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ABSTRACT. We consider the three-dimensional Laplacian with a magnetic field created by an
infinite rectilinear current bearing a constant current. The spectrum of the associated Hamilton-
ian is the positive half-axis as the range of an infinity of band functions all decreasing toward 0.
We make a precise asymptotics of the band functions near the ground state energy and we ex-
hibit a semi-classical behavior. We perturb the Hamiltonian by an electric potential. Helped by
the analysis of the band functions, we show that for slow decaying potential an infinite number
of negative eigenvalues are created whereas only finite number of eigenvalues appears for fast
decaying potential. The criterion about finiteness depends essentially on the decay rate of the
potential with respect to the distance to the wire.
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1. INTRODUCTION

1.1. Motivation and problematic.

e Physical context. We consider in R? the magnetic field created by an infinite rectilinear
wire bearing a constant current. Let (z, %, 2) be the cartesian coordinates of R and assume
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2 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

that the wire coincides with the z-axis. Due to the Biot & Savard law, the generated magnetic
field writes

1
B(QS’, Y, Z) = 7,_2(_ya z, 0)

where r := 4/x? + y? is the radial distance corresponding to the distance to the wire. Let
A(z,y,z) := (0,0,logr) be a magnetic potential satisfying curl A = B. We define the
unperturbed magnetic Hamiltonian

Hp = (—iV — A)? = D2 + D; + (D, —logr)*; D; = —i0,

initially defined on Cj°(R?) and then closed in L?*(R?). It is known (see [24], and [25] for a
more general setting) that the spectrum of H o has a band structure with band functions defined
on R and decreasing from +oo toward 0. Then the spectrum of Hp is absolutely continuous
and coincides with [0, +c0). In that case the presence of the magnetic field does not change
the spectrum (i.e. S(Ha) = &(—A)), that may be expected since the magnetic field tends
to O far from the wire. In this article we study the ground state energy of H and its stability
under electric perturbation. These questions are related to the dynamic of spinless quantum
particles submitted to the magnetic field B and perturbed by an electric potential.

o Comparison with the free Hamiltonian. In general the spectrum of a Laplacian may be
higher in the presence of a magnetic field (see [2]). As already said, in our model we still
have &(Ha) = R,. However the dynamics are very different from the free motion, see
[24] for a description of the classical and quantum dynamics of this model. As we will see,
the behavior of the negative spectrum under electrical perturbation is also different that what
happens without magnetic field.

If V is a multiplication operator by a real electric potential V' such that V(H + 1)7! is
compact then the operator /o — V' is self-adjoint, its essential spectrum coincides with the
positive half-axis and discrete spectrum may appear under 0.

Let us recall that, due to the diamagnetic inequality (see [2, Section 2]), the operator
V(Ha + 1) is compact as soon as V(—A + 1)~! is compact. For any self-adjoint oper-
ator H, we denote by N'(H, \) the number of eigenvalues of H below —\ < 0. Then we have
([2, Theorem 2.15]):

(1.1) N(Ha —V,0") < C’J Vi (z,y,2)2dzdydz, V. :=max(0,V).
R3

In particular, /5 — V has a finite number of negative eigenvalues provided that V. € L: (R3).
But this condition, also valid for —A — V/, is not optimal in presence of magnetic fields as the
results of this article will show.

We will prove that the discrete spectrum of our operator /4 — V' below 0 is less dense than
for —A — V (see Theorem 1.3 and Corollary 1.4), in the sense that for some V' the operator
—A — V has infinitely many negative eigenvalues whereas N'(Ha — V,0") < +o0.

e Magnetic Hamiltonian and band functions. Several models with constant magnetic field
have been studied in the past years. We recall some of them below. In most cases the system
has a translation-invariance direction and the magnetic Laplacian is fibered through partial
Fourier transform, therefore its study reduces to the study of the band functions that are the
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spectrum of the fiber operators. The spectrum of the Hamiltonian is the range of the band
functions (see [9] for a general setting) and the ground state energy is given by the infimum
of the first band function. The number of eigenvalues created under the essential spectrum by
a suitable electric perturbation depends strongly on the shape of the band functions near the
ground state energy as shown on the examples below:

For the case of a constant magnetic field in R", the perturbation by electric potential is
described for example in [23] or [18]. When n = 2, the band functions are constant and equal
to the Landau levels. In [20] the authors deal with very fast decaying potential. In that case
they prove that the perturbation by an electric potential even compactly supported generates
sequences of eigenvalues which converge toward the Landau levels, that is very different from
what happens without magnetic field where only a finite number of eigenvalues are created by
compactly supported electric perturbation.

In general the band function associated with a Schrodinger operator are not constant. The
case where the band functions reach their infimum is described in [ 19] where the author study
the perturbation of a Schrodinger operator with periodic electric potential and no magnetic
field, whose band functions have non-degenerated minima, providing localization in the phase
space. Let us come back to the case with constant magnetic field. When adding a boundary,
the band functions may not be constant anymore. For example when the domain is a two-
dimensional infinite strip of finite width with constant magnetic field, it is proved that all the
band functions are even with a non-degenerate minimum, see [8]. In [4], the authors investigate
the behavior of the spectral shift function near the minima of the band functions, providing the
number of eigenvalue created under the ground state energy when perturbing by an electric
potential. Other examples of such a situation is the case of a half-plane with constant magnetic
field and Neumann boundary condition, see [6, Section 4], the case of an Iwatsuka model
with an odd discontinuous magnetic field, [15, Section 5] and also the case of the Dirichlet
Laplacian on a twisted wave guide, [3].

The case of a half-plane with a constant magnetic field and Dirichlet boundary condition
is more intriguing and somehow closer to our model: in that case the bottom of the spectrum
of the magnetic Laplacian is the first Landau level, but the associated band function does not
reach its infimum. In [6], the authors gives the precise behavior of the counting function when
perturbing by a suitable electric potential. Analog situations based on Iwatsuka models are
described in [5] or [14].

All the above described situations deal with constant magnetic field and the associated band
functions are well separated near the ground state energy in the sense that the infimum of the
second band function is larger than the ground state energy. In our case, the magnetic field is
non constant and there are infinitely many band functions that accumulate toward inf &(H, ),
see Figure 1, adding a technical challenge when studying the ground state energy.

In this article, we give a precise description of the spectrum of H s near 0 with asymptotic
expansion of the band functions. Then, we study the finiteness of the number of the negative
eigenvalues of Hy — V for relatively compact perturbations V. On one hand, we display
classes of potentials giving rise to an accumulation at 0, of an infinite number of negative
eigenvalues, on the other hand, under a decreasing property of V., we prove the finiteness
of the discrete spectrum of /o — V' below 0. We obtain a class of polynomially decreasing



4 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

potentials for which /o — V' has a finite number of negative eigenvalues while the negative
spectrum of —A — V is infinite.

1.2. Main results. Using the cylindrical coordinates of R?, we identify L?(R?) with the
weighted space L*(R, x (0,27) x R,rdrdpdz) and the operator Ha writes:

T :
Hp = —=0,r0, — — + (logr — D)
r r

acting on functions of L?(R, x (0,27) x R, rdrdpdz).

