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Abstract. In this paper we consider a 3D magnetic Schrödinger operator
having infinitely many eigenvalues of infinite multiplicity, embedded in the con-
tinuous spectrum. We perturb this operator by a relatively compact potential
and analyse the transition of these eigenvalues into a ”cloud” of resonances.
Several different approaches are employed. First we consider resonances as
eigenvalues of a non-selfadjoint operator by using analytic distortion. Then
we study the dynamical aspect of the resonances and finally we study the be-
havior of the spectral shift function near the infinite-multiplicity eigenvalues.

1. Introduction

We consider a 3D Schrödinger operator H0 with constant magnetic field B =
(0, 0, b), b > 0, and with electric field E = −(0, 0, v′0) where v0 is a scalar potential
depending only on the variable x3. This operator, introduced by Astaburuaga-
Briet-Bruneau-Fernández-Raikov [4], has infinitely many eigenvalues of infinite mul-
tiplicity, embedded in its continuous spectrum. These eigenvalues have the form
2bq + λ, q ∈ Z+ := {0, 1, 2, . . .}, where 2bq, q ∈ Z+, are the Landau levels, i.e. the
infinite-multiplicity eigenvalues of the (shifted) 2D Landau Hamiltonian, and λ is

a simple eigenvalue of the 1D operator − d2

dx2 + v0(x). We introduce the perturbed
operator H = H0 + V where V is a H0-compact multiplier by a real function, and
study the transition of the eigenvalues 2bq+λ, q ∈ Z+, into a ”cloud” of resonances
near 2bq + λ.

We analyze such phenomena using several different approaches. First, we define
resonances via analytic distortion as developed by Hunziker [22] (see also Aguilar-
Combes [2] for the analytic dilation). For the Schrödinger operator with constant
magnetic field, and potentials which are analytic near the real axis, it is standard
to dilate the variable along the magnetic field (see [5], [40], [4]). For potentials
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which are analytic near the real axis only outside a compact set, it is also possible
to distort the variable along the magnetic field and to define resonances near the
real axis. Here a difficulty to justify this definition (i.e. to show the independence
with respect to the distortion) comes from the infinite multiplicity of 2bq + λ as
eigenvalue of H0. This problem is overcome in [26] by introducing appropriate
determinant and considering resonances as zeroes of this determinant rather than
as poles of a resolvent. With this definition, for v0 and V of a sufficiently rapid
decay at infinity, we have an upper bound of the number of resonances in a ring
centered at 2bq + λ with radii r and 2r tending to 0. This estimate is expressed
via the eigenvalue counting function for compact Berezin-Toeplitz operators whose
asymptotics is well-known (see Raikov [33], Raikov-Warzel [36]). However, upper
bounds do not imply accumulation of resonances. In order to perform this analysis,
we assume that the perturbation V is axisymmetric. In this case, as κ ց 0, we
have infinitely many resonances of H0 + κV , which converge to 2bq+λ. We obtain
an asymptotic expansion as κ → 0 of each of these resonances in the spirit of the
Fermi Golden Rule (see e.g. [37, Section XII.6]).

Our second approach consists of considering the dynamical aspect of the reso-
nances. For resonances defined by analytic distortion, we estimate the time decay
of the resonance states. A similar relation between the small-coupling-constant
asymptotics of the resonance, and the exponential time decay of the resonance
states has been established by Herbst [21] in the case of the Stark Hamiltonian,
and later by other authors in the case of various quantum Hamiltonians (see e.g.
[39], [19], [3]). Cancelling the analyticity assumption, we can use the time de-
pendent methods developed in [38] and [13], and, above all, the recent article by
Cattaneo, Graf and Hunziker [12], where the dynamic estimates of the resonance
states are based on appropriate Mourre estimates [29], [23]. Applying a general
abstract result of [12], we formulate a theorem on the dynamics of the resonance
states for axisymmetric V satisfying no analyticity assumptions.

As a last approach, we analyze the behavior of the Spectral Shift Function (SSF)
near 2bq+λ canceling the restriction that V is axisymmetric. For potentials having
analytic continuations near the real axis outside a compact set, we have the so-
called Breit-Wigner approximation which state that near a resonance w = a−ib, the
derivative of the SSF behaves like the harmonic measure: E 7→ b

π((E−a)2+b2) which

tends to the Dirac measure δ(E−a) as bց 0. Such result was obtained by J.F.Bony,
Bruneau and Raikov [7] near the Landau levels for the 3D Schrödinger operator with
constant magnetic field (corresponding to v0 = 0). In the semi-classical regime such
representations were studied by Petkov-Zworski [30, 31], J.F.Bony-Sjöstrand [8],
Bruneau-Petkov [11], Dimassi [14] and Dimassi-Petkov [15, 16] for the Schrödinger
operator and by Khochman [25] for the Dirac operator.

