu}$ and $\widehat{\mathrm{a}}_{\mu}$.

Link with Zahr, Persson, JCP, 2018.
2. Investigation of performance for relevant problems. in CFD self-similarity, transport.
3. Mathematical analysis. for what problems shall registration help?

Geometry reduction

Given the parameterized domains $\left\{\Omega_{\mu}\right\}_{\mu \in \mathcal{P}} \subset \mathbb{R}^{d}$, the goal of geometry reduction is to determine a low-rank mapping Φ and a domain $\widehat{\Omega}$ such that
Φ_{μ} is invertible in $\widehat{\Omega}$ and $\Phi_{\mu}(\widehat{\Omega}) \approx \Omega_{\mu}, \quad \forall \mu \in \mathcal{P}$.
pMOR techniques in parameterized domains:
AE Løvgren, Y Maday, and EM Rønquist. M2AN, 2006;
G Rozza, DBP Huynh, AT Patera, ARCME, 2008;
A Manzoni, A Quarteroni, G Rozza, IJNME, 2012.

Geometry reduction

Given the parameterized domains $\left\{\Omega_{\mu}\right\}_{\mu \in \mathcal{P}} \subset \mathbb{R}^{d}$, the goal of geometry reduction is to determine a low-rank mapping Φ and a domain $\widehat{\Omega}$ such that
Φ_{μ} is invertible in $\widehat{\Omega}$ and $\Phi_{\mu}(\widehat{\Omega}) \approx \Omega_{\mu}, \quad \forall \mu \in \mathcal{P}$.
This is equivalent to reducing $\mathcal{M}^{\text {geo }}:=\left\{u_{\mu}:=\mathbb{1}_{\Omega_{\mu}}\right\}_{\mu \in \mathcal{P}}$ to a singleton $\widehat{u}=\mathbb{1}_{\widehat{\Omega}}$.
Joint work with F Ballarin, E Delgado, A Mola, and G Rozza.
pMOR techniques in parameterized domains:
AE Løvgren, Y Maday, and EM Rønquist. M2AN, 2006;
G Rozza, DBP Huynh, AT Patera, ARCME, 2008;
A Manzoni, A Quarteroni, G Rozza, IJNME, 2012.

CEMRACS 2021

Data Assimilation and Model Reduction in high-dimensional problems

CIRM, Luminy, Marseille. July 17 - August 27, 2021

Organising Committee:
Virginie Ehrlacher
Damiano Lombardi
Olga Mula
Fabio Nobile
Tommaso Taddei

Scientific Committee:
Albert Cohen
Yvon Maday
Gianluigi Rozza
Karen Veroy

Thank you for your attention!

Please visit math.u-bordeaux.fr/~ttaddei/ for further information.

