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Abstract

This thesis can be inserted in the framework of Reduced Order Modelling (ROM) tech-
niques; more precisely, it focuses on the Reduced Basis method for a rapid and reliable
solution of parametrized partial di�erential equations.
Even though the pioneering works on the Reduced Basis method date back to the seventies,
during the last decade the method has been deeply analysed and developed to ensure an
e�cient and rigorous approximation of the solution for a wide class of partial di�erential
equations.
Moving from a sound review of the available literature, the present work is essentially
centered on geometric reduction strategies to deal with di�erential equations de�ned on
parametrized domains and on the extension of the Reduced Basis methodology to nonlin-
ear scalar conservation laws.
The �rst issue has been widely analysed in recent years, whereas the examples of applica-
tions of the Reduced Basis method to nonlinear hyperbolic problems are very few: as we
will explain in this thesis, the typical structure of the solutions to these equations intro-
duces a number of additional criticalities that require a substantial modi�cation to some
steps of the standard methodology.
In this thesis, a new geometric reduction technique, particularly suited to the treatment
of roto-translations of the domain boundaries and a reduced order strategy to deal with
nonlinear conservation laws in the presence of shocks are proposed and motivated both
from a theoretical and computational point of view.
Finally, some suggestions for future developments concerning a possible extension of the
proposed methodology to more general problems are o�ered.

Keywords: Reduced Order Modelling, Reduced Basis Method, Shape Parametrization
Techniques, Conservation Laws.

i



ii



Sommario

Questo lavoro di tesi si inserisce nell'ambito delle tecniche per la Riduzione di Modello
(Reduced Order Modelling) e, più in particolare, si focalizza sul metodo delle Basi Ridotte
per la risoluzione di problemi di�erenziali dipendenti da un insieme di parametri.
Sebbene i primi lavori sul metodo delle Basi Ridotte risalgano agli anni Settanta, nell'ultimo
decennio il metodo è stato oggetto di notevoli sviluppi che lo hanno portato ad essere in
grado di garantire un'approssimazione e�ciente e rigorosa di una vasta gamma di problemi
di�erenziali.
Partendo da un'attenta analisi della letteratura più recente, il presente lavoro è incen-
trato da un lato sulle strategie di riduzione geometrica nell'ambito dell'approssimazione di
equazioni di�erenziali de�nite su domini parametrici; dall'altro sull'estensione del metodo
delle Basi Ridotte a leggi di conservazione scalari non lineari.
Se la prima tematica è stata largamente analizzata negli ultimi anni, poche sono le ap-
plicazioni del metodo della Basi Ridotte a problemi iperbolici non lineari: come verrà
ampiamente motivato in questa tesi, la struttura intrinseca delle soluzioni di tali equazioni
introduce di�coltà aggiuntive che richiedono un ripensamento sostanziale di alcuni passi
del metodo standard.
In questa tesi vengono proposte una nuova tecnica di riduzione geometrica pensata speci-
�catamente per gestire il caso di roto-traslazioni di componenti del bordo del dominio ed
una strategia di riduzione di modello per leggi di conservazione in presenza di shock; queste
procedure sono state analizzate sia da un punto di vista teorico che da un punto di vista
computazionale.
Nella parte �nale della tesi, sono discussi alcuni possibili sviluppi futuri concernenti l'estensione
del metodo a problemi più generali.

Parole chiave: Riduzione di Modello, Basi Ridotte, Tecniche di Parametrizzazione di
Forma, Leggi di Conservazione.
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Introduction

Since the beginning of '70s, several strategies to speed up the solution of parametrized
PDEs have been proposed: starting from the full scale problem these methodologies aim
at deriving a Reduced Order Model (ROM) that is potential for at least near real time
analysis.

Many of the �rst cost reduction schemes neither were based on a rigorous mathematical
framework nor were showed to be of general use.

However, in the last ten years, an intense research, focused on both a theoretical foun-
dation and the de�nition of new suitable algorithms, has led to great improvements in the
�eld of reduced order modelling.

Reduced Basis (RB) method ([80, 93, 106]) is one among the di�erent strategies pro-
posed; it was developed during the last decade in particular for a rapid and reliable evalu-
ation of input-output relationships based on the solution to a parametrized partial di�er-
ential equation.

In particular this thesis focuses on the development, the analysis and the implemen-
tation of two tools dealing with open issues in the Reduced Basis framework. In more
details, we propose:

� a geometrical reduction technique for parametrized domains: in order to deal with
PDEs de�ned on parameter dependent domains, it is necessary to describe the de-
formation of the domain through a small number of degrees of freedom. For this
purpose, in recent years several methods based on the introduction of suitable maps
between the parameter dependent domain and a parameter independent con�gura-
tion have been developed. In this work a new strategy, based on the well-known
Gordon Hall trans�nite map ([43]) is proposed;

� a reduced order strategy for nonlinear scalar conservation laws: as we will explain
in the third chapter, the treatment of hyperbolic problems in a RB framework is
particularly involved and requires some modi�cations to the standard strategy. This
is why in this work a new algorithm, introduced as an adaptation of the RB method
to conservation laws, is presented. A great attention is paid to the mathematical
foundations behind the proposed procedure and to the implementative aspects.

The new ingredients proposed in this thesis can be potentially coupled in order to solve
conservation laws in higher than one space dimension. This represents a possible future
research �eld for us. However, in this work the two topics are dealt with separately.

The thesis is organized in three distinct chapters.

� Chapter 1 provides a presentation of the main features of the Reduced Basis method
for elliptic and parabolic linear equations. The o�ine-online decomposition, the
sampling strategy and the a posteriori error estimation are addressed in detail; then
the so-called Empirical Interpolation method ([7]) is explained and motivated. In

vii



viii

view of the successive application to hyperbolic problems, some criticalities of the
standard RB approach are highlighted.

� Chapter 2 deals with the de�nition of suitable geometrical reduction strategies
to face PDEs in parametrized domains in the context of the RB method. After an
overview of the state-of-the-art, a new methodology is explained and deeply analysed.
It is also shown the importance of geometrical reduction for the treatment of multi-
dimensional parametrized conservation laws.

� In Chapter 3 the algorithm for scalar parametrized conservation laws is explained
and soundly analysed: great attention is paid to the mathematical motivations behind
the procedure. At the end of the theoretical discussion, some numerical tests are
presented to show the performances of the method.

Some concluding remarks and perspectives on future developments are o�ered in the �nal
section of this thesis while some important results used throughout the work are stated in
Appendix A. and Appendix B.

The numerical validation in this work has been performed via Matlab® software ([84]).
More precisely, in the �rst and in the second chapters an enhanced version of rbMIT©

[102] (developed at CMCS-EPFL) together with the Finite Element library MLife, [108],
has been used. In the third chapter, the case studies are performed through a Matlab

program completely developed while carrying out this work.
Finally, I would like to remark that this thesis has greatly bene�ted from a two month

internship at École Polytechnique Féderale de Lausanne at the Mathematics Institute of
Computational Science and Engineering.
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Chapter 1

Reduced Basis Method for

parametrized PDEs

1.1 Introduction

In this chapter we introduce the Reduced Basis (RB) method for the rapid and reliable
evaluation of engineering outputs associated with elliptic and parabolic equations that
depend on a set of parameters, say µ ∈ D where D ⊂ RP is a compact set.

In formulas we consider a single output of interest:

s(µ) = l(u(µ)) µ ∈ D (1.1.1a)

where l ∈X ′ and u(µ) is the solution of the following (elliptic or parabolic) equation:

L(u(µ),µ) = 0 in X ′ L ∶X ×D →X ′. (1.1.1b)

In order to make a clear presentation of the topic, we �rst introduce some notation and
hypotheses and then we try to justify the main ideas of the RB method.

The solutions to the equation (1.1.1b), for each µ ∈ D, de�ne the parametric manifold:

M = {u(µ) ∈X ∶ u(µ) is the solution to (1.1.1b), µ ∈ D}. (1.1.2)

Given a Finite Element1, [18, 97], approximation space XN ⊂X of dimension N , we de�ne
uN (µ) as the solution to the approximate equation:

LN (uN (µ),µ) = 0 in XN
′

(1.1.3)

With respect to M de�ned in (1.1.2), we indicate with MN the parametric manifold
induced by the FE approximation:

MN = {uN (µ) ∈XN ∶ uN (µ) is the solution to (1.1.3), µ ∈ D} (1.1.4)

If we assume that the FE grid is su�ciently �ne, we can consider negligible the di�erence
between the solution u(µ) of (1.1.1b) and the solution of (1.1.3) for each value of the
parameter and thus the manifoldMN can be seen as a truth approximation ofM.

1We point out that the choice of �nite elements is arbitrary and does not in�uence the method: for
instance in [49] the RB method was applied within a �nite volume context and in [75] within the context
of spectral methods.

1



2 CHAPTER 1. REDUCED BASIS METHOD FOR PARAMETRIZED PDES

We also introduce, given Nmax ∈ N, an associated sequence of N -dimensional subspaces
XNN - N = 1,⋯,Nmax - with the following hierarchical property :

XN1 ⊂XN2 ⊂ ⋯ ⊂XNNmax ⊂X
N . (1.1.5)

If the manifold MN is low dimensional and smooth2, we can expect to well approxi-
mate the entire manifold through a very low dimensional space XNN . This gives reasons
for the application of the Reduced Basis method that is based on the following essential
components.

1. Rapidly convergent approximations: the key points to address in order to provide
good results are the generation of suitable subspaces {XNN }N and an e�cient method-
ology to generate the reduced solution. The former issue regards the de�nition of
suitable optimality criteria that lead to e�ective sampling strategies for the approx-
imation of the manifold. The latter issue consists in the introduction of a suitable
reduced problem obtained through a (Galerkin) projection3 of the original equation
onto the low dimensional subspace.

2. Rigorous a posteriori error estimation procedures: after solving the reduced problem,
we need to estimate the error between the truth and the reduced solutions. This must
be done in an inexpensive (i.e., independent of the underlined mesh), rigorous (i.e.,
the estimation must constitute an upper bound for the actual error) and possibly
e�ective (i.e., the ratio of the error bound to the true error is reasonably tight) way.

3. O�ine/Online computational procedures: the main idea of the RB approach is to
decouple the work into two di�erent stages: in the �rst stage, performed once, the
generation of the RB approximation and the computation and storing of all the struc-
tures needed for the reduced problem are addressed; in the second stage, repeated
many times, only the solution of the reduced equation and the estimation of the error
are performed.

In order to deal with the components de�ned above in the case of elliptic and parabolic
problems, we subdivide the presentation of the general methodology into three di�erent
parts:

� in sections 1.2 and 1.3 the formulation for the elliptic and parabolic cases will be
introduced;

� the sampling strategy will be discussed in section 1.4;

� the a posteriori estimation will be introduced in section 1.5.

For each section, we detail how it is possible to split the work into the two di�erent stages,
o�ine and online. At the end of this preliminary presentation, in 1.6 we present the whole
algorithm and in 1.7 we present two numerical examples.

Then, an important tool to generalize the range of applicability of the methodology,
the so-called Empirical Interpolation method, is extensively explained in section 1.8.

2The concept of smoothness is critical. In general it is a very hard task to assess the smoothness of the
parametric manifold a priori. See [106] (Proposition 1 section 8) for a proof-of-concept.

3Galerkin projection is not the only option: for instance in [94] another approach is presented. As
regards this work, we apply Galerkin projection for the elliptic case in chapter 1 and another approach for
conservation laws.



1.2. REDUCED BASIS FORMULATION FOR ELLIPTIC PROBLEMS 3

Before concluding this introduction, we summarize some historical aspects about the
development of the Reduced Basis method4. In ′70s and ′80s, the �rst works on Reduced
Basis method appeared in the context of many query design evaluation for linear structural
applications ([39]) and in the context of nonlinear structural analysis problems ([89]). In
the next decade the approach was applied to di�erent classes of equations such as the
incompressible Navier-Stokes equation ([58]).

The approach here presented5 is rather di�erent from these early works especially
because it is focused on the a posteriori error estimation ([125]) and on e�ective sampling
strategies for higher than one dimensional parameter samples ([88]).

Unlike the early methods, the latter approach is designed to be not only particularly
e�ective in the many-query and real time contexts but also a reliable methodology.

1.2 Reduced basis formulation for elliptic problems

This section deals with the main features of the RB method for input-output relationships
based on elliptic equations as proposed; e.g. in [93, 106, 80].

First, we introduce the formulation and we discuss the preliminary hypotheses; then
the reduced model is obtained through the standard Galerkin projection onto the reduced
space. In the following the truth space XN and the truth FE solution uN (µ) is simply
indicated as X and u(µ). As already stated above, N is the dimension of the FE space.

1.2.1 Formulation of the problem

Let Ω ⊂ Rd be a Lipschitz domain and X =X(Ω) be the truth approximation of a suitable
Hilbert space. Let a(⋅, ⋅,µ) ∶ X ×X → R and F (⋅,µ) ∶ X → R be parametric a�ne bilinear
and linear forms, respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(u, v,µ) =
Qa

∑
q=1

Θa
q(µ)aq(u, v),

F (v,µ) =
Qf

∑
q=1

Θf
q (µ)f q(v),

(1.2.1)

where Θa
q ∶ D → R and Θf

q ∶ D → R are given smooth functions.
Now we have all the elements to state the general problem (1.1.1) in our case:

Given µ ∈ D, �nd s(µ) = l(u(µ)), (1.2.2a)

where u(µ) is the solution to the following elliptic equation:

a(u(µ), v,µ) = F (v,µ) ∀ v ∈X. (1.2.2b)

We introduce now a suitable inner product and we de�ne the continuity and the coer-
civity constants. In the analysis below, the following inner product is selected6:

(w, v)X = aS(w, v; µ̄) + τ(w, v)L2(Ω), ∥w∥2
X = (w,w)X ∀w, v ∈X, τ = inf

v∈X

aS(v, v; µ̄)
∥v∥2

L2(Ω)

(1.2.3)

4See [106] for more references.
5For a survey on the method we mainly refer, e.g., to [93, 106, 80].
6This choice is justi�ed by the Successive Constraint Method proposed in section 1.5.
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where µ̄ ∈ D and aS(⋅, ⋅, µ̄) is the symmetric part of the bilinear form.
Given µ ∈ D we de�ne the following constants:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αa(µ) = inf
w∈X

a(w,w,µ)
∥w∥2

X

,

γa(µ) = sup
w∈X

sup
v∈X

a(w, v,µ)
∥w∥X∥v∥Y

,

γf(µ) = sup
w∈X

F (w,µ)
∥w∥X

,

(1.2.4)

i.e., the coercivity and continuity constants associated with a(⋅, ⋅,µ) and the continuity
constant associated with F (⋅,µ).

The coercivity constant is supposed to be uniformly strictly positive ( i.e., αa(µ) ≥
α0 > 0, ∀µ ∈ D). In addition, in order to guarantee that the RB approximation is stable
for N → ∞, we require that all the constants do not depend on the truth approximation
chosen.

Thanks to the hypotheses above, the state problem is well-posed7 for all the values of
the parameter.

1.2.2 Reduced model

Let us consider the low dimensional space XN = span{ζj ∈ X ∶ j = 1,⋯,N} where {ζj}Nj=1

is an orthonormal basis with respect to the inner product (⋅, ⋅)X de�ned in (1.2.3).
By projecting equation (1.2.2b) onto the reduced space XN , the output can be approx-

imated through:
sRB,N((µ) = l(uRB,N(µ)) (1.2.5a)

where uRB,N(µ) ∈XN is the solution to8

a(uRB,N(µ), v,µ) = F (v,µ) ∀ v ∈XN . (1.2.5b)

Expanding the RB solution as

uRB,N(µ) =
N

∑
j=1

uN,j(µ)ζj ;

we can restate (1.2.5) in the following algebraic form:

{ sRB,N(µ) = lTuN(µ)
(l)m = l(ζm)

{ AN(µ)uN(µ) = FN(µ)
(AN)m,n = a(ζn, ζm;µ), (FN)m = F (ζm;µ)

Thanks to the parametric a�nity of the linear forms, (1.2.1), we obtain the �nal algebraic
formulation of the reduced model:

Given µ ∈ D �nd sRB,N(µ) = lTuN(µ) (1.2.6a)

7The proof is a straightforward application of Lax-Milgram Lemma [109].
8In the present work we always refer to the solution of the reduced problem as to uRB,N(µ).
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where uN(µ) ∈ RN is the solution to the following linear system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qa

∑
q=1

Θa
k(µ)AquN(µ) =

Qf

∑
q=1

Θf
k(µ)F

q(µ)

(Aq)m,n = aq(ζn, ζm) (Fq)m = f q(ζk)
(1.2.6b)

Equation (1.2.6) guarantees an e�cient o�ine-online decomposition. In fact in the o�ine
stage, Aq, Fq and l are built. In the online stage we just assemble the reduced matrix and
vector (O (QaN2 +QfN)), solve the system and compute the output O (N3 +N). Also
the amount of memory required is modest: we just need for Qa N ×N matrices and Qf +1
N -dimensional vectors.

We conclude this section with some remarks.

Remark 1.1. Thanks to the choice of the orthonormal basis {ζn}Nn=1 it is easy to verify
that9

cond (AN(µ)) ≤ γa(µ)
αa(µ)

. (1.2.7)

This guarantees that the reduced problem is well-conditioned also when N grows up.

Remark 1.2. Thanks to the well-known Galerkin orthogonality it is possible to prove that:

∥u(µ) − uRB,N(µ)∥X ≤ γa(µ)
αa(µ)

inf
wN ∈XN

∥u(µ) −wN∥X (1.2.8a)

and so that:

∣s(µ) − sRB,N(µ)∣ ≤ ∥l∥X′

γa(µ)
αa(µ)

inf
wN ∈XN

∥u(µ) −wN∥X . (1.2.8b)

We observe that, due to the hierarchical property (1.1.5), the error bounds are monotone
with respect to the dimension of the reduced space XN . If the problem is compliant (i.e.,
a(⋅, ⋅,µ) is symmetric and l = F ), it is possible to prove that10:

∥u(µ) − uRB,N(µ)∥X ≤
¿
ÁÁÀ γa(µ)

αa(µ)
inf

wN ∈XN
∥u(µ) −wN∥X (1.2.9a)

and so that:

0 ≤ s(µ) − sRB,N(µ) ≤ γa(µ) inf
wN ∈XN

∥u(µ) −wN∥2
X . (1.2.9b)

Remark 1.1 gives reasons for the orthonormalization procedure in section 1.4 while both
the remarks justify the application of Galerkin projection: the methodology is capable to
provide a quasi-optimal approximation of the solution in a stable and automatic way; in
addition, as we explain in section 1.5, it is ideally suited for the output error estimation. On
the other hand, other techniques, such as the output interpolation, can even provide better
results -especially when the dimension P of the parameter set is low- but the selection
of an e�cient approximate output and the a posteriori error estimation are much more
involved11.

We observe that the output error estimate can be improved through a primal-dual
approach as we will discuss in section 1.5.

9For the proof see [93] proposition 3B.
10The proofs are straightforward and are contained in [93] proposition 3A.
11See the discussion in [106] section 8.1.5 for further details and some examples.
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1.3 Reduced basis formulation for parabolic problems

In this section the Reduced Basis Method is applied to an input-output relationship based
on a parabolic state equation. In [120] a new approach based on the Petrov-Galerkin
formulation, [97, 21], has been proposed. As we will explain, the parabolic equation is
restated as a general non-coercive problem in the Babuska framework [4]: this simpli�es
the a posteriori error analysis and permits to state a Galerkin optimality result in a natural
way. In order to follow this approach, we �rst review the Petrov-Galerkin formulation for
a parabolic problem and then we introduce the Reduced Basis method.

1.3.1 Petrov-Galerkin formulation for parabolic linear equations

Let (V,H,V ′) be a Hilbert triplet where H = L2(Ω) and V ↪ H ↪ V ′ and both the
embeddings are dense and compact. We de�ne A ∶ V → V ′ such that ⟨Au, v⟩V ′×V = a(u, v)
where a ∶ V × V → R is a γa-continuous and (λa, αa)-weakly coercive bilinear form:

⎧⎪⎪⎨⎪⎪⎩

∣a(φ,ψ)∣ ≤ γa∥ψ∥V ∥φ∥V ∀φ,ψ ∈ V,
∣a(φ,φ)∣ + λa∥φ∥2

H ≥ αa∥φ∥2
V ∀φ ∈ V.

(1.3.1)

Finally we consider F ∶ [0, T ]→ V ′.
Let us consider the following linear parabolic equation written in an operatorial form:

{ u̇(t) +Au(t) = F (t) in V for a.e.t ∈ I = (0, T ]
u(0) = 0 in H.

(1.3.2)

In order to introduce the Petrov Galerkin formulation, we have to de�ne the variational
equivalent to (1.3.2). First of all we de�ne the following spaces12

⎧⎪⎪⎨⎪⎪⎩

X = {v ∈ L2(I;V ) ∶ v̇ ∈ L2(I;V ′)},
Y = L2(I;V ),

(1.3.3)

and the following bilinear and linear forms:

⎧⎪⎪⎨⎪⎪⎩

b ∶ X ×Y → R b(u, v) = ∫I⟨u̇(t), v(t)⟩V ′×V dt + ∫I a(u(t), v(t))dt,
f ∶ Y → R f(v) = ∫I⟨F (t), v(t)⟩V ′×V dt.

. (1.3.4)

Therefore, problem (1.3.2) can be restated in the following variational form:

Find u ∈ X such that: b(u, v) = f(v) ∀ v ∈ Y. (1.3.5)

We are now ready to introduce the Petrov Galerkin formulation. Following [120], we
de�ne the spatial and temporal triangulations T spaceh and T time∆t = {k∆t}Kk=1 and, subse-
quently the following �nite element spaces:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S∆t ∶= {σ ∈ C([0, T ]) ∶ σ∣(tk,tk+1) ∈ P 1(tk, tk+1) ∀k = 0,⋯,K − 1},
Q∆t ∶= {τ ∈ L∞(0, T ) ∶ τ∣(tk,tk+1) ∈ P 0(tk, tk+1) ∀k = 0,⋯,K − 1},
Vh ∶= {φ ∈ C(Ω̄) ∶ φ∣K ∈ P 1(K) ∀K ∈ T spaceh }.

(1.3.6)

12We refer to [35] for further details about time dependent FE spaces.



1.3. REDUCED BASIS FORMULATION FOR PARABOLIC PROBLEMS 7

Finally the space-time �nite element spaces are built as resultants of the tensor product
between the above spaces, i.e.:

⎧⎪⎪⎨⎪⎪⎩

Xδ ∶= Vh ⊗ S∆t = {ψ ⊗ φ ∶ φ ∈ Vh ψ ∈ S∆t},
Yδ ∶= Vh ⊗Q∆t = {τ ⊗ φ ∶ φ ∈ Vh τ ∈ Q∆t},

(1.3.7)

where δ = (∆t, h) and ψ ⊗ φ(t,x) = ψ(t)φ(x). Now we have the elements to state the
Petrov Galerkin approximation of (1.3.5):

Find uδ ∈ Xδ such that: b(uδ, vδ) = f(vδ) ∀ vδ ∈ Yδ (1.3.8)

In order to write the algebraic formulation of (1.3.8), let {φj}Nj=1 be the nodal basis for

Vh with respect to T spaceh , {σk}Kk=1 be the nodal basis for S∆t with respect to T time∆t and
�nally {τk = χ(tk−1,tk)}Kk=1 be the basis for Q∆t.

With this notation, problem (1.3.8) could be rewritten as:

Find uδ ∈ Xδ such that: b(uδ, τ l ⊗ φj) = f(τ l ⊗ φj) ∀ j = 1,⋯,N ∀ l = 1,⋯,K. (1.3.9)

If we use a trapezoidal approximation of the right-hand side temporal integration:

f(τ l⊗φj) = ∫
I
⟨F (t), τ l⊗φj⟩V ′×V dt = ∫

tl

tl−1
⟨F (t), φj⟩V ′×V dt ≃

∆t

2
⟨F (tl)+F (tl−1), φj⟩V ′×V ,

and we expand the solution as uδ = ∑j,k ukδ,jσk ⊗φj , it is easy to verify (see [120]) that the
(1.3.8) is equivalent to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆tM(ulδ − ul−1

δ ) + 1
2A(ulδ + ul−1

δ ) = 1
2(F

l +Fl−1) for l = 1,⋯,K
u0
δ = 0

Mi,j ∶= (φj , φi)L2(Ω) Ai,j ∶= a(φj , φi)
(Fl)j ∶= ⟨F (tl), φj⟩V ′×V .

(1.3.10)

Remark 1.3. We observe that the scheme is equivalent to the well-known Crank Nicolson
method.

1.3.2 Formulation of the problem

After presenting the Petrov-Galerkin formulation for a general parabolic equation, we
consider a parametric a�ne parabolic equation. First of all, we de�ne the following forms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m ∶ V ′ × V ×D → R m(w, v,µ) =
Qm

∑
q=1

Θm
q (µ)mq(w, v)

a ∶ V × V ×D → R a(w, v,µ) =
Qa

∑
q=1

Θa
q(µ)aq(w, v)

F ∶ [0, T ] × V ×D → R F (t,w,µ) = g(t)
Qf

∑
q=1

Θf
q (µ)F q(w),

(1.3.11)

where the bilinear form m(⋅, ⋅,µ) is related to the mass matrix. In the following we will
assume that m(⋅, ⋅,µ) be γm(µ)-continuous and inf-sup stable, uniformly with respect to
the parameter (say σ(µ) ≥ σ0 > 0). Moreover a(⋅, ⋅,µ) is assumed to be γa(µ)-continuous
and (λa(µ), αa(µ))-weakly coercive, uniformly with respect to the parameter. As we
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did in the elliptic case, we assume that all the constants do not depend on the truth
approximation chosen.

With the notation of the precedent paragraph, the problem can now be stated as:

Find uδ(µ) ∈ Xδ such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(uδ(µ), vδ,µ) = f(vδ,µ) ∀ vδ ∈ Yδ
uδ(µ)(0) = 0

b(w, v,µ) =m(ẇ, v,µ) + a(w, v,µ)
f(w,µ) = ∫I F (t,w,µ)

. (1.3.12)

Using the Crank Nicolson interpretation, it is easy to write the problem in an algebraic
form (where uδ(µ) = ∑j,k ukδ,j(µ)σk ⊗ φj):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆tM(µ)(ulδ(µ) − ul−1

δ (µ)) + 1
2A(µ)(ulδ(µ) + ul−1

δ (µ)) = g(tl−1)+g(tl)
2 F(µ)

u0
δ(µ) = 0

M(µ) = ∑Qmq=1 Θm
q (µ)M q M q

i,j =mq(φj , φi)

A(µ) = ∑Qaq=1 Θa
q(µ)Aq Aqi,j = aq(φj , φi)

F(µ) = ∑Qfq=1 Θf
q (µ)Fq (Fq)j = F q(φj).

(1.3.13)

If we introduce the output

J ∶ Xδ → R J(v) = ∫
I
l(v(t))dt l ∈ V ′, (1.3.14)

the input-output relationship (1.1.1) becomes:

Given µ ∈ D, �nd sδ(µ) ∶= J(uδ(µ)) where uδ(µ) is the solution to (1.3.13) . (1.3.15)

As we did in the elliptic case, given µ ∈ D we introduce the following scalar products13:

(w, v)X ,δ = (ẇ, v̇)L2(I;V ′) + (w, v)L2(I;V ) + (w(T ), v(T ))L2(Ω), ∥w∥X ,δ =
√

(w,w)X ,δ
(1.3.16a)

and

(w, v)Y,δ = (w, v)L2(I;V ), ∥w∥Y,δ =
√

(w,w)Y,δ (1.3.16b)

and subsequently the following constants:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βb,δ(µ) = inf
w∈Xδ

sup
v∈Yδ

b(w, v,µ)
∥w∥X ,δ∥v∥Y,δ

γb,δ(µ) = sup
w∈Xδ

sup
v∈Yδ

b(w, v,µ)
∥w∥X ,δ∥v∥Y,δ

.

(1.3.17)

Like in the elliptic case, the inf-sup constant is supposed to be strictly positive uniformly
with respect to the parameter (i.e., βb,δ(µ) ≥ βb,0 > 0 for any µ ∈ D).

Thanks to the hypotheses above, the well-known Babuska theorem (see [4]) guarantees
the well-posedness of the problem.

13The choice, inspired by [120], simpli�es the a posteriori analysis.
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1.3.3 Reduced model

In this paragraph we introduce the standard RB approximation for problem (1.3.12). We
use the variational formulation in order to prove the Galerkin optimality and the Crank-
Nicolson interpretation (1.3.13) of our discrete problem to get an easy-to-implement for-
mulation.

It is possible to consider a space-time RB approximation, [113], or only space RB
approximations, [80, 49]. In the following the second option is chosen. Therefore, we
consider

VN ∶= span(ζj ∈ V ∶ j = 1,⋯,N) (ζi, ζj)X ,δ = δi,j ,

and subsequently we introduce the RB sample and test spaces as:

X∆t,N ∶= S∆t ⊗ VN , Y∆t,N ∶= Q∆t ⊗ VN . (1.3.18)

Finally, we de�ne uRB,N(µ) ∈ X∆t,N as the solution to the projected equation:

Find uRB,N(µ) ∈ X∆t,N such that:
⎧⎪⎪⎨⎪⎪⎩

b(uRB,N(µ), vδ,µ) = f(vδ,µ) ∀ vδ ∈ Y∆t,N

uδ(µ)(0) = 0.
(1.3.19)

Using the algebraic interpretation of the problem, it is easy to verify that the reduced
problem can be formulated in the following way (with uRB,N(µ) = ∑j,k ukN,j(µ)σk ⊗ ζj):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆tMN(µ)(ulN(µ) − ul−1

N (µ)) + 1
2AN(µ)(ulN(µ) + ul−1

N (µ)) = g(tl−1)+g(tl)
2 FN(µ)

u0
N(µ) = 0

MN(µ) =
Qm

∑
q=1

Θm
q (µ)M q

N (M q
N)i,j =mq(ζj , ζi)

AN(µ) =
Qa

∑
q=1

Θa
q(µ)A

q
N (AqN)i,j = aq(ζj , ζi)

FN(µ) =
Qf

∑
q=1

Θf
q (µ)F

q
N (Fq

N)j = F qN(ζj).

(1.3.20)
We can now de�ne our reduced order approximation of the input-output relationship

(1.3.15) in a variational formulation:

Given µ ∈ D, �nd sRB,N(µ) ∶= J(uRB,N(µ)) where uRB,N(µ) is the solution to (1.3.19)
(1.3.21)

and in a completely algebraic one:

Given µ ∈ D, �nd sRB,N(µ) ∶= ∑K
k=1

1
2 lT (uk−1

N (µ) + ukN(µ))
where {ukN(µ)}k is the solution to (1.3.20).

(1.3.22)

Equations (1.3.20)-(1.3.22) are ideally suited for the o�ine-online decomposition. In
the o�ine stage M q, Aq and Fq are computed. In the online stage, for each time step, we
assemble the matrix and vector and then we solve the system and update the output. In
conclusion the online operation count is: O (((Qa +Qm)N2 +QfN +QfN3 +N)K).
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In order to analyse the problem, we introduce the following discrete inf-sup and conti-
nuity constants associated with the involved spaces:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βRB,N(µ) = inf
w∈X∆t,N

sup
v∈Y∆t,N

b(w, v,µ)
∥w∥X ,δ∥v∥Y,δ

γRB,N(µ) = sup
w∈X∆t,N

sup
v∈Y∆t,N

b(w, v,µ)
∥w∥X ,δ∥v∥Y,δ

(1.3.23)

We observe that, thanks to the formulation chosen, the Galerkin projection is formally
equivalent to the one proposed in the elliptic case. In addition it is possible to prove the
following optimality estimate that is the analogous, for non-coercive problems14, of the one
presented in Remark 1.2.

Lemma 1.1. Let uRB,N(µ) be the solution to (1.3.19) and uδ(µ) be the solution to
(1.3.12); then the following estimate holds:

∥uδ(µ) − uRB,N(µ)∥X ,δ ≤ (1 + γb(µ)
βRB,N(µ)) inf

w∈Xδ
∥uδ(µ) −w∥X ,δ (1.3.24)

where γb(µ) is de�ned as in (1.3.17) and βRB,N(µ) as in (1.3.23).
Consequently, we have:

∣sδ(µ) − sRB,N(µ)∣ ≤
√
T ∥l∥V ′ (1 + γb(µ)

βRB,N(µ)) inf
w∈Xδ

∥uδ(µ) −w∥X ,δ. (1.3.25)

Proof. Let w ∈ X∆t,N . From the de�nition of βRB,N(µ), there exists ξ ∈ Y∆t,N such that15

βRB,N∥uRB,N(µ) −w∥X ,δ∥ξ∥Y ≤ b(uRB,N(µ) −w, ξ,µ)

Using the Galerkin orthogonality16:

b(uRB,N(µ) −w, ξ,µ) = b(uδ(µ) −w, ξ,µ) ≤ γb(µ)∥uδ(µ) −w∥X ,δ∥ξ∥Y

where in the last inequality the de�nition of γb(µ) in (1.3.17) has been used. Thus in
conclusion we obtain:

∥uRB,N(µ)−uδ(µ)∥X ,δ ≤ ∥uRB,N(µ)−w∥X ,δ+∥uδ(µ)−w∥X ,δ ≤ (1 + γb(µ)
βRB,N(µ)) ∥uδ(µ)−w∥X ,δ

Due to the arbitrariness of w, the �rst estimate holds. Inequality (1.3.25) follows in a
straightforward way from (1.3.24).

1.4 Sampling strategy

It is absolutely evident that the e�ectiveness of the RB method strongly depends on the
approximation property of the RB space. For this reason, in recent years, a great attention
has been paid to the de�nition of e�ective sampling strategies able to generate adaptive and

14The lemma below is a simpli�ed version of Proposition 4 in [106].
15Due to the fact that the spaces are �nite dimensional, it is absolutely standard to verify the existence

of such ξ.
16In formulas:

b(uRB,N(µ) − uδ(µ), v,µ) = 0 ∀ v ∈ Y∆t,N
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hierarchical spaces which are automatically tailored to the particular problem of interest.
Such techniques are particularly important when the number of parameters is higher than
one17: in fact in this case standard tensor product approaches are prohibitively expensive.

Concerning the problems considered in this chapter, the main techniques usually em-
ployed are the so-called Greedy algorithm, �rst proposed in [124], for elliptic problems and
the POD-Greedy algorithm, [49], for parabolic equations.

