Please name your python file "familyname.py" and send it to tommaso.taddei@inria.fr.

Exercice 1

In full generality, s-stage diagonally-implicit Runge Kutta (DIRK) methods for the equation

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)) \quad t \in\left(0, T_{\max }\right) \tag{1}\\
y(0)=y_{0}
\end{array}\right.
$$

can be written as

$$
\left\{\begin{array}{l}
k_{i}=f\left(t_{n}+c_{i} \Delta t, y_{n}+\Delta t \sum_{j=1}^{i-1} a_{i, j} k_{j}+\Delta t a_{i, i} k_{i}\right) \quad i=1, \ldots, s \tag{2}\\
y_{n+1}=y_{n}+\Delta t \sum_{i=1}^{s} b_{i} k_{i}
\end{array}\right.
$$

Here, $\Delta t>0$ denotes the time step size; y_{n} is the estimate of the solution y at time $t_{n}=\Delta t(n-1)$. Note that, at each time step, we should solve s consecutive nonlinear equations for k_{1}, \ldots, k_{s}.

1. (2 points) Implement the function $f(t, y)=500 y^{2}(1-y)$ and its derivative.
2. (5 points) Implement a function that takes as input the scalar quantities $y^{\prime}, \bar{y}, \bar{t}, \alpha \in \mathbb{R}$, and the functions $f, \partial_{y} f$, and returns the solution to the equation

$$
G(k)=k-f(\bar{t}, \bar{y}+\alpha k)=0
$$

3. (5 points) Implement the two-stage DIRK method: the Python function should take the matrix A and the vectors b, c as inputs.
4. (4 points) Apply the two-stage DIRK method to the ODE (1) with $f(t, y)=500 y^{2}(1-y)$ and $y_{0}=1 / 100$, $T_{\text {max }}=1$. Consider the choices

$$
A=\left[\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 / 2 \\
3 / 2
\end{array}\right], \quad c=\left[\begin{array}{l}
1 / 2 \\
3 / 2
\end{array}\right]
$$

and

$$
A=\left[\begin{array}{cc}
1 / 2+\sqrt{3} / 6 & 0 \\
-\sqrt{3} / 3 & 1 / 2+\sqrt{3} / 6
\end{array}\right], \quad b=\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right], \quad c=\left[\begin{array}{c}
1 / 2+\sqrt{3} / 6 \\
1 / 2-\sqrt{3} / 6
\end{array}\right] .
$$

5. (4 points) Convergence and stability analysis. Apply the DIRK scheme to the ODE for $\Delta t=$ $2^{-5}, 2^{-6}, \ldots, 2^{-12}$. We denote by $\left\{y_{n}^{(k)}\right\}_{n=0}^{N_{(k)}}$ the sequence associated with the time step $\Delta t_{(k)}=2^{-k}$.
(a) What is the maximum value attained by the sequence $\left\{y_{n}^{(k)}\right\}_{n=0}^{N_{(k)}}$? Do you notice something different between the two schemes?
(b) We observe that, by construction, $y_{n}^{(k)}, y_{2 n}^{(k+1)}$ approximate the solution at time $t_{n}^{(k)}=\Delta t^{(k)} n$ or, equivalently, $t_{2 n}^{(k+1)}=\Delta t^{(k+2)} 2 n$. We can use this formula to estimate the convergence rate.
i. Compute

$$
e^{(k)}=\max _{n=0, \ldots, N_{(k)}}\left|y_{n}^{(k)}-y_{2 n}^{(k+1)}\right|, \quad k=1, \ldots
$$

ii. Compute the estimate of the convergence rate:

$$
\log _{2}\left(\frac{e^{(k)}}{e^{(k+1)}}\right), \quad \text { for } k=1, \ldots
$$

