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Abstract

We present a component-based model order reduction procedure to efficiently and accurately solve pa-
rameterized incompressible flows governed by the Navier-Stokes equations. Our approach leverages a non-
overlapping optimization-based domain decomposition technique to determine the control variable that min-
imizes jumps across the interfaces between sub-domains. To solve the resulting constrained optimization
problem, we propose both Gauss-Newton and sequential quadratic programming methods, which effectively
transform the constrained problem into an unconstrained formulation. Furthermore, we integrate model
order reduction techniques into the optimization framework, to speed up computations. In particular, we
incorporate localized training and adaptive enrichment to reduce the burden associated with the training of
the local reduced-order models. Numerical results are presented to demonstrate the validity and effectiveness
of the overall methodology.

Keywords: component-based model order reduction; optimization-based domain decomposition; non-overlapping
methods; Navier-Stokes equations.

1 Introduction
Parameterized model order reduction (pMOR) techniques [1, 2, 3, 4] have gained widespread popularity in science
and engineering to reduce the computational cost in scenarios that involve repetitive computational tasks, such as
many-query and real-time applications. Given the parameter domain P and a parameterized partial differential
equation (PDE) of interest, pMOR strategies rely on an offline/online computational decomposition: in the
offline stage, which is computationally expensive and performed only once, a reduced basis (RB) approximation
space is generated by exploiting several high-fidelity (HF) solutions (e.g., finite element, finite volume) to the
parameterized PDE for properly chosen parameter values, and a reduced order model (ROM) is then devised; in
the online stage, for any new parameter value, the ROM can be solved with computational cost independent of
the HF discretization size Nhf , to ensure significant computational savings. Efficient training algorithms, such
as proper orthogonal decomposition (POD, [5, 6]) and the weak-Greedy algorithm [3] are available to construct
the reduced order basis (ROB). Additionally, effective projection-based techniques [7, 8] can be employed to
devise ROMs that are suitable for online calculations.

The combination of RB methods and domain decomposition (DD) methods offers further advantages [9, 10,
11]. First, localized pMOR techniques do not require global HF solutions over the whole domain: this feature
has the potential to dramatically reduce the offline computational burden for large-scale systems. Second,
localization simplifies the task of defining a parameterization of the problem and enables model reduction
of systems with parameter-induced topology changes (cf. section 2.2). Third, the DD framework offers the
flexibility to seamlessly integrate ROMs with full order models (FOMs, generated by the HF discretization) or
to accommodate multi-physics applications based on independent software.

Various approaches have been proposed to combine RB methods and DD methods which differ in the way
local ROMs are coupled at components’ interfaces. In the reduced basis element (RBE) method [12, 13, 14],
local ROMs are glued together using Lagrange multipliers. This method has been introduced in the context of
the Laplace equation [12, 13] and subsequently applied to the Stokes equations [14]. A more recent application
of the RBE method to the unsteady 3D Navier-Stokes equations can be found in [15], where a spectral Lagrange
multiplier on the 2D interfaces is employed to couple local solutions. Another approach is the static condensation
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RBE (scRBE) method [9, 16, 17], which ensures the component coupling through a static condensation procedure
[18]. Additionally, approximation spaces for the interfaces (ports) between the components are also constructed
[16, 17] to further reduce the computational complexity associated with the static condensation system. Another
advantage of the scRBE method is the interchangeability of the components, which enables the study of different
systems from a single library of parameterized archetype components. The RB-DD-finite-element (RDF) method
[19] uses parametric boundary conditions in the local problems to define versatile local RB spaces for handling
of networks composed of repetitive geometries characterized by different parameters. A detailed review of these
methods can be found in [19].

Iterative techniques based on substructuring and the Schwarz alternating methods [20, 21] have been adapted
to the pMOR framework [22, 10, 11, 23, 24]. In [22], both a non-overlapping Dirichlet–Neumann iterative scheme
and a Schwarz method for overlapping sub-domains are proposed to ensure coupling between the FOM and the
ROM. The coupling is achieved by ensuring the solution compatibility between the FOM solution trace and ROM
solution trace at the interface. Specifically, only Galerkin-free ROMs are considered in the work of [22]. Galerkin-
based ROMs are explored in the context of DD in [11], the authors develop a versatile coupling framework
for both FOM-ROM coupling and ROM-ROM coupling, which can be applied to both overlapping and non-
overlapping domains. Similarly, in [10] Galerkin-based ROMs are employed to speed up Dirichlet-Neumann DD
iterations. A Dirichlet-Neumann DD-ROM is developed in [23] to handle non-conforming interfaces. Here, the
Dirichlet and Neumann interface data are transferred using the INTERNODES method [25]. In [24], the authors
present a DD-ROM technique which is designed for heterogeneous systems: in this approach, components are
treated separately, and a parametrization of the interface data is used to generate HF snapshots.

Moreover, several authors have proposed to formulate the coupling problem as a minimization statement
[26, 27]. In [26], the optimization problem is framed as the minimization of the difference between the ROM
reconstruction and the corresponding FOM solution within the overlapping region between the ROM and the
FOM domain. This approach adopts Galerkin-free ROMs and is applied to approximating incompressible flows,
such as the interaction between an airfoil and a vortex, and the incompressible turbulent flow past a vehicle
with varying geometry. The one-shot overlapping Schwarz method [27] consists in a constrained optimization
statement that penalizes the jump at the interfaces of the components, while adhering to the approximate
fulfillment of the PDE within each sub-domain. This approach has been validated for a steady nonlinear
mechanics problem and also applied to an unsteady nonlinear mechanics problem with internal variables [28],
in combination with overlapping partitions. The results of [27] showed that the minimization framework,
which enables the application of effective optimization solvers for nonlinear least-square problems, ensures rapid
convergence to the solution and is also robust with respect to the overlapping size.

In the present work, we aim to extend the method of [27] to incompressible flows in non-overlapping domains:
our point of departure is the variational formulation proposed in [29] and further developed in [30, 31, 32]. As in
[29], we formulate the DD problem as an optimal control problem where the control is given by the flux on the
components’ interfaces and the dependent variables are velocity and pressure in each subdomain; our formulation
reads as a constrained minimization problem where the objective functional measures the jump in the dependent
variables across the common boundaries between subdomains, while the constraints are the partial differential
equations in each subdomain. We modify the formulation of [29] to incorporate an auxiliary control variable
for the continuity equation which weakly ensures continuous finite-dimensional pressure across the interface;
furthermore, we propose a specialized sequential quadratic programming (SQP) method to efficiently solve the
optimization problem without resorting to Lagrange multipliers. We remark that non-overlapping techniques are
of particular interest for heterogeneous DD [33] tasks that necessitate the combination of different discretization
methods in each subdomain. Non-overlapping methods are also of interest for interface problems with high-
contrast coefficients [34] and for fluid flows in repetitive networks [15, 19, 17] such as the vascular system.

We here consider two-dimensional steady-state simulations at moderate Reynolds number; however, our
ultimate goal is to devise a flexible computational tool to simulate vascular flows in real, patient-specific geome-
tries. We interpret complex networks as the union of a small number of parameterized components. In order to
avoid expensive global solves at training stage, we propose a combined localized training and global enrichment
strategy that exclusively uses local HF solves to create local approximations for the archetype components, thus
avoiding the need for computationally demanding global HF solves during the training phase.

Our work is related to several previous contributions to component-based (CB) pMOR. First, the variational
formulation is strongly related to the recent work by Prusak et al. [35]. The authors of [35] consider separate
spaces for velocity and pressure and rely on pressure supremizer enrichment in combination with Galerkin
projection to ensure stability of the local problems; furthermore, they resort to a Lagrangian multiplier and
gradient-based methods as in [29] to solve the global optimization problem. Instead, we consider a single reduced
space for velocity and pressure; we rely on both the Galerkin projection and a Petrov-Galerkin formulation for
the local problems; and we rely on the Gauss-Newton and SQP methods for optimization without resorting
to Lagrange multipliers. Finally, the authors of [35] do not discuss the problem of localized training, which is
of paramount importance for the success of CB techniques. Second, we emphasize that several authors have
previously developed CB-pMOR methods for incompressible flows in repetitive geometries [19, 17]; in particular,
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the work by Pegolotti and coauthors [15] first considered a CB-pMOR for the unsteady incompressible Navier-
Stokes equations in realistic three-dimensional geometries. Third, the localized training and global enrichment
strategies are an extension of the method proposed in [36]: localized training strategies have been previously
proposed in [16, 17, 24]; similarly, enrichment techniques have been considered in several efforts for linear elliptic
PDEs (see, e.g., [37]).

This paper is organized as follows. In section 2, we introduce the optimization-based domain decomposition
method and the model problem considered in this work. In section 3, we review the variational formulation
introduced in [29]; we present our new formulation; and we discuss the solution method based on Gauss-Newton
and sequential quadratic programming. Then in section 4 we discuss the integration of projection-based ROMs
into the proposed optimization framework and the hybrid solver that combines both the FOM solver and the
ROM solver. In sections 3 and 4 we illustrate the method for a simplified geometric configuration with two
components. Section 5 is dedicated to the presentation of the localized training and the adaptive enrichment
techniques. Finally, in section 6, we present numerical results that validate the effectiveness of our methodology.

2 Optimization-based domain decomposition method for the Navier-
Stokes equations

In this work, we consider the incompressible Navier-Stokes equations:
−ν∆u+ (u · ∇)u+∇p = f in Ω,
∇ · u = 0 in Ω,
u|Γdir

= uin, u|Γ0
dir

= 0, (ν∇u− pI)n|Γneu
= 0,

(1)

where ν > 0 denotes the kinematic viscosity of the fluid, Ω is a bounded Lipschitz domain; the open sets
Γdir,Γ

0
dir,Γneu constitute a partition of ∂Ω, which are associated to non-homogeneous Dirichlet boundary con-

ditions, homogeneuous Dirichlet boundary conditions and Neumann boundary conditions, respectively. We
consider two-dimensional problems; the extension to the three-dimensional case and to unsteady problems is
beyond the scope of this paper.

2.1 Optimization-based domain decomposition

ΩΓdir

Γdir,0

Γneu Γ0Ω1 Ω2

n1

n2

Figure 1: The domain Ω and a partition into two non-overlapping sub-domains.

For the purpose of clarity, we introduce the optimization-based domain decomposition method in the case of
two sub-domains. Note that this approach can be readily extended to accommodate many sub-domains, as
discussed in the subsequent sections. Consider a non-overlapping partition of Ω into two open sub-domains Ω1

and Ω2 such that Ω = Ω1 ∪ Ω2, as illustrated in Figure 1. The interface that separates the two sub-domains is
denoted by Γ0 so that Γ0 = Ω1 ∩ Ω2. The vectors ni, i = 1, 2, are the unit outward normals of Ωi on Γ0 (we
thus have n1 = −n2). We define the local Dirichlet and Neumann conditions for each component Ωi, i = 1, 2
as

Γi,dir = Γdir ∩ ∂Ωi, Γ0
i,dir = Γ0

dir ∩ ∂Ωi, Γi,neu = Γneu ∩ ∂Ωi, (2a)

and the spaces

Xi :=
{
(v, q) ∈ [H1(Ωi)]

2 × L2(Ωi) : v|Γ0
i,dir

= 0
}
, Xi,0 :=

{
(v, q) ∈ Xi : v|Γi,dir

= 0
}
, G := [L2(Γ0)]

2.