Let us recall the fibers decomposition of H that can be found with more details in [24].
We denote by F3 the Fourier transform with respect to z and ® the angular Fourier transform.
We have the direct integral decomposition (see [21, Section XIII.16] for the notations about
direct decomposition):

O @
OF3HAF;O* = ZJ gm(K)dE
me7Z, Y kER
where the operator
1 2
(1.2) Im(k) = —;57«7"@ + % + (logr — k)2

is defined as the extension of the quadratic form
m2
dhw) = [ (10O + Zo () + ogr = kP ) rr
Ry

initially defined on C{°(R; ) and closed in L?(R, ) := L*(R, rdr).

For all (m, k) € Z x R the operator g¢,,(k) has compact resolvent. We denote by A, (k),
n € N*, the so-called band functions, i.e. the n-th eigenvalue of g,,(k) associated with a
normalized eigenvector uy, , (-, k).

It is known ([24], see also Section 2.1) that k — A, ,,(k) is decreasing with
lim A, . (k) = +0o0; lim A, . (k) = 0.
k—+0

k——0
Exploiting semi-classical tools (with semi-classical parameter h = e, k >> 1, see Proposi-
tion 2.2), we obtain asymptotic behaviors of the eigenpairs of g,,(k) as k tends to infinity. The
main result of Section 2 is the following

Theorem 1.1. For all (m,n) € Z x N*, there exist constants C,, ,, > 0 and ko € R such that
forall k € (ko, +0),

(1.3) Amn(k) = (20 — 1)e ™ 4 (m? — 1 - 22lye=2k) < 0 o702
This asymptotics shows that all the band functions tend exponentially to the ground state
energy and cluster according to their energy level, see Figures 1 and 2.

Let us consider V, a multiplication operator such that V' (Ha + 1)~ is compact. Considered
in L2(R, x (0,27) x R,rdrdedz), V is a function of (r,p, 2) and it is said axisymmetric
when it does not depend of ¢.
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We want to know how reacts the ground state energy of o under electrical perturbation.
For slowly decreasing potentials (with respect to r), we have an infinite number of negative
eigenvalues of Hp — V:

Theorem 1.2. Assume V' is a relatively compact perturbation of Ha such that
(1.4) Viz,y,z) = {z,y))" *vi(z), a>0.

If o and v | satisfy one of the assumptions (i), (ii) below, then, Hx — V' has an infinite number
of negative eigenvalues which accumulate to 0.

(i) a < L and v, € L*(R) such that
J vy (z)dz > 0.
R

(i) vi(z) = Clz)™ Y withy > 0and o + F < 1.

The ideas of the proof will be discussed in Section 1.3 below.

We also have conditions giving finiteness of the negative spectrum.

Theorem 1.3. Assume V' is a relatively compact perturbation of Ha such that

(1.5) Viz,y, z) < (z,9))" " vi(2),
with a > 1, and v, € LP(R) a non negative function with p € [1,2].

Then Ha — V has, at most, a finite number of negative eigenvalues.

Let us give some comments concerning the above results in comparison with known border-
line behavior of perturbations of the Laplacian. Due to the diamagnetic inequality, one might
expect for most cases that the density of negative eigenvalues is more important for —A — V'
than for /o — V. Although it is not true in general (see Exemple 2 after Theorem 2.15 of [2]),
the above results illustrate this phenomenon. Theorem 1.2 is a case where the number of neg-
ative eigenvalues in presence of magnetic field is infinite as without magnetic field. Thanks to
Theorem 1.3, we see that the borderline behavior of the perturbation determining the finiteness
of the negative spectrum of Hp — V is different than for —A — V. In particular, we obtain:

Corollary 1.4. Let V be a measurable function on R3 that obeys

(z,y))" )T < Viz,y,2) < C(z,y)) ()77,
witha +v <2, > 1and vy > %

Then the operator —A — V' has infinitely many negative eigenvalues while the negative
spectrum of Hx — V' is finite.

Proof. Since {(x,y))~(z)™" = {(z,y, z))~ @), according to [21, Theorem XIII.6] we know
that for V(z,y, 2) = ((z,y))"*(z)~7 with a+~ < 2, the operator —A — V" has infinitely many
negative eigenvalues. The corollary is then deduced from Theorem 1.3. 0
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A natural open question concern the existence of a borderline behavior of V' which deter-
mine the finiteness of the negative spectrum of /a — V. Using our results, if such a borderline
potential V}, exists, it necessary satisfies:

C{(@,y)) ()™ <V < Ol(z, ) ()™,

with0 < o <max(1 —%;1), 7 > 0and oy > 1,74 > 3.

1.3. Contents and ideas. We described here the main line of the article and the methods we
use to prove Theorems 1.2 and 1.3.

e Philosophy of the proofs. In view of it fibers decomposition, the low-lying energies of Ha
are reached by low values of A, (k) (corresponding to large frequencies k). Thus, in order
to analyze negative eigenvalues of perturbations of H 4, we need asymptotic behavior of the
eigenpairs of the reduced operators (g, (k))mez for large k.

For existence of negative eigenvalues of Hao — V' (Theorem 1.2), by using min-max princi-
ple, the assumption (1.4) allows to consider axisymmetric potentials V' (r, z) = {r)=* v, (z).
Then we are reduced to prove existence of at least one negative eigenvalue for each operator
Hajo,=m) — V., m € Z. The proof uses a construction of quasi-modes based on the eigen-
functions associated with A, (k) that leads to a one-dimensional operator in the z variable.
The key point is a projection (in the r variable) of the potential V' onto the eigenfunctions
of g,,(k) that are localized near the wells of the potential (logr — k)? for large k (formally
r ~ e¥). For V(r,z) = {r)~*v,(z), the reduced operator compared to H|(s,—m) — V Wwrites
shortly as D? — e~**v + A,,.,(k). Then using Theorem 1.1 for n fixed (for instance n = 1),
Am.1(k) is approximated by C,,e~* and we obtain at least one negative eigenvalue for large &
as soon as o < 1. For o > 1, the method fails because existence of negative eigenvalues of
D? — e~y + A\, (k) is far from evident.

The above method does not provide all the negative eigenvalues of /o — V' and cannot
be applied to get the finiteness of negative eigenvalues. The proof of Theorem 1.3 uses a
more global analysis with the Birman-Schwinger principle. Let V' (r,2) := (r)y"*wv,(2). It
is sufficient to show that the number of eigenvalues larger than 1, of the compact operator
T(X\) = V2(Ha + \)~'V2, is uniformly bounded with respect to A > 0. It is not difficult to
see that, 7%, (), the contribution of the energies of H 4 larger than v > 0, gives rise to a finite
number of eigenvalues. Then the challenge is to choose v > 0 sufficiently small such that
T-,(A) := T(N\) — T, () has small eigenvalues (i.e. < 1). For that, we control the Hilbert-
Schmidt norm of 7_,, () by a convolution product between some effective potential involving
the r-behavior of V' and the Fourier transform of v,. We show that when o > 1, the norm of
T-,()\) is controlled by a convergent series (corresponding to the sum of the projections along
all the band functions) times O(v*~!), and therefore goes to 0 as v — 0.

e Organisation of the article. In Section 2 we recall basis on the fibers of the operator Ha
and their associated band functions \,, ,,(k). We give the localization of the associated eigen-
functions for large k£ and we prove Theorem 1.1. We also provide numerical computations of
the band functions. In Section 3, we construct quasi-modes for the perturbed operator 5 — V'
and we are led to study a one-dimensional problem in order to prove Theorem 1.2. Based
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on a uniform lower bound of the band functions, Section 4 combines the Birman-Schwinger
principle with results of Section 2 to prove Theorem 1.3.