An exhaustive presentation of the topic is absolutely beyond the purposes of this chap-
ter: we just summarize the main features of the di�erent approaches while referring to the
articles in bibliography for further discussions.

We �rst introduce some notation. We denote by Ξ a �nite sample of points in D (train
set) and we de�ne ntrain ∶= ∣Ξ∣ the cardinality of the train set18. As explained above, the
sample to approximate is the truth manifold MN de�ned in (1.1.4) and the associated
spanned space: span{MN }. For the sake of simplicity in the following the superscript N
is omitted.

We refer to (⋅, ⋅) and consequently to ∥ ⋅ ∥ as to the inner product and the associated
norm de�ned on span{MN }.

Following [93], we focus on Lagrangian samples, thus the search of the optimal subspace
XN = span{u(µi); 1 ≤ i ≤ N} ⊂ span{MN } will be associated with the search of the
optimal sample SN ∶= {µ1,⋯,µN} ⊂ Ξ. Finally, N̄max is de�ned as the maximum dimension
of the reduced space.

1.4.1 Orthogonalization procedures

As explained in Remark 1.1, it is extremely important to consider an orthonormal basis
for the reduced space. Starting from the basis {uk}k ∶= {u(µk)}k, an e�cient algorithm
to obtain an orthonormal basis {ζk}k is the well-known Gramm-Schmidt algorithm [42].
Algorithm 1 summarizes the procedure.

Algorithm 1 Gramm-Schmidt orthogonalization procedure: [{ζk}Kk=1] =
Gramm-Schmidt({uk}Kk=1)

ζ1 ∶= u1

∥u1∥
:

for k = 2 ∶K do

zk ∶= uk −∑k−1
m=1(ζm, uk)ζm

ζk = zk

∥zk∥

end for

1.4.2 Kolmogorov N-Width

In order to establish a benchmark, we de�ne the so-called Kolmorogov �N-width� [77, 59]:

ε̄Kol(X) ∶= sup
µ∈Ξ

inf
w∈X

∥u(µ) −w∥ X ⊂ span{MN } , (1.4.1)

17In [93] section 3.5, a generic a priori �quasi hierarchical� sequence of spaces is provided for parametri-
cally coercive problems that depend on a single (P = 1) parameter. However, in higher dimensions no such
recipe is available.

18These samples are typically chosen by Monte Carlo methods with respect to a uniform or log-uniform
density. ntrain should be quite large (when P > 1, easily as large or larger than 106) in order to be
insensitive to further re�nement of the parameter sample.
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where the optimal �Kolmogorov spaces� XKol
N are given by:

XKol
N = arg inf

XN⊂span{MN } dimXN=N
ε̄Kol(X) (1.4.2)

We observe that the �Kolmogorov spaces� XKol
N guarantee an optimal coverage property

with respect to the �L∞(Ξ)� norm in parameter of the best �t to the �eld variable. For this
reason XKol

N can be addressed as the best N -dimensional subspace to approximate u(µ) for
all µ ∈ D.

However, such sequence is not computable in practice because it cannot be assumed to
be hierarchical and the optimization procedure in (1.4.2) is combinatorially di�cult with
respect to ntrain and requires the computation of ntrain FE solutions.

1.4.3 Proper Orthogonal Decomposition

In this paragraph the Proper Orthogonal Decomposition (POD) is introduced. The method
was originally introduced in probability theory as Karhunen-Loeve transformation [62, 74]
or, even earlier, in statistics as Hotelling transformation [50]. Since then, it has also been
denoted as principal component analysis [31] in pattern analysis. In the �eld of numerical
analysis for partial di�erential equations, it has been applied -with the notion of POD-
to a variety of problems such as turbulent �ows [76], �uid structure interaction [28] and
non linear structural mechanics [66]. The technique is typically applied within the time-
domain Reduced Order Modeling (ROM) [114, 100, 101], but it can also be applied within
the parametric context [114, 47] . Here, the presentation is limited to the �nite dimensional
case; however, it is possible to extend the methodology to the approximation of �nite and
in�nite dimensional manifolds that belong to in�nite dimensional Hilbert spaces, [51].

With respect to the Kolmogorov-N-width, we replace the L∞(Ξ) norm of (1.4.1) with
the weaker L2(Ξ) norm:

ε̄POD(X) ∶=
¿
ÁÁÀ 1

ntrain
∑
µ∈Ξ

inf
w∈X

∥u(µ) −w∥2 X ⊂ span{MN } . (1.4.3)

The optimal POD spaces XPOD
N are consequently de�ned as:

XPOD
N ∶= arg inf

XN⊂span{MN }, dimXN=N
ε̄POD(XN). (1.4.4)

Thanks to the following lemma, the optimal space can be identi�ed through the solution
to a suitable symmetric positive semide�nite eigenproblem.

Lemma 1.2. Let µ1,⋯,µntrain be a given ordering of Ξ (i.e. Ξ ∶= {µ1,⋯,µntrain}) and let
C ∈ Rntrain×ntrain be de�ned as:

Ci,j ∶=
1

ntrain
(u(µi), u(µj)). (1.4.5)

Furthermore, we refer to (Ψi, λi) ∈ Rntrain × R as to the eigenpairs of the following sym-
metric semide�nite positive eigenproblem:

CΨi = λiΨi λi ≥ λi+1 ≥ 0. (1.4.6)

Then the N -dimensional POD space de�ned in (1.4.4) coincides with:

XPOD
N = span{ψPODi ∈ span{M}; 1 ≤ i ≤ N} ψPODi ∶=

ntrain

∑
n=1

Ψi
nu(µi) (1.4.7)
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and the approximation error (1.4.3)

ε̄POD(XPOD
N ) =

¿
ÁÁÀ

ntrain

∑
k=N+1

λi. (1.4.8)

For the proof we refer, for instance, to [30] section 2. The matrix C in (1.4.6) is usually
referred to as Gramian or Kernel matrix. Lemma 1.2 shows that POD yields hierarchical
spaces with an optimality covering property at non-combinatorial O�ine cost. On the
other hand, in order to build the Gramian matrix it is necessary to perform ntrain FE
problems to compute u(µi) and n2

train inner products to form C. For this reason the
method is computationally sustainable only when dimD is small (P = 1,2).

Estimate (1.4.8) is extremely important: it justi�es the fact that the e�ectivity of POD
depends uniquely on the eigenvalue spectrum of the Gramian matrix. We will come back
to this topic later in the chapter.

The algorithm below summarizes the POD procedure.

Algorithm 2 POD sampling algorithm: [{ψPODi ∈ span{M},1 ≤ i ≤ N}] = POD({u(µN ∈
M,1 ≤ N ≤ ntrain},N)

Ci,j = 1
ntrain

(u(µi), u(µj)) 1 ≤ i, j ≤ ntrain:

Solve CΨi = λiΨi, ΨiTCΨj = 1
ntrain

δi,j associated with the N largest eigenvalues of C.

Compute ψPODi = ∑ntraink=1 Ψi
ku(µk) for 1 ≤ i ≤ N

1.4.4 Greedy sampling

In information science a greedy algorithm is an algorithm that follows the problem solving
heuristic of making the locally optimal choice at each stage with the hope of �nding a
global optimum19.

Thus the crucial question is how, given µ1, µ2,⋯,µN−1 parameters, we choose the next
one, µN .

In our framework, it seems to be natural to consider the following criterion:

µN = argmax
µ∈Ξ

∥u(µ) − uRB,N−1(µ)∥

where uRB,N−1 ∶ D →XGreedy
N−1 = span{u(µj) ∶ j = 1,⋯,N −1} is the solution to the reduced

problem we are considering.
With respect to POD, at this level no signi�cant computational saving is obtained:

as before ntrain FE problems have to be solved in order to de�ne the new value of µ.
However, if we recur to an e�cient estimator ∆

XGreedy
N

(µ) for the reduced basis error

∥u(µ) − uRB,N(µ)∥ the o�ine computational e�ort is potentially hugely reduced: in fact
the method allows to compute truth solutions/snapshots not for all points in Ξ, as in the
POD context but only for the winning candidates µN . Since Nmax ≪ ntrain we are able to
consider larger train samples Ξ and so also higher-than-one dimension parameter spaces
can be taken into account.

19The de�nition is taken from en.wikipedia.org/wiki/Greedy_algorithm.
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In section 1.5 we discuss how to build such estimator, here we write down the Pseudo-
Code for the Greedy Algorithm: we assume that an initial sample SGreedyN0

and the asso-

ciated Lagrange space XGreedy
N0

= span{u(µN); 1 ≤ N ≤ N0} are given. The termination
condition of the Greedy algorithm is set through the tolerance εtol referred to as the L∞(Ξ)
approximation error.

Algorithm 3 Greedy sampling algorithm: [XGreedy
Nmax

] = Greedy(SGreedyN0
,Ξ, εtol, N̄max,)

given SGreedyN0
= {µN N = 1,⋯,N0} and the associated XGreedy

N0
:

for N = N0 + 1 ∶ N̄max do

µN = argmaxµ∈Ξ ∆
XGreedy
N−1

(µ)
εGreedyN−1 = ∆

XGreedy
N−1

(µN)
if εGreedyN−1 ≤ εtol then

Nmax = N − 1
break

end if

SGreedyN = SGreedyN−1 ∪ {µN}
XGreedy
N =XGreedy

N−1 ∪ span{u(µN)}
end for

We observe that the algorithm provides hierarchical spaces and it is optimized with
respect to the strong L∞(Ξ) norm. Numerical simulations show that -although it is a
short horizon heuristic that is sub-optimal with respect to the L∞(Ξ) norm- in practical
the approach provides rapidly convergent approximations.

As it is shown in [93], short horizon greedy and global POD approaches perform com-
mensurately if measured in comparable norms: as might be forecast, each is better in the
native norm on Ξ which de�nes the respective objective functions.

1.4.5 Sampling methods for elliptic and parabolic equations

After presenting the POD and the Greedy sampling strategies from a general point of view,
we apply them to our framework.

The Greedy approach is the most e�cient sampling strategy for stationary equations.
As explained above, it is on one hand capable to provide rapidly convergent approximations
and on the other hand - unlike POD - it does not su�er too much high dimension parameter
samples.

The success of the Greedy approach originates from the absence of interactions between
the RB approximations for di�erent parameter values. In the time-domain context there
are of course interactions between di�erent times and, as a result, the Greedy algorithm
may not perform as well as the more global POD optimization procedure, able to capture
the interactions between the solution at di�erent times.

This gives reasons for the use, in the parabolic case, of a mixed strategy20 (the so-
called POD-Greedy) that combines the POD in time- to adequately capture the causality
associated with the evolution equation- with the Greedy procedure to manage the high
dimension of parameter variation.

20As we stated above in section 1.3.3, here we focus on time-independent RB approximations for evolution
equations. For this reason our discussion is limited to sampling approaches that aim at producing spatial
approximation subspaces.
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To explain the computational procedure21, detailed in the algorithm 4, we �rst de�ne
µ1 and εtol the initial sample point and a given termination tolerance, respectively. Fur-
thermore, we de�ne two suitable integers M1 and M2; M1 represents the number of basis
we extract at each step from the POD procedure and it is usually de�ned such that (1.4.8)
be under a given tolerance. On the other hand, M2 ≤M1 is chosen to avoid duplication in
the RB space.

Finally, as in the Greedy strategy ∆X(µ) is the a posteriori error estimator between
the truth solution and reduced basis solution with respect to a suitable norm.

Algorithm 4 Pod Greedy sampling algorithm:
[XPG

Nmax
, SPG] = Greedy(µ1,Ξ, εtol, N̄max,M1,M2)

Set SPG = {µ1}, µ⋆ = µ1

while N ≤ N̄max do

[{ψi ∈ span{M},1 ≤ i ≤M1}] = POD ({u(µ⋆, tk),0 ≤ k ≤ K},M1)

[{ξi},1 ≤ i ≤ N +M2] = POD (XPG
N ∪ {ψi ∈ span{M},1 ≤ i ≤M1},N +M2)

N = N +M2

XPG
N = span{ξi}

µ⋆ = argmaxµ∈Ξ ∆XPG
N

(µ)
SPG = SPG ∪ {µ⋆}

end while

Before concluding this section, we observe that, unlike in a pure POD approach, the
operation count for the POD-Greedy algorithm is additive and not multiplicative in ntrain
and N . As a result, in the latter approach ntrain can be taken relatively large.

The following example shows the meaning of M1 and M2.

Example 1.1. Let us consider the following manifold

M ∶= {ũ + εu(µ) ∶ µ ∈ D}

where ũ ∶ Ω→ R and u ∶ D ×Ω × (0, T )→ R be smooth functions and ∣ε∣ ≪ 1.

Then it is easy to observe that for all values of the parameter POD returns ũ as �rst
eigenvalue. Therefore, if we consider M1 =M2, at each step of the POD Greedy algorithm
we would try to add the same eigenvector: as a result, the algorithm would determine an
ill-conditioned space or would generate an error.

1.4.6 A brief overview on convergent rates of the Greedy and POD-

Greedy methods

Since its introduction in the early 2000s, several numerical simulations have shown the
approximation properties of the Greedy method22. However, the a priori convergence
results are much more recent, [12, 8, 48]. Such results permit to compare the Greedy
suboptimal approach with the benchmark Kolmogorov spaces: essentially, they all state

21As mentioned above, the POD Greedy algorithm was �rst proposed in [49]; the procedure here pre-
sented, taken from [80], is a slight modi�cation of the original approach.

22See [106] for some examples in the stationary case.
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that, if the error sequence of the Greedy or POD-Greedy algorithm is slowly decaying,
then also the Kolmogorov N -width at a certain iteration must be large.

Here we limit to state the most recent result available for the Greedy sampling strategy
for stationary coercive equations, [8]. In [48], the result is extended to the POD-Greedy
algorithm for time dependent problems.

Theorem 1.1. Let us suppose that the a posteriori error estimator ∆XN ∶ D → R in the
algorithm 3 satis�es the following inequality:

c∆XN (µ) ≤ ∥u(µ) − PXNu(µ)∥ ≤ C∆XN (µ) (1.4.9)

for some constants c,C > 0 and where PXN ∶M→XN is the projection operator.

We de�ne

dN(M) = ε̄Kol(XKol
N ), σN(M) = ε̄Kol(XGreedy

N ),

where ε̄Kol is de�ned in (1.4.1) and XKol
N as in (1.4.2).

Then if

dN(M) ≤M(N)−α ∀N ≥ 0, M,α > 0

we have

σN(M) ≤KM(N)−α (1.4.10)

where K = √
q(4q)α and q = [2α+1C

c
]2
.

Otherwise if:

dN(M) ≤Me−aN
α ∀N ≥ 0 a,M,α > 0

we have:

σN(M) ≤ inf
θ∈(0,1)

K(θ)M(θ)e−k(θ)N β̃

(1.4.11)

where β̃ = α
α+1 , K(θ) = max{ecN

β̃
0 ,

√
q}, k(θ) = min{∣log(θ)∣, (4q)−αa}, q(θ) = [ 2c

γθC ]
2
and

N0(θ) = ⌈(8q)α+1⌉.

These results represent the theoretical foundation behind the Greedy and the POD-
Greedy approaches; the convergence rate is associated with the approximation properties
of Kolmogorov spaces.

For several classes of problems, we expect that the Kolmogorov N -width decay rate is
very fast. However, especially in the time-dependent case, there are signi�cant examples
in which the convergence is extremely slow.

Example 1.2. (Example 3.4 from [48]) Let us consider the following non parametric
advection problem:

⎧⎪⎪⎨⎪⎪⎩

∂ψ

∂t
+ ∂ψ
∂x

= 0 (t, x) ∈ (0,K] × (0,K + 1) = (0, T ] ×Ω

ψ = ψ0 x ∈ Ω.
(1.4.12)

We consider the mesh tk = k and xk = k for k = 0,⋯,K and the initial data ψ0(xk) = δ0k.
Then an upwind �nite di�erence discretization yields u = {uk}Kk=0 with uki = δi,k.

It is straightforward to verify that in this case the Gramian matrix C is in spectral form
and λ0 = ⋯ = λK = 1. Hence, at each step of the POD-Greedy algorithm, one single mode
is inserted and the error decays by an identical decrement. We observe that we have linear
convergence of the error with respect to the number of elements in the reduced basis.
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We conclude this section with some general comments. The theoretical results presented
above represent an important step towards the theoretical explanation about why the
Greedy and the POD-Greedy algorithm work well in practice. On the other hand, a
crucial question is to provide estimates of the Kolmogorov N -width decay rate for certain
classes of time dependent parametric PDEs: the above example shows that there exist
relevant cases of not decaying eigenvalue spectrum (transport of discontinuities).

1.5 A posteriori error estimation

In the previous sections, the necessity for an a posteriori error estimator, say ∆RB, came up.
One of the main goals of Reduced Basis is to decrease signi�cantly the online computational
e�ort without losing the reliability of the RB approximation. Furthermore, in section
1.4 we introduced the Greedy sampling strategy that takes advantage of an e�cient and
inexpensive error indicator in order to consider larger training sets Ξ ⊂ D and so to provide
a better parameter space exploration at greatly reduced O�ine computational cost.

The reasons above justify the following requirements on the error estimator:

� Rigour : the a posteriori error bound must be rigorous i.e.:

∥u(µ) − uRB(µ)∥ ≤ ∆RB(µ) ∀µ ∈ D. (1.5.1)

Although even non-rigorous indicators may be considered during the sampling, the
rigour of the error bound is fundamental in order to assess the online reliability of
the approximation.

� Sharpness: the a posteriori error estimation must be close to the real error i.e.:

∆RB(µ) ≤ C∥u(µ) − uRB(µ)∥ ∀µ ∈ D for some C > 1. (1.5.2)

As theorem 1.1 shows, an overly conservative error bound deteriorates the conver-
gence order of the Greedy sampling- with respect to the equation (1.4.9) γ = C - and
so it easily determines ine�cient approximation spaces.

� E�ciency : the aim at reducing the Online operation count and storage and the need
of taking into account large training sets during the sampling stage justify the fact
that the evaluation time of the estimator must be independent of the mesh size N
and should be commensurate with the computational time associated with the RB
output prediction.

In this section the a posteriori error estimation for elliptic and parabolic equations is
dealt with. As regards elliptic problems, the discussion here presented is classic, [80, 93,
106]; on the other hand, the results for parabolic problems are more recent, [120].

In order to simplify the explanation and to express the main ideas, the discussion is
organized as follows:

� �rst, the a posteriori error estimation is introduced in an abstract setting for a general
non coercive linear problem;

� then, the a posteriori estimator for parametrically a�ne elliptic and parabolic equa-
tions is obtained;

� at the end of the section, we brie�y address the problem of the output estimation,
perhaps the main goal of the RB approach.
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1.5.1 Residual-based a posteriori error estimator

Let us consider the following problem:

Find u ∈X such that b(u, v) = f(v) ∀ v ∈ Y ; (1.5.3)

where X, Y are Hilbert spaces, f ∈ Y ′ and b ∶ X × Y → R is a γ-continuous and inf-sup
stable, with β the corresponding constant, bilinear form23.

Now let us consider the subspaces XRB ⊂X and YRB ⊂ Y and we call uRB the solution
to the reduced problem:

Find uRB ∈XRB such that b(uRB, v) = f(v) ∀ v ∈ YRB. (1.5.4)

Even for the reduced problem, we suppose that the bilinear form is still inf-sup stable,
with βRB the corresponding constant, with respect to the reduced spaces.

Under these hypotheses, problems (1.5.3) and (1.5.4) admit a unique solution that
depends continuously on data.

Let us now consider the weak residual r ∶ Y → R:

r(v) ∶= f(v) − b(uRB, v) (1.5.5)

It is absolutely straightforward that r ∈ Y ′, so, for the well-known Riesz theorem, there
exists ê ∈ Y such that:

(ê, v)Y = r(v), ∥ê∥Y = ∥r∥Y ′ .

By substracting (1.5.4) to (1.5.3), we obtain:

b(u − uRB, v) = r(v).

And so for the well-known Babuska theorem, [4], we get:

∥u − uRB∥X ≤ 1

β
∥r∥Y ′ = 1

β
∥ê∥Y . (1.5.6)

Estimate (1.5.6) gives reasons for the introduction of our residual based estimator:

∆RB ∶= 1

βLB
∥ê∥Y where βLB ≤ β. (1.5.7)

The rigour of this estimator is guaranteed by (1.5.6); as regards the sharpness, if we
suppose Y to be re�exive24, the residual estimator satis�es (1.5.2) too. In fact, thanks to
the re�exivity25, ∃ v⋆ ∈ Y such that ∥v⋆∥Y = 1, r(v⋆) = ∥r∥Y ′ . Thus:

∆RB = 1

βLB
∥r∥Y ′ = 1

βLB
r(v⋆) = 1

βLB
b(u − uRB, v⋆) ≤

γ

βLB
∥u − uRB∥X (1.5.8)

that proves (1.5.2) with C = γ
βLB

. It is now clear that, in order to obtain a rigorous, e�cient
and sharp residual-based estimator it is necessary to:

1. propose a rapid and reliable methodology to estimate βLB. This is the goal of section
1.5.3;

2. determine a procedure to compute e�ciently the residual. The next section will deal
with this topic for both elliptic and parabolic problems.

23We observe that both (1.2.2b) and (1.3.5) are addressed by this general setting.
24This assumption, that is satis�ed in both our cases, can be overcome by applying a limit procedure.
25The fact is a notable consequence of the Banach-Alaoglu-Bourbaki theorem [10].
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1.5.2 Residual de�nition for elliptic and parabolic equations

In this sections suitable formulas for the rapid evaluation of the residual are obtained for
both the elliptic case (1.2.1)-(1.2.2b) and the parabolic one (1.3.11)-(1.3.12).

In the elliptic case, mimicking (1.2.2b) into (1.5.5) we obtain:

r(v;µ) =
Qf

∑
q=1

Θf
q (µ)f q(v) −

Qa

∑
q=1

Θa
q(µ)aq(uRB,N(µ), v)

=
Qf

∑
q=1

Θf
q (µ)f q(v) −

Qa

∑
q=1

N

∑
j=1

Θa
q(µ)uN,j(µ)aq(ζj , v)

So, if we de�ne Riesz representatives Cq q = 1,⋯,Qf and Lq
′

n ∈ X, n = 1,⋯,N and q′ =
1,⋯,Qa such that:

(Cq, v)X = f q(v) ∀ v ∈X (Lq′n , v)X = −aq′(ζn, v) ∀ v ∈X, (1.5.9)

thanks to the linearity, we obtain

ê(µ) =
Qf

∑
q=1

Θf
q (µ)Cq +

Qa

∑
q=1

N

∑
n=1

Θa
q(µ)uN,n(µ)Lqn. (1.5.10)

Finally, the residual is

∥ê(µ)∥2
X =

Qf

∑
q,q′=1

Θf
q (µ)Θ

f
q′(µ)(Cq,Cq′)X +

Qa

∑
q,q′=1

N

∑
n,n′=1

Θa
q(µ)Θa

q′(µ)uN,n(µ)uN,n′(µ)(Lqn,L
q′

n′)X

+ 2
Qa

∑
q=1

Qf

∑
q′=1

N

∑
n=1

Θf
q′(µ)Θ

a
q(µ)uN,n(µ)(Lqn,Cq′)X .

(1.5.11)
The previous formula separates the parameter-dependent terms from the parameter inde-
pendent ones and thus allows the computation of ∥ê(µ)∥X in an o�ine-online framework.
In the o�ine stage (Cq,Cq′)X ,(Lqn,Lq

′

n′)X and (Lqn,Cq′)X are computed. Then in the online
stage the NQ2

a +Q2
f +QaQf +Q2

f parameter dependent terms are evaluated for the new
value of the parameter and the residual is computed.

Concerning the parabolic problem (1.3.12) we are considering26, it is possible to perform
the same steps as in the steady case.

First of all, the residual is:

r(v,µ) =
K
∑
k=0

∆t

⎧⎪⎪⎨⎪⎪⎩

Qf

∑
q=1

Θf
q (µ)F q(w)g(tk) −

Qa

∑
q=1

N

∑
j=1

Θa
q(µ)ukN,j(µ)aq(ζj , v)

−
Qm

∑
q=1

N

∑
j=1

Θm
q (µ)ukN,j(µ)mq(ζ̇j , v)

⎫⎪⎪⎬⎪⎪⎭
.

(1.5.12)

Thus, if we de�ne Cq ∈ Vh for q = 1,⋯,Qf and Lq
′

n ∈ Vh, n = 1,⋯,N and q′ = 1,⋯,Qa such
that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Cq, v)V = F q(v) q = 1,⋯,Qf
(Lqn, v)V = −aq(ζn, v) q = 1,⋯,Qa
(Lqn, v)V = −mq−Qa(ζ̇n, v) q = Qa + 1,⋯,Qa +Qm,

(1.5.13)

26The hypotheses on the functional and on the bilinear form make the formulation much simpler; see
[120] section 3.3. for further comments.
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we obtain that ê(µ) ∈ Yδ is such that:

ê(µ)(tk) = g(tk)
Qf

∑
q=1

Θf
q (µ)Cq +

Qa+Qm

∑
q=1

N

∑
j=1

Θa
q(µ)ukN,n(µ)Lqn. (1.5.14)

In conclusion,

∥ê(µ)∥2
Y =

K
∑
k=0

∆2
k∆t (1.5.15a)

where:

∆2
k =g(tk)2

Qf

∑
q,q′=1

Θf
q (µ)Θ

f
q′(µ)(Cq,Cq′)X +

Qa+Qm

∑
q,q′=1

N

∑
n,n′=1

Θa
q(µ)Θa

q′(µ)ukN,n(µ)ukN,n′(µ)(Lqn,L
q
n′)X

+ 2g(tk)
Qa+Qf

∑
q=1

Qf

∑
q′=1

N

∑
n=1

Θf
q′(µ)Θ

a
q(µ)ukN,n(µ)(Lqn,Cq

′)X .

(1.5.15b)
Like in the elliptic case, a separation between parameter dependent and independent terms
is reached.

1.5.3 Inf-sup lower bound for elliptic equations

In this section we deal with an e�cient procedure to build an e�ective lower bound for the
discrete coercivity constant (1.2.4):

α(µ) = inf
w∈X

a(w,w,µ)
∥w∥2

X

∀µ ∈ D (1.5.16)

where X is the above mentioned FE space (dim(X) = N ). The discrete coercivity constant
is a generalized minimum eigenvalue as stated in the following lemma.

Lemma 1.3. Let us consider α(µ) de�ned in (1.5.16). Let us suppose that ∥ ⋅∥X is induced
by an inner product, say (⋅, ⋅)X , and that {φj}Nj=1 is a basis for X. Then the following holds:

α(µ) = min{λ ∈ R ∶ 1

2
(A(µ) +AT (µ))w = λBw for some w ∈ RN} (1.5.17)

where A(µ), B ∈ RN×N are such that Ai,j(µ) = a(φj , φi,µ) and Bi,j = (φj , φi)X .

The proof, based on Lagrangian multipliers, is here omitted27.
There are many classical techniques for the estimation of minimum eigenvalues or min-

imum singular values such as Gershgorin's theorem and variants [57] or methods based on
eigenfunction/eigenvalue approximation and subsequent residual evaluation [92]; however,
these methods do not satisfy our requirements concerning reliability and e�ciency.

For this reason in the context of Reduced Basis other methods have been proposed.
The most successful one is surely the so-called Successive Constraint Method [107, 106]
that we are going to present.

27We refer to [93] for a detailed discussion on this topic.
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Successive Constraint Method

Let us consider the bilinear form in (1.2.1):

a(u, v,µ) =
Qa

∑
q=1

Θa
q(µ)aq(u, v)

In order to state the algorithm, we introduce the following objective function

J obj(µ,y) =
Qa

∑
q=1

Θa
q(µ)yq (1.5.18a)

and the space.

Y = {y ∈ RQa ∶ ∃w ∈X such that, for all q = 1,⋯,Qa, yq = aq(w,w)} . (1.5.18b)

It is absolutely straightforward to verify that:

α(µ) = inf
y∈Y
J obj(µ,y). (1.5.19)

We have recast the problem of �nding the coercivity constant into an optimization problem
based on a linear objective function. Therefore, if we are able to de�ne a suitable convex
polyhedron, say YLB, such that Y ⊂ YLB the lower bound can be obtained through the
solution of a linear program.

In order to introduce such space, we de�ne the following quantities. First of all, we
consider the constraint sample

CJ = {µ1,⋯,µJ} (1.5.20)

and the continuity constraint box

B =
Qa

∏
q=1

[ inf
w∈X

aq(w,w,µ)
∥w∥2

X

, sup
w∈X

aq(w,w,µ)
∥w∥2

X

] ; (1.5.21)

�nally, given µ ∈ D, we refer to CJ(µ,M) ⊂ CJ as the set of the M closest points to µ in
CJ .

We have now the elements to introduce the lower bound set

YLB(CJ(µ,M)) =
⎧⎪⎪⎨⎪⎪⎩
y ∈ RQa ∶ y ∈ B,

Qa

∑
q=1

Θa
q(µ′)yq ≥ α(µ′), ∀µ′ ∈ CJ(µ,M)

⎫⎪⎪⎬⎪⎪⎭
, (1.5.22a)

as well as the upper bound set

YUB(CJ(µ,M)) = {y⋆(µ′) ∈ RQa ∶ y⋆(µ′) = arg inf
y∈Y
J obj(µ,y)} . (1.5.22b)

Consequently we de�ne the following quantities

αLB(µ,CJ ,M) = inf
y∈YLB(CJ(µ,M))

J obj(µ,y) (1.5.23a)

and
αUB(µ,CJ ,M) = inf

y∈YUB(CJ(µ,M))
J obj(µ,y). (1.5.23b)

The following lemma justi�es the approach28

28See [106] for the proof.
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Lemma 1.4. Given CJ ⊂ D and M ∈ N we have that:

YUB(CJ(µ,M)) ⊂ Y(CJ(µ,M)) ⊂ YLB(CJ(µ,M)).

So it readily follows that:

αLB(µ,CJ ,M) ≤ α(µ) ≤ αUB(µ,CJ ,M). (1.5.24)

The e�ectivity of the lower bound depends on the coercivity constraint sample CJ . In
[106] a Greedy algorithm -similar to the sampling Greedy procedure 3- has been proposed.
In Algorithm 5 we gather the entire procedure.

Let Ξ ⊂ D be a train sample equivalent to the one de�ned in section 1.4, εSCM ∈ (0,1)
and M ∈ N be a given tolerance and a given positive integer, respectively; �nally let
µ1
SCM ∈ Ξ be given in order to initialize the algorithm.

Algorithm 5 Greedy selection of CJ : [CJ] = SCM-Greedy(µ1
SCM ,Ξ, εSCM ,M)

Set C1 = {µ} and J = 1.

η(µ,CJ ,M) ∶= αUB(µ,CJ ,M) − αLB(µ,CJ ,M)
αUB(µ,CJ ,M)

Compute the continuity constraint box B in (1.5.21).

while maxµ∈Ξ η(µ,CJ ,M) > εSCM do

µJ+1 = argmaxµ∈Ξ η(µ,CJ ,M)
Compute α(µJ+1) and y⋆(µJ+1)
CJ+1 = CJ ∪ {µJ+1}
J = J + 1

end while

Essentially, at each iteration of the Greedy procedure we add to our coercivity con-
straint the point for which the di�erence between the current lower bound and upper
bound estimate is largest. Due to the fact that αUB(µ,CJ ,M) = αLB(µ,CJ ,M) ∀µ ∈ CJ ,
it follows from the continuity of the coercivity constant, that our error tolerance will be
honoured for J su�ciently large.

The choice of the stopping criterion permits us to bound the ratio:

α(µ)
αLB(µ,CJ ,M) = α(µ)

αUB(µ,CJ ,M) − (αUB(µ,CJ ,M) − αLB(µ,CJ ,M))

= α(µ)
αUB(µ,CJ ,M)

1

1 − η(µ,CJ ,M)

≤ 1

1 − εSCM
∀µ ∈ Ξ

Therefore, the residual estimator29 de�ned in (1.5.7) satis�es the sharp condition (1.5.2)

with C = 1
1−εSCM

γ(µ)
α(µ) .

We summarize the online and o�ine computational costs:

� in the o�ine stage we have to solve 2Qa eigenproblems over X in order to build B,
J eigenproblems over X to form {α(µ′) ∶ µ′ ∈ CJ} and �nally to solve ntrainJ linear
programs of size at maximum Qa +M for the computation of η(µ,CJ ,M);

29∆RB(µ) = 1
αLB(µ)

∥ê(µ)∥X , the use of α instead of β is explained by the coercivity of the problem.
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� in the online stage, given a new value of µ, we have to solve a linear program of size
Qa +M to evaluate αLB(µ,CJ ,M).

The eigenproblems associated with the calculation of the α(µ′), with µ′ ∈ CJ , can be
solved e�ciently through the Lanczos method [117]. Thanks to our particular choice of
the inner product- see (1.2.3)- it can be shown that the lowest eigenvalue is well separated
from the second one. This ensures rapid convergence of the above mentioned procedure.

Before concluding, we give some references. The approach here presented for coercive
problems can be extended to non coercive linear equations; for instance in [79] the method-
ology has been applied to the Stokes equation. Recently a two level a�ne decomposition
variant has been proposed for general parametrized elliptic equations in [70].

1.5.4 Inf-sup lower bound for parabolic equations

Following the strategy proposed in [120], we deduce a lower bound for the inf-sup stability
constant associated with (1.3.12).

With respect to the inner products de�ned in section 1.3.2, we introduce the following
quantities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρh = sup
φ∈Vh

∥φ∥H
∥w∥V

β⋆a,h(µ) = inf
φ∈Vh

sup
ψ∈Vh

a(ψ,φ,µ)
∥ψ∥V ∥φ∥V

(λh(µ), αa,h(µ)) such that a(ψ,ψ,µ) + λh(µ)∥ψ∥2
H ≥ αa,h(µ)∥ψ∥V ∀ψ ∈ Vh

γa,h(µ) = sup
φ∈Vh

sup
ψ∈Vh

a(ψ,φ,µ)
∥ψ∥V ∥φ∥V

(1.5.25)
where we suppose that the constants are stable for h → 0. We have now the elements to
state the main result from [120].