(2b)
The local solution (ui, pi) ∈ Xi is fully determined by the flux g at the interface Γ0: as in [29], we thus refer

to g as the control. Given the control g ∈ G, the velocity-pressure pair (ui, pi) satisfies ui|Γi,dir
= uin|Γi,dir

and

Ri(ui, pi,v, q) + Ei(g,v) = 0 ∀ (v, q) ∈ Xi,0, (2c)

where

Ri(ui, pi,v, q) =

∫
Ωi

(
ν∇ui : ∇v − pi(∇ · v) − q(∇ · ui) − fi · v

)
dx, Ei(g,v) = (−1)i

∫
Γ0

g · v dx, (2d)
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for i = 1, 2. Here, the orientation of the flux g is chosen to be the same as n1, i.e., from Ω1 to Ω2; the choice of
the orientation is completely arbitrary. Note that an arbitrary choice of the control g does not guarantee that
the local solutions (ui, pi) are solutions to (1); however, if (u1 − u2)|Γ0

= 0, we find that the field (u, p) such
that (u|Ω1

, p|Ω1
) and (u|Ω2

, p|Ω2
) satisfy (2c) is a weak solution to the global problem (1). The optimal control

g should hence guarantee velocity equality at the interface Γ0.
Gunzburger and coauthors [29, 32] proposed the following optimization-based domain-decomposition formu-

lation to compute the desired control and the local solutions:

min
(u1,p1)∈X1;
(u2,p2)∈X2;

g∈G

1

2

∫
Γ0

|u1 − u2|2 dx+
δ

2

∫
Γ0

|g|2dx s.t.

{ Ri(ui, pi,v, q) + Ei(g,v) = 0 ∀ (v, q) ∈ Xi,0

ui|Γi,dir
= uin|Γi,dir

,
i = 1, 2.

(3)
The second term in the objective function of (3) is a regularizer that is designed to penalize controls of excessive
size; the positive constant δ is chosen to control the relative importance of the two terms in the objective. The
proofs of the well-posedness of the optimization formulation, as well as the convergence of the optimal solution
to the solution to (1) as the regularization parameter δ approaches 0, can be found in [32].

2.2 Model problem
As in [15], we assume that the geometry of interest can be effectively approximated through instantiations of the
elements of a library of archetype components; the instantiated components are obtained by low-rank geometric
transformations of the archetype components. As in [15], we consider a library with two archetype components:
“junction” and “channel”; the two archetype components are depicted in Figure 2, where a number is assigned
to each component edge. These edge numbers indicate boundary face groups that are associated with the ports
and the different types of boundary conditions. Specifically, for the junction, edge numbers {1, 4, 7} denote the
ports and edge numbers {2, 3, 5, 6, 8, 9} indicate homogeneous Dirichlet boundaries; while for the channel, edge
numbers {1, 2} represent the ports and edge numbers {3, 4} correspond to homogeneuous Dirichlet boundaries.

A system can then be constructed by instantiating the two archetype components as follows:

Ω =

Ndd⋃
i=1

Ωi, where Ωi = ΦLi(Ω̃Li , µi), i = 1, . . . , Ndd,

where Li ∈ {1, 2} denotes the label of the i-th component of the system, Ω̃1, Ω̃2 represent the two archetype
components, ΦLi encompasses geometric transformations such as rotation, translation and non-rigid deformation
that are applied to the archetype component to obtain the corresponding instantiated component that appears
in the target system. The deformation of the i-th component is governed by the geometric parameter µi; the
vector µi includes a scaling factor γ, the angle θ and a shift xshift that characterize the linear map that ensures
the exact fitting of consecutive elements at ports. For the junction component, the the vector µi also includes
the angle α, which represents the angle between the main vessel and the branch vessel, as shown in Figure 2(a);
for the channel, the vector µi includes the constant hc, which is used in the parameterization of the bottom
boundary of the channel as y = −hc (4t (1− t))αc , with t ∈ [0, 1] and αc = 4.

We prescribe a parabolic (Poiseuille) profile at the left boundary uin and we prescribe homogeneous Neumann
conditions at the other boundary ports. In conclusion, the complete system configuration is uniquely prescribed
by (i) the component labels {Li}Ndd

i=1 and the geometric parameters µ = vec(µ1, . . . , µNdd
), and (ii) the Reynolds

number Re at the inlet. We define the Reynolds number as Re = Hu0

ν , where H = 1 denotes the diameter of the
vessel at the inlet, u0 represents the centerline velocity imposed at the inlet, and ν is the kinematic viscosity.
In the numerical implementation, we set ν = 1

Reref
in all the components of the network, and we consider the

parametric inflow condition u0(Re) = Re
Reref

.
Figure 3 illustrates two examples of target system, which consist of 3 and 4 components, respectively: the

red numbers indicate the indices of the components, while the blue numbers indicate the internal ports. Note
that the two systems are not isomorphic to each other: parameter variations hence induce topology changes that
prevent the application of standard monolithic pMOR techniques.

Remark 1. We here observe that each component includes mixed Dirichlet-Neumann boundary conditions: the
presence of Neumann conditions prevents the problem of pressure indeterminacy (up to an additive constant),
and the existence of Dirichlet conditions eliminates the need for any additional compatibility condition [30]
concerning the control variable g.
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Figure 2: archetype components.
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Figure 3: two example of target systems.

Remark 2. We observe that the boundary face group 1 for the two archetype components either corresponds
to an internal interface or to the inlet Dirichlet condition (for the first component of the network). In order to
handle this scenario, we can either modify the objective function to include the extra-term

∫
Γdir

|u− uin|2 dx or
to distinguish between inflow and internal channel and junction components. The latter option leads to a library
with (Nc = 4) archetype components. We here opt for the second strategy.

3 High-fidelity discretization

3.1 Finite element spaces
We proceed to discretize the optimization statement (3). Towards this end, we introduce the HF spaces V hf

i ⊂
[H1

0,Γ0
i,dir

(Ωi)]
2, Qhf

i ⊂ L2(Ωi). We further define the tensor product spaces X hf
i = V hf

i × Qhf
i and the lifted

space X hf
i,0 = V hf

i,0 ×Qhf
i with V hf

i,0 = {v ∈ V hf
i : v|Γi,dir

= 0} for i = 1, 2. We denote by {φi,j}
Nu

i
j=1 a basis of V hf

i

and by {ψi,j}
Np

i
j=1 a basis of Qhf

i ; we use notation • to indicate the FE vector associated with the FE field •. We
further define the trace spaces Λhf

i = {τΓ0
v : v ∈ V hf

i } and Ξhf
i = {τΓ0

q : q ∈ Qhf
i }, where τΓ0

• := •|Γ0
indicates

the trace of the field • on Γ0. We here consider conforming meshes such that nodes at the interface shared by
the two sub-domains coincide, that is Λhf

1 = Λhf
2 = Λhf and Ξhf

1 = Ξhf
2 = Ξhf ; this assumption is exploited in

the technical result of B; nevertheless, the formulation can be trivially extended to non-conforming grids. We
further define the global spaces X hf = V hf ×Qhf and X hf

0 = V hf
0 ×Qhf with V hf

0 = {v ∈ V hf : v|Γdir
= 0}.

In this work, we adopt a stabilized FE formulation that incorporates the Streamline Upwind/Petrov-Galerkin
(SUPG) [38, 39] and the Pressure-Stabilized Petrov–Galerkin (PSPG) [40] stabilizations. The PSPG technique
allows the use of the same polynomial degree for both pressure and velocity discretizations; the SUPG technique
enhances robustness for high Reynolds numbers. The detailed description of these stabilization formulas is given
in A. In conclusion, we consider the following local problems, which are the counterpart of (2c):{

Rhf
i (ui, pi,v, q) + Ei(g,v) = 0 ∀ (v, q) ∈ X hf

i,0

ui|Γi,dir
= Φi,uin

i = 1, 2. (4a)

where Φi,uin
∈ V hf

i is the interpolant of the nodal values of uin on Γi,dir [20, p. 174]. In view of the discussion
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below, we rewrite the HF residual as

Rhf
i (ui, pi,v, q) = Rhf

i,u(ui, pi,v) +Rhf
i,p(ui, pi, q); (4b)

the first term corresponds to the residual of the momentum equation (1)1, while the second term corresponds
to the residual of the continuity equation (1)2.

3.2 Variational formulation
Exploiting the previous notation, we can introduce the HF counterpart of the optimization formulation (3):

min
(u1,p1)∈Xhf

1 ;

(u2,p2)∈Xhf
2 ;

g∈Λhf

1

2

∫
Γ0

|u1 − u2|2 dx+
δ

2

∫
Γ0

|g|2dx s.t.

{
Rhf

i (ui, pi,v, q) + Ei(g,v) = 0 ∀ (v, q) ∈ X hf
i,0

ui|Γi,dir
= Φi,uin , i = 1, 2.

(5)

This formulation coincides with the statement considered in [32] and also [35] — with the minor difference that
we here rely on a stabilized FE formulation for the local problems. In the remainder of this section, we discuss
an alternative HF formulation that will be used to define the reduced-order model.

Formulation (5) does not ensure the continuity of pressure across the internal interfaces: we prove this result
rigorously in B; here, we provide a sketch of the proof that justifies our new DD statement. If we denote by
(uhf , phf) ∈ X hf the solution to the global problem such that Rhf(uhf , phf ,v, q) = 0 and we neglect for simplicity
the stabilization term, we obtain

Rhf
p (uhf , q) =

∫
Ω1

∇ · uhfq dx+

∫
Ω2

∇ · uhfq dx = 0 ∀ q ∈ Qhf .

Since Qhf is a space of continuous functions, it is in general false that Rhf
i,p(u

hf |Ωi
, q) =

∫
Ωi

∇ · uhfq dx = 0 for
all q ∈ Qhf

i , i = 1, 2; nevertheless, it is possible to show that there exists h⋆ ∈ Ξhf such that

Rhf
i,p(u

hf |Ωi
, q) + (−1)i

∫
Γ0

h⋆q dx = 0 ∀ q ∈ Qhf
i .

Similarly, there exists g⋆ ∈ Λhf such that

Rhf
i,u(u

hf |Ωi , p
hf |Ωi ,v) + (−1)i

∫
Γ0

g⋆ · v dx = 0 ∀v ∈ V hf
i , i = 1, 2.

We conclude that the tuple (uhf |Ω1
, phf |Ω1

,uhf |Ω2
, phf |Ω2

,g⋆, h⋆) is a solution to the minimization problem

min
(u1,p1)∈Xhf

1 ;

(u2,p2)∈Xhf
2 ;

g∈Λhf ,h∈Ξhf

1

2

∫
Γ0

|u1 − u2|2 dx+
1

2

∫
Γ0

(p1 − p2)
2
dx

s.t.