2. DESCRIPTION OF THE 1D PROBLEM ASSOCIATED WITH THE UNPERTURBED
HAMILTONIAN

In this section we first recall results from [24] on the behavior of the band functions k& —
Am.n (k). Then we give Agmon estimates on the associated eigenfunctions and we perform an
asymptotic expansion of \,, ,(k) when k goes to +0.

Depending on the context we shall work with different operators all unitarily equivalent to
the operator g,,(k) written in (1.2). Table 1 in the annex gives a description of these operators
and the notations we use.

2.1. Semi-classical point of view.

o Global behavior of the band functions. As in [24], we introduce the parameter
hi=e"

such that logr — k = log(hr). The scaling p = hr shows that g,, (k) is unitarily equivalent to
1 2
2.1) g, (h) = —h2;appap + hQ% 1 log2(p)

acting on L3(Ry) := L*(R4, pdp). We denote by (ftmn(h), Wmn(-,h))n=1 the normalized
eigenpairs of this operator and by q}" the associated quadratic form. We have i, ,,(h) =
Am.n (k) and

o (ps 1) = Bty (% ~log h)

where u,, (-, k) is a normalized eigenfunction associated with \,,, (k) for g,,,(k). Using the

min-max principle and the expression (2.1), it is clear that i — fi,,, ,(h) is non decreasing on
(0, +o0) and therefore k — \,, (k) is non increasing on R. This was already used by Yafaev
(see [24]) who, moreover, shows (see [24, Lemma 2.2 & 2.3]) that

}llli% ,um,n(h) =0 and hlililm ,umm(h) = +00.
Note that these results are extended to more general magnetic fields in [25, Section 3].

o The fiber operator in an unweighted space. Sometimes it will be convenient to work in an
unweighted Hilbert space on the half-line, therefore we introduce the isometric transformation

M LRy, rdr) — L*(R,,dr)
u(r) — /ru(r)

and we define §,, (k) := Mg, (k) M*. This operator expressed as
2 1

- m
(2.2) Gm(k) = =02+ 3 L 4 (logr — k)?,

acting on L*(R, ) and its precise definition can be derived from the natural associated quadratic
form initially defined on C°(R ) and then closed in L*(R, ).
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2.2. Agmon estimates about the eigenpairs of the fiber operator. We write
1
9 (h) = =h*=0,p0, + V"
p

with
2

m m
Vi(p) = log®(p) + hQE :
Let q" denote the natural associated quadratic form. Assume that ;. is an eigenvalue satisfying
p < E + O(h) with E = 0, the eikonale equation on the Agmon weight ¢ writes
h2|¢/|2 _ th - E

that is )
log*(p) - E  m?
O ==+ -

A solution is given by ¢,,(p)/h with

p m2 /
f ((log p)?—FE+ h27) dp
1 p +

This function provides the general Agmon estimates:

Proposition 2.1. Let E > 0 and Cy > 0. For all § € (0,1) there exist C(E,5) > 0 and
Zol; 0 such that for all L2-normalized eigenpairs (j1,w,) of @,,(h) with i < E + Coh, there
olds:

[ ¢
@4 Yhe(0,h), ¥, < C(E,B) and q, (eﬁThu#> <C(E,f).

(2.3) ®n(p) ==

Proof. This proposition is an application of the well-known Agmon estimates for 1D Schrodinger
operators with confining potential. First we have the following identity for any Lipschitz
bounded function ¢, see for example [22], [1] or [12]:

(2.5) (@ (R)u, 62¢U>L%(R+) = q;'(c®u) — h2|\¢/€¢u|\%g(ﬂh) :
In particular when u = u,, is an eigenfunction associated with the eigenvalue 1 we get

(2.6) f (R?10,(e®up)|* + (Vi — W2/ — 1) |e®Pun]?) pdp = 0.
R4

We now use this identity with ¢ = ¢,,/h where ¢,, is defined in (2.3). The remain of the proof
is classical and can be found with details in [1 1, Proposition 3.3.1] for example. U

Note that

#0) = d0lp) = || /(g =~ E) 0y

that does not depend neither on m nor on h. Therefore (2.4) remains true replacing ¢;, by ¢,
and we get L? estimates uniformly in m, in particular:

o)
(2.7) VB e (0,1),Yhe (0,h), [e” " tnnl(, 1) 2@, < C(E,B)




GROUND STATE OF A 3D MAGNETIC HAMILTONIAN 9

for all normalized eigenfunction w,, (-, k) of g,,(h) associated with any eigenvalue ji,, ,,(h)
satisfying fi,, »(h) < E + Coh where Cy > 0 is a set constant.

When £ = 0 (that means that we are looking at the low-lying energies), the Agmon distance
@, is explicit:

7
bo(p) = J | log p'|dp’| = |plogp — p+1] .
1

Let us express this in the original cylindrical variable » = # with the Fourier parameter k =
— log h. The associated Agmon distance writes

2.8) @o(r k) = P00 gy (re) = rlogr — k) 1+ .

Writing the previous estimates in these variables we get that for & large enough:
(2.9) H65‘1>0(.,k)um7n(.’ k)||L$(R+) < C(0,3) and Heﬂ%("k)ﬁm,n('a ]C)HLQ(R” < C(0, )

where Uy, (1) 1= /T U (-, k) is @ normalized eigenvector associated with \,, ,(k) for the
operator §,,(k) in the unweighted space L?(R, ), see (2.2).

The function r — ®y(r, k) is positive, decreasing on (0, ¢*) and increasing on (e, +0).
It vanishes when r = ¢*, so (2.9) means that the eigenfunctions of the operator gm(k) are

localized in the minimum of the wells, reached for r = €.

2.3. Asymptotics for the small energy. In this section we provide an asymptotic expansion
of fim () for fixed (m,n) when h goes to 0, namely:

Proposition 2.2. For all (m,n) € Z x N* there exists C,,,,, > 0 and hg > 0 such that
Vhe (0,h0), |pmn(h) — (2n — 1)k — (m? =1 - 2=Wyp2) < €, B2,

4

The operator g,,(h) written in (2.1) is a semiclassical Schrodinger operator with a potential
which has a unique minimum at p = 1. We will use the technics of the harmonic approximation
as described in [7], [22] or [11] to derive the asymptotics of the eigenvalues. The remain of
this section is devoted to the proof of Proposition 2.2 which implies Theorem 1.1 because

A (k) = pmn(e7F).
e Canonical transformations. As above we introduce the operator g,,(h) := Mg, (h)M* in
the unweighted space where M : u(p) — /pu(p). We get

~ 124 2m2—i 2

acting on the unweighted space L?(R ). Apply now the change of variable ¢ = %Ll We get

that g,,(h) is unitarily equivalent to hg,,,(h) where
log?(1 + v/ht) ok m? — %1
h (1 +/ht)?

acting on L?(I;,) with I;, = (—=h™"/2 +0). As we will see below, this operator has a suitable
shape to make an asymptotic expansion of its eigenvalues when h — 0.