Lemma 1.5. Let us consider the equation (1.3.12) for a given µ ∈ D. If αa,h(µ) −
λa,h(µ)ρ2

h > 0 the following estimate holds:

βb,δ(µ) ≥ βh,LB(µ) ∶= min{1, αh,a(µ) − λh(µ)ρ2
h}min{1, γa,h(µ)−2}√

2 max{1, (βa,h(µ)⋆)−1}
(1.5.26)

Otherwise:

βb,δ(µ) ≥ βh,LB(µ) ∶= e−2λT

max{
√

1 + 2λ2
hρ

4
h,

√
2}

min{1, αa,h(µ)min{1, γ−2
a,h(µ)}√

2 max{1, (β⋆a,h)−1(µ)}
(1.5.27)

where βb,δ is the inf-sup constant de�ned in (1.3.17).

Lemma 1.5 permits us to perform the estimation of the inf-sup constant βb,δ(µ) through
the same algorithm used in the steady case and explained in the previous paragraph.

1.5.5 A posteriori error estimation for the output

Given problem (1.2.2):

s(µ) = l(u(µ)) where u ∈XN solves a(u(µ), v,µ) = f(v,µ) ∀ v ∈X
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in section 1.2.2 we introduced the following output estimation (Primal Approximation):

sRB,N(µ) = l(uRB,N(µ)) where uRB,N ∈XN solves a(uRB,N(µ), v,µ) = f(v,µ) ∀ v ∈XN .

Thanks to the a posteriori estimator ∆RB(µ) detailed in section 1.5.1 we have the following
bound for the output error:

∣sRB,N(µ) − s(µ)∣ ≤ ∥l∥X′∆RB,N(µ). (1.5.28)

A signi�cant improvement to this estimate can be obtained through a Primal-Dual approx-
imation, [106]. Let us de�ne the dual problem:

Find ψ(µ) ∈X such that a(v,ψ(µ),µ) = −l(v) ∀ v ∈X. (1.5.29)

Exactly as in the previous case, we introduce the reduced spaces, Xpr
N and Xdu

M . Conse-
quently we de�ne the projected problems:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find uRB,N(µ) ∈Xpr
N such that a(uRB,N(µ), v,µ) = f(v,µ) ∀ v ∈Xpr

N

Find ψRB,M(µ) ∈Xdu
M such that a(v,ψRB,N(µ),µ) = −l(v) ∀ v ∈Xdu

M

(1.5.30)

and the following output approximation:

sRB,N,M(µ) = l(uRB,N(µ)) − rpr(ψRB,M ;µ), (1.5.31)

where rpr(⋅;µ) is the residual of the primal problem.
For the latter approximation it is possible to prove the following (see proposition 4 in

[106]).

Lemma 1.6. Given µ ∈ D, we consider s(µ) in (1.2.2) and sRB,N,M(µ) as in (1.5.31);
we have

∣s(µ) − sRB,N,M(µ)∣ ≤ γa(µ)∥u(µ) − uRB,N(µ)∥X , ∥ψ(µ) − ψRB,M(µ)∥X (1.5.32)

with γa(µ) as in (1.2.4).

Thanks to Lemma 1.6, after introducing the estimators ∆pr
RB,N(µ) and ∆du

RB,M(µ) we
obtain the following a posteriori estimate:

∣s(µ) − sRB,N,M(µ)∣ ≤ γ(µ)∆pr
RB,N(µ)∆du

RB,M(µ) =∶ ∆pr,du
RB,N,M(µ) (1.5.33)

In order to motivate the approach, let us assume N = M ; by (1.5.33) we have that the
online computational e�ort is duplicated, but now the output error is proportional to the
square of the �eld error.

For further details about the Primal-Dual formulation and for the extension of this
approach to the parabolic context we refer to [106, 120]

1.6 The whole method: o�ine-online decomposition

At the end of the presentation of the main tools behind the Reduced Basis method for el-
liptic and parabolic equations, we summarize here the whole algorithm. We limit ourselves
to the elliptic case, the parabolic one being very similar. Furthermore, we refer to [106]
for the Primal-Dual formulation.
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Algorithm 6 O�ine-Online decomposition
O�ine stage

1: SCM o�ine stage, (Algorithm 5).
2: Greedy Algorithm, (Algorithm 3); at each step we update the matrices and vectors Aq,

Fq and lq via (1.2.6) and the components of the residual via (1.5.10).

At the end of this stage the following quantities are saved: CJ and α(µ′), for all µ′ ∈ CJ ,
via SCM; Aq, Fq and lq thanks to (1.2.6) and �nally the components of the residual by
exploiting (1.5.10).

Online stage

1: Given µ ∈ D, we assemble the matrix A(µ) and the vector F(µ) in (1.2.6b) and we
solve the reduced system.

2: We compute the output through (1.2.6a).
3: Using the precomputed parameter-independent quantities we de�ne the residual

∥ê(µ)∥X as in (1.5.10).
4: We solve the linear program to compute αLB(µ,CJ ,M) via (1.5.22a).
5: We compute the residual based a posteriori estimator and eventually the output esti-

mator through (1.5.28).

1.7 Two numerical examples

In this section we apply the RB approach to two di�erent problems. The �rst one is a
steady di�usion-reaction problem; the second one is a steady advection-di�usion problem.

We will see how for the �rst one the convergence is signi�cantly faster than for the
second one even though the regularity in space is the same for both the test cases.

1.7.1 A di�usion-reaction problem

Let us consider the following input-output relation:

Given µ ∈ D = [1,10] × [0.1,100], compute s(µ) = ∫
Γ3

T (µ)dx2, (1.7.1a)

where T (µ) is the solution to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

µ1
∆T (µ) + T (µ) = 0 in Ω(µ1)

T (µ) ={ 0 on Γi(µ1) i = 1,5,6
1 on Γi(µ1) i = 2,4

∂T (µ)
∂n

= ∂T (µ)
∂x1

= 0 in Γ3

(1.7.1b)

In Figure 1.1, the domain is plotted:
Due to the discontinuity in the boundary data, the mathematical analysis of the well-

posedness of problem (1.7.1b) is quite involved; through the transposition method [73] it
is possible to prove the wellposedness in L2(Ω(µ1)). Nonetheless, from the numerical
viewpoint we treat the problem as a standard second-order elliptic equation.

As we will see in the second chapter, in order to apply the methodology it is necessary
to refer the problem to a parameter independent con�guration, say Ω = Ω(µref).
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Figure 1.1: problem domain: red boundaries are associated to the homogeneous Dirichlet
condition whereas yellow boundaries are associated to non-homogeneous Dirichlet condi-
tion.

For this reason, we de�ne µref = [1, 1] and consequently the map T ∶ D × R2 → R2

such that:

T (µ,x) =
⎡⎢⎢⎢⎢⎣

1 + µ1

2
x1

x2

⎤⎥⎥⎥⎥⎦
(1.7.2)

Then we can write the problem in the reference con�guration in such a way:

Given µ ∈ D = [1,10] × [0.1,100], compute s(µ) = ∫
Γ3

T̃ (µ)dx2 (1.7.3a)

where T̃ (µ) ∶ Ω→ Ω(µ), T̃ (µ) = T (µ) ○ T (µ) is the solution to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

2

µ2(1 + µ1)
0

0
1 + µ1

2µ2

⎤⎥⎥⎥⎥⎥⎥⎦

∇T̃ (µ)
⎞
⎟⎟⎟
⎠
+ 1+µ1

2 T̃ (µ) = 0 in Ω

T̃ (µ) = { 0 on Γi i = 1,5,6
1 on Γi i = 2,4

∂T̃ (µ)
∂n

= ∂u

∂x1
= 0 in Γ3

(1.7.3b)

Here we gather some plots and data. First we consider the convergence of the Greedy
algorithm in Figure 1.2.

By applying the exponential �tting to the data30 we obtain:

∥∆N(⋅)∥L∞(Ξ) ≃ 33.56e−0.9937N

We observe that, despite the lack of regularity in space, the convergence is extremely fast.
In Figure 1.3 the solution for two extreme values of the parameter sample are plotted.
We observe that the methodology is able to deal with large variations in the shape of the
solutions associated with di�erent values of the parameter through a very small number of
bases.

30The �tting is made by the Matlab tool fit [84]. See the documentation for further details about the
algorithm used.



1.7. TWO NUMERICAL EXAMPLES 27

Figure 1.2: convergence of the Greedy algorithm for the primal problem

(a) µ1 = 1.4 µ2 = 0.1

(b) µ1 = 1.4 µ2 = 100

Figure 1.3: reduced solutions for two values of the parameter

In Table 1.1 we gather the a posteriori error estimation and the real error in the output
estimation for a given parameter31. We observe that the e�ectivity of the a posteriori error

31The value obtained for Xpr
Npr , X

du
Ndu Npr = 15 and Ndu = 10 is assumed to be exact. For these spaces

the a posteriori estimator is lower than 10−7.
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N / M 1 5 10

1 0.3892 (0.0044) 0.0142 (6.3 ⋅ 10−4) 4.43 ⋅ 10−4 (1.8 ⋅ 10−5)
5 0.0134 (4.3 ⋅ 10−5) 4 ⋅ 10−4 (9.6 ⋅ 10−5) 1.53 ⋅ 10−5 (9.2 ⋅ 10−7)
10 0.0021 (3.4 ⋅ 10−5) 7.67 ⋅ 10−5 (7.4 ⋅ 10−7) 2.4 ⋅ 10−6 (1.87 ⋅ 10−8)

Table 1.1: estimated and real output error for di�erent primal and dual reduced spaces.
µ = [2.1, 1]

bound de�ned as:

η(µ) =
∆pr,du
RB,N,M(µ)

∣s(µ) − sRB,N,M(µ)∣ (1.7.4)

is O (100).

1.7.2 Graetz problem

Graetz problem32 is a classical problem in literature concerning forced heat convection
combined with heat conduction in a duct with walls at di�erent temperature. The �ow
enters a given tube at a temperature T0 and encounters a wall temperature T1 which can
be larger or smaller than T0. A simple version of the problem was �rst analysed by Graetz
[45] in 1883.

The domain is still the one plotted in Figure 1.1; on the other hand, the problem we
are going to solve is now:

Given µ ∈ D = [1,10] × [0.1,100], compute s(µ) = ∫
Γ3

T (µ)dx2, (1.7.5a)

where T (µ) is the solution of the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

µ1
∆T + 10x2(1 − x2)

∂

∂x1
T = 0 in Ω(µ1)

T = { 0 on Γi(µ1) i = 1,5,6
1 on Γi(µ1) i = 2,4

∂T

∂n
= ∂T

∂x1
= 0 in Γ3.

(1.7.5b)

If we refer the problem to a parameter independent con�guration through the map T
de�ned in (1.7.2) we obtain:

Given µ ∈ D = [1,10] × [0.1,100], compute s(µ) = ∫
Γ3

T̃ (µ)dx2, (1.7.6a)

where T̃ (µ) ∶ Ω→ R is the solution to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div
⎛
⎝

⎡⎢⎢⎢⎢⎣

2
µ2(1+µ1)

0

0 1+µ1

2µ2

⎤⎥⎥⎥⎥⎦
∇T̃ (µ)

⎞
⎠
+ 10x2(1 − x2) ∂

∂x1
T̃ (µ) = 0 in Ω

T = { 0 on Γi i = 1,5,6
1 on Γi i = 2,4

∂T

∂n
= ∂T

∂x1
= 0 in Γ3.

(1.7.6b)

32The example is taken from the Worked problems at augustine.mit.edu. The simulations have been
performed through the software rbMIT [102].
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As for the previous problem, it is possible to prove the well-posedness in L2(Ω).
We have all the elements to apply the Reduced basis method. As before we �rst plot

the convergence of the Greedy algorithm. We note that convergence rate does not depend
on the underlined mesh, but it is signi�cantly lower than in the previous case. By applying
the exponential �tting to the data as before, we obtain:

∥∆N(⋅)∥L∞(Ξ) ≃ 21.82e−0.4891N .

(a) N = 480 (b) N = 891

Figure 1.4: convergence rates for the Greedy algorithm for two di�erent underlined meshes

As regards the adaptive choice of the parameters, we observe that the sample set is far
from a tensor-product form: as we may expect, the highest clustering is near to µ2 = 0.1
corresponding to regions in D where the parametric sensitivity is largest.

Figure 1.5: parameters chosen by the Greedy Algorithm

As before, we also gather the results for a given value of the parameters for di�erent
reduced spaces, see Table 1.2.

We observe that the e�ectivity de�ned in (1.7.4) is in this case around O (200).
Finally, we plot in Figure 1.6 the solution for two di�erent values of the parameter.

We observe that the boundary layer is well detected through a low number of bases: this
is possible because of the fact that the position of the layer does not depend on the
parameters.
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N / M 1 10 20

1 5.42 (0.067) 0.216 (0.0012) 0.011 (1.1 ⋅ 10−4)
5 0.33 (0.004) 0.0133 (2.4 ⋅ 10−4) 0.0018 (7.9 ⋅ 10−6)
10 0.046 (2.4 ⋅ 10−4) 0.0018 (3.69 ⋅ 10−5) 2.51 ⋅ 10−4 (1.02 ⋅ 10−5)
20 0.0011 (7.93 ⋅ 10−5) 2.23 ⋅ 10−4 (9.0 ⋅ 10−7) 3.03 ⋅ 10−5 (1.76 ⋅ 10−7)

Table 1.2: estimated and real output error for di�erent primal and dual reduced spaces.
µ = [2.1, 50]

(a) µ1 = 1.4 µ2 = 1

(b) µ1 = 1.4 µ2 = 100

Figure 1.6: reduced solutions for two values of the parameter

1.8 The treatment of non-a�ne problems: the EIM

In order to manage an e�cient o�ine-online computational decomposition as the one
described in the previous sections, it is necessary to deal with partial di�erential equations
with a�ne parameter dependence. Therefore, in order to face problems with nona�ne
parameter dependence, we have to resort to a method that replaces non-a�ne coe�cient
functions with a collateral reduced basis expansion which allows us to perform an e�ectively
o�ine-online computational decomposition.

Example 1.3. Let us consider the following non a�ne bilinear form and the variational
problem associated with it:

Findu ∈X ∶ a(u, v;µ) = f(v) ∀ v ∈X, with a(u, v;µ) = ∫
Ω
g(µ,x)∇u(x) ⋅ ∇v(x)dx

(1.8.1)
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where for the sake of simplicity g is assumed to be arbitrary regular, say g ∈ C∞(D, L∞(Ω)).
In order to deal with problem (1.8.1) in the RB o�ine-online framework proposed above,
we need to replace g(µ,x) with a parametrically a�ne surrogate gM(µ,x) = ∑k Θg

k(µ)q(x)
.

Findu ∈X ∶ aM(u, v;µ) =
M

∑
k=1

Θg
k(µ)∫

Ω
q(x)∇u(x) ⋅ ∇v(x)dx = f(v) ∀v ∈X (1.8.2)

The Empirical Interpolation Method (EIM)[7, 32] provides a methodology to e�ciently
compute the parametrically a�ne surrogate gM .

1.8.1 Description of the algorithm

As the RB framework requires, the EIM consists in an o�ine and in an online stage. Like
in the sampling strategy, we consider an approximation space of the form:

W g
M = span{g(µgM , ⋅) ∶ µ

g
M ∈ D}

Despite of the sampling strategy, in this case the approximate solution is obtained through
an interpolation strategy instead of a Galerkin projection.

The o�ine stage consists of two steps:

� in the �rst we build an approximation space, say W g
M , by a greedy strategy: at each

step µgM is chosen in order to maximize the error in the L∞-norm;

� in the second we �nd an interpolatory basis for the space W g
M . Even in this case,

a Greedy approach is used in order to �nd the set of suitably chosen interpolation
points.

Therefore, the o�ine algorithm takes a function g ∶ D × Ω → R and returns a set of
functions {qj} that represents a basis for the approximation space W g

M , an interpolation
matrix B ∈ RM×M and the so called magic points tM ∈ Ω such that Bi,j = qj(ti) and
qj(ti) = 0 if j > i and Bi,j = qj(ti) = 1 if j = i. On the other hand, in the online stage we
evaluate g in the magic points and we compute the coe�cients of the basis by solving a
linear system.

In order to state the entire algorithm, we introduce a discretization of the parameter
domain, say Ξg ⊂ D.

Algorithm 7 gathers the Pseudo Code of the procedure as presented in [7].

1.8.2 Error analysis and a posteriori error estimator

After the presentation of the algorithm, we brie�y outline some theoretical aspects about
the convergence properties and the a posteriori error analysis associated with EIM.

Let us suppose that dim(span{g(µ, ⋅) ∶ µ ∈ D}) ≥ Mmax. Thanks to the previous
hypothesis, it is possible to prove - see [7] - that for all M ≤Mmax dimW

g
M =M . Then the

construction of the interpolation points is well de�ned and the functions {q1,⋯, qM} form
a basis for W g

M .
So the algorithm presented is well de�ned.
In order to deal with the error analysis we introduce some notation. First, we indicate

with d the dimension of the space: Ω ⊂ Rd. Then we de�ne the Lebesgue costant, [98],
ΛM = supx∈Ω∑Mm=1 ∣VM

m (x)∣ where {VM
m } are the Lagrange basis polynomials associated

with {t1,⋯, tM} .
We have now the elements to state the following result from [33].
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Algorithm 7 Empirical Interpolation Method:

O�ine stage:

[{qk(⋅) ∶ 1 ≤ k ≤M}, {tj ∶ 1 ≤ j ≤MMax}, {Bi,j ∶ 1 ≤ i, j ≤M}] = EIM {g(µ, ⋅),MMax}

Given Sg1 = {µg1}, ξ1(⋅) ≡ g(µg1, ⋅), W
g
1 = span{ξ1}:

Part I: Construction of the Approximation Space

for M = 2 ∶Mmax do

µgM = argmaxµ∈Ξg infz∈W g
M−1

∥g(⋅, µ) − z∥L∞(Ω)

SgM = SgM−1 ∪ {µgM}, ξM(⋅) ≡ g(µgM , ⋅), W
g
M =W g

M−1 ∪ span{ξM}
end for

Part II: Construction of the basis

t1 = arg ess supx∈Ω ∥ξ1(x)∥, q1 = ξ1
ξ1(t1)

, B11 = 1
for M = 2 ∶Mmax do

Find σ ∈ RM−1 ∶ ∑M−1
j=1 σjqj(ti) = ξM(ti) for 1 ≤ i ≤M − 1

rM(x) = ξM(x) −∑M−1
j=1 σjqj(x)

tM = arg ess supx∈Ω ∥rM(x)∥, qM(x) = rM (x)
rM (tM )

, BM
i,j = qj(ti)

end for

Online stage: [gM(µ)] = EIM {µ,M}

Compute β(µ) ∈ RM such that: BMβ(µ) = g(µ) where gi(µ) = g(µ, ti) i = 1, ⋅,M .
De�ne

gM(µ, ⋅) =
M

∑
m=1

βm(µ)qm(⋅)

Lemma 1.7. Given a multi-index β ∈ Nd, let us suppose that g(µ, ⋅) ∈ C ∣β∣. Then the
following estimate holds:

∥Dβg(µ, ⋅)−DβgM(µ, ⋅)∥L∞(Ω) ≤ (1+ΛM) min
z∈W g

M

∥Dβg(µ, ⋅)−Dβz∥L∞(Ω) ∀µ ∈ D (1.8.3)

Moreover, ΛM ≤ 2M − 1.

Even if this lemma provides some notion of stability, it is quite pessimistic and not
relevant from an applicative point of view. In [33] several numerical simulations show
that, in practice, the Lebesgue constant does not grow so fast for M →∞.

In [7] Maday et al. provide a very inexpensive but not rigorous a posteriori estimator
that has been shown to be quite reliable numerically.

Given an approximation gM(µ, ⋅) for M ≤Mmax−1 let EM(µ, ⋅) ≡ ε̂M(µ)qM+1(⋅) where
ε̂M(µ) = ∣g(µ, tM+1) − gM(µ, tM+1)∣. It is possible to show that:

Lemma 1.8. If g(µ, ⋅) ∈W g
M+1, then

� g(µ, ⋅) − gM(µ, ⋅) = ±EM(µ, ⋅)

� ∥g(µ, ⋅) − gM(µ, ⋅)∥L∞(Ω) ≤ ε̂M(µ)

Obviously it is not so frequent that g(µ, ⋅) ∈W g
M+1; then the estimator is not rigorous,

but, if ∥g(µ, ⋅) − gM(µ, ⋅)∥L∞(Ω) → 0 for M → ∞ very fast, we can expect that ∥g(µ, ⋅) −
gM(µ, ⋅)∥L∞(Ω) ≈ ε̂M(µ).
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Some extensions and comments

In this section we have introduced the Empirical Interpolation Method for the treatment
of non-a�ne parametrized PDEs. The approximation of the variational form introduces
some additional complications in the a posteriori estimation. We refer to [115] (proposition
4.5.1) for the de�nition of a rigorous estimator for parametrically non-a�ne linear elliptic
equations33. In view of the application to hyperbolic problem, we state an example.

Example 1.4. Let us consider the following two problems (X =H1
0(Ω)):

Find u ∈X a(u, v) = ∫
Ω
ν∇u∇v dx+∫

Ω
(b ⋅∇u)v dx = f(v) = ∫

Ω
fv dx ∀ v ∈X (1.8.4a)

Find uε ∈X a(u, v) = ∫
Ω
νε∇u∇v dx + ∫

Ω
(bε ⋅ ∇u)v dx = f(v) = ∫

Ω
fv dx ∀ v ∈X

(1.8.4b)
Let α and αε be the coercivity constants associated with the two problems. With standard
calculations, it is possible to prove the following estimate valid for Ω ⊂ Rd d = 2,3:

∥u − uε∥X ≤ CΩ

ααε
(∥ν − νε∥L∞ +C ′

Ω∥b − bε∥L6) ∥f∥L2 (1.8.5)

where CΩ is the Sobolev constant associated with the embedding H1
0 ⊂ L2 and C ′

Ω with the
embedding H1

0 ⊂ L6.

Inequality (1.8.5) shows how the required accuracy for the interpolation process is
highly problem dependent and more precisely it is related to the coercivity constant: this
means that for advection-dominated problems the required number of terms rapidly be-
comes una�ordable.

Before concluding, we give some references. In [17] the Empirical Interpolation method
has been adapted to treat PDEs with highly non-linear terms (discrete empirical interpola-
tion method DEIM). More recently in [34] a multi-domain EIM (hp-EIM) has been tested:
�rst a partition of the original domain is constructed (h-re�nement); then the standard
EIM is applied to each subdomain independently. Finally in [115] the EIM has been ap-
plied to non-a�ne tensorial functions (Multi-Component Empirical Interpolation method
MCEIM).

1.9 Conclusions

In this chapter the main features of the Reduced Basis method for elliptic and parabolic
equations have been introduced. Before concluding, we make some observations related to
advection-di�usion problems at the hyperbolic limit.

� Example 1.2 leads us to expect that the Kolmogorov N-width does not converge as
fast as we need when we have discontinuities. For this reason we expect that the
Greedy strategy will be weakened by the presence of discontinuities that depends on
the parameters.

� Example 1.4 represents another important point to be addressed: how many terms
in the a�ne expansion do we need in order to guarantee satisfactory approximation
properties to the surrogate solution? In addition we expect that in the non-linear
case the number of terms required in the approximation would be even larger because
we have to take into account the application of the DEIM to treat the non linear
terms.

33In [15] the estimator is extended to the non linear case.
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These two observations justify the approach we will propose for hyperbolic conservation
laws in chapter 3.



Chapter 2

Reduced Basis Method for PDEs in

parametrized domains

2.1 Introduction and motivations

In this chapter the Reduced Basis (RB) method is applied to partial di�erential equations in
parametrized domains1, say Ω(µ) where µ ∈ D with D a set of (not necessary) geometrical
parameters. The RB recipe requires that Ω is a parameter independent domain: indeed, if
we wish to consider linear combinations of snapshots, these snapshots must be de�ned on
a common spatial con�guration. Therefore, in order to transform the problem statement
over the original domain into an equivalent problem statement over the reference domain,
it is necessary to de�ne a transformation between the pre-image parameter independent Ω
and the parameter dependent actual domain Ω(µ):

T ∶ D ×Rd → Rd T (µ, ⋅) ∶ Ω→ Ω(µ) (2.1.1)

Furthermore, as we have already explained in the �rst chapter, in order to perform a
computational o�ine-online decomposition, it is crucial that the bilinear form and the
load functional associated with the original problem are in the following parametrically
a�ne form:

a(u, v,µ) =
Qa

∑
q=1

Θa
q(µ)aq(u, v) F (v,µ) =

Qf

∑
q=1

Θf
q (µ)F q(v) (2.1.2)

A formulation of this type in the reference domain requires that the map T is a global
bijective piecewise-a�ne transformation [106]. For many applications it is possible to
consider directly these maps but for more complex geometries this hypothesis must be
relaxed.

Common strategies for shape deformation involve the use of (i) the coordinates of
the boundary points as design variables (local boundary variation [85]) or (ii) some fam-
ilies of basis shapes combined by means of a set of control points (polynomial boundary
parametrizations [23]). These techniques focus on the representation of the boundary and
do not build up a global transformation from the reference con�guration to the deformed

1In shape optimization or �uid-structure interaction problems the introduction of a reference con�gu-
ration is crucial in order to avoid remeshing operations. This is why in recent years a great e�ort has been
made in order to develop e�cient and reliable techniques for this kind of problems. The �rst works on the
topic were [103, 105] and the Ph. D. theses [104, 121]. Several further references are given in the following.

35
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one. This is why in the RB context- in which we aim at representing smooth global de-
formations of the reference domains with a relatively small number of parameters- other
strategies are preferred.

In recent years, much research has been focused on de�ning e�cient strategies to deal
with parametrized domains in the context of Reduced Basis method2. For this reason, the
aim of the present chapter is �rst to present the state of the art and then to introduce a
new approach based on a slight modi�cation of one of the standard techniques.

The structure of the chapter is the following one:

� in section 2.2, we review the classic approach based on piecewise a�ne maps, [106].
In the presentation we also derive the formulation on the reference domain for a
simple second order-scalar problem;

� in section 2.3, we analyse three shape deformation techniques that are proved to be
well suited within a RB framework: Free Form Deformation (FFD), parametrizations
based on Radial Basis Functions (RBF) and trans�nite maps. The �rst two maps
are well known in Computer Graphics [112, 119] and only recently applied to the
shape optimization context [111, 81]. On the other hand, trans�nite maps constitute
a generalization of the Gordon Hall formula [43];

� in section 2.4, we introduce the technique we propose based on the above mentioned
trans�nite maps. Some theoretical evidence will be stated in order to motivate this
approach.

� at the end of this theoretical presentation, some numerical examples are provided in
section 2.5 to compare the di�erent approaches;

� in section 2.6, some conclusions and a general overview of the possible applications
to hyperbolic problems are given.

Before starting the presentation, we introduce the notation.
The actual (or physical) domain is referred to as Ω(µ), whereas the reference domain

is referred to as Ω; we refer to the generic point of Ω as x and to the generic point of Ω(µ)
as y. In addition, X(µ) and X indicate a suitable Hilbert space de�ned onto Ω(µ) and
Ω, respectively.

The map between the reference and the actual con�guration is referred to as T and its
Jacobian as JT .

2.2 A�ne geometrical parametrization

Let Ω(µ) ⊂ Rd be a connected set expressed as:

Ω̄(µ) =
Kdom

⋃
l=1

Ω̄l(µ) (2.2.1)

where the Ωk(µ) are mutually non-overlapping open regions3 (Ωk(µ)∩Ωk′(µ) = ∅ if k ≠ k′).
We now choose a value µref ∈ D and de�ne our reference domain as Ω = Ω(µref).

Clearly:

Ω̄ =
Kdom

⋃
k=1

Ω̄k (2.2.2)

2We refer to [78, 55] for a comprehensive presentation of the main techniques proposed.
3Tipically the di�erent regions correspond to di�erent PDE coe�cients; however, as we will see in the

examples, they can also be introduced for algorithmic purposes.
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where Ωk = Ωk(µref).
The partition {Ωk}k represents a coarse domain decomposition of the global domain.

Thus we build our FE approximation on a �ne N -subtriangulation of {Ωk}. This FE trian-
gulation ensures that the FE approximation treats the discontinuities in PDE parameters
associated with di�erent regions and, as we can show in section 2.2.3, it plays an important
role in the generation of the a�ne representation (2.1.2).

Now we have the ingredients to state the so-called A�ne Geometry Precondition. We
are able to deal with any original domain Ω(µ) and associated regions as in (2.2.1) that
admits a domain decomposition such that:

1. Ω̄k(µ) = T a�,k(µ, Ω̄k), for 1 ≤ k ≤Kdom and for a�ne maps T a�,k(µ) ∶ Ωk → Ωk(µ).

2. each T a�,k is individually bijective and collectively continuous (i.e., T a�,k(µ,x) =
T a�,k

′(µ,x) for x ∈ Ω̄k ∩ Ω̄k′ , for each k ≠ k′).

The A�ne Geometric Precondition is necessary for an a�ne parameter dependence as
de�ned in (2.1.2). We observe that Kdom does not depend on the FE subtriangulation.
Therefore, it could be also de�ned with respect to the exact problem.

In order to make some calculations, we introduce an explicit notation for the a�ne
maps:

T a�,ki (µ,x) = Ca�,ki (µ) +
d

∑
j=1

Ga�,ki,j (µ)xj 1 ≤ i ≤ N Ca�,k ∶ D →Rd, Ga�,k ∶ D →Rd,d

(2.2.3)
We point out that we can interpret the local maps in terms of a global transformation
T a�(µ) ∶ Ω→ Ω(µ):

T a�(µ,x) = T a�,k(µ,x) k = min
k′∶x∈Ω̄k′

k′ (2.2.4)

We highlight the one to one property- the arbitrariness of the min-choice in (2.2.4) is
a consequence of the collectively continuity- and that this global continuous mapping is
compatible with the second order PDE variational formulation (indeed, as a consequence

of the Fubini-Tonelli theorem, w ∈ H1(Ωo(µ))⇔ w ○ T a�(µ) ∈ H1(Ω)). This proves that
the mapped problem belongs to the classical �conforming� variety.

Now, in order to get familiar with the scope of the a�ne mappings, we consider in the
next subsection the case of a single subdomain; then we extend the method to the case of
several subdomains.

2.2.1 A�ne mappings: single subdomains

In this section we deal with parametrized domains that could be described by an a�ne
transformation map of the type (2.2.3):

We point out that an a�ne transformation maps straight lines into straight lines, thus a
n-hedron is mapped into a n-hedron. In addition also ellipsoids are mapped into ellipsoids.
These properties are crucial for the description of domains relevant in the applications.

We now restrict ourselves to the bidimensional case (d = 2). In order to completely
de�ne an a�ne transformation we have to prescribe 6 coe�cients; we can univocally identify
Ca� and Ga� from the relationship between 3 non-collinear points in the reference domain
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Ω - say z̄j , 1 ≤ j ≤ 3 - and the respective 3 parametrized image points in Ω(µ) -say zj(µ),
1 ≤ j ≤ 3. By simple calculations we obtain that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ca�1 (µ)
Ca�2 (µ)
Ga�1,1(µ)
Ga�1,2(µ)
Ga�2,1(µ)
Ga�2,2(µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 z̄1
1 z̄1

2 0 0
0 1 0 0 z̄1

1 z̄1
2

1 0 z̄2
1 z̄2

2 0 0
0 1 0 0 z̄2

1 z̄2
2

1 0 z̄3
1 z̄3

2 0 0
0 1 0 0 z̄3

1 z̄3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
1(µ)
z1

2(µ)
z2

1(µ)
z2

2(µ)
z3

1(µ)
z3

2(µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.2.5)

where zji (µ) and z̄ji are the components of the vectors zj(µ) and z̄j , respectively. We
observe that the matrix is µ-independent: the parametric dependence is limited to the
image points.

In order to clarify the technique presented, we provide an illustrative example from
[106].

(a) (b)

Figure 2.1: (a) reference con�guration Ω, (b) actual con�guration Ω(µ).

Example 2.1. Let us consider the con�gurations in Figure 2.1, relation (2.2.5) conse-
quently becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ca�1 (µ1)
Ca�2 (µ1)
Ga�1,1(µ1)
Ga�1,2(µ1)
Ga�2,1(µ1)
Ga�2,2(µ1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
µ1

0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and hence:

Ca�(µ1) = [ 0
0

] Ga�(µ1) = [ µ1 1 − µ1

0 1
]

When dealing with standard triangles, we did not need any hypothesis on the shape
of the reference domain Ω. More in general, we can consider (sub)domains of arbitrary
shape. The only requirement we need is that the transformation is of the form (2.2.3).

In the following we focus on the so-called �elliptical triangles�. At the end of the section
we brie�y consider the more general �curvy triangles�.
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An �elliptical triangle� is de�ned by three nodes z̄1(µ), z̄2(µ) and z̄3(µ), by the two
straight edges z̄1(µ)z̄2(µ) and z̄1(µ)z̄3(µ) and by the elliptical arc:

z̄2(µ)z̄3(µ)
arc

= {O(µ) +Qrot(µ)S(µ) [
cos(t)
sin(t) ] ∣ t ∈ [t2, t3]} ,

where

Qrot(µ) = [ cos(φ(µ)) −sin(φ(µ))
sin(φ(µ)) cos(φ(µ)) ] S(µ) = [ ρ1((µ)) 0

0 ρ2((µ))
]

and O(µ) is the origin of the reference coordinate system.
There are two types of elliptical triangles: inwards (convex) and outwards(concave).

Figure 2.2 shows the di�erences.

(a) (b)

Figure 2.2: (a) inwards elliptical triangle, (b) outwards elliptical triangle

Now we write the �rst point as:

z1(µ) = O(µ) + ωQrot(µ)S(µ) [
cos(t1)
sin(t1) ]

thus we can express the three image points zmo (µ) in the compact form (ω1 = ω,ω2 = ω3 =
1):

zm(µ) = O(µ) + ωmQrot(µ)S(µ) [
cos(tm)
sin(tm) ] , for m = 1,2,3. (2.2.6)

We restrict our attention to proper elliptical triangles4 i.e. triangles such that 0 < θ12, θ13, θ32 <
π.