 Rhf
i (ui, pi,v, q) + Ei(g,v) + (−1)i

∫
Γ0

hq dx = 0 ∀ (v, q) ∈ X hf
i,0,

ui|Γi,dir
= Φi,uin

,

i = 1, 2.

This discussion suggests to consider a modified formulation that explicitly penalizes the jump of the pressure
field. We introduce the state wi := vec(ui, pi), i = 1, 2 and the control s := vec(g, h); we introduce the control
space Shf = Λhf × Ξhf equipped with the norm

|||s = vec (g, h)|||2 =

∫
Γ0

∣∣∇Γ0
g
∣∣2 + |g|2 + h2 dx, (6a)

where ∇Γ0
g denotes the gradient of g in the tangential direction; we use notation wi(1 : 2) to indicate the first

two components of the vector-valued function wi. Then, we introduce the variational formulation:

min
w1∈Xhf

1 ;

w2∈Xhf
2 ;

s∈Shf

Fδ (w1,w2, s) s.t.

{
Rhf

i (wi, z) + Ehf
i (s, z) = 0 ∀ z ∈ X hf

i,0,

wi(1 : 2)|Γi,dir
= Φi,uin

,
i = 1, 2; (6b)

where
Fδ (w1,w2, s) :=

1

2
∥w1 −w2∥2L2(Γ0)

+
1

2
δ|||s|||2, (6c)
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and Ehf
i (s,v, q) = Ei(g,v) + (−1)i

∫
Γ0
hq dx. Note that we replaced the L2 norm for the control g with the H1

norm: as discussed in section 6.1, we empirically observe that the use of the H1 norm significantly reduces the
oscillations in the profile of g.

Some comments are in order. First, the addition of the pressure jump and of the control h ensures that the
optimal pressure is continuous in the limit δ → 0. Note that at the continuous level the test space Q = L2(Ω)
is discontinuous; therefore, the control h is unnecessary. Similarly, if we rely on a P0 discretization for the
pressure field [41], the pressure jump is also unnecessary. Second, since velocity and pressure have different
units and might also have very different magnitudes, it might be necessary to rescale the objective function to
avoid stability issues (see, e.g., [42]). In our numerical experiments, we solve the equations in non-dimensional
form, and we do not include any scaling factor.

3.3 Solution methods for (6)
As in [27] and also [32], we resort to a gradient-based optimization method to find local minima of (6). In more
detail, we consider the Gauss-Newton method (GNM) and sequential quadratic programming (SQP) [43]. As
discussed below, both methods rely on static condensation to devise a reduced system for the control s.

3.3.1 Gauss-Newton method

We define the local solution map Hi : Shf → X hf
i such that Hi(s)(1 : 2)|Γi,dir

= Φi,uin
and

Rhf
i (Hi(s), z) + Ehf

i (s, z) = 0 ∀ z ∈ X hf
i,0, i = 1, 2. (7)

Then, we rewrite (6) as an unconstrained optimization problem:

min
s∈Shf

Fgn
δ (s) = Fδ(H1(s),H2(s), s). (8)

If we define the space Xhf = Λhf ×Shf equipped with the norm ∥r = vec(w,g, h)∥2Xhf = ∥w∥2L2(Γ0)
+∥g∥2H1(Γ0)

+

∥h∥2L2(Γ0)
and the operator Fδ : Shf → Xhf such that Fδ(s) = vec(τΓ0 (H1(s)−H2(s)) ,

√
δs), we can rewrite (8)

as a nonlinear least-square problem, that is

min
s∈Shf

Fgn
δ (s) =

1

2

∥∥Fδ(s)
∥∥2
Xhf . (9a)

The unconstrained problem (9a) can be solved efficiently using GNM: given the initial condition sit=0, we
repeatedly solve, for it = 0, 1, . . .,

sit+1 = arg min
s∈Shf

1

2

∥∥Fδ(s
it) +

∂Fδ(s
it)

∂s

(
s− sit

) ∥∥2
Xhf . (9b)

with the termination condition ∣∣∣∣∣∣sit+1 − sit
∣∣∣∣∣∣

|||sit|||
≤ tol, (9c)

where tol > 0 is a predefined tolerance.
We observe that GNM requires the explicit calculation of Fδ and the gradient of Fδ with respect to the

control at sit: the former involves the solution to the local problems (7) for all components, while the latter is
given by

∂Fδ(s
it)

∂s
=

 τΓ0

(
∂H1(s

it)

∂s
− ∂H2(s

it)

∂s

)
√
δid

 with
∂Hi(s)

∂s
= −

(
∂Rhf

i (Hi(s))

∂wi

)−1

Ehf
i , (10)

and id is the identity map. We notice that the evaluation of ∂Fδ(s
it)

∂s involves the solution to N s linear systems
where N s is the cardinality of the space Shf ; it is hence computationally feasible only if the dimension of the
control is moderate: this observation highlights the importance of port reduction [16] for optimization-based
methods. Conversely, we remark that the computation of H1(s

it),H2(s
it) and their derivatives is embarrassingly

parallel with respect to the number of components: as discussed in [27], GNM enables effective parallelization
of the solution procedure if compared to standard multiplicative Schwartz iterative methods, provided that the
computational cost is dominated by the solution to the local problems (7). Finally, we remark that the least-
square problem in (9b) can be solved by explicitly assembling the normal equations; alternatively, we might
employ the QR factorization [7]. We omit the details.
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3.3.2 Sequential quadratic programming (SQP)

The SQP method solves a sequence of optimization subproblems, each of which optimizes a quadratic model of
the objective subject to a linearization of the constraints. Since the objective (cf. (6c)) is quadratic, we hence
find the iterative method

(
wit+1

1 ,wit+1
2 , sit+1

)
= arg min

w1∈Xhf
1 ;

w2∈Xhf
2 ;

s∈Shf

Fδ (w1,w2, s) s.t.

 Rhf
i,it(z) + J hf

i,it(wi −wit
i , z) + Ehf

i (s, z) = 0

wi(1 : 2)|Γi,dir
= Φi,uin

, ∀ z ∈ X hf
i,0, i = 1, 2;

(11a)
where the linear forms {Rhf

i,it}i and the bilinear forms {J hf
i,it}i are given by

Rhf
i,it(z) = Rhf

i (wit
i , z), J hf

i,it(w, z) =
∂Rhf

i

∂wi

[
wit

i

]
(w, z) , ∀w ∈ X hf

i , z ∈ X hf
i,0, it = 0, 1, . . . . (11b)

In the numerical experiments, we consider the same termination condition (9c) used for GNM.
The optimization problem (11a) is quadratic with linear constraints. The solution to (11a) hence satisfies sit+1 = arg min

s∈Shf

∥∥F̃ it
δ + J̃ it

δ

(
s− sit

) ∥∥2
Xhf ;

wit+1
i = wit

i −
(
J hf
i,it

)−1 (Rhf
i,it + Ehf

i sit+1
)
, i = 1, 2;

(12a)

where

F̃ it
δ =

 τΓ0

(
wit

1 −wit
2

)
√
δsit

 , J̃ it
δ =

 τΓ0

((
J hf
1,it

)−1 Ehf
1 −

(
J hf
2,it

)−1 Ehf
2

)
√
δid

 . (12b)

In our implementation, we rely on (12) to solve (11a).
As for GNM, we obtain a least-square problem for the control by applying static condensation: while in the

previous section we first derived the unconstrained statement (cf. (8)) and then we applied the optimization
method, here we first optimize using SQP and then we apply static condensation at each iteration of the
optimization algorithm.

Since the underlying PDE model is nonlinear, GNM requires to perform Newton subiterations to solve the
local problems (7) (see also the definition of Fδ(s

it) in (9b)); conversely, SQP does not involve subiterations. The
cost per iteration of SQP is hence significantly inferior to the cost of GNM. We empirically observe that the SQP
approach mitigates the potential convergence issues of the sub-iterations for the local problems, particularly at
the very early stages of the optimization loop.

We observe that (9b) and (12a)1 are formally equivalent, while (10) and (12b) share the same structure. We
conclude that the SQP and GNM approaches can be implemented using the same data structures and can be
parallelized in the same way. We omit the details.

Remark 3. For high-Reynolds number flows, it is important to enhance the robustness of our approach by
resorting to pseudo transient continuation (PTC) [44]. PTC introduces an additional pseudo-temporal inte-
gration with adaptive time step, that is performed until convergence to a steady-state solution. If we resort to
the backward Euler scheme for the discretization of the time derivative, at each PTC step we solve the relaxed
problem:

min
w1∈Xhf

1 ;

w2∈Xhf
2 ;

s∈Shf

Fδ (w1,w2, s) s.t.


1

∆tk

∫
Ωi

(
wi(1 : 2)−wk

i (1 : 2)
)
· v dx + Rhf

i (wi, z) + Ehf
i (s, z) = 0

wi(1 : 2)|Γi,dir
= Φi,uin

, ∀ z = (v, q) ∈ Xi,0, i = 1, 2.

(13)

where the index k refers to the temporal loop and ∆tk is chosen adaptively based on the residual of the steady-
state equations. We refer to [44] and to the references therein for further details. Note that (13) is formally
equivalent to (6c): it can hence be solved using the same procedure outlined above. As discussed in A, the time
derivative should also be included in the SUPG and PSPG stabilization terms.

4 Projection-based reduced order formulation
We rely on the formulation (6b) to define the CB-ROM. Towards this end, first, we identify a low-rank approx-
imation of the control shf and the local states whf

1 , whf
2 ; second, we devise local ROMs for the approximation of

the solution maps (7); third, we devise specialized GNM and SQP methods for the formulation (6b) based on
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approximate solution maps. We conclude the section by discussing the implementation of hybrid formulations
that combine full-order and reduced-order local solution maps. We remark that in order to further enhance
online performance we should also reduce the online costs associated with the computation of the ∥ · ∥Xhf norm
in (9b) and (12a)1 (cf. [27]): we do not address this issue in the present work.

4.1 Construction of the local basis
We denote by {µ(k) = vec(µ

(k)
1 , µ

(k)
2 )}ntrain

k=1 a set of ntrain global configurations; we further denote by {whf
i,k : i =

1, 2, k = 1, . . . , ntrain} and {shfk : k = 1, . . . , ntrain} the corresponding HF state and control estimates based on
(6b). We resort to POD to devise a low-dimensional approximation space for the local solution manifolds and
for the control 

[
Zi = span{ζi,j}nj=1

]
= POD

(
{whf

i,k −Ψ
(k)
i,uin

}ntrain

k=1 , ∥ · ∥Xi
, n
)
;[

W = span{ηj}mj=1

]
= POD

(
{shfk }ntrain

k=1 , |||·|||,m
)
.