8 (h) i= —07 +
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o Asymptotic expansion and formal construction of quasi-modes. We write a Taylor expansion
of the potential near ¢t = 0:

log(1 + v/ht) m? — 1

(2.10) - + hl T 2 — WA 4+ (Bt +m? — Db+ R(t, h)
where R(t, h) will later be controlled by (1 + [t])>h3/2.
We write
§,,(h) = Lo+ hY2Ly + hLy + R(-, h)
where
L() = —83 + t2,
Ll = —t3,

Ly := (%t4 +m? — }L) .
At first we consider these operator as acting on L?*(R) and we look at a quasi-mode for Ly +

hY2Ly + hL, defined on R. Using a suitable cut-off function this procedure will provide a
quasi-mode for g, (h).

We look for a quasi-mode of the form
(E(h), f(-,h)) = (Eo + h*?Ey + hEy, fo + K2 f1 + hfy) .

We are led to solve the following system:

(2.11a) Lofo = Eofo,
(2.11b) Lifo+ Lofi = Eofi + E1 fo,
(2.11¢) Lofo+ Lifi + Lofo = Eofo + E1fi + Eofa .

Since L is the quantum harmonic oscillator, to solve (2.11a) we choose for F the n-th Landau
level:

(2.12) Ey=2n—-1 n=1
and
fo=fon =¥, n=1
where U, is the n-th normalized Hermite’s function with the convention that W (t) = (2m)
We take the scalar product of (2.11b) onto f ,, and we find
Ey = {(Lo — Eo) f1, fon) + {L1fons fon) = {L1fons fon) -

Notice that f, is either even or odd and that L f,, has the opposite parity. Therefore the
function L, fo, - fo, is odd for all n > 1 and we get

_ _ 42
1/4p—t2/2.

(2.13) FE;=0.
We find f; by solving (2.11b):
(2.14) (Lo — Eo)fi = —Lifon = 20, (1) .

Using tW,,(t) = /25 U1 (L) + /5 W1 (t), we write £, (¢) on the basis of the Hermite’s
functions:
tS\Ijn (t) = anan—S(t) + bn\pn—l(t) + qujn-i-l(t) + dnq}n-i-?»(t)
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with

an = 2792/ (n = 1)(n - 2)(n - 3)
b, = 27323(n — 1)@

< Cn = 2_3/2371\/5

| dn = 2732 /n(n +1)(n +2) .

Therefore the unique solution to (2.14) orthogonal to f ,, is:

(2.15) n

WV
“b—‘

G, b, Cn d,
J1=fin:= (_E\Ijn—ii - 5‘%—1 + E‘Ijn-&-l + qun+3)

with a,, = 0 whenn < 3 and b,, = 0 when n = 1 (see (2.15)).
We now take the scalar product of (2.11c) onto fj ,:
(2.16) Ey = {La fon, fom) + {L1fin, fon) -

Computations provide

<L2f0,n7 fO,n> = (% ‘thO,nHQ =+ m2 — le)

(%(2712 —2n+1)+ m? — }l)
and
2

Lafuns o =

therefore we get
—1 1
2.17) By = <—M+m2——> .

We deduce from (2.11c¢):

(LO - EO)f2 = EQfU,n - Llfl,n - L2f0,n .

Since the compatibility condition is satisfied by the choice of Es (see (2.16)), the Fredholm al-
ternative provides a unique solution fy = f3,, orthogonal to f . As above it may be computed
explicitly using the Hermite’s functions. Notice that f5,, depends on m as Ej, see (2.17).

We finally define

22 @2\ 1
% %%*E”)z—(*30n2+30n11),

fm,n(ta h) = fO,n(t) =+ hl/Qfl,n(t) =+ hfZ,n(t)

o Evaluation of the quasi-mode and upper bound. The above construction provides functions
fmn(:, h) defined on R. Let

Enn(h) := By + h'*E, + hE,
where Fy, E/; and E5 are defined in (2.12), (2.13) and (2.17). We check that

(Lo + W20y + hLy — Ep(h ) frn (-, ) = W2 ((Ly = Ev) fam + (Lo — Ea) f1)+h*La fo
and we get Cy, , > 0 such that

(2.18) | (Lo + hY2Ly + hLy — Enyn(R)) faun(s B) |22y < Connh®?.
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We will now use a cut-off function in order to get quasi-modes for g, (). Let x € C°(R, [0, 1])
be a cut-off function increasing such that x(f) = 0 when ¢ < —1/2 and x(¢) = 1 when
t > —1/4. We define x(t, h) := x(h'/?t) and

O (t, h) := X (t, h) frun(t, ).

Recall that g,,,(h) acts on L*(I,) with [, = (—=h™"2 4o0). Since supp (0,n(-, 1)) <
(=3h™Y2, +0) and ©,,,(-, h) has exponential decay at +c0, we have b,,,, € dom(g,,(h)),
MOreover:

2.19) [ (@n(h) = B (h) O (- 2) |25y < I8 (R) X (5 )] frnn (3 1) | 222

HxC YRGB fonn (5 D) 2 HIX Gy R) (Lo + B2 Ly 4 WLy = Enn(B)) frnn (5 D) 2201,
where R(t, h) is defined in (2.10) and satisfies

(2.20) 3C > 0,Yh > 0,Vt e supp(x (-, h)), |R(t,h)| < CR*?(1 + |t])°.

Notice that supp(x’) and supp(x”) are supported in [—3h~Y2 —1n=Y2]. Since fr (-, h)
and f/ . (-, h) have exponential decay, standard commutator estimates, combined with (2.18),
(2.19) and (2.20), provide:

(2.21)

| (8 (h) = Epn(h)) Umn(-, W2 < Cnnh®?,
100 (, 1) 222y = 1] < Connh™2.

Since g,,(h) is unitarily equivalent to hg,,,(h), ftm.(h)/h is the n-th eigenvalue of g,,(h) and
the spectral theorem applied to (2.21) shows that

Nm,n(h>
h

and we have proved the upper bound of Proposition 2.2.