In [106] it is proven that:

� the transformation associated with the deformation (2.2.6) can be described through
a parametric a�ne map of the form (2.2.3) with the following mapping coe�cients:

Ca�(µ) = O(µ) −Qrot(µ)S(µ)S(µref)−1Qrot(µref)TO(µref)

Ga�(µ) = Qrot(µ)S(µ)S(µref)−1Qrot(µref)T ;

4If we considered non-proper triangles in the multidomain context, we would have to introduce an
additional control parameter to avoid the risk of discontinuous global mapping. This is not absolutely
convenient; on one hand, the implementation would become more involved and on the other hand - with
respect to our knowledge - there are not examples of parametrized domains that requires the use on
non-proper triangles.
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� the elliptical triangle is proper if and only if

z1 ∈ { RIn(µ) inwards case
ROut(µ) outwards case,

(2.2.7)

where denoted by n2(µ) and n3(µ) the outward-oriented normals to the ellipse at
z̄2(µ) and z̄3(µ), respectively and by n2,3(µ) the outward normal to the line segment
z̄2(µ)z̄3(µ) in the middle point;

RIn(µ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z1(µ) ∈ R2 such that

(z1(µ) − z2(µ))Tn2(µ) < 0,

(z1(µ) − z3(µ))Tn3(µ) < 0

(z1(µ) − z2,3(µ))Tn2,3(µ) < 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
while

ROut(µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
z1(µ) ∈ R2 such that

(z1(µ) − z2(µ))Tn2(µ) > 0,

(z1(µ) − z3(µ))Tn3(µ) > 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Figure 2.3 illustrates condition (2.2.7).

Figure 2.3: regions where z1(µ) has to be located in order to satisfy the proper condition.

We conclude this section with some remarks.

1. It is evident that the construction of proper elliptical triangles requires some care
to ensure controlled elliptical arcs, continuous mappings and well de�ned internal
angles. On the other hand, it is quite simple to derive explicit conditions on ω
such that the angle condition is satis�ed in (2.2.6)and, consequently, such that the
condition (2.2.7) is parameter independent (that means that could be expressed in
terms of the reference con�guration). In addition elliptical triangles are consistent
under re�nement: if we split either a straight edge or the elliptical edge of a proper
elliptical triangle, we obtain two daughter elliptical triangles that are also proper5.

2. The extension from elliptical triangles to general curvy triangles is formally straight-
forward: we simply substitute cos(t) and sin(t) with g1(t) and g2(t) where, with
respect to strictly convex (inwards) or concave (outwards) curvy triangles, we can
demonstrate that the internal angle condition (2.2.7) is applicable, parameter inde-
pendent and reducible to a small set of algebraic conditions for a proper choice of
the center6. However, it is not in general possible to �nd a simple closed form for
the internal angle condition.

5This edge split consistency plays an important role in the algorithm proposed for the multidomain
case.

6In the numerical examples in section 2.2.4 we will use curvy triangles.
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3. All the discussion has been set in a bidimensional environment: the extension to the
tridimensional case is possible but not trivial [41, 118]. In [106] there is an example
for a linear elasticity problem.

2.2.2 Piecewise a�ne mappings: multiple subdomains

In order to deal with more complex geometries, it is necessary to consider piecewise a�ne
mappings. In this section we consider �Elliptical-edge� domains, i.e., domains and associ-
ated regions whose boundary and internal interfaces can be represented by either straight
edges or the elliptical arcs described previously.

In [106] the following mapping process has been proposed:

� we de�ne the RB triangulation (2.2.1). The triangulation must be compatible with
the existence of a piecewise globally continuous a�ne map;

� we build up the a�ne maps for each subdomain: by taking into account the condition
(2.2.7).

We observe that, since the point selection in elliptical triangles is not arbitrary, the �rst
two steps are coupled.

Here we present the algorithm implemented in rbMIT for the construction of the RB
triangulation of the whole domain7. We point out that the following algorithm does not
ensure non-singular and e�cient transformations. However, several numerical tests demon-
strate that a proper initialization of the algorithm determines a well-behaved triangulation.
In section 2.2.4 we will come back to this topic with two numerical examples.

� Stage 1: starting from the control points given by the user, the software focuses
on all elliptical edges making part of the domain; for each of them an elliptical
triangle is introduced. In order to preserve (2.2.7), splittings of elliptical triangles
are performed. For each splitting, the new point created by the introduction of the
new elliptical triangle is denoted by interior control point8.

� Stage 2: the remain part of the domain is meshed via standard triangle:

1. we introduce a Delaunay triangulation [22] moving from all the control points
(the ones initially provided by the user and the interior ones);

2. we search for the edges that belong to the domain boundary but do not belong
to the Delaunay triangulation;

3. we split all these edges by creating boundary/internal edges or interior control
points;

4. we iterate points 1-3 procedure until no selected edges remain.

2.2.3 Formulation on the reference domain

Here we formally derive the problem formulation with respect to the reference domain. In
section 2.3.4 we generalize this discussion to more general non-parametrically a�ne maps.
Let X(µ) ⊂H1(Ω(µ)) be a given Hilbert space. We consider the following problem9

Given µ ∈ D compute s(µ) = f(u(µ),µ) (2.2.8)
7The other two steps are local. Therefore the procedure is the same described for the single subdomain.
8The interior control points constitute the subset of the control point that are linked to the elliptical

triangles.
9By writing the problem directly in the weak form, we do not have to deal explicitly with boundary

conditions. This critical aspect is brie�y addressed at the end of the section.
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where u(µ) ∈X(µ) satis�es

a(u(µ), v,µ) = f(v,µ) ∀ v ∈X(µ).

We consider a ∶X(µ) ×X(µ) ×D → R of the form

a(u, v,µ) =
Kdom

∑
k=1

∫
Ωk(µ)

[ ∂u
∂y1

∂u

∂y2
u]Kijo,k(µ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v

∂y1

∂v

∂y2

v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dy. (2.2.9)

Here Ko,k ∶ D → Rd×d is a symmetric semi-positive de�nite matrix such that the bilinear
form a(⋅, ⋅,µ) is coercive. Similarly, f ∶X(µ) ×D → R is of the form:

f(v,µ) =
Kdom

∑
k=1

∫
Ωk(µ)

Fo,l(µ)v dy (2.2.10)

At the end of the section we discuss about restrictions (2.2.9) and (2.2.10).
Thanks to the chain rule, we obtain that

∂

∂xi
= ((Ga�,k)−1)

i,j

∂

∂yj
;

therefore the transformed bilinear form a can be expressed as:

a(u, v,µ) =
Kdom

∑
k=1

∫
Ωk

[ ∂u
∂x1

∂u

∂x2
u]Kijk (µ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v

∂x1

∂v

∂x2

v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx; (2.2.11)

where Kk ∶ D → Rd,d is given by:

Kk(µ) = detGk(µ)Gk(µ)Ko,k(µ)(Gk(µ))T

with:

Gk(µ) = ( (Ga�,k)−1 0
0 1

) .

In the same way, the transformed linear form in the reference con�guration is

f(v,µ) =
Kdom

∑
k=1

∫
Ωk
Fk(µ)v, (2.2.12)

with Fk(µ) = detGk(µ)Fko (µ).
At this point it is straightforward to write the bilinear form and the load in the para-

metrically a�ne form (2.1.2):

a(v,w,µ) = K1
1,1(µ)∫

Ω1

∂v

∂x1

∂w

∂x1
dx+K1

1,2(µ)∫
Ω1

∂v

∂x1

∂w

∂x2
dx+⋯+KKdomd,d (µ)∫

ΩKdom

vw dx

We conclude this section with some comments.
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� This discussion provides a constructive proof that the A�ne Geometry Precondition
is su�cient to obtain a parametrically a�ne bilinear form;

� in practical situations many entries in Ko,k are zero or may be redundant: this is why
a good choice of the user-provided initial control points for the RB triangulation are
fundamental in the preprocessing to simplify the tensor; this explains why symbolic
manipulation techniques are particularly useful in the simpli�cation of the bilinear
form found after applying the domain decomposition stage10.

� The hypotheses on the structure of the bilinear form can be relaxed: for instance, we
can admit a�ne polynomial dependence on x in both Ko,k and Fo,k because a com-
position between a polynomial and a parametrically a�ne function is parametrically
a�ne11. Furthermore, in the absence of geometric variation in a particular region
Ωl(µ) every separable form in x and µ is allowed. As regards Neumann and Robin
boundary conditions, it is trivial that homogeneous Neumann conditions create no
problem; for other choices we get equations in the a�ne form (2.1.2) only in the case
of straight or circular edges12.

2.2.4 Two numerical examples

In this paragraph we apply the methodology presented above to two di�erent problems13:
in the �rst one, we just verify that, in the case of elliptical arcs, the method is extremely
e�cient. In the second test case, we highlight the fact that, for more complex shapes, the
procedure could produce a bad triangulation or fail.

In the following we do not consider a particular di�erential equation but we just focus
on the parametrization procedure.

A half-elliptic obstacle

We consider the following domain where E = E(µ1, µ2) is the half elliptic obstacle centered
in (0,0) with semi-principal axes of length µ1, µ2.

Ω(µ) = {x ∈ (−2,2)2 ∶ x ∉ E(µ1, µ2)} (2.2.13)

The deformation to the obstacle is described by the following linear tensor.

T (µ,x) = [ µ1 0
0 µ2

] [ x1

x2
] (2.2.14)

10For instance the software rbMit[102] uses extensively this kind of techniques.
11On the other hand a composition between a parametrically a�ne not polynomial function and a

parametrically a�ne function is in general not a�ne.
12Suppose that the map γk ∶ D × [0,1]N−1 → RN describes the boundary of ∂Ωk(µ) and that γ̄k(t) ∶=

γk(µref , t). Then, under the hypothesis of a�ne mappings we have that:

γk(µ, t) = Ca�,k(µ) +Ga�,k(µ)γ̄k(t)

Integrating by part we obtain (J
γ̄k is the Jacobian of γ̄k)

∫
∂Ω(µ)

fv dσ =∑
k
∫
∂Ω(µ)∩Ω̄o,k(µ)

fv dσ =∑
k
∫

[0,1]N−1
f(γ(t))v(γ(t)

√
1 + ∣Ga�,k(µ)J

γ̄k(t)∣2 detGa�,k(µ)dt

Clearly the last summation could be written in a parametrically a�ne way if and only if for each boundary

edge of Ω̄k(µ) we have that the matrix Ga�,k(µ) is orthogonal (that means that the edge is spherical) or
J
γ̄k(⋅) = cost (that means that the edge is straight).
13The simulations have been performed using rbMIT [102].
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Figure 2.4: half ellipse obstacle problem

Figure 2.4 shows the reference con�guration. Figure 2.5 explains the di�erent steps of the
procedure. The algorithm starts by considering the elliptical arcs: it constructs an elliptical
triangle for each one and then completes the triangulation. With respect to Stage 2, in
this case we just verify that the triangulation coincides with the Delaunay grid. Moreover,
we observe that in this case the underlined FE mesh does not su�er from the constraints
imposed by the RB triangulation.

(a) First elliptical triangle (b) Conclusion of the �rst stage

(c) Conclusion of the second stage (d) Final Mesh

Figure 2.5: elliptical obstacle problem: de�nition of the RB triangulation (in red) and of
the underlined FE triangulation (in blue).
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NACA symmetric pro�le

The second problem we consider consists in the rotation of a NACA symmetric pro�le.
The chord length is �xed to 1, the thickness is µ1. The centre of rotation is (0,0) and
corresponds to the barycentre of the wing.

Figure 2.6: NACA airfoil.

The airfoil could be parametrized in the following way14

γ = [ cos(µ1) −sin(µ1)
sin(µ1) cos(µ1)

]p(t) (2.2.15)

where for t ∈ [0,
√

0.3]:

p(t) = [ 1
0

] + [ −1 0
0 ±µ1

] [ 1 − t2
0.2969t − 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8

]

(2.2.16)
while for t ∈ [

√
0.3,1]

p(t) = [ 1 0
0 ±µ1

] [ t2

0.2969t − 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8
] (2.2.17)

Figure 2.6 shows the reference con�guration. Figure 2.7 describes the di�erent steps of
the procedure. In this case the domain decomposition {Ωk}k - see (2.2.2)- we get is locally
extremely stretched; as a consequence, the FE mesh generator exhibits some di�culties to
build a conformal FE triangulation with respect to the elements Ωk induced by the RB
procedure15.

Before concluding, there are two important points to discuss.

� With a �blind� parametrization the algorithm would not be able to provide the RB
triangulation; this is why, to obtain the previous results, two di�erent tricks have
been used: �rst the parametrization for the airfoil is chosen in order to eliminate
the singularity of the derivative in (0,0); then we split the boundary in di�erent
segments and we de�ne (0,0) with respect to the origin (1,0). These two tricks are
not evident and are strictly linked to the parametrized domain under consideration.
Therefore, particular care is required to deal with complex shapes.

14The numerical example is taken from [46], (see also [83]).
15We cannot exclude that the RB triangulation could be improved through a di�erent choice of the

initial points. However, we think that the problems associated with the FE mesh generator are extremely
di�cult to be solved.
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(a) (b)

(c) (d)

Figure 2.7: �ux around a NACA airfoil: de�nition of the RB and FE triangulation. (a)�rst
curvy triangle, (b)conclusion of the �rst stage, (c)conclusion of the second stage, (d)�nal
mesh

� Let us assume that we want to solve a di�erential problem that exhibits a boundary
layer. In this case we could be interested in using grid adaptive procedures. As Figure
2.7 shows, the RB triangulation limits our possibilities to adapt the grid: thus, due
to the fact that the FE grid has to be conformal with the RB triangulation, our
possibilities to adapt the grid are limited16. This is why in certain cases a �free-grid�
transformation (i.e., a transformation that does not impose constraints to the grid)
could be preferable.

2.3 Non-parametrically a�ne maps: three di�erent approaches

As the previous examples show, the a�ne parametrizations work well only for problems
with simple domains and pure sizing deformations. For more complex problems (industrial
applications, non-Cartesian geometries, etc.) we need to resort to non-a�ne maps.

2.3.1 Free Form Deformation

The Free Form Deformation (FFD) [112] is a powerful tool for representing smooth global
deformations of the reference domain and leading to the reduction of a great number of
shape parameters. It was developed for free boundary problems, computer graphics and

16On the other hand some regularization techniques could be applied.
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for the parametrization and optimal design of aerodynamics surfaces such as wings; more
recently, it has been applied to the reduced basis framework.

Here we only de�ne and motivate the map while referring to [69, 5, 63] for numerical
simulations and further details.

Due to the complexity of the procedure, we �rst summarize all the steps.

� We �rst de�ne a control volume D such that Ω ⊂D.

� We introduce the map ψ ∶ D → D̂ between the control volume and the reference
con�guration D̂ = [0,1]d.

� We de�ne the map T̂ ∶ D× D̂ → D̂(µ). The parameters µ represent the perturbation
of a given set of control points.

� By referring the map to the control volume D, we obtain T̃ ∶ D × D → D(µ),
T̃ = ψ−1 ○ T̂ .

� Finally, we de�ne T as the restriction of T̃ to Ω.

Figure 2.8 provides a graphical sketch of the construction of the map17.

Figure 2.8: construction of the Free Form Deformation map

Let us now explain all the details behind the procedure.
Let Ω ⊂ R2 be the reference domain and let D = [xmin1 , xmax1 ] × [xmin2 , xmax2 ] be the

control volume such that Ω ⊂D. Then, the map ψ ∶D → D̂ = [0,1]2, x↦ x̂ can be de�ned
as follows:

ψ(x1, x2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 − xmin1

xmax1 − xmin1

x2 − xmin2

xmax2 − xmin2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let K,L ∈ N be two positive integers, we now select the regular grid of control points in
D̂:

P̂ k,l =

⎡⎢⎢⎢⎢⎢⎢⎣

k

K
l

L

⎤⎥⎥⎥⎥⎥⎥⎦

k = 0,⋯,K l = 0,⋯, L

17Figure 2.8 is taken from [82].
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and we de�ne the deformation in D̂ through the perturbation of the control points via a
set of (L + 1)(K + 1) parameter vectors µl,k (P̂ k,l(µl,k) = P̂ k,l +µl,k):

T̂ (µ, x̂) =
K

∑
k=0

L

∑
l=0

bK,Lk,l (x̂) [P̂ k,l(µl,k)] (2.3.1)

where bK,Lk,l (x̂) = bKk (x̂1)bLl (x̂2) are tensor products of the one dimensional Bernstein basis

polynomials18.
Then the map T̃ is de�ned as follows:

T̃ (µ,x) = ψ−1 (
K

∑
k=0

L

∑
l=0

bK,Lk,l (ψ(x)) [P k,l(µl,k)]) , (2.3.2)

and �nally,
T ∶ D ×Ω→ Ω(µ) T (µ) ∶= T̃ (µ)∣Ω (2.3.3)

The following Remark explains how to compute the derivatives of the map.

Remark 2.1. It is possible to prove that the following formula for the derivatives of the
polynomial basis functions holds:

∇bL,Kl,k (x̂1, x̂2) =
⎡⎢⎢⎢⎢⎣

L[bL−1
l−1 (x̂1) − bL−1

l (x̂1)]bKk (x̂2)
L[bK−1

k−1 (x̂2) − bK−1
k (x̂2)]bLl (x̂1)

⎤⎥⎥⎥⎥⎦
. (2.3.4)

As a consequence of (2.3.4) and (2.3.2) we can write the Jacobian of the global map in the
following form:

JT (µ,x) = J−1
ψ [I +

K

∑
k=0

L

∑
l=0

∇bK,Lk,l (ψ(x))µl,k]Jψ. (2.3.5)

This explicit expression for the Jacobian of the transformation is extremely important: in
this way the map can be easily applied to the RB framework, [78].

We conclude with some observations.
The greatest advantage of using the FFD map is that we have the possibility to �x

a certain number of control points or allow some control points to move only in a prede-
termined direction. As a result, the number of degrees of freedom required to correctly
represent the deformation(i.e., the number of parameters) is in practice reasonably low.
Furthermore, as Remark 2.1 shows, the Jacobian is computable in an e�cient and stable
way.

However, despite its great �exibility and ease to use, FFD su�ers from some limitations.
Due to the fact that the deformations are applied in the square reference domain, they do
not have a precise physical meaning; in addition FFD map is not interpolatory and so we
do not have a direct control on the boundary of the domain. At last, in order to preserve
the partition of unity property of the Bernstein polynomial, the control point grid must be
uniformly distributed: due to the fact that the degree of Bernstein polynomials depends
on the global lattice, the overall complexity of the map would su�er.

18bKk (t) = (K
k
)(1 − t)K−ktk. The use of Bernstein polynomials is motivated by the partition of unity

property
K

∑
k=0

bKk (t) ≡ 1

and by positivity. Moreover they can be evaluated in a numerically stable way thanks to the de Casteljau
algorithm [38]. We point out that the partition of unity property depends on the fact that the control grid
is regular. Otherwise it is not in general true.
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2.3.2 Methods based on radial basis functions

In several applications19 the limitations of FFD described above, especially the one related
to the description of the boundary, could be not acceptable. This justi�es why in [81] a
di�erent strategy, based on Radial Basis functions20, is proposed21. Let us brie�y introduce
the radial basis setting.

In the two dimensional case, let us consider the map τ ∶ R2 → R2 de�ned as:

τ (x) = P (x) +
k

∑
i=1

σ(∥x −Xi∥)wi (2.3.6)

where P is a low order polynomial function, {wi} is a set of weights corresponding to the
k control points, whose reference positions are [X1,⋯,Xk] and σ(⋅) a radially symmet-
ric function (RBF). Standard choices for σ for modelling bidimensional or tridimensional
shapes are:

σ(h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp(h2

σ2 ) Gaussian RBF

(h2 + γ2) 1
2 Multiquadratic RBF

hγ (γ = 1,3) − power RBF
h2 log(h) thin-plate splines.

(2.3.7)

The choice for σ is usually made according to shape regularity and to the properties of the
numerical method used to compute the coe�cients in (2.3.6). For instance in [81] for the
parametric description of carotidal bifurcations, a cubic function σ(h) = h3 is chosen.

Concerning the choice of P in (2.3.6), usually a polynomial function of degree 1 is
chosen, so that the map τ can be written as:

τ (x) = c +Ax +WT s(x), (2.3.8)

being s(x) = (σ(∥x−X1∥),⋯, σ(∥x−Xk∥))T with {Xj}j a given set of control points and
W = [w1,⋯,wk]T . The map (2.3.8) has 2k+6 unknown coe�cients in the two dimensional
case that are determined by imposing the interpolation constraints:

τ (Xi) = Y i (2.3.9)

and the following additional constraints:

k

∑
i=1

wi = 0
k

∑
i=1

wiXi1 =
k

∑
i=1

wiXi2 = 0, (2.3.10)

where Y i is the point in the actual con�guration associated with Xi and Xi1, Xi2 are the
components of the Xi.

19For instance in imaging problems FFD is completely inadequate because it does not guarantee a sharp
representation of the boundaries.

20Radial basis functions were originally used in neural networks and successively applied to the context
of PDEs. For a general introduction on radial basis functions from a mathematical point of view see
[13], for the applications to shape optimization and mesh deformation see [86]. In [20], multivariate RB
functions are applied to the reconstruction of implicit surfaces from 3D scattered data.

21So far, there are no exhaustive comparative studies between Free Form and RBF-based maps. In
[68] the authors apply both FFD and RBF to a shape optimization problem regarding di�erent carotid
con�gurations. The results show that, for that kind of applications the RBF technique, is more versatile
and accurate. However, the construction and the computation of the parametrized tensors is much more
di�cult.
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We observe that (2.3.10) can represent the conservation of total force and momentum22.
Thanks to this condition the polynomial is the a�ne part (rotation) of the transformation
and the term depending on the control points adds the non-a�ne contribution. In order to
�t the RBF technique in our parametrized framework we consider the deformed position
of the control points as:

Y i(µi) =Xi +µi i = 1,⋯k
Clearly µk is the displacement of the k-th control point. If we de�ne Si,j = si(Xj),
Xi,j = Xij we can rewrite the constraints in a compact form in which the parameter
dependent coe�cients are only at the right hand side:

⎡⎢⎢⎢⎢⎢⎣

S Ik X
Ik 0 0

XT 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

W
cT

AT

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Y (µ)
0
0

⎤⎥⎥⎥⎥⎥⎦
(2.3.11)

By imposing some not obvious conditions on the radial functions23, we have that S is
symmetric de�nite positive so that the matrix in (2.3.11) is invertible. Due to the fact
that the matrix is parameter independent the online resolution of the system is extremely
e�cient.

2.3.3 Trans�nite maps

Trans�nite maps have been used in [75] in the reduced basis element method framework
and recently in [56] for the reduced basis hybrid method. A trans�nite map is a not trivial
generalization of the Gordon Hall formula, [43]. The main idea behind the approach is to
build the image of the interior points of the actual domain as a suitable linear combination
of images at the boundary points.

Let Ω be the reference domain and Ω(µ) be the actual domain. We suppose that
they have the same number of curved edges, say n. Furthermore, called Γi and Γi(µ) the
i-th edge in the reference and actual con�gurations, we assume that they are numbered
clockwise.

For each Γi we de�ne the weight function φi as solution of the following problem
(jmodn = j − [ j

n
]n):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆φi = 0 in Ω

φi = 1 on Γi
∂φi
∂n = 0 on Γ

(i−1)modn ∪ Γ
(i+1)modn

φi = 0 on Ω ∖ (Γi ∪ Γ
(i−1)modn ∪ Γ

(i+1)modn) ,

(2.3.12)

22We try to motivate this interpretation. Suppose that wi is the force applied to the material point Xi.
Then, the resultant force applied to the system of material points is

R =
k

∑
i=1

wi

(2.3.10)
©⇒ R = 0

Consider now the resultant momentum with respect to the pole O = (0,0); the resultant force is null then
the pole is arbitrary. We have that (ri =Xi −O, k is the versor perpendicular to the plane that contains
Ω):

M =
k

∑
i=1

ri ×wi =
k

∑
i=1

(wi1Xi2 −wi2Xi1)k
(2.3.10)

©⇒ M = 0

23See [13] for the details.
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and the projection function πi as solution of:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆πi = 0 in Ω

πi = t on Γi

πi = 0 on Γ
(i−1)modn

πi = 1 on Γ
(i+1)modn

∂πi
∂n = 0 on Ω ∖ (Γi ∪ Γ

(i−1)modn ∪ Γ
(i+1)modn)

(2.3.13)

where t denotes the normalized arc-length. Figure (2.9) - taken from [56] - shows an
example of these functions. Now we introduce the edge functions ψi ∶ [0,1]×D → Γo,i such

(a)

(b)

Figure 2.9: an example of (a) weight function φi (b) projection function πi.

that ψi(1,µ) = xi, ψi(0,µ) = x(i−1)modn, where xi is the actual vertex shared by Γi and
Γ
(i+1)modn.

We can de�ne the trans�nite map24

T (µ,x) =
n

∑
i=1

{φi(x)ψi(πi(x),µ) − φi(x)φi+1(x)xi} (2.3.14)

We observe that the weight functions φi and the projection functions πi are parameter
independent thus they are computable o�ine. As a consequence, they are suited to the
reduced basis context.

We point out that, unlike FFD and RBF, trans�nite maps are not specialized in a
particular area of interest but are conceived to be rather general. In addition, they are
based on a precise description of the boundaries. On the other hand, the map depends on
the solution of a �nite element problem so we have to reconstruct the derivatives. This
increases the approximation error of the truth approximation with respect to the real
problem and in practice a very �ne grid is necessary in order to guarantee a reasonable

24As stated before the image of the inner point x̂ is a linear combination of the boundary points πi(x̂)
and x̂i.
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tolerance25. In addition, in order to consider non-simply connected domains, it is necessary
to perform a suitable domain decomposition and then to apply the technique to each
subdomain. Clearly this increases the computational costs.

2.3.4 Formulation on the reference domain: O�ine-Online decomposi-

tion

In this subsection we explain how parametrically non-a�ne maps can be introduced in
the RB framework. For simplicity we consider a slightly di�erent problem with respect to
the one of section 2.2.3 and we restrict ourselves to a single subdomain and homogeneous
Dirichlet boundary conditions.

We set:
s(µ) = f(u(µ),µ) (2.3.15)

where u(µ) ∈X(µ) =H1(Ω(µ)) satis�es:

a(u(µ), v,µ) = f(v,µ) ∀ v ∈X(µ)

a ∶X(µ) ×X(µ) ×D → R is of the form:

a(u, v,µ) = ∫
Ω(µ)

[ ∂u
∂y1

∂u

∂y2
u]Kijo (µ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v
∂y1

∂v
∂y2

v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

dy. (2.3.16)

Here Ko ∶ D → R2×2 is:

Ko(µ) = [ νo(µ) 0
0 a(µ) ] .

Similarly f ∶X(µ) ×D → R is of the form:

f(v,µ) = ∫
Ω(µ)

fv dy. (2.3.17)

With straightforward calculations, we have that:

a(u, v,µ) = ∫
Ω
νT (µ)∇u ⋅ ∇v dx + ∫

Ω
rT (µ)uv dx f(v,µ) = ∫

Ω
f ○ T (µ)∣detJT(µ)∣v dx,

where νT (x,µ) = J−TT νo(µ)J−1
T ∣detJT(µ)∣ and rT = ∣detJT(µ)∣a(µ).

In order to have an e�cient o�ine online computational decomposition, we consider
an expansion constructed by the Empirical Interpolation Method26.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[νT ]i,j(x,µ) =
M̃i,j

∑
m=1

Θm
i,j(µ)ξmi,j(x) + εi,j(x,µ)

rT (x,µ) =
M̃r

∑
m=1

Θm
r (µ)ξmr (x) + εr(x,µ)

f ○ T (µ)∣detJT(µ)∣ =
M̃f

∑
m=1

Θm
f (µ)ξfm(x) + εf(x,µ),

(2.3.18)

25This is especially true if we use low order �nite elements.
26See section 1.8 for the details concerning this interpolation procedure.
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where all the µ-dependent terms are e�ciently computable. In conclusion, substituting
(2.3.18) into (2.3.16) and (2.3.17) and dropping the error terms, we obtain:

2

∑
i=1

2

∑
j=1

M̃i,j

∑
m=1

Θm
i,j(µ)ami,j(u(µ), v) +

M̃r

∑
m=1

Θm
r (µ)amr (u(µ), v) =

M̃f

∑
m=1

Θm
f (µ)fm(v), (2.3.19)

where:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ami,j(w, v) = ∫
Ω
ξmi,j(x)

∂w

∂xi

∂v

∂xj
dx

amr (w, v) = ∫
Ω
ξmr (x)wv dx

fm(v) = ∫
Ω
ξmf (x)v dx.

Now we have an e�cient o�ine-online procedure for the matrix assembly27: if εi,j , εr and
εf are below a given tolerance

∥εi,j(⋅,µ)∥L∞(Ω), ∥εr(⋅,µ)∥L∞(Ω)∥εf(⋅,µ)∥L∞(Ω) ≤ εEIMtol ,

with εEIMtol is a given tolerance, we can apply the RB methodology discussed in the �rst
chapter directly to the (2.3.19) without signi�cantly a�ecting the overall error28.

2.4 Trans�nite maps for small deformations

In this section we propose a new approach obtained by simplifying the above mentioned
trans�nite map under the hypothesis of small deformations29. First we introduce some
de�nitions, then we explain the method and �nally we provide some numerical results. As
in the previous sections, we restrict ourselves to the bidimensional case30. Before starting,
Example 2.2 motivates the approach.

Example 2.2. Let us consider an advection-di�usion problem around an airfoil pro�le for
di�erent angles of incidence of the wing, for instance we consider the symmetric con�gu-
ration presented in section 2.2. Let the problem be advection-dominated.

In this case it is clear that:

� we require a precise description of the wing pro�le;

� in order to accurately capture the boundary layer around the airfoil, we need to prop-
erly adapt the grid.

27In practice M̃i,j , M̃r and M̃f are quite modest if the number of parameters P is small.
28It is well-known that, named uEIM(µ) the solution to a parametrically a�ne problem and u(µ) the

solution to the original problem in the reference con�guration, we have (following the same strategy as in
Example 1.4):

∥u(µ) − uEIM(µ)∥H1 ≤ C(∥εi,j∥L∞(Ω) + ∥εr∥L∞(Ω) + ∥εf∥L∞(Ω)).
As explained in the �rst chapter, the feasibility of this requirement is strictly connected to the coercivity
(inf-sup) constant: for advection dominated problems this requirement is extremely hard to be assessed.

29The approach is somehow similar to the one proposed in [15, 116] and could be seen as a generalization
of it. We will quantify theoretically in Lemma 2.1 and then numerically in the �rst example the entity of
the deformation.

30However the extension to the tridimensional case is, at least from the theoretical point of view, not
particularly involved.
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The method based on the curvy triangles domain decomposition imposes several restrictions
on the underlined Finite Element mesh. Thus performing a suitable adaptive procedure
could easily become an una�ordable task.

On the other hand, if we require an absolutely precise description of the pro�le, FFD
and also RBF-based methods31 seem to be less attractive for this kind of application than
trans�nite mapping. However, for such an easy deformation we aim at simplifying the
latter method to mitigate the drawbacks cited above.

2.4.1 Theoretical framework and �rst properties

Let g ∶ D × ∂Ω → ∂Ω(µ) be a given map that describes the deformation of the boundary
of the parametrized domain such that ∂Ω = ∂Ω(µref) for some µref ∈ D.

Then, we de�ne T ∶ D ×Ω→ Ω(µ) as follows:

{ −∆T (µ) = 0 inΩ
T (µ) = g(µ) on∂Ω

(2.4.1)

In the next subsection we discuss some hypotheses to guarantee that the vector-valued
function T is a change of coordinates for each value of the parameter.

It is easy to observe that due to the linearity of the equation, if g(µ,x) = ∑Qk=1 Θg
k(µ)hk(x),

then T (µ,x) = ∑Qk=1 Θg
k(µ)T k(x) where T k is the solution to (2.4.1) corresponding to the

Dirichlet data gk.
In addition, thanks to the hypothesis on g we have that T(µref ,x) = x.
In order to highlight the possibility to perform an o�ine-online decomposition in the

case of parametrically a�ne change of coordinates, we recall a classical theorem and we
make some considerations.

Theorem 2.1. (Cayley-Hamilton) Let A ∈ R2×2. The following equation holds:

A2 − tr(A)A + detAI = 0. (2.4.2)

From this result we can deduce that:

� If A(µ,x) = ∑Qk=1 Θk(µ)Ak(x), then:

detA(µ,x) = ∑
1≤i,j≤Q,
0≤k,l≤2

((Θi(µ))k (Θj(µ))l)ai,j,k,l(x)

for some parameter independent functions {ai,j,k,l(⋅)}.

� A−1 = − 1
detA (A − tr(A)I).

Remark 2.2. For the o�ine-online decomposition presented in section 2.3.4, it is impor-
tant to �nd an a�ne approximation of νT (x,µ) = J−TT (x,µ)νo(µ)J−1

T (x,µ)∣detJT (µ,x)∣.
Thanks to the Cayley-Hamilton theorem, if νo = νI the following formula holds:

νT = νJT −TJT −1detJT = ν

detJT
(trJT I − JTT ) (trJT I − JT ) (2.4.3)

For this reason, after computing νT we can proceed by applying the EIM to the non-a�ne
term ν

detJT
or separately to each term of the matrix32.

31Even if the second method is interpolatory, a high number of control points on the wing causes an
ine�cient RB formulation and also in this way it is not possible to guarantee the perfect description of the
deformation of the boundary. In aeronautics FFD has been used to describe airfoil wings in situations in
which there are no strict requirements on the representation of the airfoil.

32When expansion is long, the application of the Empirical Interpolation Method to each term is surely
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2.4.2 Useful properties of trans�nite transformations

In order to motivate the proposed approach, we have to deal with some mathematical
properties of the trans�nite map33. There are several counterexamples that show that in
general:

� it is not true that T (µ,Ω) = Ω(µ);

� the map does not have the one-to-one property.

However, for small variations of the parameters, Laplace based transformations can be
used and it is possible to prove the following quantitative result.

Lemma 2.1. Suppose that Ω is a domain of class Ch and g ∈ Hh− 1
2 (∂Ω) with h large

enough to have T ∈ C1(Ω̄)34. Furthermore let us assume that g(µ,x) = ∑Qk=1 Θg
k(µ)hk(x)

with Θg
k(µref) ≠ 0. Then:

�

∣detJT (µ) − 1∣ ≤ ∑
1≤i,j≤Q,
0≤k,l≤2

∣ (Θi(µ))k (Θj(µ))l − (Θi(µref))
k (Θj(µref))

l ∣max
x∈Ω

∣ai,j,k,l(x)∣

=C(µ).
(2.4.4)

� Moreover, if C(µ) < 1 then T (µ) ∶ Ω→ Ω(µ) is bijective.