(14)

Here, the function POD (D, ∥ · ∥, n) returns the POD space of dimension n associated with the snapshot dataset
D and the norm ∥·∥ using the method of snapshots [45]. To ease the presentation, the integers n and m are here
chosen a priori : in practice, we should choose n,m based on the energy criterion. The fields Ψ(k)

1,uin
,Ψ

(k)
2,uin

satisfy
the boundary conditions in (6b); we refer to section 5 for the explicit expression; this implies that the local space
Zi is contained in Xi,0, for i = 1, 2. In the remainder, we further use notation Zdir

i = {Ψi,uin
(µ) + ζi : ζi ∈ Zi}

to identify the affine approximation spaces that incorporate Dirichlet boundary conditions. Furthermore, given
wi ∈ Zdir

i and s ∈ W, we define the generalized coordinates α1,α2 ∈ Rn and β ∈ Rm such that

wi(αi;µ) = Ψi,uin
(µ) +

n∑
j=1

(αi)j ζi,j , i = 1, 2; s(β) =
m∑
j=1

(β)j ηj . (15)

4.2 Construction of the local reduced-order models
We rely on (Petrov-)Galerkin projection to define the local ROMs.

Galerkin projection. We consider the local solution maps Ĥg
i : W → Zdir

i such that

Rhf
i (Ĥg

i (s), z) + Ehf
i (s, z) = 0 ∀ z ∈ Zi, i = 1, 2. (16)

It is useful to rewrite (16) in fully-algebraic form. Towards this end, we define the discrete residuals R̂g
i : Rn →

Rn and Êg
i ∈ Rn×n such that(

R̂g
i (α)

)
j
= Rhf

i

(
wi(αi), ζi,j

)
,
(
Êg

i

)
j,k

= Ehf
i

(
ηk, ζi,j

)
, i = 1, 2, j = 1, . . . , n, k = 1, . . . ,m; (17a)

and the local algebraic solution maps Ĥ
g

i : Rm → Rn such that

R̂g
i

(
Ĥ

g

i (β)
)
+ Êg

iβ = 0, i = 1, 2. (17b)

Least-square Petrov-Galerkin (LSPG, [7]) projection. Given the reduced space Yi ⊂ Xi,0, we introduce
the local solution maps Ĥpg

i : W → Zdir
i such that

Ĥpg
i (s) = arg min

ζ∈Zdir
i

sup
z∈Yi

Rhf
i (ζ, z) + Ehf

i (s, z)

∥z∥Xi

. (18)

For Yi = Xi,0, (18) is referred to as minimum residual projection. In view of the derivation of the algebraic
counterpart of (18), we denote by {υi,k}jesk=1 an orthonormal basis of Yi; then, we define the algebraic residuals(

R̂pg
i (αi)

)
ℓ
= Rhf

i (wi(αi),υi,ℓ) ,
(
Êpg

i

)
ℓ,k

= Ehf
i (ηk,υi,ℓ) , (19a)

with i = 1, 2, ℓ = 1, . . . , jes, k = 1, . . . ,m; and the local algebraic solution maps Ĥ
pg

i : Rm → Rn such that

Ĥ
pg

i (β) = arg min
α∈Rn

∣∣∣R̂pg
i (α) + Êg

iβ
∣∣∣, i = 1, 2. (19b)

We observe that (19b) reads as a nonlinear least-square problem that can be solved efficiently using GNM; the
combination of LSPG ROMs within the DD formulation (6b) is challenging: we address this issue in the next
section.

9



The ROM (18) depends on the choice of the test space Yi. Following [46, 47], we propose to construct the
test space Yi using POD. Given the snapshots {whf

i,k}k and the ROB {ζi,j}nj=1, we compute the Riesz elements
ψi,j,k ∈ X hf

i,0 such that (
ψi,j,k, z

)
Xi

=
∂Rhf

i

∂wi

[
whf

i,k

] (
ζi,j , z

)
, ∀ z ∈ X hf

i,0, (20a)

for i = 1, 2, j = 1, . . . , n, k = 1, . . . , ntrain. Then, we apply POD to find the low-dimensional bases Y1 and Y2,[
Yi = span{υi,j}jesj=1

]
= POD

(
{ψi,j,k : j = 1, . . . , n, k = 1, . . . , ntrain, }, ∥ · ∥Xi

, jes
)
, i = 1, 2. (20b)

As in [46, 47], we choose jes = 2n; we refer to [46, Appendix C] for a rigorous justification of the choice of the
test space for linear inf-sup stable problems.

Remark 4. The solution to (16) and (18) is expensive due to the need to evaluate the HF residual and its
Jacobian at each iteration. To reduce the computational burden, several authors have proposed to resort to
hyper-reduction strategies [48] to speed up assembly costs at prediction stage. We refer to the recent review
[49] for a detailed presentation of the subject. Since the local problems (16) and (18) fit in the framework of
monolithic pMOR, standard hyper-reduction techniques can be employed. We refer to a future work for the
development and the assessment of hyper-reduction techniques for the DD formulation of this work.

4.3 Global formulation
We first introduce the algebraic counterpart of the objective (6c). We denote by {(xΓ

q , ω
Γ
q )}

NΓ
q=1 the FE quadrature

rule of
∫
Γ0
[•] dx and we define the matrices A1,A2 ∈ R3NΓ×n and the vector b ∈ R3NΓ such that

(Ai)q+(ℓ−1)NΓ,j
=
√
ωΓ
q

(
ζi,j(x

Γ
q )
)
ℓ
, (b)q+(ℓ−1)NΓ

=
√
ωΓ
q

(
Ψ1,uin

(xΓ
q )−Ψ2,uin

(xΓ
q )
)
ℓ

(21a)

with q = 1, . . . , NΓ, ℓ = 1, 2, 3, j = 1, . . . , n; then, we rewrite the objective function as

Fδ (α1,α2,β) = Fδ (w1(α1),w2(α2), s(β)) =
1

2

∣∣A1α1 −A2α2

∣∣2 + δ

2

∣∣β∣∣2. (21b)

For the Galerkin local ROMs, the DD ROM can be obtained by simply projecting (6c) onto the reduced
spaces, that is

min
w1∈Zdir

1 ;

w2∈Zdir
2 ;

s∈W

Fδ (w1,w2, s) s.t. Rhf
i (wi, z) + Ehf

i (s, z) = 0 ∀ z ∈ Zi i = 1, 2. (22a)

Note that non-homogeneous Dirichlet conditions are encoded in the choice of the ansatz. Exploiting the previous
notation, we obtain the algebraic counterpart of (22a).

min
α1,α2∈Rn;

β∈Rm

Fδ (α1,α2,β) s.t. R̂g
i (αi) + Êg

iβ = 0, i = 1, 2. (22b)

Problem (22b) can be solved using either GNM or SQP; as for the HF model, the methods require the compu-
tation of the derivatives of the local solution maps (17b), which satisfy

∂Ĥ
g

i

∂β
(β) = −

(
∂R̂g

i

∂αi

[
Ĥ

g

i (β)
])−1

Êg
i . (22c)

Note that (22c) can be computed using standard FE routines that are readily available for the full-order model.
The combination of (6b) with the LSPG ROM (19b) is more involved since the resulting component-based

ROM cannot be interpreted as the projection of (6b) onto suitable low-dimensional spaces. We here rely on an
approximate SQP procedure. At each iteration, given the triplet (αit

1 ,α
it
2 ,β

it), we compute

R̂pg,it
i = R̂pg

i (αit
i ) ∈ Rjes , Ĵpg,it

i =
∂R̂pg

i

∂αi
(αit

i ) ∈ Rjes×n; (23a)

then, we solve the minimization problem

min
α1,α2∈Rn;

β∈Rm

Fδ (α1,α2,β) s.t.
(
Ĵpg,it
i

)⊤ (
R̂pg,it

i + Ĵpg,it
i

(
αi −αit

i

)
+ Êpg

i β
)
= 0, i = 1, 2. (23b)
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We observe that for n = jes the constraints imply that R̂pg,it
i + Ĵpg,it

i

(
αi −αit

i

)
+ Êpg

i β = 0 for i = 1, 2. We
hence recover the standard SQP procedure.

A thorough convergence analysis of the SQP procedure (23) is beyond the scope of the present work. Here,
we observe that if αit

i → α⋆
i for i = 1, 2 and βit → β⋆, the constraints in (23b) reduce to(

∂R̂pg
i

∂αi
(α⋆

i )

)⊤ (
R̂pg

i (α⋆
i ) + Êpg

i β
⋆
)
= 0, i = 1, 2.

Given i ∈ {1, 2}, the latter implies that α⋆
i is a stationary point of the function αi 7→

∣∣R̂pg
i (αi) + Êpg

i β
⋆
∣∣2;

provided that (19b) admits a unique solution, we hence find that α⋆
i = Ĥ

pg

i (β⋆).

4.4 Enrichment of the trial space
In (14), we construct the state and control spaces independently. We might hence obtain that the matrices
∂Ĥg

i

∂β (β) and ∂Ĥpg

i

∂β (β) are rank-deficient: as empirically shown in the numerical examples, rank deficiency of the
sensitivity matrices leads to instabilities of the ROM and to poor approximations of the control s. To address
this issue, we propose to enrich the trial spaces Z1,Z2 with the perturbed snapshots {w̃i,j,k}i,j,k

Rhf
i (whf

i,k, z) +
∂Rhf

i

∂wi

[
whf

i,k

] (
w̃i,j,k +Ψi,uin

−whf
i,k , z

)
+ Ehf

i (ηj , z) = 0 ∀ z ∈ X hf
i,0. (24)

In more detail, given the snapshots {whf
i,k : i = 1, 2, k = 1, . . . , ntrain} and the reduced spaces Z1,Z2,W, we

compute the perturbations {w̃i,j,k}j,k ⊂ X hf
i,0 for i = 1, 2, and then we update the reduced spaces Z1 and Z2 as

follows:

Znew
i = Zi ⊕Z ′

i, with
[
Z ′

i

]
= POD

(
{ΠZ⊥

i
w̃i,j,k : j = 1, . . . ,m, k = 1, . . . , ntrain}, ∥ · ∥Xi

, n′
)
, (25)

where ΠZ⊥
i
• denotes the projection of • onto the orthogonal complement of the space Zi and n′ is a given

integer.
Some comments are in order. The hierarchical construction of the state approximation space (25) has been

proposed in a similar context in [50]. The integer n′ should be sufficiently large to ensure stability of the DD
formulation; we further comment on the selection of n′ in the numerical experiments. Finally, in C, we provide
a formal justification of the enrichment strategy for a linear problem.

4.5 Hybrid solver
In the introduction, we anticipated the importance of developing a DD formulation that enables the seamless
coupling of local, independently generated models. We here illustrate how to combine the HF model introduced
in section 3 with the local ROM introduced in section 4. To provide a concrete reference, we assume that the
HF model (7) is solved in Ω1 and that the LSPG ROM (18) is solved in Ω2.

We set Nw
1 = Nu

1 +Np
1 and we define the basis (cf. section 3.1)

{ξ1,j}
Nw

1
j=1 =

{
vec(φ1,1, 0), . . . , vec(φ1,Nu , 0), vec(0, 0, ψ1,1), . . . , vec(0, 0, ψ1,Np

1
)
}
.