HC'm,n, aho > 0, Yh e (O, ho), {

(2.22) 3Cym, 3ho > 0,Yh € (0, ho) < Epn(h) + Cpnh®?

o Arguments for the lower bound. The complete procedure for the proof of the lower bound
of the eigenvalues of g,,(h) using the harmonic approximation can be found in [7, Chapter 4]
or [11, Chapter 3]. We recall here the main arguments. Let

Do (t, h) := (1 + Vht)log(1 + Vht) — Vht, te I,

be the distance of Agmon in the ¢-variable, the estimate provided in (2.7) becomes:

VB e (0,1), e’ hoﬁmn( )| 2y < C(E, B)

where 1, ,,(-, 1) is the n-th eigenvector associated to g,,(h). Therefore there holds a priori
estimates on the eigenfunctions proving that they concentrate near ¢ = 0 when A tends to 0.
These eigenfunctions are then used as quasi-modes for the first order approximation L, and
this provides a rough lower bound on the eigenvalues ”( ) of g,,(h) by the eigenvalues
of Ly that are the Landau levels, modulo some remainders Combining this with (2.22), we
obtain the existence of gaps in the spectrum of g,,(h) and the spectral theorem applied to

(2.21) proved the lower bound on #™ ”( ) and therefore the lower bound of Proposition 2.2.
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2.4. Numerical approximation of the band functions. We use the finite element library
Mélina ([16]) to compute numerical approximations of the band functions A, ,,(k) with 0 <
m < 2and 1 < n < 4. For k € [—2,6], the computations are made on the interval [0, L]
with L large enough and an artificial Dirichlet boundary condition at » = L. According to
the decay of the eigenfunctions provided by the Agmon estimates we have chosen L = 2¢° so
that the region {r ~ ¢*}, where are localized the associated eigenfunction, is included in the
computation domain.

On Figure 1 we have plot the numerical approximation of A, ,,(k) for the range of param-
eters described above. According to the theory, they all decrease from +oo toward 0. Notice
that the band functions may cross for different values of m.

On figure 2 we have zoomed on the lowest energies A << 1 and we have also plotted the
first order asymptotics k& — (2n — 1)e~*. We see that for set 1 < n < 4, the band functions
A (k)o<m<a cluster around the first order asymptotic (2n — 1)e~* according to Theorem 1.1.

14
m=0
m=1
m=2
12 B
\\
10 \\ f
\
\
8 - —
5 6

FIGURE 1. The band functions A, , (k) for0 <m <2and1 <n <4andk € [-2,6].



14 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

0.5 \ T
m=0
m=1
0.45 m=2 !
— — — (2n-1)exp(-k)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

FIGURE 2. Zoom on the lowest energies compared with the first order asymp-
totics (2n — 1)e~*. Each cluster corresponds to an energy level n.

3. CONSTRUCTION OF QUASI-MODES AND INFINITENESS OF NEGATIVE
EIGENVALUES

In this section we prove Theorem 1.2 giving infinitely many eigenvalues below 0 for a slowly
decreasing perturbation.

First, we consider V' depending only on (r, z) and we construct quasi-modes which allow to
reduce the existence of infinitely many negatives eigenvalues to the existence of one negative
eigenvalue for some 1D-effective problems D? — V,, .. Then, we study the effective potential
Vin,n and conclude the proof of Theorem 1.2.

3.1. Quasi-modes. We construct quasi-modes for the perturbed operator H5 — V' where V' is
axisymmetric. Let

V(T 0, 2, k) := e™e®2y,, o (r k) f(2)
where f € L*(R), (m,n, k) will be chosen later and u,,, ,,(-, k) is a normalized eigenfunction
of g, (k) associated with A, ,, (k). We have:

Lemma 3.1. For any € > 0,
3.1
(HA=V)mms Yy < (L)X (B) | fl T2+ (1+€7") | Daf (2@ —Vinn (o k) fs iz
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with

(3.2) Vi (2, k) := f | Wy (T, k:)|2V(r, z)dr; U (1, k) 1= AT U (1, ).

Proof. We have

HAwm,n(n QD, Z, k) = eimcpeika(Z)gm(k,)umm (’I“, k)
+ eim“"eikzumvn(r, k) (Dif + 2(logr — k)sz(z)) ,
that is

(Ha — V)mn(r, v, 2, k) = Mpn(K)Vma(r, @, 2, k)
+ emeethz o (1, k) (Dif +2(logr — k)D, f(z) — V(r, z)f(z)) )

(HA - V)qvbm,n : ¢m,n = Am,n(kj)um,n(n k‘)2f(2)2+
U7, K2 (D2 (2) + 2(l0g 7 = K)D.f () = V{1, 2)f(2) ) T (2).
Integrating over (, z) in the weighted space (R, x R, rdrdz) we get
(33) <(HA — V)¢m,m wm,n>L2(R+ xR,rdrdz) = )‘m,n(k)HfHQLQ(R)

+ Do fI* + QJ (log 7 = k) |ttm,n(r, k) * D= f (2) f (2)rdrdz — f Vinn (2, k)| £ () [*dz.

T2 z

Then, using that for any € > 0,

[2(logr — k) D.f(2)f(2)| < e(logr — k)*[f(2)]* + ¢ | D.fI*,

we deduce,

{(Ha = V)¥mm Yy < Ama (k) T2y + A+ € ) | Dof 72w

+6f (10g7" - k)2|um,n<ra k>‘2’f(2)‘27”d7"d2 - <Vm,n('7 k)f7 f>L2(R)-

Since in the sense of quadratic form in L?(R, x R, rdrdz), we have (logr — k)? < g,,(k), we
obtain (3.1) using again that g,, (k)tm (7, k) = Apn (k) tmn (7, k). O

Remark 3.2. According to the Feynman-Hellmann formula, the third term in the right hand
side of (3.3) is related to the derivative of A, ,,(k):

N (k) = —2 J (log 7 — ) [t (r, ) Prelr

T2

This quantity could be studied more carefully as in [13] where it is done for another fibered
operator, but here, we need only some rough estimates.
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3.2. Estimate on the reduced potential. We are looking at the asymptotic behavior of the
1D potential z — V,, (2, k) (defined in Lemma 3.1) by using the localization properties of
the eigenfunctions 1, ,(-, k) when k goes to +co. In this section all the Landau’s notations
refer to an asymptotic behavior when k goes to +00. Set (m, n) € Z x N*, C,, ,, > 2n — 1 and
choose k large enough such that A, (k) < C,,,e™"* (see Theorem 1.1). Write R = [}, U Ul
with I;, = [e¥ — a(k), e + a(k)] and a(k) = o(e*) will be chosen later. We use (2.9) with
E=0:

J |ﬂm,n(r, k)Pd’I“ < C(()?B) sup e—ﬁ‘b()(r,k)
oIy

T'ECIk

where the Agmon distance @ is defined in (2.8). Since @ (-, k) is decreasing on (0, €*) and
increasing on (e*, +00) we have

inf ®q(-, k) = min(Po(e* + a(k), k)).

Cly

Since a(k) = o(e*), we have an asymptotic expansion at these points:

1
Do(e” +a(k), k) = =a*(k)e™ + O(a(k)®e™%).
k—+o 2
Assume that
(3.4) lim a*(k)e™ = 400 and lim a®(k)e 2" =0
k—+00 k—+00
(for instance a(k) = e, < § < 2) then we have
o BPo(cFtak) k) efga(k)%—’“
k—+o00
and for such an a(k) we get
(3.5) sup e Aok e Falk)?e™
TECIk k—+o0

We have

TEIk

Vi (2, k) = inf V (r, z)f (U (7, ) | dr
I,

> inf V(r,2)(1 — C(0, B) sup e #Pork))
reli reCly,
where we have used ||t (-, k)| L2, ) = 1.