Proof. Due to the fact that g(µ,x) = ∑Qk=1 Θg
k(µ)hk(x), we have that:

detJT (µ,x) = ∑
1≤i,j≤Q,
0≤k,l≤2

((Θi(µ))k (Θj(µ))l)ai,j,k,l(x)

As already stated above, T (µref ,x) = x and so detJT(µref ,x) ≡ 1. Thus we can easily
conclude that:

∣detJT(µ,x) − detJT(µref ,x)∣ = ∣detJT(µ,x) − 1∣

= ∑
1≤i,j≤Q,
0≤k,l≤2

∣ ((Θi(µ))k (Θj(µ))l − (Θi(µref))
k (Θj(µref))

l)ai,j,k,l(x)∣

≤ ∑
1≤i,j≤Q,
0≤k,l≤2

∣ (Θi(µ))k (Θj(µ))l − (Θi(µref))
k (Θj(µref))

l ∣max
x∈Ω

∣ai,j,k,l(x)∣

This concludes the �rst part of the proof.

more advantageous; but if the number of terms is short , say 1 or 2, the application of the EIM to the
inverse of the determinant ν

detJT
can be preferable. We point out that if we apply the EIM only to the

inverse of the determinant, the approximation maintains the same eigenvectors of the original deformation.
However if we use Qeim terms for each empirical interpolation, we have an expansion of Q(Q+1)

2
Qeim instead

of 3Qeim. In our implementation the EIM will be applied to each term. In [115] the so-called MCEIM has
been proposed to apply the empirical interpolation directly to tensors.

33Historically the transformations based on the Laplace equation have certainly been the most studied
and discussed in the hambit of numerical grid generation. Several generalizations of the simple idea we
deal with in this section have been proposed and transformation (2.3.12)-(2.3.13) represents one of these
generalizations. For a comprehensive presentation of the theoretical aspects we refer to [16].

34In two and three dimensions this means h ≥ 3.
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We are going to prove that T (µ) ∶ Ω→ Ω(µ) is a change of coordinates if C(µ) < 1.
Let p ∈ ∂Ω, then p(µ) ∶= T (p) ∈ ∂Ω(µ) by construction.

By contradiction, p ∈
○

Ω, p(µ) ∉
○

Ω(µ); therefore due to the continuity35 of T in µ,
there exists µ̄ ∈ D such that p(µ̄) ∈ ∂Ω(µ̄). Thus p(µ̄) = p̃(µ̄) where p̃ ∈ ∂Ω.

Consider the scalar function g(t) = (p̃−p)TT (µ̄, p+ t(p̃−p)). Clearly g(0) = g(1), thus
thanks to Rolle theorem g′(t̄) = 0 for some t̄ ∈ (0,1).

However, g′(t) = (p̃ − p)TJT (µ̄, p + t(p̃ − p))(p̃ − p) that implies that36 detJT (µ̄,x) = 0
for some x ∈ Ω. This is a contradiction.

Until now we proved that, for all µ ∈ D such that C(µ) < 1, T (µ,Ω) ⊂ Ω(µ) and
more speci�cally that T (µ, ∂Ω) = ∂T (µ,Ω) = ∂Ω(µ). But for a generalization of the
Intermediate Value Theorem37 we can conclude that T (µ, ⋅) is surjective in Ω(µ).

For the injectivity we can proceed in the same way.

We highlight that the estimate presented above is extremely pessimistic; however, in an
o�ine-online context, we can check a posteriori whether the map is a change of coordinate
and we can quantify the entity of the admissible perturbation o�ine in a pre-process stage.

Lemma 2.1 can be assumed just as a proof-of-concept38. However, through a simple
modi�cation it is possible to extend the method to a wider family of domains.

Let us start from an example: the rotation of a NACA symmetric pro�le.

Figure 2.10: NACA airfoil. Γin is the wing boundary, whereas Γout is the square boundary

In this case the deformation is represented by:

T (µ,x) = T 1(x) + cos(µ)T 2(x) + sin(µ)T 3(x), (2.4.5a)

35In this work we do not prove this statement, we just observe that if Ω ∈ Cm, gi ∈ Hm− 1
2 then

T ∶ D →Hm(Ω) is continuous (see [109], chapter 8).
36This statement is straightforward because for µ = µref all the eigenvalues are positive, so they remain

positive for small perturbation; thus the Jacobian is de�nite positive.
37Let f ∶ X → Y , with X Y topological spaces and f a continuous function, then, if X is connect, also

Y is connect.
38We would argue that even if from a mathematical point of view the approach is not satisfactory it

could work from a numerical viewpoint. Some numerical simulations in the following section show that
also in practice, when we try to re�ne the mesh near the corners in order to increase the accuracy, we have
problems.
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where T 1, T 2 and T 3 are the solutions to:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆T 1 = 0 in Ω
T 1 = x on Γout
T 1 = 0 on Γin,

(2.4.5b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆T 2 = 0 in Ω
T 2 = 0 on Γout
T 2 = x on Γin,

(2.4.5c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆T 3 = 0 in Ω
T 3 = 0 on Γout
T 3 = −yi + xj on Γin,

(2.4.5d)

respectively.
In this case the square vertices do not represent a problem because we are interested

in studying the equation around the pro�le. However, the discontinuity of the derivative
at the tail of the edge a�ects the accuracy of the solution: there the derivative of the map
is not bounded, thus we cannot re�ne adequately the grid close to the point.

The idea we propose is the following39: we consider two concentric ellipses, say Einner
and Eouter, around the airfoil; then we extend the inner boundary condition of each problem
to Ω ∩ Einner and the outer boundary condition to Ω ∖ Eouter. Figure 2.11 shows the
decomposition of the domain:

Figure 2.11: decomposition of the domain

Now let us de�ne:

T ⋆
i (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

uinneri in Ω ∩Einner
T̃ i in Eouter ∖Einner
uouteri in Ω ∖Eouter

, (2.4.6)

where T̃ i is the harmonic function such that T ⋆
i is globally continuous

40 and uinneri , uouteri

are suitable extensions of the boundary data. It is absolutely trivial to prove the following.

39With respect to the approach proposed in [116], the main di�erence is that in our case we do not
provide the map at hand but we use the trans�nite map. This guarantees the possibility to consider more
complex structures: for instance with this approach we can consider a �xed structure with a rotating part.

40In the case of elliptical disc we can �nd an analytical solution. We do not take advantage of it because
for real applications we do not have the possibility to use elliptical discs.
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Lemma 2.2. The transformation T ⋆(µ,x) = T ⋆
1(x)+cos(µ)T ⋆

2(x)+sin(µ)T ⋆
3(x) is glob-

ally K(µ)-Lipschitz. Moreover the K(µ) constant is continuous with respect to the param-
eter µ.

Remark 2.3. We observe that the piecewise approach presented above is extremely indi-
cated when the problem at hand presents a boundary layer for two reasons:

� with respect to the a�ne parametrizations described in section 2.2, it is possible to
perform some grid adaptivity in order to tailor the mesh to our problem.

� with respect to the non-a�ne parametrizations described in section 2.3, we observe
that the boundary is now represented without any approximation: this is extremely
important because the reconstruction of the derivative and the application of the EIM
-needed in order to make the problem a�ne with respect to the parameter- is now
limited to an area where the solution is smooth. For this reason we can reasonably
expect that the distance ∥u(µ) − uEIM(µ)∥H1(Ω) - where u(µ) and uEIM(µ) are the
truth solutions referred to the real and to the approximate domains, respectively -
can be under our desired tolerance through a reasonably small parametrically a�ne
expansion.

2.4.3 The approximation of the derivatives

Before concluding this chapter with the presentation of some numerical simulations, we
brie�y address the following issue: due to the fact that the transformation is obtained
through the solution of a di�erential problem, is it possible to rely on its derivative?

This aspect is crucial in order to guarantee that our truth approximation be close to
the real one.

It is well known that Finite Elements guarantee good approximation properties in
H1(Ω), however it is much more di�cult to guarantee a good approximation in terms of
W∞

1 (Ω).
In [26] under some hypotheses on the mesh it is proved that the �nite element solution

to a second order elliptic boundary value problem satis�es the following best approximation
property:

∥∇(u − uh)∥L∞(Ω) ≤ C min
χ∈Xh

∥∇(u − χ)∥L∞(Ω) (2.4.7)

where Xh is the FE space. Another important topic is how to compute the �nite element
derivative involved in (2.4.3). For each element it is possible to obtain the correct values
through the following procedure here presented for P1-elements41

Let K̂ be the reference triangle, identi�ed by the vertices (0,1), (0,0), (1,0). Given
the element K ∈ Th, let (BK , cK) be the unique matrix and vector such that K = BKK̂+cK
and such that the node xi1 is mapped into (0,0), xi2 into (1,0) and xi3 into (0,1). Thus
the derivative of uh in the element K can be computed as:

∇u
h∣
K

= B−T
K (ui1∇φ(0,0) + ui2∇φ(1,0) + ui3∇φ(0,1)) .

41This is algorithm implemented in the Matlab tool pdegrad. Clearly more general recovery methods
are available, see for instance [127, 126].
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2.5 Numerical simulations

After introducing the theory, we are going to provide some examples.
We �rst address the problem of quantifying the hypothesis of small deformations. For

two di�erent geometries, we show that the trans�nite maps are able to represent the
deformation of the domain. We also discuss the convergence of the EIM algorithm in
presence of small deformations of the domain.

Then, we consider the application of the piecewise trans�nite map to an advection-
di�usion problem.

2.5.1 Hypothesis of small deformations

Let us consider the following problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆u = f in Ω(µ)
u = g on ∂ΩD(µ). (2.5.1)

In order to evaluate the entity of the small deformation hypothesis42, we introduce the
following indicator

ξ(µ) = λmax
λmin

where λmax, λmin are the eigenvalues of νT (µ) = JT −TJT −1. (2.5.2)

Let us brie�y motivate our choice: if we refer the problem to the reference con�guration
using the map T, it is straightforward to prove that λmax is equal to the continuity constant
associated with the bilinear form of the problem while λmin coincides with the coercivity
constant. Thus, if we suppose to solve problem (2.5.1) thanks to the Céa Lemma (see [97]),
we have that

∥u(µ) − uh(µ)∥X ≤
√
ξ(µ) inf

w∈Xh
∥u(µ) −w∥X . (2.5.3)

Therefore, by solving the problem in the reference con�guration, our FE approximation is
deteriorated by a factor

√
ξ(µ).

The indicator ξ(µ) depends on the di�erential problem and can be hard to compute
in more complex situations. For this reason, another indicator, directly linked to the
approximation properties of the FE space, can be proposed:

ξ̃(µ) = ∥∣λmax,T (µ, ⋅)∣
∣λmin,T (µ, ⋅)∣

∥
L∞(Ω)

(2.5.4)

where λmax,T and λmin,T are the maximum and minimum (in modulus) eigenvalue associ-
ated with JT, respectively.

The interpretation of this second indicator is the following one: let us consider a regular
triangulation Th in the reference domain Ω such that:

max
K∈Th

hK
ρK

≤ σ, ∀h > 0

where ρK and hK are the radius of the circle inscribed and circumscribed to the element
K, respectively.

42With respect to our knowledge, this kind of analysis is new; also the two indicators are original.



60CHAPTER 2. REDUCED BASIS METHOD FOR PDES IN PARAMETRIZED DOMAINS

Then the mapped problem43 is equivalent to the FE solution of the problem in the
actual con�guration with respect to a still regular triangulation Th(µ) such that

max
K(µ)∈Th(µ)

hK(µ)

ρK(µ)

≤ σξ̃(µ) ∀h > 0.

Therefore, as anticipated, this second indicator is strictly related to the approximation
property of the FE space (see Theorem 3.4.2 in [99]).

2.5.2 NACA pro�le

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.12: symmetric NACA pro�le

As �rst example, we consider the rotation of a NACA symmetric pro�le with respect
to (0,0). The parameter µ represents the incidence angle with respect to the horizontal
axis. The length of the pro�le is set to one and the domain Ω = (−2,2)2. We consider
the piecewise approach in which the pro�le is enclosed by a circle centered in (0,0) with
unitary radius. Figure 2.12 shows the geometry44 for µ = 0.

Figure 2.13: ratio ξ(µ).

43We assume that the approximation associated with the application of the EIM is negligible.
44The number of points in the outer region is 161.
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it. µ Max Err
1 0 39.84
2 0.7 3.21
3 0.658 1.44
4 0.467 0.391
5 0.686 0.109

Figure 2.14: in the table we gather the µ selected at each iteration and the correspondent
maximum error on Ξ ⊂ [0,0.7] where ∣Ξ∣ = 100. The angles are in radians, 0.7rad = 40.11○.
On the right we show the convergence of the EIM Greedy algorithm.

D EIM expansion
µ ∈ [0,0.3] 7
µ ∈ [0,0.4] 8
µ ∈ [0,0.5] 10
µ ∈ [0,0.6] 11
µ ∈ [0,0.7] 14
µ ∈ [0,0.8] 22

Table 2.1: number of terms in the EIM expansion vs size of the domain. ∣Ξ∣ = 1000, the
tolerance is set to 10−5. In the last case ∥ξ∥L∞(Ξ) > 104.

Figure 2.13 shows that for µ < 0.4 (equal to 22.93○) ξ(µ) < 10. Otherwise, for µ > 0.4
the ratio diverges rapidly. Starting from this observation, we may state that the map can
be successfully used in this framework for D ⊂ [0,0.4].

Figure 2.14, right, analyses the performances of the EIM for the �rst component of
the viscosity matrix ν1,1(µ), for D = [0,0.7]. Even if the non-a�ne function is extremely
badly scaled, the Greedy algorithm converges very fast; as it may be expected, the �rst
parameters chosen by the Greedy strategy are closed to µ = 0.7 (see Figure 2.14, left).

Finally Table 2.1 analyses the growth of the number of terms in the EIM expansion
necessary to satisfy a given tolerance. For µmax < 0.8 the number grows linearly: this
provides further evidence about the robustness of the EIM.

2.5.3 NACA pro�le with support

We turn to a more involved example. The NACA pro�le is now fastened to a triangular
�xed support. As before the length of the NACA pro�le is set to one and the parameter is
the rotation angle µ (the rotation center is still (0,0)). Figure 2.15 shows the geometry45

for µ = 0.
As we may expect, the increasing complexity in the geometry deteriorates the per-

formances of the method. As plotted in Figure 2.16 the indicator ξ(µ) is less than 10
for µ < 0.15 (=8.59○). Nevertheless, the results remain extremely positive: the maximum
reachable angle is close to the critical angle of attack46. Furthermore, we reasonably expect
that by changing the arti�cial inner domain that contains the pro�le, the performance of
the map can be improved.

45The size of the mesh associated with the outer region is 3331.
46The critical angle of attack depends on the airfoil, it is in general close to 10 − 15○ degrees [3] .
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Figure 2.15: symmetric NACA pro�le with support

Figure 2.16: ratio ξ(µ).

Figure 2.17 shows the performances of the Greedy algorithm for the �rst component of
the viscosity matrix ν1,1(µ), for D = [−0.1,0.25]. As in the previous case, the convergence
is exponentially fast. On the other hand, we do not observe a polarization of the sampled
values at one of the two extreme points.

µ Max Err
-0.1 64.68
0.21 6.79
0.25 1.025
0.15 0.2423
-0.008 0.048

Figure 2.17: in the table we gather the µ selected at each iteration and the correspondent
maximum error on Ξ ⊂ [−0.1,0.25] where ∣Ξ∣ = 100. The angles are in radians, 0.25rad =
14.32○. On the right we show the convergence of the EIM Greedy algorithm.

Finally, as we made in Table 2.1, in Table 2.2 we analyse the growth of the number of
terms in the EIM expansion with respect to the size of the domain. For µmax ≤ 0.3 and
µmin ≥ −0.1 we observe a substantially linear dependence.
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D EIM expansion
µ ∈ [−0.1,0.1] 8
µ ∈ [−0.1,0.2] 10
µ ∈ [−0.1,0.3] 13
µ ∈ [−0.1,0.4] 20

Table 2.2: number of terms in the EIM expansion vs size of the Domain. ∣Ξ∣ = 1000,the
tolerance is set to 10−5. In the last case ∥ξ∥L∞(Ξ) > 104.

2.5.4 An advection-di�usion problem around a rotating symmetric NACA

pro�le

As �nal example we test our piecewise map on an advection-di�usion problem.
The goal of the test is to compare the FE numerical solution computed in the reference

con�guration with the FE numerical solution directly computed in the actual con�guration.
Figure 2.18 shows the reference domain.

Figure 2.18: computational domain: reference con�guration

The di�erential problem is the following one:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆u + b ⋅ ∇u = 0 in Ω = (−4,4)2 ∖N(µ)
u = 0 on ΓC

∂u

∂n
= 0 on ΓN

u = 1 on ∂Γin

(2.5.5)

where N(µ) is the rotating airfoil (µ is the rotating angle). In order to deal with high
Péclet numbers, we consider a strongly consistent stabilized formulation47. We refer to
[25] for the theoretical aspects; here we just recall some details.

The formulation on the actual con�guration is the following one:

ah(u, v, µ) = ∫
Ω(µ)

ν∇u⋅∇v dy+∫
Ω(µ)

b⋅∇uv dy+ ∑
K(µ)∈Th(µ)

hK(µ)δ
∣b∣ ∫

K(µ)
(b⋅∇u)(b⋅∇v)dy = 0.

(2.5.6)

47In all these simulations we have used piecewise linear �nite elements so SUPG, GLS and DW are
equivalent.
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It is easy to prove that the formulation in the reference con�guration (Ω = Ω(0)) is:

ah(u, v, µ) = ∫
Ω
νT (µ)∇u⋅∇v dx+∫

Ω
(J−1

T (µ)b)⋅∇uv dx+ ∑
K∈Th

hKδ

∣b∣ ∫K ΨT (µ)∇u⋅∇v dx = 0

(2.5.7)
where:

νT (µ) = νJ−TT (µ)J−1
T (µ), ΨT (µ) =

⎡⎢⎢⎢⎢⎣

(J−1
T (µ)b)2

1
1
2
(J−1

T (µ)b)
1
(J−1

T (µ)b)
2

1
2
(J−1

T (µ)b)
1
(J−1

T (µ)b)
2

(J−1
T (µ)b)2

2

⎤⎥⎥⎥⎥⎦
.

We consider two di�erent grids (see Figure 2.19). The �rst one is suited to the components
of the transformation and is re�ned on the circle that separates the two subdomains (see
Figure 2.19(a)); the second one is suited to the problem and is re�ned near the wing and
along the wake48, (see Figure 2.19(b)).

(a) (b)

Figure 2.19: numerical grids for (a)the trans�nite transformation; (b) the problem.

Here we present a comparison between the �nite element solution of the problem (2.5.6)
in the actual domain and the �nite element solution of the problem (2.5.7) in the reference
domain after the application of the EIM49.

In Table 2.3 we report the di�erence between the FE solutions for two di�erent choice
of the �eld b.

As we may expect, the di�erence depends on the Péclet number; on the other hand
the incidence angle does not in�uence the di�erence. This shows that the EIM provides
a good approximation for all the values of the parameter sample. On the other hand, we
observe that the Peclét number deteriorates the approximation, see the estimate (1.8.5)
for a mathematical explanation of the phenomenon.

Figure 2.20 shows the solutions: we observe that the only signi�cant di�erences between
the two solutions are in the strong gradient region perpendicular to the airfoil. If the
di�erence were not acceptable for our purposes, we would have the possibility to consider
another inner arti�cial domain -instead of the unitary circle we consider and in this example
- and re�ne the grid as much as we need. This shows the �exibility of the methodology,
that is in our opinion its great advantage with respect to the multi-domain approach tested
in section 2.2.4.

48In the di�erential problem, the number of grid nodes is 734.
49In order to evaluate the parametrization in our opinion it is better to separate the error linked to the

map and the error linked to the reduced basis approximation.
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Relative (Absolute) L2-error (µ = 0) Relative (Absolute) L2-error (µ = 0.15)
b = [1 0] 0.0019 (0.0128) 0.0019 (0.0128)
b = [10 0] 0.0033 (0.0285) 0.0033 (0.0246)

Table 2.3: relative (with respect to the norm of the �nite element solution computed on
the actual domain) and absolute di�erence between the �nite element computed on the
actual domain and the �nite element solution computed on the reference domain for two
di�erent angles of incidence and two di�erent Péclet number.

(a) (b)

(c) (d)

Figure 2.20: the advection-di�usion problem with b = [10 0]′: comparison between the
�nite elements solutions. (a)-(b) FE solution in the actual domain (no mapping), (c)-(d)
FE solution in the reference domain (piecewise a�ne mapping and EIM).

2.6 Conclusions

In this chapter we dealt with suitable parametrizations for parameter dependent domains
in the context of the Reduced Basis method. After a survey on the state of the art, we
focused on a new methodology: the piecewise trans�nite approach for small deformations.

The mapping here proposed is a simpli�cation of the well-known trans�nite approach
particularly suitable for rigid transformations of complex structures50. In this chapter we

50Theoretically the approach could be also applied to more complex geometries and transformations.
When it works, i.e. the deformation is small enough, it is surely much more reliable and fast than the
complete trans�nite approach.
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showed that:

� the hypothesis of small deformations is not truly restrictive for some applications;

� for rigid deformations of complex shapes the method is surely more indicated than
the multi-domain a�ne approach especially because it does not impose constraints
to the FE grid and reduces signi�cantly the o�ine computational costs;

� as a next step, it is necessary to test the method on more involved equations and
even more complex structures. The testing should be articulated into two di�erent
steps: the �rst one should be focused on the assessment of the small deformation
hypothesis - for this tasks the two indicators proposed in (2.5.2) and (2.5.4) can be
used - and on the convergence of the EIM, the second one should be directly related
to the RB approximation of the parametrically a�ne problem.

Before concluding, let us brie�y address the reasons why the study of parametrization
techniques is weighty to deal with conservation laws.

Let Ω = (0,1)2 ⊂ R2 and let γ(µ) ⊂ Ω be a curve that splits the domain into two regular
subdomains, say Ω1(µ) and Ω2(µ):

Ω1(µ) ∶= {x ∈ Ω ∶ x1 < γ(µ, x2)}
Ω2(µ) ∶= {x ∈ Ω ∶ x1 > γ(µ, x2)}

γ(µ, s) =
⎡⎢⎢⎢⎢⎢⎣

γ(µ, s)
s

⎤⎥⎥⎥⎥⎥⎦
(2.6.1)

Figure 2.21: problem domain

Let us suppose that the curve γ represents a discontinuity; then, following the approach
that we is discussed in the next chapter, it is necessary to solve an equation in Ω1(µ) and
one in Ω2(µ). For this reason, we need two suitable applications, T 1 and T 2, that map
the problems into a given reference con�guration Ω̂:

T 1 ∶ Ω̂ ×D → Ω1(µ) T 2 ∶ Ω̂ ×D → Ω2(µ)
It is quite evident that the classic multi-domain approach is inadequate to deal with such
situation due to the complexity of the deformation.

Let us derive the equations for the trans�nite map proposed in this chapter. First, we
consider Ω̂ = Ω and we de�ne

g1(x,µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(µ,0)x1 if x ∈ Γ1

γ(µ, x2) if x ∈ Γ2

γ(µ,1)x1 if x ∈ Γ3

x2 if x ∈ Γ4

g2(x,µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(µ,0) + (1 − γ(µ,0))x1 if x ∈ Γ1

x2 if x ∈ Γ2

γ(µ,0) + (1 − γ(µ,0))x1 if x ∈ Γ3

γ(µ, x2) if x ∈ Γ4
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where Γi, with i = 1,2,3,4 are the domain boundaries (see Figure 2.21). It is easy to
observe that gl(∂Ω,µ) = ∂Ωl(µ), l = 1,2. Then we can de�ne T l(⋅,µ) as the solution of
the following problems:

{ ∆T 1(µ) = 0 in Ω
T 1(µ) = g1(µ) on ∂Ω

{ ∆T 2(µ) = 0 in Ω
T 2(µ) = g2(µ) on ∂Ω.

(2.6.2)

If the curve γ is reasonably smooth, we expect that the hypothesis of small deformations
holds.

In our opinion trans�nite approach seems to be the most convincing geometric reduction
strategy among the four here presented to deal with hyperbolic problems. In fact the
boundary control - i.e., the precise description of the shock curve - is absolutely crucial in
this context. Moreover, when it works, the simpli�ed approach permits to hugely reduce
the computational e�ort both in the o�ine and in the online stage.
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Chapter 3

Reduced Basis Techniques for

Conservation Laws

3.1 Introduction

This chapter is related to the application of the Reduced Basis (RB) method to one di-
mensional scalar conservation laws that depends on a set of parameters, say µ ∈ D:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u(µ) + ∂

∂x
f(u(µ),µ) = 0 (t, x) ∈ (0, Tmax) × (a, b)

u(µ,0, x) = u0(µ, x) x ∈ (a, b)
(3.1.1)

completed with periodic or in�ow boundary conditions. In the literature the main refer-
ences concerning the RB application to hyperbolic problems are [49, 29] and some works
related to viscous Burgers equation1 [123, 87, 94]. Even if our examples mainly deal with
quadratic �uxes, we aim at developing an approach suited to deal with general non-linear
�uxes.

In the introduction of this thesis we discussed about the RB method for both steady
and time-dependent problems. The example 1.2 highlights some criticalities in the appli-
cation of the RB methodology to hyperbolic problems with discontinuous initial data. The
following example faces the same problem from a di�erent point of view and provides some
solutions.

3.1.1 An introductive example

Let us �rst analyse a simple linear problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given µ ∈ D = [µmin, µmax],

�nd u(µ) ∈ C(0, T ;L2(R)) such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u(µ) + µ ∂

∂x
u(µ) = 0 (t, x) ∈ (0,∞) ×R

u(µ,0, x) = χx>0(x) x ∈ R,
(3.1.2)

whose (elementary) solution is:

u(µ, t, x) = { 0 x ≤ µt
1 x > µt. (3.1.3)

1We also refer to [96] for the study of the Burgers equation in the presence of uncertainty.

69
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In order to apply the Reduced Basis method, we consider a truth approximation of the
solution, say uδ(µ), with δ = (∆t, h). For the sake of simplicity, we consider a piecewise
constant in time approximation i.e.

uδ(µ, t, x) =∑
k

ukh(µ,x)χ{tk,tk+1}(t)

where {tk}Kk=0 represents the temporal grid . In addition we suppose that the truth solver
is �ne enough to catch correctly the shock position for each time step. In conclusion the
truth manifold is2:

Mδ = {uδ(µ) =∑
k

H{µtk}χ[tk,tk+1) ∶ µ ∈ D} (3.1.4)

To apply a reduced basis strategy to problem (3.1.2), we have to choose the correct RB
space. The three main options- see for instance [58]- are:

� the Lagrange subspace: for time-dependent problems in the RB context, the usual
Lagrangian space considered is the following3:

WN ∶= S∆t ⊗ VN (3.1.5a)

where:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S∆t ∶= span {χ{[tk,tk+1)} ∶ k = 0,⋯,K − 1}

VN ∶= span {ukjh (µj) ∶ for some couples (µj , kj) ∈ D × {0,⋯,K}, j = 1,⋯,N} ;

(3.1.5b)

� the Taylor subspace: let us suppose that the solution uδ is N -time derivable in
µ = µref ∈ D with respect to the parameter. Thus the reduced basis subspace is
de�ned as:

XN = span{yj ∶ yj =
∂juδ
∂µj

∣
µ=µref

j = 0,⋯,N} ; (3.1.6)

� the Hermite subspace: the idea is to combine the Lagrange and Taylor approaches:
the reduced basis subspace is spanned by the solutions and their �rst order partial
derivatives at various parameter values µj :

HN = span{yj = uδ(µj) and
∂uδ
∂µ

∣
µ=µj

µj ∈ D j = 1,⋯,N} . (3.1.7)

It should be noticed that, even if it is not a priori impossible, the computation of derivatives
could be rather involved. In addition the derivative could be irregular: for our problem it

2Hx⋆ ∶ R→ R is the Heaviside function centered at x⋆.
3By applying the POD Greedy technique we would obtain a slight di�erent approximation space;

however, the conclusions would be substantially unchanged. As already cited in the introduction, in
[113] Urban et al. have considered another Lagrangian space, based on the entire solutions to problem
(3.1.2) corresponding to various parameter values µj i.e.:

WN = span{yj = uδ(µj) ∶ µj ∈ D j = 1,⋯,N} .
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is easy to observe that4:

∂uδ
∂µ

(µ, t, x) = −∑
k

δµ= x

tk
χ{tk,tk+1}.

Also standard Lagrange subspaces are not suitable for the approximation of the solution
manifold. To show it, we consider the Lagrangian space (3.1.5)

Given a new value of the parameter, as a pure theoretical exercise we try to compute the
WN -minimizer of the Lp-distance5 from the solution uδ(µ) at a �xed time t. We point out
that we do not introduce any practical approach to implement the minimization: having
the solution, it is possible to explicitly compute the exact minimizer. The result is:

u(µj⋆ , tj
⋆

, ⋅) = arg inf
w∈VN

∥uδ(µ, t, ⋅) −w(⋅)∥Lp(R) j⋆ = min
j=1,⋯,N

∣µt − µjtj ∣.

This formula shows that the convergence is linear with respect to the density of the pa-
rameter sample. In practice the approximation error related to the Lagrangian space WN

decreases too slowly to motivate the application of the RB method.
In conclusion no approach seems to be suitable for the problem; thus some corrections

are probably required.
Let us analyse, more in detail, why the Lagrangian approach does not work. On one

hand the knowledge of the solution for di�erent values of the parameter seems to provide us
much information about the entire manifold; on the other hand a method based on linear
combinations of snapshots is surely inadequate to take advantage of this information. By
combining linearly a set of functions, the resulting singularity set6 coincides with the
union of the singularity sets of the di�erent addends; this is why in order to reconstruct a
function with a singularity in x0 through a linear combination of pre-computed snapshots
it is necessary to have a snapshot with a singularity close to x0. It is obvious that it is not
possible to guarantee this condition with a reasonable number of snapshots.

However, we observe that the real solution u is smooth in each subdomain of the domain
decomposition induced by the jump [0, T ] ×R = Ω̄1 ∪ Ω̄2:

u(µ, t, x) = usmooth,1(µ, t, x) ≡ 0 ∀ (t, x) ∈ Ω1 = {(t, x) ∈ [0, T ] ×R ∶ x < µt},

u(µ, t, x) = usmooth,2(µ, t, x) ≡ 1 ∀ (t, x) ∈ Ω2 = {(t, x) ∈ [0, T ] ×R ∶ x > µt}.

Furthermore, it is easy to notice that usmooth,1(µ) and usmooth,2(µ) depend continuously on
the parameter-in this case they are even constants; for this reason we expect that they can
be approximated by the corresponding smooth parts of the pre-computed solutions. The
di�culty is that a priori also the domain decomposition depends on the parameter through

4The equation should be intended in D
′

((µmin, µmax)). The calculus of the derivative is correct if we
consider the solution as uδ ∶ [0, T ]× [µmin, µmax]→ L∞(R). It could be argued that -in bounded domains-
other Lp norms can be considered: however the ratio:

∥uδ(µ1, t) − uδ(µ2, t)
µ1 − µ2

∥
Lp

= (∣µ1 − µ2∣t)
1
p
−1

is unbounded for ∣µ1 − µ2∣ → 0 if p > 1 and for p = 1 does not converge in the space norm. Thus it is not
possible to de�ne Fréchet or Gâteaux derivatives for uδ ∶ [0, T ] × [µmin, µmax]→ Lp(R).

5Here we consider p <∞. If p =∞ then the minimizer associated with uδ(µ, t, ⋅) ∉ VN is not unique in
VN . More precisely, if uδ(µ, t, ⋅) ∉ VN , every w ∈ VN , such that 0 ≤ w ≤ 1 is a minimizer.

6In this work given an almost everywhere continuous function f ∶ Rm → Rn, we refer to the singularity
set of f as {x̄ ∈ Rm ∶ ∄ limx→x̄ f(x)}.
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the well-known Rankine-Hugoniot condition, [71, 109], that is -called x(t) the position of
the shock at the time t:

ẋ(t) = q(u(µ, t, x
+(t)) − q(u(µ, t, x−(t))

u(µ, t, x+(t)) − u(µ, t, x−(t)) , with q(x) = µx. (3.1.8)

However, thanks to the linearity, the equation (3.1.8) does not depend directly on the
solution; thus it is straightforward to solve the ODE and �nd that x(t) = µt. Moreover,
due to the fact that the initial condition is piecewise constant, it is possible to write the
general solution as a composition between a solution related to a speci�c value µref of
the parameter and a suitable parameter-dependent map induced by the above mentioned
Rankine-Hugoniot condition (3.1.8):

u(µ, t, x) = u(µref ,τ (µ, t, x)) where τ (µ, t, x) = [
x
µ

µref
t
] .

This slight modi�cation of the general approach permits to solve our problem in an e�cient
way. However, at this stage it is not clear how to extend the method to nonlinear �uxes
and to more general initial data.

3.1.2 Overall strategy and structure of the chapter

In order to generalize the example proposed above, we introduce a new functional space7.

De�nition 3.1. Let I = (a, b) ⊂ R be an interval and w ∶ I → R be a measurable8 function.
The total variation of w is de�ned by:

TV (w) ∶= sup
{xj}j ∶a<xj<xj+1<b

⎧⎪⎪⎨⎪⎪⎩
∑
j

∣w(xj) −w(xj−1)∣
⎫⎪⎪⎬⎪⎪⎭

(3.1.9)

Then we denote with BV (I) the set of all the real valued measurable functions w ∶ I → R
with bounded total variation.

If the initial condition and the boundary condition are su�ciently regular, the solution
to the problem (3.1.1) could be searched9 in the following subspace of BV (I).

De�nition 3.2. We say that w ∈ BV (I) is a special function with bounded variation, and
we write w ∈ SBV (I), if w = ws +wj where ws ∈W 1,1(I) is the smooth part of w while wj
is piecewise constant, i.e., Dwj = ∑xi∈A γiδxi where A is a countable set, δxi are the Dirac
measures at xi and γi ∈ R.