It is natural to think that accumulation of resonances near 2bq+λ will produce
blow up of the SSF. Accumulation of resonances is not yet well understood, but
we can directly analyze the singularities of the SSF. We do not need analyticity
assumption on V and v0, but we suppose that the perturbation V is of definite
sign. As in the work of Fernández-Raikov [18] (see also Briet-Raikov-Soccorsi [9]
and Raikov [34, 35]), using a representation of the SSF due to Pushnitski [32], we
show that the leading term of this singularity can be expressed via the eigenvalue
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counting function for compact Berezin-Toeplitz operators. Using the well-known
results on the spectral asymptotics for such operators (see [33], [36]), we obtain
explicitly the main asymptotic term of the SSF as the energy approaches the fixed
point 2bq + λ for several classes of perturbations with prescribed decay rate with
respect to the variables on the plane perpendicular to the magnetic field.

The paper is organized as follows. In Section 2 we introduce our model. Section
3 is devoted to the resonances defined by analytic distortion. The dynamical aspect
of the resonances is considered in Section 4 while the analysis of the SSF near the
points 2bq+λ is given in Section 5. This article is essentially a survey paper of the
article [4] and the preprint [26].

2. Magnetic Schrödinger operator

We consider a 3D Schrödinger operator subject to an electromagnetic field
(E,B) with electric component E = −(0, 0, v′0) where v0 is a scalar potential de-
pending only on the variable x3, and magnetic component B = (0, 0, b) where b is
a positive constant. In L2(R3) ≈ L2(R2

x1,x2
) ⊗ L2(Rx3), it is given by:

H0 := H0,⊥ ⊗ I‖ + I⊥ ⊗H0,‖

where I‖ and I⊥ are the identity operators in L2(Rx3) and L2(R2
x1,x2

) respectively,

H0,⊥ :=

(

i
∂

∂x1
−
bx2

2

)2

+

(

i
∂

∂x2
+
bx1

2

)2

− b, (x1, x2) ∈ R
2,

is the Landau Hamiltonian shifted by the constant b, and

H0,‖ := −
d2

dx2
3

+ v0, x3 ∈ R,

with, v0, the multiplication operator by v0 ∈ L∞(R,R), satisfying

(2.1) |v0(x3)| = O(〈x3〉
−m0), m0 > 1, 〈x〉 = (1 + |x|2)

1
2 .

The operatorH0,⊥ is self-adjoint in L2(R2). Its spectrum is σ(H0,⊥) = ∪∞
q=0{2bq},

and every eigenvalue 2bq of H0,⊥ has infinite multiplicity (see e.g. [5]). Since v0 is

− d2

dx2
3
-compact, the operator H0,‖ is essentially self-adjoint in L2(R) and

σess(H0,‖) = [0,∞[.

Throughout the article we suppose also that

(2.2) σdisc(H0,‖) = {λ} ⊂] − 2b, 0[.

Hence, the operator H0 is essentially self-adjoint in L2(R3). Moreover, we have
σess(H0) = ∪∞

q=0[2bq,∞[= [0,∞[. Note that 2bq + λ, q ∈ Z+ is an eigenvalue of
infinite multiplicity of H0. If q = 0, this eigenvalue is isolated, and if q ≥ 1, it lies
on the interval [0,∞[.

We want to study the perturbation of H0 by the multiplication operator by the
potential V . Let us introduce the perturbed operatorH = H0+V with V ∈ L∞(R3)
satisfying

|V (x)| = O(〈X⊥〉
−δ⊥〈x3〉

−δ‖), X⊥ = (x1, x2),(2.3)

with δ⊥ > 2 and δ‖ > 1.
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On the domain of H0 the operator H is well defined and σess(H) = σess(H0) =
[0,∞[.

In the following sections we will see that the eigenvalue 2bq + λ, q ∈ Z+ of
infinite multiplicity for the unperturbed operator H0 can generate infinitely many
eigenvalues for H0 + V when q = 0 (see the remarks of Section 5), infinitely many
resonances forH0+V when q > 0 (see Sections 3-4), and singularities of the spectral
shift function for the pair (H0 +V,H0) (see Section 5). When 2bq+λ is embedded
in σ(H0) (i.e. q > 0) and V is axisymmetric, we will see that at least one resonance
remains an embedded eigenvalue and that we can produce as many resonances with
non-zero imaginary part as we wish, provided that the coupling constant is small
enough (see the remarks at the end of Section 4). However we do not know if a
infinite number of resonances have non-zero imaginary part.

3. Resonances via analytic distortion

In this section, we define the resonances of H0 + V as the eigenvalues of the
associated distorted operator H0(θ) + V (θ). We need to assume that the elec-
tric potentials v0 and V have analytic continuation with respect to x3 in a sector
outside a compact set. Then for axisymmetric potentials V , we obtain asymp-
totic expansion as κ tends to 0 of an infinite number of resonances of H0 + κV
which converge to 2bq+λ. This expansion is in the spirit of the Fermi Golden Rule.

We suppose that V and v0 have holomorphic extensions in the magnetic field
direction x3 in the following neighborhood of R\] −R0, R0[:

C(ǫ, R0) := {z ∈ C, | Im(z)| ≤ ǫ|Re(z)|, |Re(z)| ≥ R0}, for 0 < ǫ < 1.

Moreover, we assume that the short range properties (2.3) of V , and (2.1) of v0,
remain valid on R

2 × C(ǫ, R0) for V and on C(ǫ, R0) for v0.