Set 8 € (0, 1) once for all. Choose ¢ > 0. Then we deduce from the choice of a(k) in (3.4)
and (3.5) that there exists kg that depends a priori of (m,n) such that

(3.6) Vk = ko, Vze R, Vyn(z, k) = (1—e¢)inf V(r, 2)

rely
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3.3. Proof of Theorem 1.2. According to the min-max principle, since V satisfies (1.4), it
is sufficient to prove the infinity of the negative eigenvalues for the axisymmetric potential
V(r,z) = {r)=®v,(z). Let us denote by H' the restriction of Hp to e™¥L?(R, x R, rdrdz).
For V' axisymmetric,

(3.7) Ha —V is unitarily equivalentto  ®,,cz (Hy — V).

Then Hp — V has infinitely many negative eigenvalues provided that ' — V has at least
one’s for all m € Z, a fact that we prove below.

From now on we denote by o1(H) the first eigenvalue (whenever it exists) of a self-adjoint
operator H. We deduce from the min-max principle and Lemma 3.1 that for any n € N*,

o(HY = V) <oy ((1 + e D2 — V(o k) + (1 + e))\m,n(k))

=(1+e Yoy (D§ — Vi (5 k) + eAm,n(k)> :

€
1+e¢

In particular, let us fix n = 1. For V (r, z) = {r)~“v,(2), the inequality (3.6) implies:
Vk = ko, VzeR, V(2 k) = Ce v (2),

and choosing k large enough such that \,, 1 (k) < C,.e ¥ (C,, exists thanks to Theorem 1.1),
we deduce

(3.8) oi(Hy = V)< (1+ e No(D? — e vy + eCre™).

Then we apply the following lemmas (Lemma 3.3 and Lemma 3.4), for k sufficiently large
with A(k) = e7*, v = <0, and A(k) = eC,e ™ and (3.8) provides

VmeZ, o (HY—-V)<0
We deduce Theorem 1.2 from (3.7).

3.4. Lemmas on negative eigenvalues for a family of some 1D Schrodinger operators.
Lemma 3.3. Let h(k) = D? — A(k)v on R, k € R with:
ve L'(R); J v(z)dz > 0, A(k) > 0.
R
Let \(k) be a positive function of k € R such that
®9 Jim M) =05l s

Then, for k sufficiently large, o1(h(k) + A(k)) < 0.

= 0.

Proof. Let us introduce the L?—normalized function
on(2) == a(k)ze R

with a(k) satisfying limy_, ., a(k) = 0 and to be chosen. We use v (z) as a quasi-mode:

h(k)oe, ve> = a(k)? — A(k)a(k) fR o(z)e2a 0l



18 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

Since

lim | v(z)e 2@k, = f v(z)dz > 0,

for k sufficiently large, there exists C' > 0 such that:
(h(k)vg, vy < a(k)? — CA(k)a(k).

By using the min-max principle, it remains to chose a(k) such that a(k)? — CA(k)a(k) <

—A(k). Under the assumption (3.9), the polynomial X% — CA(k)X + \(k) has two real roots

ar (k) >a_(k) > 0witha_(k) < éi‘\—((kk)) tending to 0 as & tends to infinity. Then, there exists

a(k) such that, for k sufficiently large,
Ch(k)vg, vy < —=A(k),
and Lemma (3.3) holds. ]
Lemma 3.4. Let h(k) = D?> — Vi, on R, k € R with V;, satisfying:
Vi(z) 2 ME)2)™5 v e(0,2); A(k) €(0,1).
Let (k) be a positive function of k € R such that

Ak
(3.10) T )2 —0
k=t A ()2

Then, for k sufficiently large, o1(h(k) + A(k)) < 0.

Proof. Using the change of variable { = A(k) 75 2, it is clear that h(k) is unitarily equivalent
2~
to A(k)z h(k) with

sy 2L ¢
Mk = De A(/c)?"'vv'“(Aw)Q?)'

By assumption on V}, we have:

1 : = 2)-3 2\ -7
N <A(k)217> > (A5 (R) + ¢)F > (1+¢)

where we have used A(k) € (0,1). Then the min-max principle implies that the number of

negative eigenvalues of h(k) + A(k) is larger that the number of eigenvalues of DZ — ({)™"

below —%. Since v < 2, it is known (see [21, Theorem XIII.82]) that Dg — {¢)"" has
AT (k)

infinitely many negative eigenvalues. Then under the assumption (3.10) the number of negative

eigenvalues of (k) + (k) tends to infinity with & and in particular Lemma 3.4 follows. [J
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4. FINITE NUMBER OF NEGATIVE EIGENVALUES FOR PERTURBATION BY SHORT
RANGE POTENTIAL

The aim of this section is to prove Theorem 1.3. In Section 4.2, we study a Birman-
Schwinger type operator and reduce its study to the analysis of some compact canonical op-
erator involving the contribution of the small energies (A, (k) < v << 1). Exploiting that
the eigenfunctions associated with \,,, (k) are localized near e* and a uniform lower bound of
the band functions (see Section 4.1) we obtain (in Section 4.3) an upper bound of the Hilbert-
Schmidt norm of this canonical operator. Then, we are able to prove Theorem 1.3 by using
Birman-Schwinger principle and a Weyl’s inequality (see Section 4.4).

4.1. Uniform estimates for the one-dimensional problem. In order to prove Theorem 1.3
we need a uniform lower bound on the band functions near 0.

Lemma 4.1. Let vy > 0. There exists Cy > 0 such that for all (m,n, h) € Z x N* x (0, +00)
satisfying fim n(h) < vy we have

e proof. For convenience, first we work with the operator

1 - . m?
g,,(h) = —h2;§pp§p + V™ with V™ (p) := log®(p) + hQF.

We notice that in the sense of quadratic form we have g,,(h) = g,(h) and dom(g,,(h)) <
dom(g,(h)), therefore for all m € Z there holds fi,,, n(h) = po.»(h) and it is sufficient to prove
the result for m = 0.

We will split the proof depending on which region belongs the parameter h:

(1) For h € (0,hq) with hg > 0 to be chosen, we will use the semi-classical analysis
and the Agmon estimates on the eigenfunctions in order to compare g,(h) with more
standard operators. The idea is to bound from below the potential log® p on a suitable
interval by a quadratic potential such that the associated operator has known spectrum.

(2) On [hg, +0), we use the increase of i, (h) with respect to both n and A in order to
get uniform estimates.

(1): Assume /i, ,(h) < 1. Denote by 0 < p; < 1 < p, the two real numbers (depending
on vg) such that
log*(p1) = log*(p2) = .
Set pi € (0, p1)s € (p2+o0) and I(v) = (ph, ph)- Let M (1) := min(gby(p}), b))
where the Agmon distance ¢, has already been introduced in Section 2:

Do(p) = L” \/(10g2(P) — I/o)+dp .