In the sequel, we will refer to ws and wj as to the smooth and jump component,
respectively. The example stated in the previous paragraph heuristically showed how
the RB approach - that is based on linear combinations of pre-computed solutions- is
not adequate to deal with the jump part of the solution. However, it is reasonable to
expect that smooth components are well approximated through linear combinations of
the corresponding smooth components of the pre-computed solutions. For this reason the
strategy we propose here consists in:

1. building a surrogate problem for the smooth component of the solution and take
advantage of the RB approach to reduce the computational e�ort;

7In Appendix A we introduce the space BV in a more general and abstract setting.
8In this work the measurability is always intended with respect to the Lebesgue σ-algebra.
9See [1, 24] for further details.
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2. computing the jump component of the solution, independently;

3. adding the two components in order to �nd the solution.

Apart from these distinguished features, several further auxiliary ingredients will char-
acterize our approach. For this reason in order to clearly explain the methodology, the
chapter is structured in four distinct sections.

� Section 3.2 deals with some preliminary topics: the underlined truth approxima-
tion chosen and the consequent treatment of boundary conditions; an algorithm to
split the smooth and the jump parts of the solutions; a procedure to change spatial
variables in the Finite Volume framework.

� In section 3.3 the entire methodology is presented: �rst, a new formulation is derived
and then the algorithms to e�ciently treat the shock and the smooth parts of the
solutions are presented.

� In section 3.4 the a posteriori error estimation is brie�y addressed.

� In section 3.5 some numerical examples motivate the strategy.

At the end some conclusions are drawn.

3.2 Some preliminaries

The Reduced Basis method is built upon an underlined numerical scheme used to provide
the so-called truth approximation of the solution. As motivated in section 3.3, our method
is completely independent of the special scheme chosen to solve the equations10.

In this section, we brie�y introduce the well-known Godunov and Lax Friedrichs schemes
in the framework of the so-called conservative methods. For a complete coverage of the
topic we refer to [71, 72]. Then we discuss a general strategy used to detect the shock
equation.

3.2.1 The underlined truth approximation for the problem

Given the spatial-temporal domain QT = (0, T ) × (a, b), we consider the equispaced mesh
(tk, xj) k = 0,⋯,K, j = 0,⋯,N such that xj = a + jh, tk = k∆t, with δ = (∆t, h). A con-
servative method for the equation (3.1.1) is a method that can be written in the following
form:

un+1
δ,j = unδ,j −

∆t

h
(F (unδ,j−p,⋯, unδ,j+q) − F (unδ,j−p−1,⋯, unδ,j+q−1)) (3.2.1)

where the solution {unδ,j}n,j is an approximation to the cell average of the exact solution

at time tn, i.e., unδ,j ≃ 1
h ∫

xj+
h
2

xj−
h
2

u(tn, x)dx.
In this work we are going to consider the Lax-Friedrichs and the Godunov �uxes:

Lax Friedrichs Flux: F (u,w) = h

2∆t
(u −w) + 1

2
(f(u) + f(w)); (3.2.2a)

10This is not true for the RB method based on the Galerkin projection: two di�erent bilinear forms
generate two di�erent reduced models.
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Godunov Flux: F (u,w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minz∈[u,w] f(z) if u ≤ w

maxz∈[w,u] f(z) if w ≤ u. (3.2.2b)

These �uxes satisfy the following important properties:

� the �uxes are consistent, i.e., F (u,u) = f(u);

� they lead to monotone schemes, i.e., vnj ≥ unj for any j implies that vn+1
j ≥ un+1

j ∀ j.
As a consequence the schemes are L1-contractive and TVD (Total Variation Dimin-
ishing). The latter property guarantees that no spurious oscillation arises close to
the shock;

� they satisfy the following discrete entropic condition: given a C1-convex function η
and a C1-function ψ such that ψ′ = η′f ′, it is possible to de�ne a consistent entropic
�ux Ψ11 such that the numerical solution satis�es

η(uk+1
δ,j ) ≤ η(ukδ,j) −

∆t

h
(Ψj+ 1

2
−Ψj− 1

2
). (3.2.3)

In order to be stable these methods require that the mesh satis�es the following CFL
(Courant, Friedrichs, Lewy) condition ([71]):

∆t

h
∥f ′(u)∥∞ ≤ 1. (3.2.4)

Under the previous hypothesis it is possible to prove that the methods are convergent to
the entropic solution.

The treatment of boundary conditions

Due to the fact that in this work we focus on conservation laws in bounded domains, we
brie�y address here the treatment of boundary conditions that we use in our simulations.

Two di�erent types of boundary conditions can be imposed to problem (3.1.1): a suit-
able condition at each in�ow boundary or periodic conditions (i.e., u(t, a) = u(t, b)).

We remember that x = x⋆ is said to be an in�ow boundary for problem (3.1.1) if

f(u(t, x⋆))n(x⋆) < 0 where n = { −1 if x⋆ = a
1 if x⋆ = b. (3.2.5)

As usual in the context of Finite Volume schemes12, in this work we impose the
boundary conditions through the introduction of some auxiliary points, the so-called ghost
points13. Due to the fact that we use three point stencils, we just need to add a single
ghost point for each boundary, i.e., ukδ,−1 and ukδ,N+1.

11For the Godunov scheme the entropic �ux is:

Ψ(u,w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψ(u) f ′(u) > 0, s = f(w)−f(u)

w−u
> 0

ψ(w) f ′(u) < 0, s < 0
ψ(ξ) f ′(u) < 0 < f ′(w)

where ξ is the zero of the �ux derivative (i.e., f ′(ξ) = 0).
12The technique here presented constitutes the basis for the implementation adopted in the hyperbolic

solver Clawpack, [72].
13Ghost point technique is not the only option to impose boundary conditions in Hyperbolic problems-

for instance in [72] another technique based on the de�nition of a suitable �ux at the boundary is presented-
, however the technique here adopted is extremely easy to implement and constitutes a powerful tool also
in more involved problems and for more accurate schemes.
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� Periodic Boundary conditions: in this case we simply impose ukδ,−1 = ukδ,N and

ukδ,N+1 = ukδ,0.

� Out�ow boundaries: if the condition (3.2.5) is not satis�ed, the di�erential problem
does not need any boundary condition. However, in order to compute the new
solution at the out�ow boundary, say x = b, we need to set the ghost point value.
This can be done by zero-order14 extrapolation, i.e., ukδ,N+1 = ukδ,N .

� In�ow boundaries: From the mathematical point of view, the correct way to impose
in�ow condition is15:

u(t, a) is such that max
k∈(u(t,a),ξ0(t))

{sign (u(t, a) − ξ0(t)) [f(u(t, a)) − k]} = 0 (3.2.6)

where a is in�ow boundary and ξ0 is the condition at x = a. In FV schemes, the

ghost point can be set to16: ukδ,−1 = 1
∆t ∫

tk+1

tk ξ0(τ)dτ .

3.2.2 Smooth-Jump decomposition algorithm

Given the problem (3.1.1), we suppose that a conservative scheme with a monotone �ux
(either Godunov or Lax-Friedrichs in the following) is used to obtain a numerical solution
{ukj }k,j of the problem. In this section we introduce an e�cient algorithm to decompose
the solution in a regular part and in a piecewise constant part. For our purposes, the main
goal of the method is to detect the initial condition, i.e., (xshock(t⋆), u−(t⋆, xshock(t⋆)),
u+(t⋆, xshock(t⋆)), to initialize the shock capturing scheme; however we present the algo-
rithm from a more general viewpoint.

In order to deal with the problem, we �rst make few observations.

� Each numerical scheme introduces an arti�cial di�usion: hence a shock is in practice
a region (hopefully small) in which the solution exhibits a strong gradient. For this
reason, it is in practice impossible to �nd the right shock point, but we can assume
that it is inside the above-mentioned high-derivative region.

� Some numerical schemes (such as Lax-Wendro�) can exhibit spurious oscillations
close to the shock. This limits our possibilities to recognize in an automatic way
the two shocks because the high derivative region becomes often larger and unstable
with respect to the sign of the derivative. This is the reason why we decided to
�rst test our method on discontinuous solutions obtained with monotone schemes.
However we point out that the algorithm here presented is absolutely independent
of the method used to build the solution.

� It is possible to forecast a priori whether the jump sign is positive or negative. In
particular if the �ux is concave, the entropy solution has only positive jumps. This
is fundamental because also rarefaction waves have unbounded gradients and so,
without an a priori sign condition, it would be much more di�cult to distinguish
numerically the two phenomena.

The main idea of the algorithm is to identify the high derivative (with respect to the
right sign) regions and then to quantify the entity of the jump. In order to do this we have

14First order extrapolation represents a further alternative; however, it can lead to stability problems
and it is in general not recommended ([72]).

15See [6].
16The motivation is based on the characteristic equation that is introduced in section 3.3.2
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to set two constants: the constant K and the extension δvisc of the arti�cial boundary
layer. In the following we will consider17:

K = 30%
∆u

h
δvisc =

h2

∆t
where ∆u ∶= max

R
u0 −min

R
u0 (3.2.7)

Despite all these assumptions, the problem is still quite involved. Basically, there are
two di�cult situations to deal with:

� the case in which the shock starting point is strictly positive;

� the case in which we have an intersection between shocks.

In the practical implementation we can deal with these two cases together at the same
time. However, for the sake of simplicity, we treat the two cases separately.

Let us consider the following example18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + v ∂

∂x
(u(1 − u)) = 0 (t, x) ∈ [0, T ) ×R

u(0, x) = g(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3 x ≤ 0

1
3 +

5
12x 0 ≤ x ≤ 1

3
4 x ≥ 1

(3.2.8)

It is possible to prove that the solution is

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 x < min{1

3vt,
1
2 −

1
12vt}

4 + 5x − 5vt

2(6 − 5vt)
1
3vt ≤ x ≤ 1 − 1

2vt, t < 6
5v

3
4 x > max{1 − 1

2vt,
1
2 −

1
12vt}.

(3.2.9)

When the shock starts at t = t⋆ = 6
5v > 0 we have that the solution exhibits a derivative that

becomes unbounded for t→ t⋆. In this case the only reasonable strategy is to check whether
the maximum of the derivative is monotonically increasing in time: we expect indeed that
the numerical solution has an increasing derivative before stabilizing at a certain level. In
algorithm 8 this procedure is fully described.

As regards the decomposition step, some obvious modi�cations can be made in order
to �t the method with our purposes. For instance in our case we split the two smooth
components and we refer them to the global mesh. In order to test the algorithm we
consider problem (3.2.8) for some speci�c values of the parameter. The Godunov scheme
is used with h = 0.01 and ∆t = 0.002, Tfin = 5, Ω = (−3,3). The parameters are:

K = 7 δvisc =
h2

∆t
= 5h

The results are extremely good and do not depend on the choice of the parameters K and
δvisc that in practice are only needed to properly start the detecting procedure based on
the time progression of the derivative peak. Table 3.1 summarizes them for three di�erent
values of the parameter v. For all the values of v, the numerical estimation turns out to
be satisfying.

17For the boundary layer we use a formula somehow close to 1
Pe

(see [97] chapter 5). If a �ner analysis
is necessary, we think that the notable Von Neumann analysis could guarantee better results. However in
this work we do not study this topic.

18This example is taken from [110] chapter 3 exercise 2.5.
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Algorithm 8 Smooth-Jump decomposition procedure (single shock case)

Given {ukj }j,k, compute Dju
k = ukj−u

k
j−1

h ;

Compute [Mk
∇, j

k
∇] = maxj=1,⋯,N Dju

k, for each k = 1,⋯,K.
Shock starting point

if M1
∇ >K then

tshock = 1
else

for k = 1,⋯,K do

if Mk
∇ >K AND Mk

∇ > ctest
Ntest

∑Ntestl=1 M l+k
∇ then

tshock =K
Break

end if

end for

end if

Decomposition

for k = tshock,⋯,K do

∆k = uk
jk
∇
+
δvisc
h

− uk
jk
∇
−
δvisc
h

(shock magnitude)

uksmooth,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ukj j ≤ jk∇ − δvisc
h

uk
jk
∇
−
δvisc
h

jk∇ − δvisc
h ≤ j ≤ jk∇ + δvisc

h

ukj −∆k j ≥ jk∇ + δvisc
h

smooth component

end for

v CFL= 2v∆t
h t(v) (th.) t(v) (num.)

0.6 0.12 2 2.002
1.0 0.2 1.2 1.2
1.6 0.32 0.75 0.748

Table 3.1: comparison between the exact shock starting point and the numerical estimation

Now we turn to the second problem. As working example we consider the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + v ∂

∂x
(u(1 − u)) = 0 (t, x) ∈ [0, T ) ×R

u(0, x) = g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x ≤ 0
1
2 0 ≤ x ≤ 1
1 x ≥ 1.

(3.2.10)

It is possible to prove that the solution is

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 x < min{1
2vt,

1
2}

1
2

1
2vt < x < 1 − 1

2vt t < 1
v

1 x > max{1 − 1
2vt,

1
2}

(3.2.11)

The goal of our test is to detect the exact point (xshock, t⋆(v)) = (1
2 ,

1
v ) in which the two

shocks intersect each other.
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In this situation we expect that for t < t⋆(µ) we have two distinct maxima in the
derivative. For t → t⋆(v) the two maxima get closer and closer. Then for t > t⋆(v) only
one maximum is observed.

Due to the arti�cial viscosity we expect also that for t → t⋆(µ) we observe an unique
boundary layer with a decreasing in time amplitude. A �rst strategy consists in analyzing
the solution when the two high derivative regions have a not null intersection- that means
(with the notation of the previous algorithm) jk∇,1 + δvisc

h ≤ jk∇,2 − δvisc
h . In principle, we

expect to observe a concave parabola or a quartic function with two maxima (see Figure
3.1).

(a) One shock shape (b) Two shock shape

Figure 3.1: theoretical shapes for one (a) and two (b) shocks.

However, the values of the derivatives close to the shocks are not enough reliable to
distinguish the two shapes through a polynomial �tting. In our numerical tests we observed
that, in practice, when the two shocks are su�ciently close, we have a unique distributed
high derivative region. We think that it is not so easy to de�ne a rigorous a priori criterium
so that we focus on some data-driven strategies. Our idea is to identify a shock indicator
based on the problem: �rst, we calibrate the indicator using the two shock branches
separately and then we use such indicator to detect the time in which the two shocks
intersect each other.

The indicator we chose is the ratio between the sum of the �rst two peaks of the
derivative and the sum of the third and the fourth peak.

(Dju
k)1 + (Dju

k)2

(Djuk)3 + (Djuk)4
. (3.2.12)

This choice is motivated by the fact that the behaviour of the numerical solution close
to the shock is linked to the numerical method, to the jump magnitude and, more in
general, to the problem solution. Due to the fact that we can forecast a priori if the jump
discontinuity is increasing or decreasing, we do not need to consider the absolute value of
the gradient; this prevents from taking into account possible rarefaction waves that start
at the time tk. This ratio does not depend on the magnitude of the shock19 (at least
this dependence should be reasonable weak); therefore it seems to be well-suited to our
problem.

19If for each shock branch (Djuk)l ≃ Cζl∆ukjump where ζl depends on l = 1,2,3,4 and ∆ukjump = ukright −
ukleft and C > 0 is a given constant, then (3.2.12) does not depend on ∆ukjump = ukright − ukleft. This shows
that (3.2.12) does not depend (or depends weakly) on the ∆ukjump.
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In conclusion we de�ne our approximation of the interaction between shocks as to:

tk ∶= min{tk = k∆t ∶ (Dju
k)1 + (Dju

k)2

(Djuk)3 + (Djuk)4
≥ 1

c⋆
} (3.2.13)

where c⋆ < 1 is a given constant.
In algorithm 9 the condition is formalized while in Table 3.2 we provide some results

associated with problem (3.2.10) with h = 0.01 and ∆t = 0.002, Tfin = 5, Ω = (−3,3).

Algorithm 9 Condition for the Smooth-Jump decomposition procedure

if jk∇,1 + δvisc
h ≤ jk∇,2 − δvisc

h then

Let jk1,⋆ < jk2,⋆ the indices associated with the two largest values of the vector Dju
k.

∆1 = jk2,⋆ − jk1,⋆
Let ({Dju

k})
i
≥ ({Dju

k})
i+1

be the derivative vector in decreasing order.

if ({Dju
k})

1
+ ({Dju

k})
2
> 1
c⋆

(({Dju
k})

3
+ ({Dju

k})
4
) AND ∆1 ≤ 1 then

tshock = k
end if

end if

v t(v) (th.) t(v) (c⋆ = 40% ) t(v) (c⋆ = 50% ) t(v) (c⋆ = 60% )
0.6 1.6667 n.c. 1.71 1.674
1.0 1 n.c. 1.026 1.004
1.6 0.625 n.c. 0.64 0.628

Table 3.2: estimation of the shock interaction with di�erent values of the parameter c⋆

and for di�erent values of v. n.c. indicates that the algorithm does not converge.

As we may expect, the strategy seems to be extremely precise, but it depends strongly
on the choice of c⋆. This quantity is di�cult to be chosen a priori, but it can be esti-
mated empirically on the previous shock branches. The approach we here propose can be
summarized through the following three steps:

1. we de�ne k⋆ ∶= inf{k; jk∇,1 + δvisc
h ≥ jk∇,2 − δvisc

h };

2. for all k ≤ k⋆ we de�ne:

c⋆,k1 = ((Dju
k)1 + (Dju

k)2

(Djuk)3 + (Djuk)4
)
−1

where we have considered only the indices �close�20 to jk∇,1 and:

c⋆,k2 = ((Dju
k)1 + (Dju

k)2

(Djuk)3 + (Djuk)4
)
−1

where we have considered only the indices �close� to jk∇,2;

20Instead of considering the entire vector {Djuk}Nj=0 as in (3.2.12), we have considered the vector

{Djuk}
jk
∇,1+J

j=jk
∇,1

−J
where J = δvisc

h
.
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3. �nally, we de�ne c⋆av, through a simple average, i.e.:

c⋆av ∶=
1

k⋆ + 1

k⋆

∑
k=0

c⋆,k1 + c⋆,k2

2

Table 3.3 provides evidence to support our strategy.

v c⋆av t(v) (th.) t(v) (c⋆ = c⋆av)
0.6 0.6642 1.6667 1.66
1.0 0.6555 1 0.998
1.6 0.6416 0.625 0.624

Table 3.3: comparison between the exact shock starting point and the numerical estimation

3.2.3 Finite volume projection algorithm

Let us consider the equispaced space-time mesh (tk, xj) j = 0,⋯,N , k = 0,⋯,K previously
de�ned. Furthermore, let us consider the numerical solution to problem (3.1.1) computed
through a �nite volume scheme, say {ukδ,j}Nj=1 where ukδ,j is a suitable approximation of the

solution in the j-th cell at the time tk.
The problem we are going to focus is the following one: for each time tk, given the

approximate vector {ukδ,j}
jr
j=jl

associated with the function u(tk, x) with x ∈ (xl, xr) =
(xjl , xjr), we aim at computing the approximate vector {ũkδ,j}Nj=1 referred to ũ(tk, x) ∶=
u(tk, xl + xr−xl

b−a (x − a)) and vice versa. The necessity for this procedure will be clear in
section 3.3.1 when we map some parts of the solution in a parameter and time independent
domain. Due to the fact that the time does not play any role in this algorithm, in the
following the superscript k is omitted.

In order to be clearer about the purposes of the algorithm, we provide a preliminary
example. Let us consider the mesh {1

2 ,
3
2}. The vector [1, 2]′ is associated with the

piecewise constant function:

u(x) = { 1 x ∈ [0,1)
2 x ∈ [1,2].

We now want to refer it to the mesh {1
2 ,

3
2 ,

5
2}. From a mathematical viewpoint this means

that we have to de�ne a piecewise constant approximation with respect to the new mesh
of the following function:

ũ(x) = u(3

2
x) =

⎧⎪⎪⎨⎪⎪⎩

1 x ∈ [0, 3
2
)

2 x ∈ [3
2 ,3] .

Through simple calculations the resulting vector is [1, 3
2 , 2]′. Figure 3.2 plots u and the

piecewise approximation of ũ.
Let us extend the previous example to the general case. By taking into account the

cell-average interpretation of the approximate vector computed through a conservative
method, we associate the following piecewise function with {uδ,j}jrj=jl :

uδ(x) ∶= ∑
xj∈Th

uδ,jχ[xj−
h
2
,xj+

h
2
)
(x).
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(a) plot of the piecewise function associated with
the initial vector

(b) plot of the piecewise function associated with
the mapped vector

Figure 3.2: a simple example of the procedure: given the vector [1, 2]′ associated with the
mesh {1

2 ,
3
2}, we want to refer it to the mesh {1

2 ,
3
2 ,

5
2}. Through the algorithm proposed

in this section the result is [1, 3
2 , 2]′.

Then we de�ne the new vector {ũδ,j}jrj=jl as:

ũδ,j =
1

h
∫

xj+
h
2

xj−
h
2

uδ (xl +
xr − xl
b − a (x − a)) dx.

The opposite case (in which we have an approximate vector de�ned on all cells and we look
for an approximate vector on a given subset) is analogous. In the following the formulas
for both cases are derived under the hypothesis that the spatial mesh is �xed21.

Case 1: {uδ,j}
jr
j=jl
⇒ {ũδ,j}Nj=1

Let ρ = xr−xl
b−a < 1 , h⋆ = hρ, x⋆j = xl + h⋆ (j − 1

2
). Furthermore let xj⋆ be such that

xj⋆ ≤ x⋆j ≤ xj⋆+1. Using the fact that (x⋆j − h⋆

2 , x
⋆
j + h⋆

2 ) ⊂ (x⋆j − h
2 , x

⋆
j + h

2 ) we can easily
verify that:

ũδ,j =
1

h⋆
(L1uδ,j⋆ +L2uδ,j⋆+1) (3.2.14)

where L1 = min{h⋆, (xj⋆ + h
2 − x

⋆
j + h⋆

2 )
+

} and L2 = min{h⋆, (x⋆j + h⋆

2 − xj⋆ − h
2)

+

}.

Case 2: {ũδ,j}Nj=1⇒ {uδ,j}
jr
j=jl

Let ρ = b−a
xr−xl

> 1 and h⋆ = ρh, x′ = a+ ρ (xj − h
2 − xl), x

′′ = a+ ρ (xj + h
2 − xl), we de�ne

j⋆ such that xj⋆ − h
2 < x′ < xj⋆ + h

2 and j⋆⋆ such that xj⋆⋆ − h
2 < x′′ < xj⋆⋆ + h

2 . Then it is
immediate to verify that:

uδ,j =
1

h⋆
⎛
⎝
(xj⋆ +

h

2
− x′)ũδ,j⋆ + h

j⋆⋆−1

∑
l=j⋆+1

ũδ,l + (xj⋆⋆ +
h

2
− x′′)ũδ,j⋆⋆

⎞
⎠

(3.2.15)

3.2.4 Smoothing

Even for an ideal smooth-jump decomposition algorithm, the reconstruction of the solution
close to the shock is a di�cult task. In particular as Figure 3.3(a) shows, we observe that

21The formulas below can be extended to the more general case in which the approximate vector must
be de�ned with respect to a new mesh.
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the trend of the solution u(µj , t, xshock(µj , t)±) may be very irregular. This phenomenon
a�ects the quality of the model order reduction in time because it adds a sort of spurious
variability close to the shock. This is why a smooth �lter should be applied to reduce the
numerical �uctuations. In this work we use the tool smooth provided in Matlab22. Figure
3.3(b) shows the improved result.

(a) Solution before the smoothing (b) Solution after the smoothing

Figure 3.3: application of the smoothing algorithm

3.3 Main features of the methodology

In this section we introduce the RB method for parametric scalar conservation laws in
one space dimension. In order to simplify the methodology we suppose that the solution
presents only one shock that starts at t = 0. In formulas:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∂

∂x
f(u,µ) = 0 (t, x) ∈ QTmax = (0, Tmax) × (a, b)

u(t, a−) = ξ0(µ, t), u(t, b+) = ξ1(µ, t) t ∈ (0, Tmax)
u(µ,0, x) = u0(µ, x) x ∈ (a, b),

(3.3.1a)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 ∶ D × (0, Tmax)→ R

ξ1 ∶ D × (0, Tmax)→ R

u0(µ, x) = { u0,left(µ, x) x ∈ (a, xshock(µ,0))
u0,right(µ, x) x ∈ (xshock(µ,0), b).

(3.3.1b)

We have supposed that both x = a and x = b are in�ow boundaries in the sense of (3.2.5).
For this reason we have two boundary conditions. A motivation for this choice is provided
in the following remark.

Remark 3.1. We motivate the case study by considering the following example. Let us
consider a highway modelled by a scalar conservation law where the solution u represents

22This algorithm is simply based on a moving average smoothing, i.e., given y ∈ RN , ysmooth ∈ RN is
de�ned as:

ysmooth,j =
yj−2 + yj−1 + yj + yj+1 + yj+2

5
.
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the density of the cars. The highway starts at x = 0 and ends at x = 1 where it enters
the town. If the city is congested (i.e., the density of cars in the city is higher than the
density of cars in the highway), we may have that x = 1 is an in�ow boundary: in practice it
determines the generation of a backward wave that propagates inside the highway (the tra�c
congestion originally con�ned into the urban area starts to in�uence also the highway).

In order to follow the strategy outlined in the introduction, we aim at providing:

1. a suitable formulation that splits the initial problem into two subproblems that pro-
vide the two smooth components of the solution;

2. an inexpensive (i.e., independent of the underlined spatial mesh) algorithm able to
compute the shock equation and the value of the solution on both the sides of the
shock curve.

3. an inexpensive algorithm to compute the two smooth solutions.

The section is organized as follows: �rst we introduce the so-called special formulation;
then we propose an algorithm to capture the shock. After that we focus on the o�ine-
online decomposition and on the sampling strategy. Finally we brie�y describe how to
e�ciently solve an input-output relationship based on the solution of a scalar conservation
law.

3.3.1 Rankine-Hugoniot condition and the �special� formulation

In this subsection we introduce a new formulation- here called �special� formulation in order
to highlight the link with the special BV functions- that is the basis for the RB approach
here presented. Starting from the de�nition of integral solution for the problem (3.1.1)and
by making some assumption on the structure of the solution we derive a stronger piecewise
formulation. Then, through a simple change of variable, we obtain the �nal formulation
that is ideally suited to the RB context.

Function u ∈ C(0, Tmax;SBV (a, b)) is de�ned as the entropic weak solution to (3.1.1)
if for all v ∈ C∞

0 (R × (a, b)), it holds:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTmax

[u∂v
∂t

+ f(u)∂v
∂x

] dxdt + ∫
b

a
[u(0, x) − u0(0, x)] v(0, x)dx = 0,

u(t, a) satis�es maxk∈[u(t,a),ξ0(t)] {sign (u(t, a) − ξ0(t)) [f(u(t, a)) − k]} = 0,

u(t, b) satis�es maxk∈[u(t,b),ξ1(t)] {sign (u(t, b) − ξ1(t)) [f(u(t, b)) − k]} = 0,

∃E > 0 such that ∀x, y ∈ R (x,x + y) ∈ (a, b)2 we have: u(t, x + y) − u(t, x) ≤ E
t y.
(3.3.2)

Let us assume that u has only one shock described by the curve xshock(t) that starts at time
t = 0. Moreover, we assume that xshock ∈ Lip(0, Tmax). In our applications the hypothesis
is not particularly strict and in Appendix A we discuss how the hypothesis can be relaxed.
Therefore the solution is smooth in Ω1 = {(t, x) ∈ (0, Tmax) × (a, b) ∶ x < xshock(t)} and
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Ω2 = {(t, x) ∈ (0, Tmax) × (a, b) ∶ x > xshock(t)} and solves the following problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ ∂

∂x
f(u) = 0 q.o. in Ω1

∂u

∂t
+ ∂

∂x
f(u) = 0 q.o. in Ω2

u(t, a) = ξ0(t) u(t, b) = ξ1(t) t ∈ (0, Tmax)
u(0, x) = u0(x) x ∈ (a, xshock(0)) ∪ (xshock(0), b)
f(u(t, xshock(t)+)) − f(u(t, xshock(t)−))

u(t, xshock(t)+) − u(t, xshock(t)−)
= ẋshock(t) t ∈ (0, Tmax),

(3.3.3)
where the last equation coincides with the Rankine-Hugoniot condition. Thanks to the
regularity of the solution in each subdomain, by de�ning

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u1(t, x) ∶= u(t, a + xshock(t) − a
b − a (x − a))

u2(t, x) ∶= u(t, xshock(t) +
b − xshock(t)

b − a (x − a)) ,
(3.3.4)

we have that the couple (u1, u2) is the only solution in [W 1,1(QTmax)]
2
to the following

problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTmax

(u1
∂v

∂t
+ b − a
xshock(t) − a

f(u1)
∂v

∂y
) xshock(t) − a

b − a dydt = 0 ∀ v ∈ C∞
0 (QTmax)

f(u2(t, a−)) − f(u1(t, b+))
u2(t, a−) − u1(t, b+)

= ẋshock(t) q.o. in (0, Tmax)

∫
QTmax

(u2
∂v

∂t
+ b − a
b − xshock(t)

f(u2)
∂v

∂y
) b − xshock(t)

b − a dydt = 0 ∀ v ∈ C∞
0 (QTmax)

u1(t, a) = ξ0(t) u2(b, t) = ξ1(t)

u1(0, y) = u0 (a + xshock(0)−a
b−a (y − a)) u2(0, y) ∶= u0 (xshock(0) + b−xshock(0)

b−a (y − a)) .

(3.3.5)
Figure 3.4 shows the domain decomposition induced by the given shock xshock(t).

Figure 3.4: domain decomposition induced by the shock.

The fact that (u1, u2) solves (3.3.5) descends directly from the hypothesis on the struc-

ture of u; concerning the unicity of the solution in the space [W 1,1(QTmax)]
2
, it is a
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straightforward application of the characteristic method [109]. We have to prove that the
maps

τ 1(t, x) =
⎡⎢⎢⎢⎢⎣

t

a + xshock(t) − a
b − a (x − a)

⎤⎥⎥⎥⎥⎦
τ 2(t, x) =

⎡⎢⎢⎢⎢⎣

t

xshock(t) +
b − xshock(t)

b − a (x − a)

⎤⎥⎥⎥⎥⎦

are regular enough to be a change of coordinates. But it is an obvious implication of the
fact that xshock ∈ Lip(0, Tmax).

Furthermore, we observe that the formulation (3.3.5) is redundant: in fact the shock
curve is an out�ow boundary for both problems (for entropic solutions the characteristics
cannot hit a shock backward in time); so it is possible to consider the two following,
completely decoupled, problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTmax

(u1
∂v

∂t
+ b − a
xshock(t) − a

f(u1)
∂v

∂y
) xshock(t) − a

b − a dydt = 0 ∀ v ∈ C∞
0 (QTmax)

u1(t, a) = ξ0(t)

u1(0, y) = u0(a + xshock(0)−a
b−a y)

(3.3.6a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QTmax

(u2
∂v

∂t
+ b − a
b − xshock(t)

f(u2)
∂v

∂y
) b − xshock(t)

b − a dydt = 0 ∀ v ∈ C∞
0 (QTmax)

u2(t, b) = ξ1(t)

u2(0, y) = u0(xshock(0) + b−xshock(0)
b−a (y − a)).

(3.3.6b)

Remark 3.2. This formulation guarantees the splitting of the two smooth problems in
an e�ective way. Due to the fact that the solutions to the new problems are smooth for
construction, we expect that the entire manifold could be approximated through linear com-
binations of a small number of its properly selected members.

Remark 3.3. This formulation simpli�es the a posteriori error estimation. In fact if we
assume that the shock equation is reconstructed correctly, then we can link the error to the
solutions of the smooth problems and so taking advantage of the additional regularity.

3.3.2 Shock capturing algorithm

Let us consider problem (3.3.1). Denoting with x(t) the equation of the characteristic
starting from ξ ∈ (a, b), z(t) = u(t, x(t)) and assuming enough regularity, we have that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ż(t) = ∂u
∂t (t, x(t)) +

∂u
∂x(t, x(t))ẋ(t)

∂u
∂t (t, x(t)) + f

′(z(t))∂u∂x(t, x(t)) = 0.

From the equations above it is immediate to deduce that:

{ ẋ(t) = f ′(z(t)) t > 0
x(0) = ξ ⇒ x(t) = ξ + ∫

t

0
f ′(z(τ))dτ, (3.3.7)
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and

{ ż(t) = 0 t > 0
z(0) = u0(ξ).

⇒ z(t) = u0 (x(t) − ∫
t

0
f ′(z(τ))dτ) = u0 (x(t) − f ′(z(t))t) (3.3.8)

Let us consider the shock curve xshock(t). Suppose that we know xshock(tk), u−(tk) and
u+(tk). First, we can approximate xshock(tk+1) through an explicit discretization of the
Rankine-Hugoniot condition:

xshock(tk+1) = xshock(tk) +∆t
f(u+(tk)) − f(u−(tk))

u+(tk) − u−(tk) .

Then, we can take advantage of formula (3.3.8) to compute u+(tk+1) and u−(tk+1). Thanks
to the smoothness of the solution on both sides of the shock curve and thanks to the fact
that u+(tk+1) and u−(tk+1) are close to u+(tk) and u−(tk), respectively, we expect that the
Newton Raphson method23 is very e�cient to solve the equations.

The shock decomposition procedure is listed in Algorithm 10. In order to simplify
the notation we denote with u0,left and u0,right the two smooth components of the initial
condition.

Algorithm 10 Shock capturing procedure

Given xshock(t0), u+(t0) and u−(t0).
f leftx,t (u) ∶= u − u0,left(x − f ′(u)t)

f rightx,t (u) ∶= u − u0,right(x − f ′(u)t)
for k = 0,⋯,K − 1 do

Rankine-Hugoniot condition

xshock(tk+1) = xshock(tk) +∆t
f(u+(tk)) − f(u−(tk))
f(u+(tk)) − f(u−(tk))

Newton-Raphson method

Iterations for the left value

u−(tk+1)= NetwonRaphson Algorithm(u−(tk), f left
xshock(tk+1),tk+1)

Iterations for the right value

u+(tk+1)= NetwonRaphson Algorithm(u−(tk), f right
xshock(tk+1),tk+1)

end for

The extension to the general case in which we have the source term is much more
di�cult. In fact following the same procedure as before, we obtain (let g be the source

23The iterative method, see [98], is based on the following iterative assignment:

xk+1 = xk − f(xk)
f ′(xk) f ∈ C1 f ′(xk) ≠ 0

As far as the termination condition is concerned, several options are available. In our code we always
consider ∣f(xk)∣ < ε, with ε > 0 a given tolerance.
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term):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xshock(tk+1) = ξ + ∫ t
k+1

0 f ′(z(τ))dτ

z(tk+1) = u0 (xshock(tk+1) − ∫ t0 f ′(z(τ))dτ) + ∫
tk+1

0 g(z(τ), x(τ), τ)dτ

ẋshock(t) =
f(u+(t)) − f(u−(t))

u+(t) − u−(t)

(3.3.9)

The formula is fully implicit and di�cult to be treated in a o�ine-online framework. For
this reason, in the present work no strategy has been developed to deal with this general
case.