We introduce the vector-valued representation of the lifted state field ẘ1 = w1 − Ψ1,uin
∈ RNw

1 . Then, we
introduce the matrices (see (19a) and (21a)) Ahf

1 ∈ R3NΓ×Nw
1 and Ehf

1 ∈ RNw
1 ×m such that(

Ahf
1

)
q+(ℓ−1)NΓ,j

=
√
ωΓ
q

(
ξ1,j(x

Γ
q )
)
ℓ
,
(
Êhf

1

)
j,k

= Ehf
i

(
ηk, ξ1,j

)
.

Then, we can state the SQP method for the hybrid coupled problem:

min
ẘ1∈RNw

1 ;
α2∈Rn;
β∈Rm

1

2

∣∣Ahf
1 ẘ1 −A2α2 +b

∣∣2 + δ

2
|β|2 s.t.


Rhf,it

1 + Jhf,it
1

(
ẘ1 − ẘit

1

)
+ Êhf

1 β = 0;(
Ĵpg,it
2

)⊤ (
R̂pg,it

2 + Ĵpg,it
2

(
α2 −αit

2

)
+Epg

2 β
)
= 0.

(26a)

where (
Rhf,it

1

)
j
= Rhf

1 (wit
1 , ξ1,j),

(
Jhf,it
1

)
j,k

=
∂Rhf

1

∂wi

[
wit

1

] (
ξ1,k, ξ1,j

)
, j, k = 1, . . . , Nw

1 , (26b)

with wit
1 = ẘit

1 +Ψ1,uin
.
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Problem (26a) can be solved using the static condensation procedure outlined in (12a) and (12b). Note
that for (26a) the least-square problem (12a)1 is of size m: the computational cost is hence independent of
Nw

1 . On the other hand, the cost to assemble the least-square problem in (12a)1 is dominated by the cost
of computing (Jhf,it

1 )−1Ehf
1 , which requires the solution to m linear systems of size Nw

1 . We emphasize that
the local models in (26a) only communicate through the vehicle of the control s (or equivalently through the
generalized coordinates β) and the matrices Ahf

1 ,A2 in the objective function: the implementation of the local
models is hence agnostic to the discretization that is employed in the neighboring subdomain.

5 Localized training and adaptive enrichment
In section 4 we devised the CB-ROM based on the DD formulation (6b). The major limitation of the approach
is the need for global HF solves to generate the reduced spaces (cf. (14)). In this section, we propose a general
strategy to adaptively construct the reduced space for state and control, for the model problem of section 2.2.
First, in section 5.1, we present the general multi-component DD formulation and relevant quantities that are
employed in the adaptive procedure. Then, in sections 5.2 and 5.3, we present the localized training strategies
for the control s and for the local states. Finally, in section 5.4 we present the adaptive enrichment strategy
that allows the correction of the local approximations based on global reduced-order solves.

5.1 Multi-component formulation

Given the archetype components {Ω̃k}Nc

k=1 and the reference port Γ̃, we introduce the instantiated system Ω ⊂ R2

such that Ω =
⋃Ndd

i=1 Ωi with Ωi = ΦLi(Ω̃Li , µi) for i = 1, . . . , Ndd and ports {Γj}Nf
j=1 such that Γj = Ψj(Γ̃),

where µ1, . . . , µNdd
are geometric parameters associated with the elemental mapping and Ψ1, . . . ,ΨNdd

are the
mappings associated with the ports; we further introduce the union of all ports Γ :=

⋃Nf

j=1 Γj . For i = 1, . . . , Ndd,
we denote by IΓ

i ⊂ {1, . . . , Nf} the set of the indices of the ports that belong to ∂Ωi. We further denote by n+
j

the positive normal to the port Γj . We denote by Ψ̃k,uin the HF solution to the Navier-Stokes equations in Ω̃k

with inflow condition u0(Reref) for some Reref > 0 and Neumann boundary conditions on the remaining ports;
then, we introduce the parametric field Ψ̃k,uin

(Re) = Re
Reref

Ψ̃k,uin
.

We introduce the FE spaces X̃ hf
k and X̃ hf

k,0 associated with the domain Ω̃k (cf. section 3.1) for k = 1, . . . , Nc;
furthermore, we introduce the reduced spaces Z̃k ⊂ X̃ hf

k,0 and the affine spaces Z̃dir
k (Re) := Ψ̃k,uin(Re)+ Z̃k —to

shorten notation, we omit the dependence of Z̃dir
k on the Reynolds number. The choice Z̃k = X̃ hf

k,0 corresponds
to considering the HF discretization in all components of type k. Then, we define the global discontinuous
approximation space over Ω

X dd :=
{
w ∈ [L2(Ω)]3 : w|Ωi ◦ ΦLi(·, µi) ∈ Z̃dir

Li
, i = 1, . . . , Ndd

}
. (27)

We denote by JwK ∈ [L2(Γ)]3 the jump of the field w on the interfaces of the partition

JwK(x) = w+(x)−w−(x) ∀x ∈ Γj , w±(x) := lim
ϵ→0+

w(x∓ ϵn+
j (x)), j = 1, . . . , Nf . (28)

Given the port reduced space W̃ ⊂ [L2(Γ̃)]3, we also introduce the global port space over Γ

Wdd :=
{
s ∈ [L2(Γ)]3 : s|Γj ◦Ψj ∈ W̃, j = 1, . . . , Nf

}
. (29)

We handle geometry deformations using the discretize-then-map approach (cf. [47]). Given the FE field
w ∈ X hf

i , we denote by w̃ ∈ X̃ hf
Li

the corresponding field in the reference configuration; the two fields share the
same FE vector. We introduce norms in the reference components

∥w = vec (u, p) ∥2X̃k
=

∫
Ω̃k

∇u : ∇u+ |u|2 + p2 dx, |||s = vec (g, h)|||2Γ̃ =

∫
Γ̃

∣∣∇Γ̃g
∣∣2 + |g|2 + h2 dx, (30)

for k = 1, . . . , Nc. Then, we define the corresponding norms for the instantiated components that are obtained
by applying the prescribed deformation

∥w∥Xi := ∥w|Ωi ◦ ΦLi(·, µi)∥X̃Li
, i = 1, . . . , Ndd, |||s|||2 =

Nf∑
j=1

∣∣∣∣∣∣s|Γj ◦Ψj

∣∣∣∣∣∣2
Γ̃
. (31)

Note that the algebraic norms associated with (31) are independent of the geometric parameters that enter in
the mappings {ΦLi(·, µi)}i: there exist indeed Nc matrices X1, . . . ,XNc

such that ∥w∥Xi
=
√
w⊤XLi

w for
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i = 1, . . . , Ndd. This observation simplifies the implementation of the dual residual norm used in the adaptive
strategy (cf. (35)). Similarly, the variational forms associated with the PDE problem are defined for each
archetype component and then mapped to obtain the variational forms for each instantiated component. We
define the forms R̃hf

k : X̃ hf
k × X̃ hf

k,0 × Pk × R+ → R such that

R̃hf
Li
(w̃, z̃;µi,Re) = Rhf

i (w, z), ∀w ∈ X hf
i , z ∈ X hf

i,0. (32)

We further define the boundary form

Ẽhf
Li,ℓ(η̃, z̃, µi) =

∫
Γji,ℓ

η̃ ◦Ψ−1
j · z ◦ Φ−1

i dx where Φi := ΦLi(·;µi), ∀ η̃ ∈ L2(Γ̃j ;R3), z ∈ X hf
i,0, (33)

where ji,ℓ ∈ {1, . . . , Nf} is the index (in the global numbering) of the ℓ-th port of the i-th component of the
system.

We have now the elements to present the DD Galerkin formulation:

min
w∈Xdd,s∈Wdd

1

2

∫
Γ

|JwK|2 dx+
δ

2
|||s|||2 s.t. Rhf

i (w, z) + Ehf
i (s, z) = 0 ∀ z ∈ Zi, i = 1, . . . , Ndd; (34a)

where Zi = {ζ ∈ [H1(Ωi)]
3 : ζ ◦ ΦLi(·, µi) ∈ Z̃Li

} and

Ehf
i (s, z) =

∑
j∈IΓ

i

∫
Γj

s · z dx, (34b)

for i = 1, . . . , Ndd. Formulation (34a) can be adapted to cope with Petrov-Galerkin ROMs using the strategy
outlined in section 4.5: we omit the details.

Given the estimate (w⋆, s⋆) of the solution to (34a), we devise two error indicators to assess its accuracy;
the indicators are employed in section 5.4 to drive the enrichment strategy. First, we define the local errors

ei := sup
z∈Xhf

i,0

Rhf
i (w⋆, z) + Ehf

i (s⋆, z)

∥z∥Xi

, i = 1, . . . , Ndd. (35)

The quantity ei measures the performance of the i-th ROM to approximate the solution to the Navier-Stokes
equations for the control s⋆. We further introduce the jump errors:

ejump
j :=

√∫
Γj

|JwK|2 dx, j = 1, . . . , Nf . (36)

The indicator (36) controls the jump of the state estimate at the interfaces: the value of ejump
j can thus be

interpreted as the measure of the ability of the control to nullify the jump at the j-th interface of the domain.

Remark 5. In order to enhance the compressibility of the local state and control manifolds, following [51], in
the numerical experiments, we consider the approximation spaces

X dd :=
{
w ∈ L2(Ω;R3) : A(θi)w|Ωi

◦ ΦLi(·, µi) ∈ Z̃dir
Li
, i = 1, . . . , Ndd

}
;

Wdd :=
{
s ∈ L2(Γ;R3) : A(ωj)s|Γj

◦Ψj ∈ W̃, j = 1, . . . , Nf

}
;

(37a)

where θi (resp., ωi) is the angle between the inlet port of the i-th deformed component Ωi (resp., the j-th port
Γj) and the x1 axis, and

A(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (37b)

We remark that several authors have considered more sophisticated (Piola) transformations to improve the
compressibility of solution manifolds in internal flows, (e.g. [14]): in this respect, our choice is a compromise
between accuracy and simplicity of implementation.

5.2 Pairwise training for the control variables

Following [16, 17], we pursue a pairwise-training approach to generate the port space W̃. We perform HF
simulations for systems of two components that represent all possible connections (channel-channel, channel-
junction, junction-junction, junction-channel) based on random Dirichlet boundary conditions at the inflow,
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random Neumann conditions at the outflow, and a random selection of the Reynolds number and the geometric
parameters in prescribed parameter ranges (cf. Figure 4). The HF data for the ports are retrieved and stored,
and finally the port space W̃ is constructed using POD. Recalling (37), the HF data are rotated using (37b)
before applying the compression technique.