By construction we have M (vy) > 0 and since j,(h) < v, the Agmon estimate (2.7)
provides hg > 0 such that (uniformly in n):

Vh e (0, ho), f g, (p, h)*pdp < C(yojﬁ)e*ﬁM(uo)/h
CI(I/())
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where 5 € (0,1) is set.
Recall that 1t,,, ,, (p, h) = \/p U n(p, h) is a normalized eigenfunction of g,,,(h) = Mg, (h) M*
associated with the eigenvalue i, ,,(h). According to Proposition 2.1 (combined with above

arguments), it satisfies
4.1)

Vh e (0, ho), f \ﬁo,n<p,h>\2dp+h2f 10,20, (p, h)[Pdp < C(vg, B)e M W0)/h
CI(vo) CI(ro)

For later use, we notice that since g,,,(h) > g,(h), in the sense of quadratic form, Proposi-
tion 2.1 gives also for iy, ,:
4.2)

Vh € (0, ho), f o, 1) *dp = f [t n(p; P)Ppddp < C (o, B)e M0
CI(vo) CI(ro)

uniformly with respect to (1, n) such that y,, ,(h) < 1. This estimate will be used in Section
4.3.

Set ¢y € (0, p}). Let x € C*(R4, [0, 1]) be a cut-off function such that x = 1 on /(1) and
X = 0on (0, p] —€) U (ph + €, +0).

We define J (1) := (p} — €0, ph + €0) and g;’(h) the operator acting as

2 22 2
—h=0; + log™(p)

on L*(J(1p)) with Dirichlet boundary conditions. Clearly x1iy,(-, 1) belongs to the domain
of g;°(h) and we have

(80" (h) = po.n(h) (XBo.n (-, ) = (hQ[—ﬁi, x]+ 4—22h2><) Ugn(-h).

Remark that supp(x’) and supp(x”) are included in C(/(1y)). Using (4.1), we get another
constant C’(vp, ) > 0 such that

1(86° (R) = 100 (A)XTo,n (-, 1)l 2300y < €' (v, B)e™ MO 4 s

and
11— X0 (-, 1)l 2oy | < C (o, B)e M0/,

~L

We denote by ,,(gy’(h)) the n-th eigenvalue of g.°(h). Due to the Spectral Theorem, the
previous estimates indicate that there exists an eigenvalue of g’ () near 1 ,,(h) up to an error
in O(h?). Therefore there exists C” (14, 3) > 0 such that

(4.3) (80’ (h)) < pou(h) + C" (o, B)R”.
We now bound from below o,,(g,’(h)) using a lower bound on the potential. We have
(4.4) 3C(w) € (0,1),Yp e J(v), Clr)(p—1)* < log*(p).

Let us introduce the harmonic oscillator
g (h) := =03+ C(w)(p— 1), peR

initially defined on C°(R) and closed in L?(IR), whose eigenvalues are {C (v9)"/?(2n—1)h} nens.
Due to (4.4) and to the min-max principle (see for instance Section XIII.15 of [21]) we have
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(800 (h)) = C(v)Y?(2n — 1)k for all n € N* and for h € (0, hg). Therefore combin-
ing it with (4.3) we have proved the existence of hy > 0 and Cy > 0 such that for all
(n,h) e N* x (0, ho) such that g, (h) < vy, there holds

Yh e (0, ho), /,Lo’n(h> = C(]nh

(2): We now have to deal with the region h € (hg, +0). Since p1(h) tends to +co as h tends
to +o0, there exists h,, > 0 such that

VneN*,Vh = hy,, pon(h) = poi(h) = vo.

Therefore we are led to prove the lower bound for h € [hg, h,,]. The sequence (po.,(ho))n>1
converges toward +00, therefore due to the monotonicity of i — 1 ,,(h) we get

Hno € N*, Yn > No, Vh e [ho, h,jo], ,UO,n(h) = 1.

Define Cj := Hool—fEhO) > 0, by construction, for all (n, h) € N* x [hg, hy,] such that g, (h) <
0]
vy we have ,uom(h) Conh, therefore the lemma is proved for h € [hg, h,, |.

4.2. Decomposition of the Birman-Schwinger operator for axisymmetric potentials. For
A > 0 and a non negative relatively bounded potential V', we introduce the Birman-Schwinger
operator:
4.5) T(\) :=V2(Ha +\) V2,
Fix a real number v > 0 (chosen sufficiently small later) and let us decompose 7'(\) on the
low energies { ' < v} and the high energies {F > v} of Hy:
(4.6) T(A) =T, (N) + 15, (N),
with

Toy(A) i= VE(Ha + X) o (Ha)VE  Toy(N) i= VE(Ha + A) 10 (Ha) V2.
Since Haly, +oo[(Ha) = v, the operator 7%, () is uniformly bounded with respect to A > 0.

On the other hand, according to the decomposition:

Hp = O*F} Z LR mn (k) P (k)dE | F3®,
€

(m,n)EZxN*

with P, (k) © f — {fitmn(: k) )tmn(-, k), the orthogonal projection onto wuy, (., k) €
L*(R,,rdr), we have

](Am,n(k))

T.,(\) = V20* Fi Z LR o

(m,n)EZxN*

Then, for an axisymmetric potential V', T, (\) is unitarily equivalent to the direct sum @®,,,ez K, 1 ()
with

® 8 . 1(0malk)
Jo 2 P0G

keR e

Kym(\) = V2 F: ( dk:) FVe,
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defined in L2(R, x R,drdz), with B, ,,(k) := M?* Py (k)M = (., Ui (k) Vi (k, .), the
orthogonal projection onto Uy, ,, (., k) € L*(Ry, dr), Uy n(r, k) = /Tt n(r, k).
Let us introduce the operator:
Sm(N) : L*(R,1*(N*)) — L*(R; x R,drdz),
defined, for (g,,(.))nen+ € L*(R, lQ(N*)) by
g ZZk]— [0,v] ()\m,n(k))
neNE man(K) +A)2
Its adjoint is given, for f € LQ(RJr x R,drdz), by
L tooa®) [y
Sm(N)*(f)),, (k) = e U n(r, k) (V2 f)(r, z)drdz.
(Sm(A)* (), (k) = NI ()+A)%R+xm (r, k) (V2 f)(r, 2)
It is easy to check that K, ,,(\) = Sm()\) Sy (A)*, and thus we have proved:

4.7) Sm(A)(gn) (1, 2)

U (1, k)dE,

Lemma 4.2. Let A\ > 0, v > 0 and V' be a non negative relatively bounded potential. The
Birman-Schwinger operator defined by (4.5) satisfies: T'(\) = T<,(X) + T-,(\), where:

o 1., () is uniformly bounded with respect to \ = 0,
e ForV axisymmetric, T, () is unitarily equivalent to @,,c7,Sm,(\) Spm(X)* with S, ()
defined by (4.7).

4.3. Norm estimate of the canonical operator. For S,,()\) defined by (4.7), we prove the
following upper bound of the Hilbert-Schmidt norm of S,,,(A)*S,, ().