3.3.3 A RB approach for the smooth problems: o�ine-online decompo-

sition

Given an at least continuous function f ∶ QTmax → R, two are the main ingredients required
by an interpolation procedure that aims at reconstructing an approximation of f starting
from its knowledge in some points in QTmax :

� a suitable interpolatory basis {qk}NRBk=1 , qk ∶ QTmax → R, k = 1,⋯,NRB and the
corresponding interpolation points (tk, xk);

� a (possibly e�cient) methodology to compute f(tk, xk) in the preselected points.

In our particular context the function to be interpolated is u(µ), where µ ∈ D is a given
parameter.

The so-called Empirical Interpolation Method described in section 1.8 ([7, 32]) provides
the tools to de�ne the interpolatory basis and the points where the solution has to be pre-
computed.

In order to compute the solution in (tk, xk), we can take advantage of the notable
characteristic formula that, in the setting of problem (3.3.1), is

u(µ, t, x) = Λ(µ, x − f ′(µ, u(µ, t, x))t) (3.3.10)

where -depending on (t, x)- Λ could be u0, ξ0 or ξ1. Thanks to the above equation, we
have the possibility to compute the solution in a single point without knowing the global
solution.

We observe that the interpolation procedure must be applied to at least continuous
functions de�ned onto a µ-independent domain. So it is �rst necessary to split the solution
into its two smooth components, by reporting them to a µ-independent con�guration and
then to apply the interpolation method. On the other hand, the characteristic equation is
referred to the original solution.

Let us describe the entire method.

O�ine stage: Let us suppose that {u(µj)}NRBj=1 - solution to problem (3.3.1) for

µ = µj , j = 1,⋯,NRB - are given24.
First of all we decompose the solution in the smooth left and right parts - by employing

Algorithm 9 - and we build u1 and u2 as de�ned in (3.3.4), i.e.:

u1(µ, t, x) = u(µ, t, a + xshock(µ, t) − a
b − a (x − a)) u2(µ, t, x) = u(µ, t, xshock +

b − xshock
b − a (x − a)) .

24In the next subsection we will deal with the sampling strategy.
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Due to our choice to use conservative methods to solve the equations, we have that unj ≃
1
h ∫

xj+
h
2

xj−
h
2

u(tn, x)dx, for this reason {uk1,j} and {uk2,j} must be de�ned through the formula

explained in section 3.2.3.
At this point we can obtain the empirical basis and the interpolation points -the so-

called magic points- using the procedure proposed in [7] as second step of the above men-
tioned EIM:

Algorithm 11 Empirical Interpolation Method Part II: {{qk(⋅) ∶ 1 ≤ k ≤MMax}, {(xj , tj) ∶
1 ≤ j ≤MMax}, {Bi,j ∶ 1 ≤ i, j ≤MMax}} = EIM{ul(µ, xj , tj) ∶ 1 ≤ j ≤MMax}

(t1, x1) = arg ess sup(t,x)∈(0,Tmax)×(a,b) ∥ξ1(t, x)∥, q1 = ξ1
ξ1(t1,x1)

, B11 = 1
for M = 2 ∶Mmax do

�nd σ ∈ RM−1 ∶ ∑M−1
j=1 σjqj(ti, xi) = ξM(ti, xi) for 1 ≤ i ≤M − 1

rM(t, x) = ξM(t, x) −∑M−1
j=1 σjqj(t, x)

(tM , xM) = arg ess sup(t,x)∈(0,Tmax)×(a,b) ∥rM(t, x)∥,
qM(t, x) = rM (t,x)

rM (tM ,xM )
, BM

i,j = qj(ti, xi)
end for

In the following we refer to (tlj , xlj) , {qlj(⋅, ⋅)}j and Bl, for l = 1,2, to indicate the
magic points, the empirical bases and the interpolation matrices computed for u1 and u2,
respectively.

Online stage: First, we de�ne xshock(tk), for k = 1,⋯,K, through the shock capturing
Algorithm 10.

Then we refer the magic points to the actual con�guration, i.e.:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t1j , x̃1
j) = (t1j , a +

xshock(µ,t
1
j)−a

b−a (x1
j − a)) for u1

(t2j , x̃2
j) = (t2j , xshock(µ, t2j) +

b−xshock(µ,t
2
j)

b−a (x2
j − a)) for u2.

(3.3.11)

Then we compute the solution in these points through (3.3.10). In order to do that, it is
necessary to properly de�ne Λ in (3.3.10). It is straightforward to observe that for u1:

Λ(µ, ⋅) = { ξ0(µ, ⋅) x < a + f ′(µ, u0(µ, a))t
u0(µ, ⋅) x > a + f ′(µ, u0(µ, a))t

(3.3.12)

while for u2:

Λ(µ, ⋅) = { u0(µ, ⋅) x < b + f ′(µ, u0(µ, b))t
ξ1(µ, ⋅) x > b + f ′(µ, u0(µ, b))t.

(3.3.13)

The shock data does not enter in the formulas due to the well-known fact that, for entropic
solutions, the characteristics cannot hit a shock backward in time.

In order to apply the Newton-Raphson algorithm, we need to properly initialize it: an
a priori estimate of the solution can be obtained through the simple strategy explained in
Algorithm 12.

After these steps, we can compute U1
j (µ) = uRB1 (µ, x1

j , t
1
j) and U2

j (µ) = uRB2 (µ, x2
j , t

2
j)

through the Newton Raphson algorithm and �nally the interpolation coe�cients by solving
the linear systems:

B1Θu1(µ) = U1(µ), B2Θu2(µ) = U2(µ).
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In conclusion, the approximation for u1 and u2 are built as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uRB1 (µ) =
NRB

∑
j=1

(Θu1(µ))j q1
j ,

uRB2 (µ) =
NRB

∑
j=1

(Θu2(µ))j q2
j ,

(3.3.14)

respectively.

In the next subsection we discuss how to choose the sample set {u(µj) ∶ j = 1,⋯,N}.

Algorithm 12 Algorithm for the de�nition of the initial guess for the Newton Raphson
iterative method

O�ine stage

Compute x̄shock = 1
∣D∣ ∫D xshock(µ,0)dµ

For each µ-independent term of the expansion of ξ0(µ, ⋅) compute ξ̄q0 =
1

T
∫

T

0
ξq0(t)dt.

For each µ-independent term of the expansion of ξ1(µ, ⋅) compute ξ̄q1 =
1

T
∫

T

0
ξq1(t)dt.

For each µ-independent term of the expansion of u0,left(µ, ⋅) compute

ūq0,left =
1

x̄shock − a ∫
x̄shock

a
uq0,left(x)dx.

For each µ-independent term of the expansion of u0,right(µ, ⋅) compute

ūq0,right =
1

b − x̄shock ∫
b

x̄shock
uq0,right(x)dx.

Online stage

For each (t1j , x̃1
j), j = 1,⋯,N

if x̃1
j < a + f ′(µ, u0(µ, a))t1j then

ustart,NR = ξ0
⎛
⎝
µ, x̃1

j − f ′
⎛
⎝
µ,

Qξ,0

∑
q=1

Θq
ξ,0(µ)ξ̄

q
0

⎞
⎠
t1j
⎞
⎠

else

ustart,NR = u0
⎛
⎝
µ, x̃1

j − f ′
⎛
⎝
µ,

Qu,left

∑
q=1

Θq
u,left(µ)u

q
0,left

⎞
⎠
t1j
⎞
⎠

end if

For each (t2j , x̃2
j), j = 1,⋯,N

if x̃2
j < b + f ′(µ, u0(µ, b))t2j then

ustart,NR = u0
⎛
⎝
µ, x̃2

j − f ′
⎛
⎝
µ,

Qu,right

∑
q=1

Θq
u,right(µ)u

q
0,right

⎞
⎠
t2j
⎞
⎠

else

ustart,NR = ξ1
⎛
⎝
µ, x̃2

j − f ′
⎛
⎝
µ,

Qξ,1

∑
q=1

Θq
ξ,1(µ)ξ̄

q
1

⎞
⎠
t2j
⎞
⎠

end if
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3.3.4 Sampling strategy

In the Empirical Interpolation method, after de�ning a suitable �ne parameter sample
Ξg ⊂ D, the parameters µj -and thus the functions g(µj , ⋅)- are chosen through a Greedy
algorithm. In our case, if we dispose of a rigorous and reliable a posteriori error estimator
such that ∆N(µ) ≥ ∥uRB,N(µ) − u(µ)∥⋆, where ∥ ⋅ ∥⋆ is a suitable norm, it is possible to
choose the next µN+1 such that:

µN+1 ∶= argmax
µ∈Ξg

∆N(µ). (3.3.15)

In section 3.4 we discuss about the de�nition of an a posteriori error estimator for linear
(and nonlinear) hyperbolic problems. At the present time as far as we know, no inexpensive
and rigorous a posteriori error estimators have been developed for nonlinear hyperbolic
equations. For this reason, in all our numerical simulations, we choose equispaced µj .

3.3.5 Input-output relationships

As explained in the �rst chapter, Reduced Bases can provide signi�cant speed-ups in the
computation of input-output relationships depending on the solution of a parametrized
equation.

In order to explain the methodology, let us consider the following example:

s(µ) = Lu(µ) = ∫
T

0
∫
(a,b)

w(t, x)u(µ, t, x)dxdt, (3.3.16)

where u(µ) is the solution to (3.3.1).
Some work is necessary to make the computation of s(µ) independent of the spatial

mesh. By recalling the de�nition of u1(µ) and u2(µ) in (3.3.4), we have:

Lu(µ) =∫
T

0
∫
(a,b)

w(t, x)u(µ, t, x)dxdt

=∫
T

0
(∫

(a,xshock(µ,t))
w(t, x)u(µ, t, x)dx + ∫

(xshock(µ,t),b)
w(t, x)u(µ, t, x)dx)dt

=∫
T

0
(∫

(a,b)

xshock(µ, t) − a
b − a w (t, a + xshock(µ, t) − a

b − a (y − a))u1(µ, t, y)dy

+ ∫
(a,b)

b − xshock(µ, t)
b − a w (xshock(µ, t) +

b − xshock(µ, t)
b − a (y − a), t)u2(µ, t, x)dy)dt.

By applying the EIM, we obtain:

xshock(µ, t) − a
b − a w (t, a + xshock(µ, t) − a

b − a (y − a)) ≃
Qw,1

∑
q=1

Θq
w,1(µ)w

1
q(t, y) (3.3.17a)

and

b − xshock(µ, t)
b − a w (t, xshock(µ, t) +

b − xshock(µ, t)
b − a (y − a)) ≃

Qw,2

∑
q=1

Θq
w,2(µ)w

2
q(t, y).

(3.3.17b)
Therefore

sRB(µ) =
Qw,1

∑
q=1

NRB

∑
i=1

Θq
w,1(µ)Θ

i
u,1(µ) (w1

q , q
1
i ) +

Qw,2

∑
q=1

NRB

∑
i=1

Θq
w,2(µ)Θ

i
u,2(µ) (w2

q , q
2
i ) (3.3.18a)
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where:

(wlq, qli) = ∫
T

0
∫
(a,b)

wlq(t, x)qli(t, x)dxdt l = 1,2 (3.3.18b)

are computable o�ine.
This guarantees an e�cient O�ine-Online decomposition algorithm: the online com-

putation is independent of the spatial mesh25.

3.3.6 The whole algorithm

In order to clarify how the di�erent steps are linked, we conclude the section by describing
the entire procedure in a compact form. For the sake of simplicity, we not introduce the
Greedy sampling strategy in the following algorithm.

Algorithm 13 O�ine-Online decomposition
O�ine stage

1: Compute u(µj), j = 1,⋯,N1 through a truth method (section 3.2.1) and
build usmooth,l(µj), l = 1,2 through Algorithm 8 (smooth jump decomposition

algorithm).

2: Through Algorithm 11 compute the magic points (xlj , tlj), the empirical bases {qlj(⋅, ⋅)}j
and the interpolatory matrices Bl

i,j , with i, j = 1,⋯,N and l = 1,2.

3: Perform the o�ine part of Algorithm 12 to compute the initial starting points of the
Newton Raphson algorithm.

Online stage

1: Compute xshock(tk), k = 1,⋯,K.
2: De�ne the magic points with respect to the actual con�guration through formula

(3.3.11).

3: Compute the initial starting points for the Newton Raphson method through Algorithm
12.

4: Apply the Newton Raphson method.

5: Compute the interpolation coe�cients.

25The temporal mesh in�uences the algorithm only during the shock capturing algorithm.
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3.4 A posteriori error estimation: some preliminary com-

ments

In this section we brie�y address the issue of the de�nition of an inexpensive and reliable
a posteriori estimator -as the one presented in the introductive chapter - for the problem26

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂tu +

∂
∂xf(u) = 0 (t, x) ∈ (0, T ) ×R

u(0) = u0 x ∈ R. (3.4.1)

As initial step, we brie�y recall the most important results from the literature27.
Even if our focus is the parametric context, in this section we omit the dependence on

the parameters in order to simplify the notation.
Historically, a posteriori error estimators for hyperbolic problems have been developed

and deeply analysed in the context of adaptive mesh re�nement (AMR). Due to the com-
plexity of the problem, several estimators are motivated only by some numerical evidence
but they do not guarantee any rigorous bound. For this reason we distinguish between
error indicators (i.e., quantities for which no formal result exists) and error estimators
(i.e., quantities which rigorously bound the approximation error). In the �rst category, we
recall (see [67]) the so-called feature indicators ([27]), the reconstruction based indicators,
([60]) and the residual based indicators ([52, 53, 61]).

As far as rigorous a posteriori error bounds are concerned, we recall the work by Gosse
and Makridakis, ([44]) - that, starting from Kruzkov-type estimates ([9]), provides a result
for scalar conservation laws in one space dimension for E-schemes28- and the work by
Kröner and Ohlberger, [64] - that, taking advantage of Kuznetsov's theory, provides an a
posteriori estimate for multidimensional scalar conservation laws. Finally, we refer to [54]
for an error estimator based on a duality technique.

In our opinion, it is very di�cult to apply these estimators to our framework29.

� Error indicators would not guarantee the reliability of the Reduced Basis approxi-
mation.

� The error estimate proposed by Gosse and Makridakis is based on an entropy in-
equality of the form: for each k ∈ R, the numerical solution uδ (δ = (∆t, h)) must
satisfy the following estimate:

∂

∂t
∣uδ−k∣+

∂

∂x
(sign(uδ − k)) [f(uδ) − f(k)] ≤

∂

∂t
Gk+

∂

∂x
Hk+Kk+

∂2

∂x2
Lk in D′(R),

(3.4.2a)

26For simplicity we consider the Cauchy problem.
27We refer to [67] for a survey on a posteriori error estimators and indicators for hyperbolic problems.
28A numerical method of the form (3.2.1) with p = 0, q = 1 is called E-scheme if it satis�es the inequality:

sign(w − v) (F (v,w) − f(q)) ≤ 0

for all q between w and v. In particular Godunov's method, Lax Friedrichs method and Engquist Osher
method are all E-scheme. Osher ([90]) also shows that E-schemes are at most �rst order accurate.

29This is not surprising: error estimators in the context of adaptive mesh re�nement are used as criterion
to re�ne the mesh or not. For this reason they must be based on local estimates. On the other hand, in the
context of RB we aim at inexpensive a posteriori estimators and so we prefer estimators that do not link
the error to a speci�c region of the domain but are potentially computable in a o�ine-online framework.
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where there exist αG, αH , αK and αL positive local Radon measures30 such that:

∣Gk∣ ≤ αG, ∣Hk∣ ≤ αH ,
∣Kk∣ ≤ αK , ∣Lk∣ ≤ αL,

(3.4.2b)

uniformly with respect to k.

In the Reduced basis context it seems to be extremely di�cult to guarantee, on one
hand, some independence of the estimator from the underlined mesh and, on the
other hand, to prove the cell-based estimate (3.4.2a). Also in [64] a discrete entropy
inequality is demanded, thus, even in this case, the application to the RB framework
seems to be extremely problematic.

� In order to apply the approach proposed in [54], it is necessary to solve a dual problem
that depends, formally, on the exact solution and so must be approximated31. A
natural choice is to replace the real solution u by our primal-based approximation,
say uRB; however, the e�ect of this choice depends on the stability of the dual
problem and seems to be extremely di�cult to assess in a o�ine-online framework.

In the context of a Reduced Basis method, a posteriori error estimators for elliptic non-
linear PDEs32 have been developed by applying the Brezzi-Rappaz-Raviart (BRR) theory
[14, 11]. In Appendix B the theory is brie�y reviewed. However, the approach requires a
number of hypotheses extremely di�cult to assess in the context of hyperbolic problems.
In the rest of the section we propose a di�erent approach.

3.4.1 Error estimation for strong solutions

In this subsection we derive two error estimators: the �rst one for a general linear hyperbolic
problem and the second one for non-linear conservation laws.

Before starting, we make a preliminary observation. Let us assume that the error
introduced by the application of the shock capturing algorithm is negligible with respect
to the one introduced by the resolution of the smooth problems (3.3.6). Then, under this
assumption, we just need an a posteriori error estimator for the smooth components of
the solution. This is the reason why both results below introduce the hypothesis that the
solution is regular.

The linear case

Let us consider the following problem:

⎧⎪⎪⎨⎪⎪⎩

∂
∂tu + a

∂
∂xu + a0u = g (t, x) ∈ (0, T ) ×R

u(0) = u0 x ∈ R
(3.4.3)

where u0 ∈ L2(R), g ∈ L2((0, T ) ×R), a ∈ Lip((0, T ) ×R) and a0 ∈ L∞((0, T ) ×R).
We �rst state an important result taken from [99].

30See Appendix A for the de�nition of a Radon measure.
31There is another tricky problem not directly connected to the RB method to deal with: the dual

equation is a linear hyperbolic equation with discontinuous coe�cients for which no wellposedness results
have been proven.

32See [122] for the derivation of an a posteriori estimator for the steady Navier-Stokes equation using
the BRR theory and the more recent paper [94], for the derivation of an a posteriori error estimator for
the viscous Burgers equation.
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Lemma 3.1. Let us consider problem (3.4.3) and let

C(t) ∶= max{0,− min
{x∈R}

(a0(t, x) −
1

2

∂

∂x
a(t, x))}.

Then, the following estimate holds:

∥u(t)∥2
L2(R) ≤ e

λ(t) (∫
t

0
∥g(τ)∥2

L2(R) dτ + ∥u0∥2
L2(R)) , (3.4.4)

where λ(t) = ∫ t0 (1 + 2C(τ)) dτ .

Proof. By multiplying (3.4.3) by u and integrating in space we obtain:

1

2

d

dt
∥u(t)∥2

L2(R) + ∫R
(1

2
a
∂

∂x
u2(t) + a0u

2(t)) dx = ∫
R
g(t)u(t)dx.

Integrating by parts and applying the Young inequality, we obtain:

1

2

d

dt
∥u(t)∥2

L2(R) + ∫R
(a0 −

1

2

∂

∂x
a)u2(t)dx ≤ 1

2
∥g(t)∥2

L2(R) +
1

2
∥u(t)∥2

L2(R).

Then, by splitting a0 − 1
2
∂
∂xa in its positive and negative part and by remembering the

de�nition of C:
1

2

d

dt
∥u(t)∥2

L2(R) + ∫R
(a0 −

1

2

∂

∂x
a)

+

u2(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

dx ≤ 1

2
∥g(t)∥2

L2(R) + (1

2
+ C(t)) ∥u(t)∥2

L2(R).

Finally, (3.4.4) follows by integrating in time and by applying Gronwall Lemma, see Ap-
pendix A.

We have now the elements to state the following result33.

Lemma 3.2. Let u be the solution to (3.4.3) and let uRB be a given function in H1((0, T )×
R). We de�ne the strong residual

rRB ∶= g − ∂

∂t
uRB − a

∂

∂x
uRB − a0uRB, r̄RB ∶= uRB(0) − u0.

Then, rRB ∈ L2((0, T ) ×R) and r̄RB ∈ L2(R) and the following estimate holds:

∥u(t) − uRB(t)∥2
L2(R) ≤ e

λ(t) (∫
t

0
∥rRB(τ)∥2

L2(R) dτ + ∥r̄RB∥2
L2(R)) (3.4.5)

where λ is de�ned as in Lemma 3.1.

Let us gather some comments about Lemma 3.2.

� Equation (3.4.5) provides an a posteriori error estimator for problem (3.4.3). Thanks
to the formulation we derived in this chapter, the regularity assumption is not par-
ticularly restrictive in many situations. In addition, we point out that no regularity
assumption about the exact solution is made.

� In order to extend estimate (3.4.5) to the multidimensional case, it is su�cient to
generalize Lemma 3.1 (see [99], section 14.3.1, for all the details).

33The proof is a straightforward application of Lemma 3.1 and it is consequently here omitted.
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� Estimate (3.4.5) is formally equivalent to the ones proposed in the �rst chapter in
the elliptic and parabolic equations. For this reason the o�ine-online decomposition
for the rapid evaluation of the term in brackets can be performed by following the
same steps as in section 1.5.2. However, this estimation is not based on a variational
approach; in contrast to (1.5.6) where the solution u is the truth solution to the
discretized problem, in (3.4.5) u is the exact solution to the original equation.

� The quality of the estimator depends on C. In the parameter dependent context, it
is necessary to de�ne a suitable o�ine-online strategy to estimate it. In this work
we do not deal with this issue.

The nonlinear case

In this subsection, we try to extend the result in Lemma 3.2 to the nonlinear case.
Let us consider the following two problems:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂tu + af

′(u) ∂
∂xu = 0 (t, x) ∈ (0, T ) ×R

u(0) = u0 x ∈ R, (3.4.6a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂tuRB + af

′(uRB) ∂
∂xuRB = −rRB (t, x) ∈ (0, T ) ×R

uRB(0) = u0 x ∈ R, (3.4.6b)

where a ∈ Lip((0, T ) ×R) and u0 ∈W 1,1(R). We make the following assumptions:

rRB ∈ L2((0, T ) ×R) f ∈ LipK ∩C2(R)
u,uRB ∈W 1,1((0, T ) ×R) (3.4.7)

Under hypotheses (3.4.7), problem (3.4.6a) is formally equivalent to the smooth problems
(3.3.6). By subtracting (3.4.6b) from (3.4.6a), we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂t(u − uRB) + f ′(u) ∂

∂x(u − uRB) + a(f ′(u) − f ′(uRB)) ∂
∂xuRB = rRB (t, x) ∈ (0, T ) ×R

u(0) − uRB(0) = 0 x ∈ R,

and, by remembering the notable Lagrange theorem ([91]), we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂t(u − uRB) + af ′(u) ∂

∂x(u − uRB) + [af ′(ξ(t,x)) ∂
∂xuRB] (u − uRB) = rRB (t, x) ∈ (0, T ) ×R

u(0) − uRB(0) = 0 x ∈ R,

where ξ(t,x) is such that f
′(ξ(t,x)) = f ′(u(t, x))−f ′(uRB(t, x)). Now we have the ingredients

to state the following.

Lemma 3.3. Let us suppose that hypotheses (3.4.7) hold. Then, let us de�ne

C(t) ∶= max{0,− min
(t,x)∈(0,T )×R

(af ′(ξ(t,x))
∂

∂x
uRB −

∂

∂x
(af ′(u)))} .

Then the following estimate holds:

∥u(t) − uRB(t)∥2
L2(R) ≤ e

λ(t) (∫
t

0
∥rRB(τ)∥2

L2(R) dτ + ∥r̄RB∥2
L2(R)) (3.4.8)

where λ is de�ned as in (3.4.5).
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In order to use (3.4.8) to de�ne an a posteriori error estimator, it is necessary to de�ne
a procedure to estimate C. In this work no strategy to handle this problem is presented.
However, Lemma 3.2 provides evidence that the quantity:

∫
T

0
∥rRB(τ)∥2

L2(R) dτ + ∥ ¯rRB∥2
L2(R)

can be assumed as a reasonably good indicator at least during the sampling strategy.



3.5. NUMERICAL SIMULATIONS 97

3.5 Numerical simulations

After presenting the theoretical elements behind the methodology, we motivate it by pro-
viding some numerical examples.

Before starting, we discuss an important preliminary point. In order to assess the
convergence of the reduced solution, we compare it with the corresponding truth solution.
When Galerkin projection is applied, we observe that the convergence is independent of
the underlined mesh. On the other hand, in our case the underlined mesh in�uences the
convergence of the RB solution with respect to the truth one. The reason is that in our
method we use two di�erent strategies in the o�ine and online stage instead of simply
reducing the number of test functions as in Galerkin projection-based methods. As a
result, the convergence of the reduced solution to the truth one is the consequence of the
convergence of the reduced solution to the exact solution. Therefore, due to the fact that
the di�erence between the exact and the truth solution depends on the mesh we have that
the convergence of the RB solution with respect to the truth one is limited by the accuracy
of the truth approximation.

Moreover, as explained in section 3.2.1, conservative methods produce cell-average
approximations of the solution: if we use these approximations as pointwise values of
the approximate solutions we intrinsically introduce a Θ(h2) error.

3.5.1 First example: convergence study with respect to the number of

basis functions

Let us consider the following problem where µ ∈ (−0.5,0.5).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t) + 1 + µ

6

∂

∂x
(u2) = 0 (t, x) ∈ (0,1] × (−5,5),

u(0, x) = sin(x) + µ

10
(x2 − 25)

u(−5, t) = −sin(5) u(5, t) = sin(5).

(3.5.1)

We consider two di�erent truth approximations, the �rst one is built upon an equispaced
mesh with (∆t, h) = (0.01,0.002); the second one is computed on a �ner equispaced mesh
with (∆t, h) = (0.005,0.001). The conservative method is based on the Lax-Friedrichs �ux
for both the meshes.

In the tables below the errors with respect to ∥ ⋅ ∥L2(0,1,L2(−5,5)) norm are gathered. We
also collect the shock starting time34- that happens after the end of the considered time
window and the solution norm ∥u(µ)∥L2(0,1;L2(−5,5)) in order to give the possibility to the
reader to compute the relative error.

We observe that for the former mesh, see Table 3.4, the error saturates at O (0.01)
whereas for the latter mesh, see Table 3.5, the error saturates at O (0.005). Due to the
fact that Lax Friedrichs is �rst-order accurate, the result is in good agreement with the
prior observation.

34The shock is computed with the smooth-jump decomposition algorithm.
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µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35

tshock 4.234 3.762 2.91 2.236
∥u(µ)∥L2(0,1;L2(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 0.1139 0.2157 0.2429 0.1498
N = 4 0.0104 0.011 0.0049 0.0415
N = 8 0.0050 0.0069 0.0094 0.0116
N = 16 0.0053 0.0066 0.0087 0.0128

Table 3.4: Approximation error ∥uRB(µ) − u(µ)∥L2(0,1;L2(−5,5)) for the coarse mesh.

µ = −0.35 µ = −0.15 µ = 0.15 µ = 0.35

tshock 4.234 3.762 2.91 2.236
∥u(µ)∥L2(0,1;L2(−5,5)) 3.0807 2.4874 2.4976 3.0991

N = 2 0.1143 0.2168 0.2447 0.1512
N = 4 0.0102 0.0007 0.0014 0.0360
N = 8 0.0020 0.0025 0.0042 0.0042
N = 16 0.0036 0.0033 0.0048 0.0058

Table 3.5: approximation error ∥uRB(µ) − u(µ)∥L2(0,1;L2(−5,5)) for the �ne mesh.

3.5.2 Second example: analysis of the convergence in the presence of a

shock

Let us consider the following problem where µ ∈ (0.3,1.7):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (t) + µ

∂
∂x (u(1 − u)) = 0 (t, x) ∈ (0,2] × (−5,5),

u(x,0) = g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
10 +

1
10sin(x) x < 0.5

1
2 +

1
10sin(x) x > 0.5.

u(−5, t) = 1
10 −

1
10sin(5) u(5, t) = 1

2 +
1
10sin(5)

(3.5.2)

The truth approximation is based on a equispaced mesh with (∆t, h) = (0.002,0.01). The
conservative method uses the Lax-Friedrichs �ux. The drift in the smooth jump algorithm
is δ = 10h = 0.1. As it is easy to observe, the shock propagates from (0.5,0). First of all, we
compare the smooth jump decomposition algorithm and the shock capturing algorithm. By
remembering that the smooth jump decomposition algorithm approximates the position of
the shock with the nearest grid node, the errors less than h = 0.01 are considered negligible.
As shown in Table 3.6 the L∞(Ω)-norm of the corresponding error is below 0.01 for each
choice of µ and less sensitive to such a choice.

µ ∥x⋆SJ(⋅) − x⋆SC(⋅)∥∞
0.5 0.0064
1 0.0063
1.5 0.0062

Table 3.6: di�erences in the approximation of the shock between the smooth jump decom-
position algorithm (x⋆SJ) and the shock capturing algorithm (x⋆SC).
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Now we turn to the RB approximation. In Table 3.7 the error of the RB method with
respect to the truth approximation is listed for two di�erent choices of the reduced basis
and three di�erent values of the parameter µ.

µ = 0.5 µ = 1 µ = 1.5

N = 2 0.0496 0.0591 0.0525
N = 4 0.0481 0.0490 0.0492

Table 3.7: values of the error ∥uRB(µ)− u(µ)∥L2(0,2;L2(−5,5)) between the RB solution and
the truth approximation for three di�erent values of the parameter and two di�erent bases.

In order to explain the results we observe that the overall error is composed by two
distinct components:

1. the error associated with the smooth-jump algorithm (i.e., the error related to the
reconstruction of the shock and to the mapping);

2. the error related to the approximation of the smooth problems (3.3.6) (i.e., the error
linked to the interpolation procedure).

Figure 3.5 -in which the error function ∥uRB(µ)(tk) − u(µ)(tk)∥L2(−5,5) is plotted -
shows that for N = 2 the error depends on time, on the contrary for N = 4 the error is
not in�uenced by the time. This provides evidence to associate the �rst error component
(the one related to the smooth-jump algorithm) with the oscillatory in time behaviour of
the error function and the second component (the one related to the interpolation error)
with the monotone increasing in time behaviour of the error function. According to this
interpretation, we have that for N > 2 the error related to the smooth jump algorithm
dominates over the error associated with the interpolation procedure.

3.5.3 Third example: the input-output relation

In this last simulation we consider the following input-output relation:

s(µ) = Lu(µ) = ∫
1

0
∫

5

−5

1

1 + x2
u(µ)dxdt, (3.5.3a)

where u(µ) is the solution to the following conservation law35

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t) + µ ∂

∂x
(u log

1

u
) = 0 (t, x) ∈ (0,2] × (−5,5),

u(x,0) = g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
5 +

1
10sin(x) x < 0.5

1
2 +

1
10sin(x) x > 0.5,

u(−5, t) = 1
5 −

1
10sin(5) u(5, t) = 1

2 +
1
10sin(5).

(3.5.3b)

We consider an equispaced mesh h = 0.01, ∆t = 0.002, D = [0.3,1.7]. The numerical
�ux is the Godunov �ux. The drift in the smooth jump algorithm is δ = 5h = 0.1. In Table
3.8 below the errors for some values of the parameter in the state equation are listed; in
Table 3.9 the resulting outputs and the computational time needed to obtain it are listed.

35This �ux is used in hyperbolic tra�c models: it was proposed by Greenbery and supported by exper-
imental data from the Lincoln tunnel in New York (see [40] for further details).
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(a) µ = 0.5 N = 2 (b) µ = 0.5 N = 4

(c) µ = 1 N = 2 (d) µ = 1 N = 4

(e) µ = 1.5 N = 2 (f) µ = 1.5 N = 4

Figure 3.5: L2-error vs time: ∥uRB(µ)(tk)−u(µ)(tk)∥L2(−5,5) plotted with respect to time.

µ = 0.5 µ = 1 µ = 1.5

NRB = 16 0.0570 0.0682 0.0682

Table 3.8: ∥uRB(µ)(tk) − u(µ)(tk)∥L2(−5,5) for three di�erent values of parameter µ.

We think that the results concerning the speed-up are extremely positive. The truth
method used is an explicit scheme so the computational e�ort is proportional toO (C1NK),
where C1 is the cost associated with the evaluation of the Godunov �ux while N is the
spatial mesh dimension and K is the temporal mesh dimension. On the other hand, the



3.5. NUMERICAL SIMULATIONS 101

µ = 0.5 µ = 1 µ = 1.5

Nw,1 = Nw,2 = NRB = 16 0.8098 0.7955 0.7832
Truth Results 0.8114 0.7970 0.7850
Speed-up 24.5978 25.0350 25.2591

Table 3.9: error and speed-up in the output evaluation.

reduced method is dominated by the cost associated with the shock capturing algorithm
that is O (C2K), where C2 is the cost related to the application of the Newton Raphson
algorithm for �nding the roots of a nonlinear equation.

Due to the fact that C1 is signi�cantly less than C2, we cannot expect signi�cantly
higher computational savings. On the other hand, we think that in higher dimensions, we
can obtain larger speed-ups.
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3.6 Conclusions

The method proposed in this chapter can be viewed as the combination of three di�erent
steps:

1. the shock detection;

2. the de�nition of a surrogate problem for the smooth components of the solution based
on a domain decomposition approach;

3. the online interpolation.

The idea of applying a preliminary domain decomposition and then using the standard
RB method on the single components of the solution is very close to the Reduced Basis
Element Method (RBEM) �rst proposed in [75] for the Stokes problem as well as to the
Reduced Basis Hybrid Method (RBHM) proposed in [56]; but in our case the domain
decomposition is induced by the parameter both directly and through the solution of the
problem.

Concerning to the method used to solve the smooth problems , the approach we employ
is -with respect to our knowledge- new and quite far from the techniques used in the RB
method36.

The numerical simulations show that the method is able to reconstruct the solution in
an e�cient and reasonable sharp way. The main limitation of this approach is linked to
the reconstruction of the shock: due to the fact that the online and the o�ine methods are
based on completely di�erent formulation it is not reasonable to expect errors less than O
(h). It could be interesting to solve o�ine the problems (3.3.6) and then using directly
the solutions to these problems- instead of the results of the smooth jump decomposition
algorithm- to build the empirical basis.