Similarly to [16, 52], we consider the inlet velocity

uin(y) = − Re

Reref

(
u0(y) + δu

R∑
k=1

ck
k2
Pk(−1 + 2y)

)
n, (38)

where Re ∼ Uniform(Remin,Remax), {Pk}k are zero-flowrate weighted polynomials (cf. [17, section 3.1.1])

Pk(y) =

 (1− y2)y, if k = 1,
(1− y2)(5y2 − 1), if k = 2,
(1− y2)Lk(y), if 3 ≤ k ≤ R,

and {Lk}k are the Legendre polynomials. The coefficients of the expansion are sampled from a standard
Gaussian distribution, c1, . . . , cR

iid∼ N (0, 1), n denotes the outward normal to Ω on the inlet boundary, y ∈ (0, 1)
is the curvilinear coordinate, u0(y) = 4y(1− y) is the Poiseuille velocity profile, the coefficient δu is selected a
posteriori to ensure that the inflow is positive for all y ∈ (0, 1). Similarly, we prescribe the outward flux as

gout(y) =

(
g0 + δg

R∑
k=1

coutk Lk(−1 + 2y)

)
n, cout1 , . . . , coutR

iid∼ N (0, 1), (39)

where g0 ∼ Uniform(g0min, g0max), and we choose the coefficient δg to prevent reverse flow.

1 1 2

Figure 4: channel-junction connection for the training of s.

5.3 Localized training for the state variables
After having built the reduced space for the control, we repeatedly solve (34a) for several random configurations
and several parameter values to acquire datasets of simulations for each archetype component. Thanks to port
reduction, the computational cost of the global problem is significantly reduced if compared with the full
HF model; nevertheless, we choose to consider systems with a moderate number of components (up to four)
to further reduce offline costs. The HF data for components of the same type are mapped in the reference
configurations, rotated through (37b), and are then used to build the local reduced spaces Z̃1, . . . , Z̃Nc

.
We observe that the training strategy is not fully local since it requires to assemble systems with up to

four components. In our experience, the practical implementation of a fully localized training strategy for
incompressible flows is extremely challenging due to the need to ensure that the fluid flows from left to right
and that the prescribed Neumann conditions lead to physical velocities. The choice of considering global
training based on a reduced control space for systems of moderate dimension represents a trade-off between
offline efficiency and accuracy. The adaptive strategy presented in the next section provides a systematic way
to improve the quality of the local reduced spaces.

5.4 Adaptive enrichment
In Algorithm 1, we present the full adaptive strategy for the construction of the reduced spaces. The procedure
extends the method introduced in [36]; to clarify the presentation, we postpone two steps of the algorithm to
sections 5.4.1 and 5.4.2.
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Algorithm 1 Adaptive enrichment procedure.

1: Generate the reduced space W̃ for the control through pairwise training (cf. section 5.2).

2: Generate the local spaces {Z̃k}Nc

k=1 for the state through global training (cf. section 5.3).

3: Enrich the reduced spaces {Z̃k}Nc

k=1 based on the port space W̃ (cf. section 5.4.2).

4: Sample nglotrain global configurations, Ptrain := {µj}n
glo
train

j=1 .
5: (if LSPG projection is employed) Build the empirical test space (cf. section 4.2)
6: for it = 1, . . . , maxit do
7: Initialize the datasets D(1) = . . . = D(Nc) = ∅ and Ds = ∅.
8: for µ ∈ Ptrain do
9: Compute the reduced solution using the CB-ROM solver (cf. (34a)).

10: Compute local residuals {ei}
Nµ

dd
i=1 (cf. (35)) and the jumps {eportj }N

µ
f

j=1 (cf. (36))

11: Mark the mw instantiated components with the largest residuals of each type {Iµ,(k)mark}
Nc

k=1.
12: Mark the ms instantiated ports with the largest port jumps of each type I

µ,p
mark.

13: Update the datasets D(1), . . . ,D(Nc) and Ds (cf. section 5.4.1)
14: end for
15: Update the port POD space W̃ = W̃ ⊕ POD

({
ΠW̃⊥ s̃ : s̃ ∈ Ds

}
, |||·|||Γ̃, n

glo
)
.

16: Update the reduced spaces Z̃k = Z̃k ⊕ POD
({

ΠZ̃⊥
k
w̃ : w̃ ∈ D(k)

}
, ∥ · ∥X̃k

, nglo
)
, k = 1, . . . , Nc.

17: (Optional) Enrich the reduced spaces {Z̃k}Nc

k=1 based on the port space (cf. section 5.4.2).
18: (if LSPG projection is employed) Update the empirical test space (cf. section 4.2)
19: end for

As in [36], we add mw (resp., ms) snapshots to the state (resp., control) datasets for each element of µ ∈
Ptrain, instead of selecting the marked elements after having computed the local indicators for all configurations:
this choice avoids the storage of all reduced global solutions and ultimately simplifies the implementation. In
our experience, the enrichment of the state spaces is only needed for localized training (Line 3 of the Algorithm)
but not after each update of the control space W̃ (Line 17 of the Algorithm): a possible explanation is that
the enrichment step inherently couples the construction of the two spaces. Further numerical investigations are
necessary to investigate this aspect.

Algorithm 1 depends on several user-defined parameters. The localized training of the control space depends
on (i) the sampling distributions for the Dirichlet inflow boundary condition (38) and for the Neumann outflow
condition (39); (ii) the number nsloc of samples; and (iii) the number m0 of retained POD modes. The localized
training for the state variables depends on (i) the number Ndd components of the networks considered; (ii)
the number nwloc of samples; and (iii) the number n0 of retained POD modes for each archetype component.
The enrichment strategy depends on (i) the number n′ of added modes (cf. section 5.4.2). The adaptive loop
depends on (i) the number maxit of outlet loop iterations; (ii) the number nglotrain of global configurations; (iii)
the numbers mw and ms of marked components and ports; (iv) the number nglo,mglo of modes added at each
iteration for state and control variables. We envision that the selection of several parameters can be automated:
to provide a concrete reference, the parameters nglo,mglo can be updated based on a energy/projection criterion.
Nevertheless, further investigations are necessary to provide actionable guidelines to select all the parameters.

5.4.1 Computation of the local solutions

Given the sampled port Γj , we solve the HF model with flux boundary conditions given by the control s⋆ on
the remaining port (cf. Figure 5) in the domain Ω⋆ = Ω+

j ∪ Ω−
j where Ω+

j ,Ω
−
j are the elements of the network

that share Γj . Given the sampled component Ωi, we consider two separate strategies: (i) we solve the global
hybrid model in which we replace the local ROM with the local HF model in the sampled component, or (ii)
we solve the HF model in the sampled component with boundary conditions prescribed by the control estimate
s⋆. The first option is significantly less computationally expensive; however, we experienced some convergence
issues for very inaccurate controls s⋆. For this reason, in the numerical experiments, we rely on global hybrid
solves for the first iteration of the algorithm and to fully local solves for the subsequent iterations.

15



1

1
2

2

3

Figure 5: computation of local solution. Port update: if Γ1 is the sampled port, we solve the HF model in the
components Ω1 ∪ Ω2 with Neumann boundary conditions on the port Γ2 given by the predicted control s⋆ (cf.
Line 9, Algorithm 1). State update: if Ω2 is the sampled component, we either solve the global problem using
the HF discretization in Ω2 and the ROM discretization in Ω3 (option 1), or we solve the HF model in Ω2 with
Neumann boundary conditions on the ports Γ1 and Γ2 given by s⋆ (option 2).

5.4.2 Enrichment of the state spaces

It suffices to generalize the procedure of section 4.4. We denote by {w̃k
ℓ }

nk
train

ℓ=1 a dataset of snapshots associated

with the k-th archetype component and the local parameters {µk
ℓ }

nk
train

ℓ=1 and {Reℓ}
nk
train

ℓ=1 . The dataset {w̃k
ℓ }

nk
train

ℓ=1

is extracted by the global simulations performed in the internal loop (cf. Lines 8 − 14) of Algorithm 1 or
from the simulations performed to generate the initial local space Z̃k (cf. Line 2). We denote by {η′

j}mj=1 the
newly-added modes of the port space; we further recall the definitions of the local residuals and (32) boundary
forms (33). Then, we define w̃k

ℓ,j,q such that (compare with (24))

R̃hf
k (w̃k

ℓ , z;µ
k
ℓ ,Reℓ) +

∂R̃hf
k

∂w̃k

[
w̃k

ℓ , µ
k
ℓ ,Reℓ

] (
w̃k

ℓ,j,q + Ψ̃k,uin(Reℓ)− w̃k
ℓ , z

)
+ Ẽhf

k,q(η
′
j , z) = 0 ∀ z ∈ X̃ hf

k,0,

for ℓ = 1, . . . , nk
train, j = 1, . . . ,m, and q = 1, . . . , Nk

port (Nk
port = 2 for the channel component, and Nk

port = 3

for the junction component). After having computed the snapshots {w̃k
ℓ,j,q}ℓ,j,q, we update the reduced space

Z̃k with n′ modes using POD (cf. (25)).

6 Numerical results
We present numerical results of the proposed method for the parameterized incompressible flow of section
2.2. The parameters are the Reynolds number and the geometric parameters α and hc introduced for each
instantiated component. We consider a P2 FE discretization with 1281 degrees of freedom for the channel, and
3329 degrees of freedom for the junction. The regularization constant δ is set equal to 10−8.

6.1 HF solver
We present the HF results for the Reynolds number Re = 100 and the geometric configuration shown in Figure
3(b). In Figure 6(a)-(b)-(c), we show the solution to the global HF problem (i.e., without domain decomposition)
for the x-direction velocity, y-direction velocity, and the pressure, respectively. Figures 6(d)-(e)-(f) illustrate the
difference between the solution to the global problem and the solution to the (multi-component generalization
of the) DD formulation (6b). Our new formulation exhibits high accuracy, with a pointwise error of the order
of 10−6 for the three variables. Here, we employ the SQP method introduced in section 3.3.2; GNM (cf. section
3.3.1) does not converge for this value of the Reynolds number. For the solution to the DD problem, the global
prediction at the interfaces is obtained by averaging the solution in the two neighboring sub-domains.
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(a) ufe
x (b) ufe

y (c) pfe

(d) ufe
x − udd

x (e) ufe
y − udd

y (f) pfe − pdd

Figure 6: HF formulation. (a)-(b)-(c) Behavior of the solution to the monolithic FE problem. (d)-(e)-(f)
difference between the monolithic FE solution and the DD solution based on (6b).

In Figure 7, we present the comparison between the monolithic FE solution and the solution to the DD
formulation (5). The results of Figure 7 show much larger pointwise errors for both velocity and pressure —
the error for the pressure is O(10−2) as opposed to O(10−6). This result justifies the addition of the control h
for the continuity equation.

In Figure 8, we present the variable jump across the interfaces for the new formulation (6b) and the standard
formulation (5). For (5), the jump of the velocity field is modest, but it is significant (O(10−1)) for the pressure.
In contrast, for (6b), the jump of both velocity and pressure is extremely modest. These results further
corroborate the introduction of the control h for the continuity equation.