Proposition 4.3. Let V' be the axisymmetric potential V (r,z) := {r)"* v, (z) with o > 1 and
a non negative function v, € LP(R), p € [1,2]. Then there exist C > 0 and vy > 0 such that
forallv e (0,vy) and X > 0,

VmeZ, |Sn(N)*Smn(A)]e < Ot
First we have:

Lemma 4.4. There exist C > 0 and vy > 0 such that for all v € (0,1v9) and X > 0, the
following upper bound of the Hilbert-Schmidt norm holds:

4.8) VmeZ, |ISn(N*S,(\)3 < CZJJ Lot (K3 V)t (K, ) |01 (K — K)|?dKdk

where we have set Lot Conn ()
tmn (K, V) = —E\):n(l:;i ) ek

Proof. We check that Sm()\)*Sm()\) : LA(R, 1*(N*)) — L*(R, *(N*)) corresponds with

(4.9) (Sm(k)* Gn))n (K) =

f f U (1, )V (1, 2 ZJ Gt (k) L gt (K )il (7, k) e** =P AR drrd 2
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where we have denoted
1[0,1/] (>\m7n(k))

L. (k):= )
n (k) Amn (k) + A

The integral kernel of this operator is
Mo (ks k') 1= Ly (k) Ly (K) f J V (1, 2) U (7, ) e (1, K )= dzdr

L () Lo ()T (K — B) f<r>—aam,n<r, it (r, K )dr.

r

Then the Hilbert-Schmidt norm is given by

(4.10) 472 S, (A\)*Sm(N)]2 =

S [ B 7L 7508~
nn’ k JE

2
J<T>‘aﬂm,n(r, k) Uy o (7, K')dr| - dRedk.

Set vy > 0 and (m,n, k) such that A, ,,(k) < vy. Applying (4.2) we know that there exists
I (1) = [pek, pheF], p) < 1 < ph, such that for any k > kq sufficiently large (independent
of (m,n)),

f T | i (K, 7) [ dr<f | Uk, 7) [* dr < C(wg, B)e PM 00
¢ Cl (v0)

I (vo)

with § € (0,1) and M (vp) > 0. On the other hand, on I; (1), we have

)™ | U (k,r) ]2 dr < C(Vo)e_akf | Wy (K, 1) ]2 dr < C’(Vo)e_ak.
It (vo)

I (vo)

Consequently,
(4.11) f Y™ | (k) |? dr = O(e™ %),
Ry

uniformly with respect to (m, n, k) € Z x N* x R satisfying A, ,,(k) < 1. We deduce (4.8)
from (4.10), by using the Cauchy-Schwarz inequality. 0

We now estimate the norm of the function ¢,,, , (k, v):
Lemma 4.5. There exists C' > 0 and vy > 0 such that for all (m,n, k) € Z x N* x R, we have
a—1

14

Yve (0,v9),Yg =1, |tmn(, V)| <C

ne

Proof. Set vy > 0 and assume \,, ,(k) < 1. According to Lemma 4.1 there exists Cy > 0
such that

(4.12) Amn(k) = Cone™*,
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uniformly with respect to (m, n, k) € ZxN*xR. Then for v € (0, 1) there holds 1o ) (A, (K))

1jo, 21(ne~") and for any A > 0 we have
0
Lo (Amn(k)) _ 1 _
HmeH%q :J [0, ]( : ( >)6 aqkd/{<f e~k L
k ()\m,n<k) + )\)q k>=log an (Am,n<k) + )\)q
1
(—a+1)qk
< e dk
(Con)q Jk?log an

B 1 (a—1)q

~ q(a—1)(Con)e \ Con
and the lemma is proved. O

We notice that the r.h.s of (4.8) coincides with
¢ Z J b (s V) (b (-, v) # [UL[7) ()
nn k

Since v, € LP with p € [1,2], then |07|*> € LP/? with p/ = 557 = 2. Young’s inequality
provides for all ¢ > 1:
lmn! * 61 L™ X ||lmn'| Le 1/)1 o X |[tman/||Le|| VL] Lp
| o P T Y | S T PR LN
where z% + % =1+ % We now use Holder’s inequality combined with lemma 4.5 and we get
for all (m,n,n'):
200—2
nanlae’

€ ) [ tmalho ) om0+ TP ENE < sy
k

Since o > 1, we get

2 f (b 7)o () ¢ T P) )R = O ) D) 3

n=1 n'>1 (n,)a

1

and therefore using Lemma 4.4 we conclude the proof of Proposition 4.3.

4.4. Proof of Theorem 1.3. Let A > 0, for simplicity we denote by N'(\) := N (Ha — V, \)
the number of negative eigenvalues of H5 — V' below —\. We want to prove that there exists
C > 0 independent of A, such that N'(\) < C.

The Birman-Schwinger principle gives for A > 0,
4.13) NO) =n, (1,T(A)>,

with T'(\) defined by (4.5) and where for a self-adjoint operator 7', n (s, T") := Tr 15 .0\ (T);
is the counting function of positive eigenvalues of 7.

Exploiting the decomposition of the Lemma 4.2 for v > 0 and the Weyl’s inequality, for
any € > (, we have

(4.14) s (1,T(A)> <n, (1 - e,T<l,()\)) + s (e, T>,,(>\)).

<
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Since the compact operator 7%, () is uniformly bounded with respect to A > 0 then for v > 0
fixed there exists C', > 0 such that forall A > 0

4.15) ne (e TV) < G

For T_,(\), according to the min-max principle, the assumption (1.5) allows to reduce the
study of the counting function to the axisymmetric potential V' (r, z) = {r)"*v, (z). Combin-
ing Lemma 4.2 with Proposition 4.3, for such V', we have:

T N)] = 509 S (N)Sia(N)"] = $p |9, (A)*Sin (W] < s1p [S,n(1)*Sin(W)a < Cv

with C' > 0 and v € (0,1y), o fixed. Then choosing v sufficiently small, all eigenvalues of
T-,()\) are smaller to 1 — € and n <1 — €, T<l,()\)> = 0. Consequently, combining (4.13),

(4.14) and (4.15), we deduce that A/(\) is uniformly bounded with respect to A > 0 and
Theorem 1.3 holds.

Remark 4.6. Instead of the Hilbert-Schmidt norm in Proposition 4.3 we could consider the
trace norm of S,,,(A)*S,,(A), but in such an estimate, v, has to be integrable and Theorem 1.3
would hold only for p = 1.
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APPENDIX A. TABLE OF SYMBOLS FOR THE UNPERTURBED OPERATOR AND ITS

FIBERS
Notation | Operator Space Form | Eigenpairs
Hp (—iV — A)? L?(R3) spectrum= R |
gm (k) —%&m&r + T—; + (logr — k)? L2(Ry,rdr)| ¢k, (A (k) tmn(r, k))
T
gm(k) | =07 + m; L+ (logr — k)? LRy, dr) | @y | Qe (k) U (1, k)
g (h) | —h*10,p0, + h2Z + log?(p) L*(Ry, pdp)| am | (Bmn(R), tnn(p, b))
gn(h) | —h%0 + th : +10g (p) L*(R4,dp) | & | (g (R)s Bnn(ps )
2 1
8n(h) | —0F+ hw +(log(1+hY2))2 | LA (I, dt) | dhy | (Bt (R), By (t, 1))

TABLE 1. Operators and notations. Remind that p = hr with r = y/22 + 32,
h=e*and I, = (—h Y% +0).
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