As future steps, we aim at extending the proposed approach to the bidimensional case.
As explained in the conclusions of the second chapter, in order to extend this methodology
it is necessary to de�ne a suitable geometric reduction technique to deal with the domain
decomposition induced by the shock.

In [29] the so called Empirical Operator Interpolation method (EOI) has been proposed
to deal with nonlinear time-dependent PDEs: given the discretized problem, EOI is �rst
applied to provide a surrogate problem; then a projection-based algorithm is used to solve
the problem. Even though the article provides some numerical evidence to support the
approach, we think that the methodology has some drawbacks that limit its range of
application.

First of all, the approximation of the di�erential operator is a critical aspect. In order
to show why, we remember a classical result from [19].

Theorem 3.1. Let us consider the problems

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u + ∂

∂x
f(u) = 0 in (t, x) ∈ (0, T ] ×R

u(0) = u0 in x ∈ R,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
uε +

∂

∂x
fε(uε) = 0 in (t, x) ∈ (0, T ] ×R

uε(0) = u0 in x ∈ R.
(3.6.1)

Then, the following estimate holds:

∥u(t, ⋅) − uε(t, ⋅)∥L1(R) ≤ ∥u0∥BV (R)∥f ′ − f ′ε∥L∞(R)t (3.6.2)

where ∥u0∥BV (R) = ∣Du0∣(R) (see Appendix A).

36In [94] the online solution is computed through an interpolation process; however, such an interpolation
is based only on pre-computed data.
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Therefore, while for parabolic and elliptic problems the continuous dependence is assessed
by controlling the L∞-norm of the approximation, for hyperbolic problems we need a
control in the stronger W 1,∞-norm.

On the other hand, in our method we do not need any approximation of the di�erential
operator.

Even starting from a stable truth approximation, a given model order reduction process
can generate instability. Therefore, it could be necessary to introduce some forms of �re-
duced viscosity�37, i.e., forms of stabilization that are not based on the local properties38 of
the solution such as the so-called �ux-limiters used to obtain high-order schemes for hyper-
bolic equations. In our opinion it would be very di�cult to �nd an e�ective stabilization
method for the RB approximation.

As shown in several numerical test-cases in the literature, EIM is a stable procedure so
starting from a stable truth approximation, no instability is generated.

For these reasons we are of the opinion that methods based on empirical interpolation
could have more potentiality than projection-based methods.

37For instance, in [37] a Petrov-Galerkin approach is used to obtain a stable POD reduced model. With
respect to our knowledge, in the context of Reduced Basis methods, there are no signi�cant examples of
such techniques.

38This point is crucial in order to reach the online independence on the spatial mesh.
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Conclusions and Perspectives

In this work starting from the analysis of the state of the art, we focused on two open
issues of interest for an e�cient and reliable resolution of parametrized partial di�erential
equations.

Concerning the piecewise trans�nite map for small deformation, we have �rst motivated
the approach from a theoretical viewpoint (through Lemmas 2.1 and 2.2) and then we have
numerically assessed it on some test cases.

In our opinion the next step should be to compare the approach here proposed with
the other techniques (e.g., already well established FFD, RBF and traditional trans�nite
maps) on some relevant test cases. It could be interesting not only to assess whether each
mapping strategy is able to correctly describe a given deformation but also to analyze
how the application of a certain map in�uences the di�erential problem in terms of FE
approximation property (see indicators (2.5.2) (2.5.4)) as well as of convergence of the RB
approximation.

Concerning the method proposed to deal with conservation laws, we have �rst discussed
about the di�culties intrinsic to tackle discontinuous solutions; then we have proposed a
new strategy based on the so-called characteristic method. Numerical simulations provide
some evidence about the good performances of our new approach.

The next evident (but not straightforward) steps are the extension of this methodology
to bidimensional problems and the development of a rigorous a posteriori error estimator.
Concerning the �rst issue, we think that the trans�nite maps developed in this thesis could
be well suited to this purpose (as explained in the conclusions of the second chapter). As
far as the error estimator is concerned, we think that Lemmas 3.2 and 3.3 might represent
the starting point for a future work on a new a posteriori error estimator.

In perspective, we think that it could be also interesting to test this characteristic-
based method on other classes of time-dependent problems, such as advection dominated
nonlinear parabolic equations. The fact that no approximation of the di�erential operator
is required in our approach could represent a great advantage for these problems.
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Appendix A

Some theoretical results

In this appendix we report some important results that have been extensively used through-
out the work.

A.1 Existence and uniqueness for linear variational problems

A.1.1 The Lax-Milgram and Babuska theorems

Let U and V be two real Hilbert spaces. In the following we denote with (⋅, ⋅)U , ∥ ⋅ ∥U and
(⋅, ⋅)V , ∥ ⋅ ∥V the inner products and the corresponding norm associated with U and V ,
respectively. Let us consider the following bilinear form:

Φ ∶ U × V → R. (A.1.1)

We say that Φ is γ-continuous if:

Φ(u, v) ≤ γ∥u∥U∥v∥V , ∀u ∈ U ∀ v ∈ V. (A.1.2)

If U = V , we say that Φ is α-coercive if:

Φ(u,u) ≥ α∥u∥2
U , ∀u ∈ U with α > 0. (A.1.3)

Otherwise, if U and V are di�erent, we say that Φ is β-inf-sup stable if:

β = inf
u∈U

sup
v∈V

Φ(u, v)
∥u∥U∥v∥V

> 0. (A.1.4)

We have now the elements to state the main results. For the proofs we refer for Lax-
Milgram lemma to [109] theorem 6.5 and for the Babuska theorem1 to [4] .

Theorem A.1. (Lax-Milgram Lemma) Let V be a real Hilbert space and let Φ ∶ V ×V →
R be a γ-continuous and α-coercive bilinear form. Then for all F ∈ V ′ the problem

Find u ∈ V such that Φ(u, v) = F (v) ∀ v ∈ V, (A.1.5)

admits one and only one solution u ∈ V such that

∥u∥V ≤ 1

α
∥F ∥V ′ . (A.1.6)

1Babuska theorem is also known as Necas theorem.
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Theorem A.2. (Babuska inf-sup condition) Let U , V be two real Hilbert spaces and
let Φ ∶ U × V → R be a γ-continuous bilinear form. Then the problem

Find u ∈ U such that Φ(u, v) = F (v) ∀ v ∈ V (A.1.7)

admits one and only one solution for all F ∈ V ′ if and only if Φ is β-inf-sup stable.
Furthermore, the following stability estimation holds:

∥u∥U ≤ 1

β
∥F ∥V ′ . (A.1.8)

A.1.2 Elliptic problems with L2 boundary data: the transposition method

Let us consider the following problem

{ Lw = −div(A∇w) + b ⋅ ∇w + cw = f in Ω
w = g on ∂Ω

(A.1.9)

where g ∈ L2(∂Ω), f ∈ L2(Ω), Ω is a domain of class C2.

Due to the fact that g ∉H 1
2 (∂Ω), it is not possible to set the problem in the standard

framework. Therefore, we aim at introducing a weaker formulation for (A.1.9). Let us
consider ψ ∈H2(Ω) ∪H1

0(Ω); by integrating by part twice we obtain:

∫
Ω
wL⋆ψ = ∫

Ω
fψ − ∫

∂Ω
g∂L⋆ψ dσ where ∂L⋆ψ ∶= (AT∇ψ + ψb) ⋅ n (A.1.10)

De�nition A.1. The function w ∈ L2(Ω) is said to be weak solution of (A.1.9)-(A.1.10)
if it satis�es (A.1.10) for all ψ ∈H2(Ω) ∪H1

0(Ω).

The following theorem, from [73], guarantees the wellposedness of the problem de�ned
above.

Theorem A.3. (Transposition method) Let X, Y be Hilbert spaces, T ∶ X → Y be a
continuous isomorphism and F ∈X ′. Then the equation:

(Tx,w) = Fx ∀x ∈X (A.1.11)

admits one and only one solution w̄ ∈ Y . Moreover,

∥w̄∥Y ≤ ∥T −1∥L(Y,X)∥F ∥X′ (A.1.12)

Corollary A.1. Problem (A.1.9) admits one and only one weak solution w ∈ L2(Ω).
Moreover,

∥w∥L2(Ω) ≤ c(Ω) {∥f∥L2(Ω) + ∥g∥L2(∂Ω)} . (A.1.13)

A.1.3 A useful comparison result

In this subsection we present a useful comparison result, in this thesis used in Lemma 3.1.
For the proof, we refer, for instance, to [99], Lemma 1.4.1.

Lemma A.1. (Gronwall Lemma) Let f ∈ L1(0, T ) be a non-negative function, g and φ
be continuous functions on [0, T ]. If φ satis�es:

φ(t) ≤ g(t) + ∫
t

0
f(τ)φ(τ)dτ ∀ t ∈ [0, T ], (A.1.14)
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then

φ(t) ≤ g(t) + ∫
t

0
f(s)g(s)exp(∫

t

s
f(τ)dτ) ds ∀ t ∈ [0, T ]. (A.1.15)

Furthermore, if g is nondecreasing, then:

φ(t) ≤ g(t)exp(∫
t

0
f(τ)dτ) ∀ t ∈ [0, T ]. (A.1.16)

A.2 BV and SBV spaces

This section introduces the functional spaces BV (Ω) and SBV (Ω), where Ω ⊂ Rd. The
following presentation is �nalized to give a structure theorem that motivates our approach
in the treatment of hyperbolic conservation laws. For further discussions on the topic, we
refer to [2]. In this section B always denotes the Borel σ-algebra.

Let m be a measure on the σ-algebra B of Borel sets of Rd.

De�nition A.2. The measure m is said to be a Radon measure if:

� the measure m is inner regular i.e.

m(B) = sup
{K∈B∶K⊂⊂B}

m(K);

� the measure m is locally �nite, i.e., if every point has a neighborhood of �nite mea-
sure.

We have now the elements to introduce the space of the bounded variation functions.

De�nition A.3. Let u ∈ L1(Ω); we say that u is a a function of bounded variation in Ω
if the distributional derivative of u is representable by a �nite Radon measure in Ω, i.e.:

∫
Ω
u
∂φ

∂xi
dx = −∫

Ω
φdDiu ∀φ ∈ C∞

0 (Ω) (A.2.1)

for some Rd-valued measure Du = (D1u,⋯,Ddu) in Ω. The vector space of all functions
of bounded variation in Ω is denoted by BV (Ω).

De�nition A.4. Let u ∈ L1
loc(Ω). The variation V (u,Ω) of u in Ω is de�ned by:

V (u,Ω) ∶= sup{∫
Ω
udiv φdx ∶ φ ∈ C1

c (Ω), ∥φ∥L∞ ≤ 1} . (A.2.2)

The following theorem clari�es the relationship between BV (Ω) and V (⋅,Ω)

Theorem A.4. Let u ∈ L1(Ω). Then u ∈ BV (Ω) if and only if V (u,Ω) < ∞. In ad-
dition V (u,Ω) coincides with ∣Du∣(Ω), for any u ∈ BV (Ω), and u ↦ ∣Du∣(Ω) is lower
semicontinuous in BV (Ω) with respect to the L1

loc(Ω) topology.

If Ω ⊂ R, it is possible to introduce a simpler de�nition of variation.

De�nition A.5. Let a, b ∈ R with a < b and I = (a, b). For any function u ∶ I → R the
pointwise variation pV (u, I) is de�ned by:

pV (u, I) ∶= sup{
n−1

∑
i=1

∣u(ti+1) − u(ti)∣ ∶ n ≥ 2 a < t1 < ⋯ < tn < b} . (A.2.3)

If Ω ⊂ R is an open set, the pointwise variation pV (u,Ω) is de�ned by ∑j pV (u, Ij), where
{Ij}j is a set of disjoint intervals such that Ω = ⋃j Ij.
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The following result provides a second de�nition for the variation in one-dimensional
domains.

Lemma A.2. For any u ∈ L1
loc(Ω) we have that

V (u,Ω) ∶= inf {pV (v,Ω) ∶ v = u L1 a.e. in Ω} . (A.2.4)

Furthermore, the in�mum in (A.2.4) is achieved.

In order to state the above mentioned structure result for BV functions, we �rst in-
troduce some de�nitions. In what follows Ld and Hn denote respectively the Lebesgue
measure on Rd and the n-dimensional Hausdor� measure on Euclidean spaces. A set
J ⊂ Rd is said countably Hn-recti�able if there exist countably n-dimensional Lipschitz
graphs Γi such that Hn(J ∖ ⋃Γi) = 0. Given a Borel measure µ and a Borel set A we
denote by µ ⌞A the measure given by µ ⌞A(C) = µ(A ∩C).

The approximate discontinuity set Sw ⊂ Ω of a locally summable function w ∶ Ω → R
and the approximate limit are de�ned as follows: x ∉ Sw if and only if there exists z ∈ R
satisfying

lim
r∈0+

1

rd
∫
Br(x)

∣w(y) − z∣dy = 0.

If such z exists, it is unique and denoted by w̃(x), i.e., the approximate limit of w in x. It is
possible to prove that Sw is Borel and that w̃ is a Borel function in its domain2. Therefore,
for the notable Lebesgue di�erentation theorem, the set Sw is Lebesgue negligible and
w̃ = w a.e. in Ω ∖ Sw.

Similarly, it is possible to de�ne the approximate jump set Jw ⊂ Sw, by requiring the
existence of a, b ∈ R and of an unit vector ν ∈ Rd such that

lim
r→0+

1

rd
∫
B+
r (x,ν)

∣w(y) − a∣dy = 0, lim
r→0+

1

rd
∫
B−
r (x,ν)

∣w(y) − b∣dy = 0

where:

{ B+
r (x,ν) ∶= {y ∈ Br(x) ∶ (y − x,ν) > 0},

B−
r (x,ν) ∶= {y ∈ Br(x) ∶ (y − x,ν) < 0}.

If the triplet (a, b,ν) exists, it is unique up to a permutation of a and b and a change
of sign of ν. We refer to it as (w+(x),w−(x),ν(x)), where w±(x) are called approximate
one-sided limits of w at x. Like in the previous case, it is possible to prove that Jw is a
Borel set and that w± and ν can be chosen as Borel functions in their domain.

The following theorem represents the main result of this section.

Theorem A.5. (Federer Vol'pert) Let w ∈ BV (Ω). Then Hd−1(Sw ∖ Jw) = 0 and Jw
is a countably Hd−1-recti�able set. If we denote by Daw the absolutely continuous part of
Dw - with respect to the d-dimensional Lebesgue measure- and by Dsw the singular part,
then we have that Dsw =Djw +Dcw, where:

Djw = (w+ −w−)νJwHd−1 ⌞ Jw, (A.2.5)

Dcw(E) = 0 for any Borel set E with Hd−1(E) <∞. (A.2.6)

Corollary A.2. Let w ∈ BV (a, b). Then if Sw = Jw, w̃ is continuous on Ω∖Jw and w̃ has
classical left and right limits (which coincide with w±(x)) at any x ∈ Jw. Therefore

Djw = ∑
x∈Jw

(w+(x) −w−(x)) δx. (A.2.7)

2See section 3.6 from [2] for the proof and further discussions.



A.3. MATHEMATICAL ANALYSIS OF SCALAR CONSERVATION LAWS 111

Remark A.1. Theorem A.5 motivates the procedure through we derived in section 3.3.1.
Due to the numerable additivity of the Lebesgue integral problems (3.3.6) could be de�ned
even without the hypothesis that xshock ∈ Lip(0, Tmax).

The previous theorem motivates the following de�nition.

De�nition A.6. We say that u ∈ BV (Ω) is a special function with bounded variation and
we write u ∈ SBV (Ω), if the Cantor part of its derivative Dcu is zero. Thanks to Theorem
A.5 we have that:

Du =Dau +Dju = ∇uLd + (u+ − u−)νuHd−1 ⌞ Ju ∀u ∈ SBV (Ω). (A.2.8)

This space is particularly relevant in several applications of Calculus of Variations. It is
possible to prove closure and compactness properties of the space with respect to a suitable
weak-⋆ convergence in BV . We refer to [2], chapter 4 for the details.

We conclude the section by citing the following Lp embedding result.

Theorem A.6. We have that:

BV (Rd)↪ L
d
d−1 (Rd) if d > 1, BV (R)↪ L∞(R) if d = 1. (A.2.9)

If Ω ⊂ Rd is Lipschitz, then BV (Ω)↪ Lp(Ω) for p ≤ d
d−1 and the embedding is compact for

p < d
d−1 .

A.3 Mathematical analysis of scalar conservation laws

In this section we analyse the following Cauchy problem:

⎧⎪⎪⎨⎪⎪⎩

∂

∂t
u + ∂

∂x
f(u) = 0 (t, x) ∈ (0,∞) ×R

u(0, x) = u0(x) x ∈ R
(A.3.1)

We point out that most of the theorems reported below are valid for more general domains;
however, for the sake of simplicity, we limit the presentation to problem (A.3.1). We refer
to [36] for a general discussion about �rst order PDEs. On the other hand, the content of
this appendix discussion is mainly taken from [1, 36].

De�nition A.7. Let us suppose that u0 ∈ L∞(R), then u ∈ L∞((0,∞) × R) is said to be
integral solution to (A.3.1) if

∫
∞

0
∫
R
(u∂v
∂t

+ f(u)∂v
∂x

) dxdt + ∫
R
u0(x)v(0, x)dx = 0 ∀ v ∈ C∞

0 (R2). (A.3.2)

From identity (A.3.2) it is possible to deduce the following property of the integral
solution.

Lemma A.3. Let s ∶ (t0, t1) ⊂ (0,∞) → R be the equation of a curve of discontinuity of u
(shock) and let ul(t) and ur(t) be the limits of the integral solution from the left and from
the right. Then the following identity holds

ṡ(t) = f(ur(t)) − f(ul(t))
ur(t) − ul(t)

. (A.3.3)
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In general the integral solution is not unique3. In order to avoid non-physical solutions,
we look for solutions that satisfy the following Entropy condition4.

De�nition A.8. An integral solution to (A.3.2) is said to be entropic if it satis�es the
following E-condition:

f ′(ul(t)) < ṡ(t) < f ′(ur(t)). (A.3.4)

We observe that, if f is uniformly convex ( F ′′ ≥ θ > 0), the E-condition is equivalent to
require ul > ur along any shock curve.

In order to construct an integral solution for (A.3.2) we apply the so-called method of
characteristics ([36]).

De�nition A.9. The Legendre transform of L ∶ R→ R is:

L⋆(p) = sup
q∈R

{pq −L(q)}. (A.3.5)

The following theorem is taken from [1].

Theorem A.7. (Hopf-Lax formula) Assume f ∶ R → R, f ∈ C2(Ω) uniformly convex
and u0 ∈ L1(R) and set

v0(y) = ∫
y

−∞
u0(y)dy.

Let v(t, x) ∶= min{tf⋆ (x−yt ) + v0(y) ∶ y ∈ R}. Then the following statements hold:

1. for any t > 0 there exists a countable set St such that the minimum is attained at a
unique point y(t, x) for any x ∉ St;

2. the map x ↦ y(t, x) is nondecreasing in its domain, its jump set is St and v(t, ⋅) is
di�erentiable at any x ∉ St with

f ′ (∂v
∂x

(t, x)) = x − y(t, x)
t

. (A.3.6)

In particular ∂v
∂x(t, ⋅) is continuous on R ∖ St;

3. there exists a constant C > 0 such that:

∂v

∂x
(t, x + y) ≤ ∂v

∂x
(t, x) + C

t
y ∀ y ≥ 0 and x,x + y ∉ St. (A.3.7)

This is called Oleinik E-condition.

4. v is a Lipschitz map and u = ∂v
∂x is the unique entropy solution to (A.3.2) with the

initial condition u(0, ⋅) = u0

5. u ∶ (0,∞)→ L1(R) is continuous with respect to the L1
loc topology.

We can use the Hopf-Lax variational principle to de�ne backward characteristics ema-
nating from points (t, x) with x ∈ R ∖ St.

3See [36, 109] for an instructive example for Burgers equation.
4The terminology is roughly motivated by a rough analogy with the thermodynamic principle that

physical entropy cannot decrease as time goes forward.
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De�nition A.10. Let x ∉ St. The segment joining (t, x) with (0, y(t, x)) is called (back-
ward minimal) characteristic emanating from (t, x). These segments, when parametrized
with constant speed on the interval [0, t], are minimizers of the variational problem related
to the Hopf Lax formula:

min{∫
t

0
f⋆(γ̇(s))ds + v0(γ(0)) ∶ γ ∈ C1([0, t];R) γ(t) = x} . (A.3.8)

Indeed the strict convexity of f⋆ forces the minimizers to be straight lines and forces a
constant speed parametrization.

Remark A.2. Thanks to the monotonicity of y(t, ⋅), characteristics emanating from points
x, y ∉ St with x ≠ y do not intersect in the open upper half plane. As a consequence, two
di�erent characteristics starting even at di�erent times are either one contained in the
other or do not intersect.

We conclude this section with two important results.

Theorem A.8. Let us consider problem (A.3.1) and let u, v and w be the entropic integral
solutions associated with u0, v0 and w0 respectively. Then:

1. (from [40]) the following maximum principle holds:

∥u(t, ⋅)∥L∞ ≤ ∥u0(⋅)∥L∞ ; (A.3.9)

2. (from [65]) the solution operator is a L1-contraction, i.e.,

∥v(t, ⋅) −w(t, ⋅)∥L1 ≤ ∥v0(⋅) −w0(⋅)∥L1 ; (A.3.10)

3. (from [95]) for every Φ ∶ R → R Lipschitz continuous monotonous function we have
that:

∣Φ(u(t, ⋅))∣BV ≤ ∣Φ(u0(⋅))∣BV (A.3.11)

where we remember that ∣u∣BV (Ω) = ∣Du∣(Ω).

As we motivated in the chapter related to hyperbolic problems, we aim at setting our
problem in SBV , however there are counterexamples that show that even starting from a
Lipschitz initial datum it is possible to obtain, for some t > 0, u(t) such that Dcu ≠ 0 (see
Remark 2.1 [24]). However, the following result proved in [1] holds:

Theorem A.9. Let u ∈ L∞((0,∞) × R) be the entropy solution to (A.3.2) where u0 ∈
SBVloc(R) and f ∈ C2 is locally uniformly convex. Then, there exists S ⊂ R at most
countable such that, ∀ τ ∈ R ∖ S, the following holds

u(τ, ⋅) ∈ SBVloc(R). (A.3.12)

As a consequence u ∈ SBVloc((0,∞) ×R).
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Appendix B

Preliminary results for the BRR

theory

In the context of the Reduced Basis method, the Brezzi-Rappaz-Raviart (BRR) theory
has been extensively used to �nd a posteriori error estimators for non-linear problems
([122, 15, 94]). In this appendix we present only three preliminary abstract results that
constitute the basis of this theory.

The BRR theory was originally proposed in [11]. On the other hand, for this presenta-
tion, we mainly refer to the successive review work [14].

B.1 Some notations and basic lemmas

Let (X, ∥ ⋅ ∥X), (Z, ∥ ⋅ ∥Z) be real Banach spaces; we indicate with BX(x, δ) and with
B̄X(x, δ) the open and the closed balls in X1, respectively. Furthermore, we indicate with

∥(x, z)∥X×Z = ∥x∥X + ∥z∥Z , ∥A∥L(X,Z) = sup
x∈B̄X(x,1)

∥Ax∥Z .

the product space and the L(X,Z) norms.
We �rst remember the notable Banach-Caccioppoli theorem2 that will the basis of the

proof of the main theorem below.

Theorem B.1. (Banach-Caccioppoli) Assume A ∶ X → X be a contractive mapping,
i.e.,

∥A[u] −A[v]∥ ≤ γ∥u − v∥ ∀ u, v ∈X and with γ < 1.

Then A has a unique �xed point A[x] = x.

Now we present a useful lemma.

Lemma B.1. Let A ∈ L(X,Z) be invertible. Let B ∈ L(X,Z) and suppose that ∥A−1B∥L(X,X) <
1. Then A +B ∈ L(X;Z) is invertible and the following inequality holds:

∥(A +B)−1∥L(Z,X) ≤
1

1 − ∥A−1B∥L(X,X)

1We will omit the subscript X when there is no risk for misunderstandings.
2For the proof see for example [36] section 9.2.1. theorem 1.

115



116 APPENDIX B. PRELIMINARY RESULTS FOR THE BRR THEORY

Proof. We start by proving that the map is bijective. By contradiction let x ∈X such that
(A +B)x = 0, thus:

(A +B)x = A(I +A−1B)x⇒ (I +A−1B)x = 0⇒ ∥A−1B∥ ≥ 1.

This is in contradiction with the hypothesis. We have proved the injectivity, concerning
the surjectivity we consider the following map:

H ∶X →X H(x) = A−1(y −Bx).

We observe that ∥H(x1)−H(x2)∥X ≤ ∥A−1B∥L(X,X)∥x1 −x2∥X ; thus it is a contraction for
the hypotheses. The �xed theorem above assures the existence of a �xed point.

We now prove the estimate. Let C ∶X →X, C = A−1B. It is easy to observe that:

I = I −C +C ⇒ (post-multiplying both terms for (I −C)−1) (I −C)−1 = I +C(I −C)−1.

Thus, thanks to the hypothesis on the norm of C,

∥(I −C)−1∥L(X,X) ≤ 1+ ∥C∥L(X,X)∥(I −C)−1∥L(X,X) ⇒ ∥(I −C)−1∥L(X,X) ≤
1

1 − ∥C∥L(X,X)

.

In conclusion:

∥(A +B)−1∥L(Z,X) = ∥A−1(I +A−1B)−1∥L(Z,X) ≤
1

1 − ∥A−1B∥L(X,X)

∥A−1∥L(Z,X).

We conclude this section by de�ning the Fréchet derivative and introducing the Taylor
formula.

De�nition B.1. G ∶ U ⊂X → Z is said to be Fréchet di�erentiable in x0 ∈ U if there exists
L ∈ L(X,Z) such that:

∥G(x0 + h) −G(x0) −Lh∥Z = o(∥h∥X) ∀h such that x0 + h ∈ U. (B.1.1)

If G is Fréchet di�erentiable in U ⊂X, DG ∶ U → L(X,Z) such that:

x↦DG(x)

is said to be the Fréchet derivative of G. We say that G ∈ C1 if DG is continuous in U .
Assuming that G ∈ Cp, the following Taylor formula holds:

G(y) = G(x)+
p−1

∑
k=1

1

k!
DkG(x) (y − x,⋯, y − x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

+ 1

(p − 1)! ∫
1

0
(1−t)p−1DpG(x+t(y−x))(y−x,⋯, y−x)dt.

(B.1.2)

B.1.1 Implicit and inverse function theorems

In this section we focus on the problem:

Find u ∈X such that G(u) = 0. (B.1.3)

First of all, we prove an important result that is fundamental in the error analysis. Then
we state an implicit and an inverse function theorem written in a form that is suitable for
the application to the parametric framework.
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Theorem B.2. Let G ∶X → Z be a C1-operator. Let v ∈X such that DG(v) ∈ L(X,Z) is
an isomorphism. We consider the following quantities:

ε ∶= ∥G(v)∥Z
γ ∶= ∥DG(v)−1∥L(Z,X)

L(α) ∶= supx∈B̄(v,α) ∥DG(v) −DG(x)∥L(X,Z).

(B.1.4)

Suppose that 2γL(2γε) ≤ 1. Thus the problem (B.1.3) has an unique solution u ∈ B̄(v,2γε)
and DG(u) ∈ L(X,Z) is invertible with ∥DG(u)−1∥Z ∶X ≤ 2γ. Moreover

∥y − u∥X ≤ 2γ∥G(y)∥Z ∀y ∈ B̄(v,2γε). (B.1.5)

Proof. Let us consider the following operator:

H(x) = x −DG(v)−1G(x) (B.1.6)

Clearly each �xed point of H is a zero of the mapping G. In order to apply Banach-
Caccioppoli theorem, we have to verify the following hypotheses:

� H maps B̄(v,2γε) into itself.

� H is contractive.

For any x ∈ B̄(v,2γε) we can write:

H(x) − v =DG(v)−1 [DG(v)(x − v) − (G(x) −G(v))] −DG(v)−1G(v).

Applying the Taylor expansion (B.1.2) with p = 1, we obtain:

∥H(x) − v∥ ≤∥DG(v)−1∥ [∥DG(v)(x − v)∥ + ∥∫
1

0
(DG(v) −DG(v + t(x − v))(x − v)dt∥]

≤γ

⎡⎢⎢⎢⎢⎢⎢⎣

ε +L(2γε)2γ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

ε

⎤⎥⎥⎥⎥⎥⎥⎦
≤2γε

Thus H ∶ B̄(v,2γε)→ B̄(v,2γε). Let us consider x, y ∈ B̄(v,2γε), then:

H(x) −H(y) =DG(v)−1∫
1

0
[DG(v) −DG(y + t(x − y))] (x − y)dt.

Thus

∥H(x) −H(y)∥ ≤∥DG(v)−1∥∥∫
1

0
(DG(v) −DG(v + t(x − y))(x − y)dt∥

≤γL(2γε)∥x − y∥ ≤ 1

2
∥x − y∥

We have proved that H is a contraction. So there exists a unique �xed point u in the ball
B̄(v,2γε). Let A =DG(v) and B =DG(u) −DG(v), from the hypothesis we have that:

∥A−1B∥ = ∥DG(v)−1(DG(u) −DG(v))∥ ≤ ∥DG(v)−1∥∥(DG(u) −DG(v))∥ ≤ γL(2γε) ≤ 1

2
.
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Thus for Lemma B.1, DG(u) is invertible and ∥DG(u)∥ ≤ 2γ. We conclude proving the
(B.1.5)3:

∥u − y∥ =∥H(u) − y∥

=∥DG(v)−1 [−G(y) + ∫
1

0
(DG(v) −DG(u + t(y − u)))(u − y)dt] ∥

≤γ [∥G(y)∥ +L(α)∥u − y∥]

Thus we �nally get: ∥u − y∥ ≤ γ
1−γL(α)∥G(y)∥.

Remark B.1. In theorem B.2 the hypothesis on the di�erentiability of G can be relaxed:
the Fréchet derivative could be replaced by an isomorphism A ∈ L(X,Z) and v ∈ X such
that 2γL(2γε) ≤ 1, with:

ε ∶= ∥G(v)∥Z γ ∶= ∥DG(v)−1∥L(Z,X)

L(α) ∶= supx∈B̄(v,α)
∥G(x)−G(y)−A(x−y)∥Z

∥x−y∥X
.

Then problem (B.1.3) has an unique solution in B̄(v,2γε). Moreover, the estimate (B.1.5)
still holds.

Remark B.2. Theorem B.2 is the fundamental result for the error analysis when we
consider approximations of nonlinear problems4.

Theorem B.3. For v ∈ X and the function G ∶ X → Z of class Cp, p ≥ 1, we as-
sume DG(v) ∈ L(X,Z) to be an isomorphism and that α satis�es 2γL(α) ≤ 1, with
γ = ∥DG(v)−1∥L(Z,X). Then there exists a Cp mapping F ∶ B(G(v), α2γ ) → B(v, α2γ ) such

that, for all z ∈ B(G(v), α2γ ), we have

G(F (z)) = z, DF (z) = [DG(F (z))]−1 . (B.1.7)

Moreover, for all z1, z2 in B(G(v), α2γ )

∥F (z1) − F (z2)∥X ≤ 2γ∥z1 − z2∥Z . (B.1.8)

The proof is based on the same ideas of the preceding result. In this case the mapping
H is:

H(x) = x +DG(v)−1(z −G(x)).
We conclude recalling a version of the implicit function theorem.

Theorem B.4. Let Λ, X, Z be three Banach spaces and G ∶ Λ×X → Z be a C1 mapping.
For a given (λ0, x0) ∈ Λ ×X, we assume DxG(λ0, x0) ∈ L(X,Z) to be an isomorphism:

ε ∶= ∥G(λ0, x0)∥Z , γ0 ∶= ∥DλG(λ0, x0)∥Λ∶Z

γ1 ∶= ∥DxG(λ0, x0)−1∥L(Z,X) L(α) ∶= sup(λ,x)∈B̄((λ0,x0),α) ∥DG(λ0, x0) −DG(λ,x)∥L(Λ×XZ).

(B.1.9)
Let α be such that 2γL(α) ≤ 1 with γ = max(γ1,1 + γ0γ1). If ε < α

4γ , then there exists a

unique Cp mapping g ∶ B(λ0,
α
4γ ) ⊂ Λ→ B(x0, α) ⊂X satisfying:

G(λ, g(λ)) = 0 ∥g(λ) − x0∥X ≤ 2γ(ε + ∥λ − λ0∥Λ), (B.1.10)

for all λ ∈ B(λ0,
α
4γ ).

3Here we use the fact that y −H(y) =DG(v)−1G(y).
4In [15, 122] this is the result used to construct the a posteriori error estimator.
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Remark B.3. Theorem B.4 is potentially extremely important in the RB framework to
deal with a non-a�ne parametric dependence: in fact, in order to reach a parametrically
a�ne form, we have to approximate some parameters of the di�erential operator. This
result provides a powerful tool to study how the perturbation on the parameters in�uences
the solution.
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Functional spaces and main symbols

Throughout the work, we used the following notation:

Ω indicates an open set, if not speci�ed otherwise it is a bounded Lipschitz domain;

∥ ⋅ ∥Lp(Ω) 1 ≤ p ≤∞ indicates the Banach norm for the space Lp(Ω);
∥ ⋅ ∥Wk,p(Ω) k ∈ N, 1 ≤ p ≤∞ indicates the Banach norm for the Sobolev space W k,p(Ω);
C∞

0 (Ω) is the set of functions belonging to C∞(Ω) compactly supported in Ω;

Lip(Ω) ∶=W 1,∞(Ω) is the set of the Lipschitz functions, LipK(Ω) ∶= {u ∈ Lip(Ω) ∶ ∥Du∥L∞(Ω) ≤K};
let X, Z be two Banach spaces, (L(X,Z), ∥ ⋅ ∥L(X,Z)) indicates the Banach space of the
linear and continuous operators from X to Z;

let X be a Banach space, X ′ indicates the dual space of X, ⟨⋅, ⋅⟩X′×X indicates the duality
product;

↪ is the embedding operator, X ↪ Y if and only if X ⊂ Y , ∥u∥Y ≤ C∥u∥X for all u ∈X.
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