(a) ufe
x − udd

x (b) ufe
y − udd

y (c) pfex − pddx

Figure 7: HF formulation. Difference between the monolithic FE solution and the DD solution based on (5).
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(a) JuxK (b) JuyK (c) JpK

(d) JuxK (e) JuyK (f) JpK

Figure 8: HF formulation. (a)-(b)-(c) interface jump of the solution to (6b). (d)-(e)-(f) interface jump of the
solution to (5).

Figure 9 investigates the effect of the choice of the penalization norm for the control. In more detail, we
compare the behavior of the horizontal control gx for the first port Γ1 in Figure 3(b) for both L2 regularization
and H1 regularization. We observe that the use of the H1 regularization dramatically reduces the spurious
oscillations in the proximity of the boundaries of the domain. We further observe that, since n = vec(1, 0), the
control gx should equal the viscous flux −p+ ν ∂ux

∂x ; provided that p≫
∣∣ν ∂ux

∂x

∣∣, we hence find that gx ≈ −p.
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Figure 9: Comparison of the H1 norm and the L2 norm for the regularization term.

6.2 MOR procedure for networks of moderate size
We now evaluate the performance of the ROM introduced in section 4 for the system configuration shown in
Figure 3. Since the total number of degrees of freedom is relatively modest, we can afford to solve the multi-
component generalization of (6b) with HF local models and HF control. This enables a rigorous assessment
of the results. For the test cases presented in this section and in section 6.3, we choose the dimension of the
original ROB (i.e., without ROB enrichment) for the state n to be equal to the dimension of the ROB for the
control m.
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6.2.1 Performance for a fixed geometry

We freeze the value of the geometric parameters and we let the Reynolds number vary in the domain P =
[50, 150]. We train the local ROMs based on ntrain = 60 snapshots with equi-spaced parameters in P, and
we assess the performance of the resulting CB-ROM based on ntest = 10 randomly-selected out-of-sample
parameters. We measure performance of the ROMs in terms of the average out-of-sample relative prediction
error for the four components:

Eavg, i :=
1

ntest

∑
µ∈Ptest

∥whf
i (µ)− ŵi(µ)∥Xi

∥whf
i (µ)∥Xi

, i = 1, · · · , Ndd = 4, (40)

and the three ports:

Eport
avg, j :=

1

ntest

∑
µ∈Ptest

∣∣∣∣∣∣shfj (µ)− ŝj(µ)
∣∣∣∣∣∣

Γi∣∣∣∣∣∣shfj ∣∣∣∣∣∣Γi

, j = 1, · · · , Nf = 3. (41)

Figure 10 shows the prediction error Eavg, i for the state w associated with three different local ROMs,
Galerkin, Petrov-Galerkin, and minimum residual, for the four components of the network; Figure 11 shows the
prediction error Eport

avg, j for the control on the three ports for the same choice of the local ROM. In this test,
we do not perform the enrichment of the state spaces described in section 4.4. The Galerkin method exhibits
stability issues, while both the minimal residual and the Petrov-Galerkin methods perform equally well in terms
of accuracy with a relative error of the order of 10−5 for n = m = 20. The prediction of the control variables is
far less accurate: for n = m = 20, the relative error is O(10−1) for port 3 and O(10−2) for the other two ports.
Nevertheless, we envision that the results can still be considered satisfactory, as illustrated by the profiles of
the control g at port 3 shown in Figure 12, where ξ is the local coordinate along the port 3.
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Figure 10: performance for a fixed geometry. Behavior of the error (40) for the subdomains (no enrichment).
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Figure 11: performance for a fixed geometry. Behavior of the error (41) for the three ports (no enrichment).
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Figure 12: performance for a fixed geometry. Profile of the two components of the control g for one representative
parameter value along the port 3 (no enrichment).

In Figure 13, we illustrate the performance of the ROM when we employ the enrichment strategy discussed
in section 4.4. To facilitate comparison, we include dashed lines representing the results obtained without
employing ROB enrichment, which corresponds to the data presented in Figure 11. Here, the number of
additional modes n′ (cf. section 4.4) is chosen to be equal to the dimension of the ROB of the control, m. The
ROB enrichment strategy significantly reduces the prediction error for the control; the state prediction achieved
with ROB enrichment is comparable to the case without ROB enrichment and is not provided below. We further
remark that the enrichment does not contribute to increase the number of SQP iterations: to provide a concrete
reference, for m = 10, SQP converges in six iterations for both cases.
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Figure 13: performance for a fixed geometry. Behavior of the error (41) for the three ports (with enrichment).

20



6.2.2 Performance for a parametric geometry

We incorporate the geometric parameters described in section 2.2, along with the Reynolds number. For each
junction component in the network, we set α ∈ [π8 ,

π
6 ]; for each channel component, we set hc ∈ [0.1, 0.3];

finally, we consider Re ∈ [50, 150] with Reref = 100. We train the ROMs based on ntrain = 120 snapshots and
assess performance based on ntest = 10 randomly-selected out-of-sample parameters. As for the previous test,
we analyze the prediction error for both w and s associated with the different ROMs. Figure 14 illustrates
the prediction error Eavg, i for the four components, while Figure 15 shows the prediction error Eport

avg, k for the
three ports. Interestingly, the Galerkin method is as effective as the minimal residual and the Petrov-Galerkin
methods. All three ROMs yield a state prediction relative error of approximately O(10−4) for n = 20; on the
other hand, the control prediction error is roughly O(10−1) for the third port, and O(10−2) for the other two
ports, for n = 20. In Figure 16, we perform a comparison of ROM errors associated to the three ports, with and
without the ROB enrichment strategy outlined in section 4.4. The dashed lines represent the results obtained
in the absence of ROB enrichment, which correspond to the data shown in Figure 15. As for the previous test,
the ROB enrichment strategy significantly improves the accuracy of the control prediction. Here, the number
of additional modes n′ (cf. section 4.4) is chosen to be twice as large as the dimension of the ROB for the ports
m.
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Figure 14: performance for a parametric geometry. Behavior of the error (40) for the subdomains (no enrich-
ment).
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Figure 15: performance for a parametric geometry. Behavior of the error (41) for the three ports (no enrichment).
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Figure 16: performance for a parametric geometry. Behavior of the error (41) for the three ports (with enrich-
ment).

6.3 Localized training and adaptive enrichment
In the previous test cases, a distinct reduced space is employed for each instantiated component: the same
configuration is used for both training and assessment. This approach is computationally demanding when
dealing with systems that comprise a large number of components; it is also unfeasible in the presence of
topology changes. To address this issue, we apply the localized training and adaptive enrichment algorithms
developed in section 5.

6.3.1 Application to networks with four components

We apply the localized training strategy of sections 5.2 and 5.3, for the same test set of section 6.2.2. In order
to build the reduced space for the control, we consider 60 randomly selected boundary conditions for each
connection described in section 5.2; on the other hand, we generate the reduced space for the state using 20
randomly-sampled networks with four components and the reduced space for the control.

Figure 17 presents the prediction error Eavg, i for the four components, while Figure 18 shows the prediction
error Eport

avg, k for the three ports; we do not rely on the enrichment of the state space (cf. section 4.4). The
results are comparable to those obtained in section 6.2.2 with slight deterioration in accuracy. Figure 19 displays
the ROM errors for the three ports using ROB enrichment (n′ = 2m), as represented by the solid line. The
results exhibit significant improvement when compared to those obtained without the use of the state space
enrichment, as illustrated by the dashed lines, which correspond to the data shown in Figure 18.
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Figure 17: localized training for networks with four components. State prediction error for the four sub-domains.
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Figure 18: localized training for networks with four components. Control prediction error for the three ports
(without enrichment).
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Figure 19: localized training for networks with four components. Control prediction error for the three ports
(with enrichment).

6.3.2 Application to networks with ten components

We apply the full training procedure described in Algorithm 1 to ntest = 10 randomly selected configurations
with ten components. As for the previous test case, we consider independent geometric variations for each
instantiated component and we consider Re ∈ [50, 150]. We only present results for local Galerkin ROMs: the
results obtained using minimum residual projection are comparable and are hence omitted.

Figure 20 shows the local relative error for the state and for the control, over the test set for the CB-ROM
based on localized training: we use the same dataset considered in section 6.3.1 with port-based enrichment (cf.
section 4.4). We observe that the error is roughly 10% for both state and control and does not decrease as we
increase the number of modes.

Figure 21 shows the results for the full application of Algorithm 1. We initialize the algorithm with a ROB
of size m0 = 10 for the control using localized training; we apply the strategy of section 5.3, together with port-
based enrichment, to find reduced spaces for the state of size n0 = 10+10 for each component. Then, we apply
adaptive enrichment: we consider nglotrain = 50 global randomly-selected configurations with ten components; we
mark ms = 1 port, and mw = 1 − 3 components of each type (specifically, we mark 1 component with the
largest error of each type, along with the 2 adjacent components of the marked port). Then, we augment the
bases for state and control with nglo = mglo = 10 modes. We do not apply the port-based enrichment strategy
after each iteration of the adaptive loop (cf. Line 17). If Figure 21, iteration it corresponds to local ROBs of
size m = 10(it+ 1) and n = 10(it+ 2).

We observe that the enrichment strategy clearly enhances the performance of the CB-ROM. This result
empirically demonstrates the importance of adaptive enrichment when dealing with nonlinear PDEs.
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Figure 20: application to networks with ten components. Boxplots of the out-of-sample error for reduced spaces
of several sizes obtained using localized training (without adaptive enrichment).
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Figure 21: application to networks with ten components. Boxplots of the out-of-sample error for several
iterations of Algorithm 1.

7 Conclusions
We developed and numerically validated a component-based model order reduction procedure for incompressible
flows governed by the Navier-Stokes equations. Our point of departure is the optimization-based formulation of
[29]: we included an additional control variable h for the continuity equation that weakly enforces the continuity
of pressure at interfaces; furthermore, we modified the regularization term to damp spurious oscillations of the
control. We relied on sequential quadratic programming to solve the nonlinear optimization problem: at each
iteration of the procedure, we relied on static condensation of the local degrees of freedom to enable trivial
parallelism of the local solves and avoid the introduction of Lagrange multipliers. We relied on projection-based
(Galerkin and Petrov-Galerkin) ROMs to speed up the solution to the local subproblems and we exploited port
reduction to reduce the cost of the global problem. Finally, we adapted the localized training and adaptive
enrichment strategy of [36] to build the local approximation spaces without the need for expensive global HF
solves.

We illustrated the many pieces of our methodology for a parametric steady Navier-Stokes problem at mod-
erate (O(102)) Reynolds number. The new DD formulation enables much tighter control of the discrepancy
between the FE monolithic solver and the DD solution. LSPG projection is superior to Galerkin projection in
the absence of geometric variability; interestingly, Galerkin and LSPG projection show comparable performance
for all the test cases that involve varying geometries. The port-based enrichment of the state space (cf. section
4.4) is key to adequately approximate the control variables. The localized training strategy discussed in this
paper leads to poor reconstructions of the state; adaptive enrichment driven by local error indicators is hence
necessary to achieve accurate reconstructions.