Let us introduce the one-parameter family of unitary distortions in the magnetic
field direction x3:

Uθf(x) = J
1
2

φθ
(x)f(φθ(x)), θ ∈ R, f ∈ S(R),

where φθ(x) = x + θg(x), Jφθ
(x) = det(I + θg′(x)) is the Jacobian of φθ(x) and

g : R 7−→ R is a smooth function satisfying:

(Ag)







(i) supx∈R | g′(x) |<< 1,
(ii) g(x) = 0, on [−R0, R0],
(iii) g(x) = x, on R \ [−R1, R1], R1 > R0.

The choice of R0 in (Ag) depends on the sector C(ǫ, R0) where V and v0 have
analytic extension.

For θ ∈ R, we define

H(θ) := (I⊥ ⊗ Uθ)H(I⊥ ⊗ U−1
θ ) = H0(θ) + V (θ),

H0(θ) = H0,⊥ ⊗ I‖ + I⊥ ⊗H0,‖(θ),

H0,‖(θ) = UθH0,‖U
−1
θ V (θ)(x) = V (x1, x2, φθ(x3)).

By assumption on V and v0, for Dǫ := {θ ∈ C, |θ| ≤ rǫ := ǫ√
1+ǫ2

}, the families
(

H0,‖(θ)
)

θ∈Dǫ

and
(

H(θ)
)

θ∈Dǫ

form analytic families of type A, in the sense of
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Kato (see for instance [24, Theorem 4.5.35], [22] for the Schrödinger operator or
[25, Section 3] for the Dirac operator).

Clearly, the difference of the resolvents of H0,‖(θ) and −(1+ θ)−2 d2

dx2
3

is a com-

pact operator. Hence the essential spectrum of H0,‖(θ) is (1 + θ)−2R+. Moreover,
since each Landau level is an infinite multiplicity eigenvalue of H0,⊥, the essential
spectrum of H(θ) is

σess(H(θ)) = 2bZ+ + σ(H0,‖(θ)).

For θ0 ∈ Dǫ, Im θ0 > 0, this allows to define resonances of H in

Sθ0 =
⋃

q∈N

(

2b]q, q + 1[+(1 + θ0)
−2

R+

)

as the discrete spectrum of H(θ0) in Sθ0 . For two values θ1, θ2 ∈ Dǫ, Im θ1 > 0,
Im θ2 > 0 the discrete spectrum of H(θ1) and of H(θ2) coincide on Sθ1 ∩ Sθ2 (see
[26]). This justifies our definition of resonances which is suitable for our purposes if
θ2 is small enough since we consider resonances near the real axis. The multiplicity
of a resonance w0 is defined by

mult(w0) := rank
1

2πi

∫

Γ0

(z −H(θ0))
−1dz,(3.1)

where Γ0 is a small positively oriented circle centered at w0. We will denote Res (H)
the set of resonances.

For Im θ > 0 fixed, let Ωq be a domain centered at 2bq + λ such that

σess(H0(θ)) ∩ Ωq = {2bq + λ}.

We have the following upper bound on the number of resonances of H in a small
annulus in Ωq centered at 2bq + λ.

Theorem 3.1. [26, Theorem 2.1] Suppose that V and v0 satisfy the hypotheses
cited above. Then there exist r0 > 0 and s > 0, such that for any 0 < r < r0,

#{z ∈ Res(H) ∩ Ωq; r < |z − 2bq − λ| < 2r} = O(n+(r/s, pqWpq)| ln r|),

where W = supx3∈C(ǫ,R0) |〈x3〉
δ‖V |, pq is the orthogonal projection onto Hq :=

Ker(H0,⊥−2bq) and n+(r, pqWpq) is the counting function of the eigenvalues larger
to r of the Toeplitz operator pqWpq.

Let us mention that asymptotic estimates of the counting function n+(r, pqWpq)
as r tends to 0 are known in various cases (see [33, 36] and Proposition 5.2 below).
In particular, under our assumption we have always n+(r, pqWpq) = O(r−2/δ⊥ )
and for V compactly supported, we have n+(r, pqWpq) = O((ln | ln r|)−1| ln r|).

In what follows, we want to study the transition of the eigenvalues 2bq + λ,
q ∈ Z+, into a ”cloud” of resonances which converge to 2bq + λ, for a small per-
turbation κV , κ << 1. In order to perform this analysis, we assume that V is
axisymmetric so that the operator H0 + κV commutes with the x3-component of
the angular-momentum operator L. In this case H0 + κV is unitarily equivalent to

the orthogonal sum ⊕m∈Z(H
(m)
0 + κV ) where H

(m)
0 has 2bq+ λ as a simple eigen-

value. This allows us to reduce the analysis to a small perturbation of a simple
eigenvalue.

More precisely, for a fixed magnetic quantum number m, let us introduce

H
(m)
0,⊥ := −

1

̺

d

d̺
̺
d

d̺
+

(

m

̺
−
b̺

2

)2

− b.
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The operatorH
(m)
0,⊥ is self-adjoint in L2(R+; ̺d̺), and we have σ(H

(m)
0,⊥ ) = ∪∞

q=m−
{2bq}

where m− = max{0,−m} (see e.g. [5]). In contrast to the operator H0,⊥, every

eigenvalue 2bq of H
(m)
0,⊥ is simple.

Set

H
(m)
0 := H

(m)
0,⊥ ⊗ I‖ + Ĩ⊥ ⊗H0,‖

where Ĩ⊥ is the identity operator in L2(R+; ̺d̺). Evidently, for any q ≥ m−, 2bq+λ

is then a simple eigenvalue of H
(m)
0 . We denote Φq,m the associated normalized

eigenfunction:

(3.2) H
(m)
0 Φq,m = (2bq + λ)Φq,m, q ≥ m−.

Let (̺, φ, x3) be the cylindrical coordinates in R3. The operator H
(m)
0 , m ∈ Z, is

unitarily equivalent to the restriction of H0 onto Ker (L −m) where

L := −i

(

x1
∂

∂x2
− x2

∂

∂x1

)

= −i
∂

∂φ

is the x3-component of the angular-momentum operator, which commutes with H0.

Moreover, the operatorH0 is unitarily equivalent to the orthogonal sum ⊕m∈ZH
(m)
0

under the passage to cylindrical coordinates (̺, φ, x3) in R3, and a subsequent
decomposition into a Fourier series with respect to the angular variable φ.

For V axisymmetric, that is depending only on the variables (̺, x3), the op-

erator H0 + κV is unitarily equivalent to ⊕m∈Z(H
(m)
0 + κV (̺, x3)). Moreover,

since L commutes with I⊥ ⊗ Uθ, the same decomposition holds for the distorted
operators. In particular, the analysis of the resonances of H0 + κV is reduced

to the study of the eigenvalues of H
(m)
0 (θ) + κV (θ). Let us mention that some

eigenvalues of H
(m)
0 (θ) + κV (θ) are not resonances of H0 + κV (in the sense of the

above definition), because it could be an eigenvalue of H0(θ) + κV (θ) with infinite
multiplicity.

For the eigenvalues of H
(m)
0 (θ) + κV (θ), we have:

Theorem 3.2. Fix m ∈ Z, q > m−. Under the assumptions of Theorem 3.1,

for V axisymmetric, and for |κ| sufficiently small, the operator H
(m)
0 + κV has a

resonance wq,m(κ) which obeys the asymptotics

(3.3) wq,m(κ) = 2bq+λ+κ〈VΦq,m,Φq,m〉−κ
2 Fq,m(2bq+λ)+Oq,m,V (κ3), κ → 0,

the eigenfunction Φq,m being defined by (3.2). The quantity Fq,m(2bq + λ) is the
standard term of the Fermi Golden Rule. It is given by:

(3.4) Fq,m(2bq + λ) = lim
δ↓0

Fq,m(2bq + λ+ iδ),

where

Fq,m(z) := 〈(H
(m)
0 − z)−1(I − Pq,m)V Φq,m, V Φq,m〉.

Here, 〈·, ·〉 denotes the scalar product in L2(R+ ×R; ̺d̺dx3) and Pq,m is the eigen-

projector onto Ker(H
(m)
0 − (2bq + λ)), the eigenspace generated by Φq,m.

Proof. The proof is as in the analytic case (see Theorem 3.1 of [4]). Let
us give the main ingredients of the proof. Fix θ such that θ0 > Im θ ≥ 0. The

simple embedded eigenvalue 2bq + λ of H
(m)
0 is a simple isolated eigenvalue of

H
(m)
0 (θ). According to the Kato perturbation theory (see [24, Section VIII.2]), for
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sufficiently small κ there exists a simple eigenvalue wq,m(κ) of H
(m)
0 (θ) + κV (θ)

such that limκ→0 wq,m(κ) = 2bq+λ. For z ∈ C in the resolvent set of the operator

H(m)(θ) + κV (θ), put

R
(m)
κ,θ (z) := (H

(m)
0 (θ) + κV (θ) − z)−1.

Then, for |κ| sufficiently small, the eigenprojector on Ker (H
(m)
0 (θ) + κV (θ) −

wq,m(κ)) is

Pκ,q,m(θ) := −
1

2πi

∫

Γ

R
(m)
κ,θ (z)dz

where Γ is a small positively oriented circle centered at 2bq + λ. Moreover, since
wq,m(κ) is a simple eigenvalue, we have

wq,m(κ) = −Tr

(

1

2πi

∫

Γ

zR
(m)
κ,θ (z)dz

)

for Γ and κ as above. Consequently, the asymptotic expansion of wq,m(κ) follows

from the resolvent identity: R
(m)
κ,θ (z) =

R
(m)
0,θ (z) − κR

(m)
0,θ (z)V (θ)R

(m)
0,θ (z) + κ

2 R
(m)
0,θ (z)V (θ)R

(m)
0,θ (z)V (θ)R

(m)
0,θ (z) +O(κ3).

The asymptotic expansion seems depending on θ, but since these quantities are
holomorphic with respect to θ and constants for θ ∈ R, it is independent of θ.
The existence of Fq,m(2bq+λ) come from the 1D limiting absorption principle (see
[1]). �

Remarks: (i) Theorem 3.2 implies that generically near 2bq + λ, q ≥ 1, there
are infinitely many resonances of H0 + κV with sufficiently small κ, namely the

resonances of the operators H
(m)
0 + κV with m > −q.