In the future, we plan to extend our method to a broader class of problems including multi-physics (fluid-
structure interaction) and unsteady problems, and to more challenging (higher-Reynolds, three-dimensional)
test cases. Towards this end, it is of paramount importance to devise effective hyper-reduction techniques to
speed up local solves and also the assembly of the objective function. We also plan to combine first-principles
models with data-fitted models to enhance the flexibility of the method.
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A Stabilized FE formulation
For completeness, we review the stabilized finite element formulation employed in the numerical results; we
refer to [38, 39] for a thorough review of stabilized FE methods for incompressible flows. We denote by {Dik}k
the elements of the mesh of Ωi; we further denote by hk,i the size of the k-th element of the mesh, and by r the
degree of the polynomials.
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We consider the residual:

Rhf
i (ui, pi,v, q) = Ri(ui, pi,v, q) +Rsupg

i (ui, pi,v) +Rpspg
i (ui, pi,v) +Rlsic

i (ui,v), ∀ (v, q) ∈ Xi,0. (42a)

The form Ri corresponds to the local residual introduced in (2d), while the other three terms are designed to
improve the stability of the discrete problem. The form Rsupg

i corresponds to the Streamline upwind Petrov-
Galerkin (SUPG, [53]) stabilization, which is designed to handle advection-dominated flows,

Rsupg
i (u, p,v) =

∑
k

∫
Dik

((u · ∇)u+∇p− ν∆u− f) (τsupgu · ∇v) dx; (42b)

the form Rpspg
i is the Pressure-Stabilized Petrov–Galerkin (PSPG) term [40] that is added to the mass con-

servation equation to eliminate spurious modes in the pressure solution when considering the same polynomial
order for pressure and velocity,

Rpspg
i (u, p, q)−

∑
k

∫
Dik

τpspg ((u · ∇)u+∇p− ν∆u− f) · ∇q dx; (42c)

finally, Rlsic
i is the least-squares incompressibility constraint (LSIC) stabilization term that is added to the

momentum equation to improve accuracy and conditioning of the discrete problem [54, 55, 56],

Rlsic
i (u,v) =

∑
k

∫
Dik

(∇ · u) τlsic∇ · v dx. (42d)

In the numerical experiments, following [57], we select the parameters τsupg, τpspg, and τlsic as τsupg = τpspg =

αsupg

[(
2|ui|
hk,i

)2
+ 9

(
4ν
h2
k,i

)2]− 1
2

, τlsic =
h2
k,i

r2τsupg
, where 0 ≤ αsupg ≤ 1 is a constant that enables the adjustment

of τsupg for higher-order elements. In the PTC formulation (cf. (13)), we modify the coefficients τsupg and τpspg

to account for the time step τsupg = τpspg = αsupg

[(
2
∆t

)2
+
(

2|ui|
hk,i

)2
+ 9

(
4ν
h2
k,i

)2]− 1
2

.

B Justification of the pressure jump in the minimization formulation
We consider the configuration depicted in Figure 1 and we assume that the meshes of Ω1 and Ω2 are conforming
on Γ0. We denote by {ϕi}

Nw
i=1 the Lagrangian basis associated with the global space X hf ; we denote by I1, I2

the degrees of freedom associated with the domains Ω1 and Ω2, respectively. We further denote by I0 = I1 ∩I2
the nodes on the interface Γ0; we introduce the local and global Dirichlet nodes I1,dir, I2,dir ⊂ {1, . . . , Nw} and
Idir = I1,dir ∩ I2,dir. By construction, Idir ∩ I0 = ∅ (cf. Figure 1). Finally, we recall the definition of the global
problem

whf(1 : 2)|Γdir
= Φuin , Rhf(whf , z) = 0 ∀ z ∈ X hf

0 , (43)

and the two local problems

whf
i (1 : 2)|Γi,dir

= Φi,uin
, Rhf

i (whf
i , z) + (−1)i

∫
Γ0

s · z dx = 0 ∀ z ∈ X hf
i,0, i = 1, 2; (44)

which depend on the control s.
Since the meshes are conforming, it is possible to verify that

X hf
i = span{ϕj |Ωi

: j ∈ Ii}, i = 1, 2.

Furthermore, the global residual can be expressed as1

Rhf(whf , z) = Rhf
1 (whf |Ω1

, z|Ω1
) +Rhf

2 (whf |Ω2
, z|Ω2

) ∀ z ∈ X hf
0 . (45)

Identity (45) implies that
Rhf

i (whf ,ϕj) = 0 ∀ j ∈ Ii \ I0, i = 1, 2; (46)

therefore, since the bilinear form a(w, z) =
∫
Γ0

w · z dx is coercive in Y := span{ϕj : j ∈ I0}, there exists a
unique s⋆ = vec(g⋆, h⋆) ∈ Y such that

Rhf
i (whf , z) + (−1)i

∫
Γ0

s⋆ · z dx = 0 ∀ z ∈ X hf
i,0, (47)

for i = 1, 2.
Exploiting the previous discussion, we can prove the following result.

1The proof of (45) exploits the expressions of the residuals (42) and (2d). We omit the details. We further emphasize that at
the right hand side of (45) we should use notation Rhf

i (whf |Ωi
, z|Ωi

) for i = 1, 2.
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Lemma 1. Let whf be a solution to (43). The following hold.

1. The triplet (whf |Ω1
,whf |Ω2

, s⋆) where s⋆ satisfies (47) is a global minimum of (6c) for δ = 0.

2. Any global minimum of (6c) for δ = 0 solves (43); in particular, if the solution whf to (43) is unique, the
optimization problem (6b) admits a unique solution for δ = 0.

Proof. Equation (47) implies that the triplet (whf |Ω1 ,w
hf |Ω2 , s

⋆) satisfies the constraints of (6b) (cf. (44));
since whf is continuous, the objective function of (6b) (cf. (6c)) is equal to zero for δ = 0. Since the function
(6c) is non-negative, we conclude that (whf |Ω1

,whf |Ω2
, s⋆) is a global minimum of (6b).

Exploiting the first part of the proof, we find that any global minimum (w1,w2, s) of (6b) satisfies Fδ=0 (w1,w2, s)
Fδ=0(w

hf |Ω1 ,w
hf |Ω2 , s

⋆) = 0. This implies that the function w : Ω → R3 such that w|Ω1 = w1 and w|Ω2 = w2

is continuous and belongs to X hf . Recalling (44), we have that w satisfies w(1 : 2)|Γdir
= Φuin . Furthermore,

since z|Ωi
∈ Xi,0 for any z ∈ X hf , we have that

Rhf(w, z)
(45)
= Rhf

1 (w1, z|Ω1) +Rhf
2 (w2, z|Ω2)

(44)
= −

∫
Γ0

s · z dx+

∫
Γ0

s · z dx = 0,

which is (43). We conclude that w solves (43). If the solution to (43) is unique, exploiting the previous argument,
any solution (w1,w2, s) should satisfy w1 = whf |Ω1

and w2 = whf |Ω2
. Furthermore, since the solution to (47)

is unique, we also find s = s⋆. In conclusion, (6b) has a unique global minimum.

Lemma 1 illustrates the connection between the monolithic problem and the solution to the optimization
problem (6b); the well-posedness analysis in [32] shows that in the continuous limit (i.e., Nw → ∞) h⋆ = 0;
nevertheless, in general h⋆ ̸= 0 for finite-dimensional discretizations. To illustrate this fact, we consider the
solution to the Stokes problem (see Figure 1 for the definitions of the boundary subdomains)

−∆u+∇p = vec(x1, cos(x
2
2)) in Ω = (0, 1)2,

∇ · u = 0 in Ω,
u|Γdir

= vec((1− x2)x2, 0), u|Γ0
dir

= 0, (∇u− pI)n|Γneu
= 0,

based on a P3-P2 Taylor-Hood discretization for three meshes of increasing size. Figure 22(a) shows the final
mesh used for computations whereas the blue dots indicate the interface Γ0; Figure 22(b) shows the behavior
of h⋆ for three meshes with 42, 82, 162 global elements: as expected, as we increase the size of the mesh, the
magnitude of h⋆ decreases.

(a) (b)

Figure 22: justification of the pressure jump; Stokes model problem.

C Justification of the enrichment strategy
We consider the algebraic problem:

min
w∈RN ,s∈RM

∣∣∣Cw − b
∣∣∣ s.t. Aw +Bs = f , (48)
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with A ∈ RN×N , B ∈ RN×M , C ∈ RM×N , b ∈ RM , f ∈ RN and N > M . If A is full rank, any solution (w⋆, s⋆)

to (48) satisfies w⋆ = A−1 (f −Bs⋆) and s⋆ = argmins∈RM

∣∣∣Ds − c
∣∣∣, with D = CA−1B and c = b − A−1f .

Therefore, provided that C is full rank, (48) is well-posed if and only if A−1B is full rank.
Let Z = [ζ1, . . . , ζn] ∈ RN×n, W = [η1, . . . ,ηm] ∈ RM×m and Y ∈ RN×n be orthogonal matrices with

n < N and m < M ; exploiting these definitions, we define the projected problem

min
α∈Rn,β∈Rm

∣∣∣Cα− b
∣∣∣ s.t. Aα+Bβ = f , (49)

with C = CZ, A = Y⊤AZ, B = Y⊤BW and f = Y⊤f . It is straightforward to prove the following result:
here, col(X) denotes the linear space spanned by the columns of the matrix X, while orth(X) is the orthogonal
matrix that is obtained by orthogonalizing the columns of X.

Lemma 2. Let col(A−1BW) ⊂ col(Z) and let Y = orth(AZ). Then, A
−1

B is full rank, and (49) is well-posed.

Proof. We first prove that A ∈ Rn×n is invertible. By contradiction, there exists α ∈ Rn such that Aα = 0.
Since Y = orth(AZ), there exists β ∈ Rn such that AZα = Yβ. We hence find

0 = β⊤Aα = (Yβ)⊤AZα = |AZα|2.

The latter implies that Zα is a non-trivial element of the kernel of A: this is in contradiction with the hypothesis
that A is invertible.

Exploiting the same argument, we prove that B is full rank. By contradiction, there exists β ∈ Rm

such that Bβ = 0. Since col(Y) = col(AZ) and col(A−1BW) ⊂ col(Z), there exist α,α′ ∈ Rn such that
BWβ = AZα′ = Yα. We hence find

0 = α⊤Bβ = (Yα)⊤BWβ = |BWβ|2.

The latter implies that Wβ is a non-trivial element of the kernel sof B: this is in contradiction with the
hypothesis that B is full-rank.

Lemma 2 provides a rigorous justification of the enrichment strategy in section 4.4. The matrix W̃ =
−A−1BW corresponds to the derivative of the state w with respect to the control ŝ = Wβ; the columns
w̃1, . . . , w̃m of the matrix W̃ satisfy

Aw̃k +Bηk = 0, k = 1, . . . ,m,

which corresponds to (24). Similarly, as discussed in [46, 47], the choice of the test space in Lemma 2 is
consistent with (20a).
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