(ii) Note however that 2bq+λ is a discrete simple eigenvalue of the operator H
(−q)
0 ,

and therefore the operator H
(−q)
0 + κV has a simple discrete eigenvalue provided

that |κ| is small enough. Generically, this eigenvalue is an embedded eigenvalue for
the operator H0 + κV .

4. Dynamical aspect

In this section, we show that the arguments of the previous section gives also
an estimate on the time decay of the resonances states. We mention also the time
dependent approach ([38], [13], [12]) developed in [4] for our model, where no
analyticity is required.

Proposition 4.1. Under the assumptions of Theorem 3.2 there exists a func-
tion g ∈ C∞

0 (R; R) such that g = 1 near 2bq + λ, and

(4.1) 〈e−i(H
(m)
0 +κV )tg(H

(m)
0 +κV )Φq,m,Φq,m〉 = a(κ)e−iwq,m(κ)t+b(κ, t), t ≥ 0,

with a and b satisfying the asymptotic estimates

|a(κ) − 1| = O(κ2),

(4.2) |b(κ, t)| = O(κ2(1 + t)−n), ∀n ∈ Z+,

as κ → 0 uniformly with respect to t ≥ 0.
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Proof. For the detailed proof, we refer to the Proposition 3.1 of [4]. It first
uses the Helffer-Sjöstrand formula,
(4.3)

e−i(H
(m)
0 +κV )t g(H

(m)
0 +κV )Pq,m =

1

π

∫

R2

∂g̃

∂z̄
(z) e−izt (H

(m)
0 +κV −z)−1 Pq,mdxdy

where z = x+ iy, z̄ = x− iy, g̃ is a compactly supported, quasi-analytic extension
of g, and the convergence of the integral is understood in the operator-norm sense
(see e.g. [17, Chapter 8]). Then we consider the functions

σ±(z) := Tr ((H
(m)
0 + κV − z)−1 Pq,m), ±Imz > 0,

As before, we have invariance properties with respect to θ:

(4.4) σ+(z) = Tr (R
(m)
κ,θ (z)P0,q,m(θ)), Im z > 0, θ0 > Im θ > 0,

and from the asymptotic expansion of the resolvent, we obtain:

(4.5) σ+(z) =
(

1 + κ
2r(κ)

)

(wq,m(κ) − z)−1 + κ
2G+(κ, z),

where r(κ) and G+(κ, z) are uniformly bounded with respect to |κ| small enough.
Moreover, z 7→ G+(κ, z) is analytic near 2bq + λ.

Similarly,

(4.6) σ−(z) =
(

1 + κ
2r(κ)

)

(wq,m(κ) − z)−1 + κ
2G−(κ, z),

where G−(κ, z) is analytic near 2bq + λ and uniformly bounded with respect to
|κ| small enough. Now, assume that the support of g is such that we can choose
g̃ supported on a neighborhood of 2bq + λ where the functions z 7→ G±(κ, z) are
holomorphic. Combining (4.3) with the Green formula, we get
(4.7)

Tr (e−i(H
(m)
0 +κV )t g(H

(m)
0 + κV )Pq,m) =

1

2πi

∫

R

g(µ) e−iµt (σ+(µ) − σ−(µ))dµ.

Making use of (4.5) – (4.6), we get

1

2πi

∫

R

g(µ) e−iµt (σ+(µ) − σ−(µ))dµ =
κ2

2πi

∫

R

g(µ) e−iµt (G+(κ, µ) −G−(κ, µ))dµ

+
1 + κ2r(κ)

2πi

∫

R

g(µ) e−iµt (wq,m(κ) − µ)−1dµ

−
1 + κ2r(κ)

2πi

∫

R

g(µ) e−iµt (wq,m(κ) − µ)−1dµ.

Pick ε > 0 so small that g(µ) = 1 for µ ∈ [2bq + λ− 2ε, 2bq + λ+ 2ε]. Set

Cε := (−∞, 2bq + λ− ε] ∪ {2bq + λ+ εeit, t ∈ [−π, 0]} ∪ [2bq + λ+ ε,+∞),

g(µ) := 1, µ ∈ Cε \ R.

Taking into account (4.7), bearing in mind that Imwq,m(κ) ≤ 0, and applying the
Cauchy theorem, we easily find that
(4.8)

Tr (e−i(H
(m)
0 +κV )t g(H

(m)
0 +κV )Pq,m) = (1+κ

2r(κ))e−iwq,m(κ)t+κ
2

∑

j=1,2,3

Ij(t; κ)

where

I1(t; κ) :=
1

2πi

∫

R

g(µ) e−iµt (G+(κ, µ) −G−(κ, µ))dµ,
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I2(t; κ) :=
1

2iπ

∫

Cε

g(µ) e−iµt(r(κ)(wq,m(κ) − µ)−1 − r(κ)(wq,m(κ) − µ)−1)dµ,

I3(t; κ) := −
Imwq,m(κ)

κ2π

∫

Cε

g(µ) e−iµt(wq,m(κ) − µ)−1(wq,m(κ) − µ)−1 dµ.

Integrating by parts, we find that

(4.9) |Ij(t; κ)| = O((1 + t)−n), t > 0, j = 1, 2, 3, ∀n ∈ Z+,

uniformly with respect to κ, provided that |κ| is small enough; in the estimate of
I3(t; κ) we have taken into account that by Theorem 3.2 we have |Im(wq,m(κ))| =
O(κ2). Putting together (4.8) and (4.9), we get (4.1). �

Let us mention that combining Mourre estimates with recent result of Catta-
neo, Graf, and Hunziker (see [12]), Proposition 4.1 can also be obtained under no
analyticity assumptions (see [4, Proposition 4.1]). In this case the index n in (4.2)
depends of the smoothness and decreasing properties of the potentials.

More precisely, for v0 : R → R and V : R+ × R → R set

(4.10) vj(x3) := xj
3v

(j)
0 (x3), Vj(̺, x3) = xj

3

∂jV (̺, x3)

∂xj
3

, j ∈ Z+,

provided that the derivative are well-defined.

For ν ≥ 5, ν ∈ Z+, we assume the multipliers by vj , j = 0, 1, are − d2

dx2
3
-compact,

and the multipliers by vj , j ≤ ν, are − d2

dx2
3
-bounded. Moreover, we assume that

Vj , j = 0, ..., ν are bounded on R+ × R and V tends to 0 at infinity. Then if (2.2)
is also satisfied, the finite limit Fq,m(2bq + λ) exists for q > m− (see [12, Lemma
3.1]), and under the Fermi Golden Rule Fq,m,λ assumption, that is if

(4.11) ImFq,m(2bq + λ) > 0,

holds, we have:

Theorem 4.2. [4, Theorem 4.1] Fix m ∈ Z, ν ∈ Z+, ν ≥ 5. Assume that (2.2)
holds true and the above assumption on v0 and V are fulfilled.
Then if the Fermi Golden Rule Fq,m,λ holds, there exists a function g ∈ C∞

0 (R; R)
such that g = 1 near 2bq + λ, and
(4.12)

〈e−i(H
(m)
0 +κV )tg(H

(m)
0 + κV )Φq,m,Φq,m〉 = a(κ)e−iλq,m(κ)t + b(κ, t), t ≥ 0,

where
(4.13)
λq,m(κ) = 2bq + λ+ κ〈V Φq,m,Φq,m〉 − κ

2Fq,m(2bq + λ) + oq,m,V (κ2), κ → 0.

In particular, we have Imλq,m(κ) < 0 for |κ| small enough. Moreover, a and b
satisfy the asymptotic estimates

|a(κ) − 1| = O(κ2),

|b(κ, t)| = O(κ2| ln |κ||(1 + t)−(ν−5)),

|b(κ, t)| = O(κ2(1 + t)−(ν−6)),

as κ → 0 uniformly with respect to t ≥ 0.
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Remarks: (i) The Mourre estimate is obtained taking the commutator with the
self-adjoint operator:

A := Ĩ⊥ ⊗A, A := −
i

2

(

x3
d

dx3
+

d

dx3
x3

)

.

(ii) For various magnetic quantum Hamiltonians, Mourre estimates can be found
in [20, Chapter 3].
(iii) In [4, Theorem 4.1], the assumptions on V are given in terms of relative bound-
ness. Here we have chosen to simplify these assumptions in order to have the same
hypotheses for Theorem 4.2 and its corollary below.
(iv) There is an evident misprint in the last estimate of Theorem 4.1 in the paper
version of [4]: the exponent at the r.h.s should be −n+ 1 instead of −(n+ 1). The
misprint has been fixed in the last electronic version of ArXiv Preprint 0710.0502.

These dynamical formulas can also be written for the operator H0 + κV . For
m ∈ Z and q ≥ m− denote by Φ̃q,m : R3 → C the function written in cylindrical

coordinates (̺, φ, x3) as Φ̃q,m(̺, φ, x3) = (2π)−
1
2 eimφΦq,m(̺, x3). As consequence

of Theorem 4.2, we have:

Corollary 4.3. Under the assumptions of Theorem 4.2, for every fixed q ∈
Z+, and each m ∈ {−q + 1, . . . , 0} ∪ N with N := {1, 2, . . .}, we have

〈e−i(H0+κV )tg(H0 + κV )Φ̃q,m, Φ̃q,m〉L2(R3) = a(κ)e−iλq,m(κ)t + b(κ, t), t ≥ 0,

where g, λq,m(κ), a, and b are the same as in Theorem 4.2.

Remarks: (i) Generically ImFq,m(2bq + λ) > 0 for all m ∈ Z, and q > m−.
It is justified in [4, Section 5] where are given certain classes of perturbations V
compatible with the hypotheses of Theorems 3.2, 4.2, for which the Fermi Golden
rule Fq,m,λ is valid for every m ∈ Z and q > m− .
(ii) If q ≥ 1, then Corollary 4.3 tells us that typically the eigenvalue 2bq + λ of the
operator H0, which has an infinite multiplicity, generates under the perturbation
κV infinitely many resonances with non-zero imaginary part. Note however that
since we have no uniform estimates on the remainders in the asymptotics of λq,m or
of wq,m, we are only able to prove that for any N for κ sufficiently small, at least N
resonances have non-zero imaginary part. Moreover note that 2bq + λ is a discrete

simple eigenvalue of the operator H
(−q)
0 , and therefore the operator H

(−q)
0 + κV

has a simple discrete eigenvalue provided that |κ| is small enough. Generically, this
eigenvalue is an embedded eigenvalue for the operator H0 + κV .
(iii) If q = 0, then λ is an isolated eigenvalue of infinite multiplicity for H0. By
Theorem 5.3 below, in this case there exists an infinite series of discrete eigenvalues
of the operator H0 + V which accumulate at λ, provided that the perturbation V
has a definite sign.

5. Singularities of the spectral shift function

We suppose that v0 satisfies (2.1) and (2.2). We assume moreover that the
perturbation V : R3 → R satisfies (2.3) with δ⊥ > 2 and δ‖ > 1. Then the
multiplier by V is a relatively trace-class perturbation of H0. Hence, the spectral
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shift function (SSF) ξ(·;H0 + V,H0) satisfying the Lifshits-Krein trace formula

Tr(f(H0 + V ) − f(H0)) =

∫

R

f ′(E)ξ(E;H0 + V,H0)dE, f ∈ C∞
0 (R),

and normalized by the condition ξ(E;H0 + V,H0) = 0 for E < inf σ(H0 + V ), is
well-defined as an element of L1(R; 〈E〉−2dE) (see [28], [27]).
If E < inf σ(H0), then the spectrum of H0 + V below E could be at most discrete,
and for almost every E < inf σ(H0) we have

(5.1) ξ(E;H0 + V,H0) = −rank1]−∞,E[(H0 + V ).

On the other hand, for almost every E ∈ σac(H0) = [0,∞[, the SSF ξ(E;H0 +
V,H0) is related to the scattering determinant det S(E;H0 + V,H0) for the pair
(H0 + V,H0) by the Birman-Krein formula

det S(E;H0 + V,H0) = e−2πiξ(E;H0+V,H0)

(see [6]).
Under the above assumptions, we know (see [4, Proposition 6.1], [10, Proposition
2.5]) that the singularities of the SSF ξ(·;H0 +V,H0) could be only in Z := 2bZ+ +
{0, λ}. Actually, ξ(·;H0 +V,H0) is bounded on every compact subset of R\Z, and
is continuous on R \ (Z ∪ σp(H0 + V )), where σp(H0 + V ) denotes the set of the
eigenvalues of the operator H0 + V .

In this section we give a qualitative result saying that the resonances are poles
of the SSF with estimates of the remainder and a quantitative result stating asymp-
totics behavior of the SSF near 2bq + λ.

For ψ, the normalized real-valued eigenfunction of H0,‖ associated to λ, put

U(X⊥) :=

∫

R

V (X⊥, x3)ψ(x3)
2dx3, X⊥ ∈ R

2,

and for V having analytic continuation in R2×C(ǫ, R0) (see Section 3), we introduce

W (X⊥) := sup
x3∈C(ǫ,R0)

|〈x3〉
δ‖V (X⊥, x3)|.

Clearly, there exists a constant C > 0 such that |U(X⊥)| ≤ CW (X⊥).
If the potentials v0 and V have analytic continuation in C(ǫ, R0) as in Section

3, near the energies 2bq + λ we have the following result for ξ = ξ(·;H0 + V,H0).

Let Ω̃ ⊂⊂ Ω be open relatively compact subsets of C \ {0}. We assume that

these sets are independent of r and that Ω̃ is simply connected. Also assume that
the intersection between Ω̃ and R is a non-empty interval I.

Theorem 5.1. [26, Theorem 2.2] For Ω̃ ⊂⊂ Ω and I as above, there exists a
function g holomorphic in Ω, such that for µ ∈ 2bq + λ+ rI, we have ξ′(µ) =

∑

w∈Res(H)∩2bq+λ+rΩ

Im w 6=0

Imw

π|µ− w|2
−

∑

w∈Res(H)∩2bq+λ+rI

δ(µ− w) +
1

πr
Im g′(

µ− 2bq − λ

r
, r)

where g(z, r) satisfies the estimate

g(z, r) = O (n+(r/s, pqWpq)| ln r| + ñ1(r/s) + ñ2(r/s)) = O(| ln r|r
− 2

δ⊥ ), s > 0,
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uniformly with respect to 0 < r < r0 and z ∈ Ω̃, with ñk, k = 1, 2, defined by the
following trace norm (for k = 1) and Hilbert-Schmidt norm (for k = 2)

ñk(r) :=

∥

∥

∥

∥

pqWpq

r
1[0,r](pqWpq)

∥

∥

∥

∥

k

k

, r > 0.

Let us recall that applying the well known results on the spectral asymptotics
for compact Berezin-Toeplitz operators pqWpq (see [33], [36] and [4, Corollary 1]),
we have:

Proposition 5.2. (i) If W ∈ L∞(R2) satisfy W (X⊥) ≤ C〈X⊥〉−α for some
α > 2, then for each q ∈ Z+:

n+(r, pqWpq) + ñk(r) = O(r−2/α).

(ii) If W ∈ L∞(R2) satisfy

lim sup
|X⊥|→∞

lnW (X⊥)

| X⊥ |2β
< 0

for some β > 0 (with the convention ln(u) = −∞ if u ≤ 0), then for each q ∈ Z+:

n+(r, pqWpq) = O(ϕβ(r)),

ñk(r) = o(ϕβ(r)),

where, for 0 < r < 1
e ,

ϕβ(r) :=







| ln r|1/β if 0 < β < 1,
| ln r| if β = 1,
(ln | ln r|)−1| ln r| if 1 < β <∞.

(iii) If W ∈ L∞(R2) is compactly supported, then for each q ∈ Z+:

n+(r, pqWpq) = O(ϕ∞(r)),

ñk(r) = o(ϕ∞(r)),

where, for 0 < r < 1
e , ϕ∞(r) := (ln | ln r|)−1| ln r|.

Since we have no lower bound on the distribution of resonances, the above
result implies no quantitative behavior of the SSF. However, without analyticity
assumptions, using a representation of the SSF due to Pushnitski [32], for ξ(·;H0±
V,H0), with V ≥ 0, we have:

Theorem 5.3. [4, Theorem 4.1] For each ε ∈ (0, 1),

n+((1+ε)η; pqUpq)+O(1) ≤ ±ξ(2bq+λ±η;H0±V,H0) ≤ n+((1−ε)η; pqUpq)+O(1),

ξ(2bq + λ∓ η;H0 ± V,H0) = O(1),

as η ↓ 0.

Applying the well known results on the spectral asymptotics for compact Berezin-
Toeplitz operators pqUpq (see [33], [36]), we obtain the following:

Corollary 5.4. (i) Suppose that U ∈ C1(R2), and

U(X⊥) = u0(X⊥/|X⊥|)|X⊥|
−α(1 + o(1)), |X⊥| → ∞,

|∇U(X⊥)| ≤ C1〈X⊥〉
−α−1, X⊥ ∈ R

2,
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where α > 2, and u0 is a continuous function on S1 which is non-negative and does
not vanish identically. Then we have

ξ(2bq + λ± η;H0 ± V,H0) = ±
b

2π

∣

∣

{

X⊥ ∈ R
2|U(X⊥) > η

}
∣

∣ (1 + o(1)) =

±η−2/α b

4π

∫

S1

u0(s)
2/αds (1 + o(1)), η ↓ 0,

where |.| denotes the Lebesgue measure.
(ii) Let U ∈ L∞(R2). Assume that

lnU(X⊥) = −µ|X⊥|
2β(1 + o(1)), |X⊥| → ∞,

for some β ∈ (0,∞), µ ∈ (0,∞). Then we have

ξ(2bq + λ± η;H0 ± V,H0) = ±cβϕβ(η) (1 + o(1)), η ↓ 0, β ∈ (0,∞),

where

cβ = cβ(b, µ) :=











b
2µ1/β if 0 < β < 1,

1
ln (1+2µ/b) if β = 1,

β
β−1 if 1 < β <∞.

(iii) Let U ∈ L∞(R2). Assume that the support of U is compact, and that there
exists a constant C > 0 such that U ≥ C on an open non-empty subset of R2. Then
we have

ξ(2bq + λ± η;H0 ± V,H0) = ±ϕ∞(η)(1 + o(1)), η ↓ 0.

Remarks: (i) The threshold behavior of the SSF for various magnetic quantum
Hamiltonians has been studied in [18] (see also [34], [35]), and recently in [9]. The
singularities of the SSF described in Theorem 5.3 and Corollary 5.4 are of some-
what different nature since 2bq + λ is an infinite-multiplicity eigenvalue, and not a
threshold in the continuous spectrum of the unperturbed operator.
(ii) As mentioned above, if λ ∈ σdisc(H0,‖), then λ is an isolated eigenvalue of H0

of infinite multiplicity. According to (5.1), near this eigenvalue, ξ(·, H0 + V,H0) is
a counting function (it is also given by the Pushnitski’s representation of the SSF).
Then Theorem 5.3 and Corollary 5.4 imply that the perturbed operator H0 − V
(resp., H0 + V ) has an infinite sequence of discrete eigenvalues accumulating to λ
from the left (resp., from the right).
(iii) It is conjectured that the singularities of the SSF ξ(·;H0 ±V,H0) at the points
2bq + λ, q ∈ Z+, are due to accumulation of resonances to these points. One sim-
ple motivation for this conjecture is the fact that if V is axisymmetric, then the
eigenvalues of the operators pqUpq, q ∈ Z+, appearing in Theorem 5.3 are equal
exactly to the quantities 〈V Φq,m,Φq,m〉L2(R+×R;̺d̺dx3), m ≥ −q, occurring in (3.3)
and (4.13). We leave for a future work the detailed analysis of the relation between
the singularities of the SSF at the points 2bq+ λ and the eventual accumulation of
resonances at these points.
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