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ABSTRACT. We consider the three-dimensional Laplacian with a magnetic field created by an
infinite rectilinear current bearing a constant current. The spectrum of the associated Hamilton-
ian is the positive half-axis as the range of an infinity of band functions all decreasing toward 0.
We make a precise asymptotics of the band functions near the ground state energy and we ex-
hibit a semi-classical behavior. We perturb the Hamiltonian by an electric potential. Helped by
the analysis of the band functions, we show that for slow decaying potential an infinite number
of negative eigenvalues are created whereas only finite number of eigenvalues appears for fast
decaying potential. The criterion about finiteness depends essentially on the decay rate of the
potential with respect to the distance to the wire.

Keywords: Magnetic Schrödinger operators, discrete spectrum, band functions

2010 AMS Mathematics Subject Classification: 35P20, 35J10, 47F05, 81Q10, 81Q20

1. INTRODUCTION

1.1. Motivation and problematic.

‚ Physical context. We consider in R3 the magnetic field created by an infinite rectilinear
wire bearing a constant current. Let px, y, zq be the cartesian coordinates of R3 and assume
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2 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

that the wire coincides with the z-axis. Due to the Biot & Savard law, the generated magnetic
field writes

Bpx, y, zq “
1

r2
p´y, x, 0q

where r :“
a

x2 ` y2 is the radial distance corresponding to the distance to the wire. Let
Apx, y, zq :“ p0, 0, log rq be a magnetic potential satisfying curlA “ B. We define the
unperturbed magnetic Hamiltonian

HA :“ p´i∇´Aq2 “ D2
x `D

2
y ` pDz ´ log rq2; Dj :“ ´iBj

initially defined on C80 pR3q and then closed in L2pR3q. It is known (see [24], and [25] for a
more general setting) that the spectrum ofHA has a band structure with band functions defined
on R and decreasing from `8 toward 0. Then the spectrum of HA is absolutely continuous
and coincides with r0,`8q. In that case the presence of the magnetic field does not change
the spectrum (i.e. SpHAq “ Sp´∆q), that may be expected since the magnetic field tends
to 0 far from the wire. In this article we study the ground state energy of HA and its stability
under electric perturbation. These questions are related to the dynamic of spinless quantum
particles submitted to the magnetic field B and perturbed by an electric potential.

‚ Comparison with the free Hamiltonian. In general the spectrum of a Laplacian may be
higher in the presence of a magnetic field (see [2]). As already said, in our model we still
have SpHAq “ R`. However the dynamics are very different from the free motion, see
[24] for a description of the classical and quantum dynamics of this model. As we will see,
the behavior of the negative spectrum under electrical perturbation is also different that what
happens without magnetic field.

If V is a multiplication operator by a real electric potential V such that V pHA ` 1q´1 is
compact then the operator HA ´ V is self-adjoint, its essential spectrum coincides with the
positive half-axis and discrete spectrum may appear under 0.

Let us recall that, due to the diamagnetic inequality (see [2, Section 2]), the operator
V pHA ` 1q´1 is compact as soon as V p´∆ ` 1q´1 is compact. For any self-adjoint oper-
ator H , we denote by N pH,λq the number of eigenvalues of H below ´λ ă 0. Then we have
([2, Theorem 2.15]):

(1.1) N pHA ´ V, 0
`
q ď C

ż

R3

V`px, y, zq
3
2 dxdydz, V` :“ maxp0, V q.

In particular, HA´ V has a finite number of negative eigenvalues provided that V` P L
3
2 pR3q.

But this condition, also valid for ´∆´ V , is not optimal in presence of magnetic fields as the
results of this article will show.

We will prove that the discrete spectrum of our operator HA ´ V below 0 is less dense than
for ´∆ ´ V (see Theorem 1.3 and Corollary 1.4), in the sense that for some V the operator
´∆´ V has infinitely many negative eigenvalues whereas N pHA ´ V, 0

`q ă `8.

‚ Magnetic Hamiltonian and band functions. Several models with constant magnetic field
have been studied in the past years. We recall some of them below. In most cases the system
has a translation-invariance direction and the magnetic Laplacian is fibered through partial
Fourier transform, therefore its study reduces to the study of the band functions that are the



GROUND STATE OF A 3D MAGNETIC HAMILTONIAN 3

spectrum of the fiber operators. The spectrum of the Hamiltonian is the range of the band
functions (see [9] for a general setting) and the ground state energy is given by the infimum
of the first band function. The number of eigenvalues created under the essential spectrum by
a suitable electric perturbation depends strongly on the shape of the band functions near the
ground state energy as shown on the examples below:

For the case of a constant magnetic field in Rn, the perturbation by electric potential is
described for example in [23] or [18]. When n “ 2, the band functions are constant and equal
to the Landau levels. In [20] the authors deal with very fast decaying potential. In that case
they prove that the perturbation by an electric potential even compactly supported generates
sequences of eigenvalues which converge toward the Landau levels, that is very different from
what happens without magnetic field where only a finite number of eigenvalues are created by
compactly supported electric perturbation.

In general the band function associated with a Schrödinger operator are not constant. The
case where the band functions reach their infimum is described in [19] where the author study
the perturbation of a Schrödinger operator with periodic electric potential and no magnetic
field, whose band functions have non-degenerated minima, providing localization in the phase
space. Let us come back to the case with constant magnetic field. When adding a boundary,
the band functions may not be constant anymore. For example when the domain is a two-
dimensional infinite strip of finite width with constant magnetic field, it is proved that all the
band functions are even with a non-degenerate minimum, see [8]. In [4], the authors investigate
the behavior of the spectral shift function near the minima of the band functions, providing the
number of eigenvalue created under the ground state energy when perturbing by an electric
potential. Other examples of such a situation is the case of a half-plane with constant magnetic
field and Neumann boundary condition, see [6, Section 4], the case of an Iwatsuka model
with an odd discontinuous magnetic field, [15, Section 5] and also the case of the Dirichlet
Laplacian on a twisted wave guide, [3].

The case of a half-plane with a constant magnetic field and Dirichlet boundary condition
is more intriguing and somehow closer to our model: in that case the bottom of the spectrum
of the magnetic Laplacian is the first Landau level, but the associated band function does not
reach its infimum. In [6], the authors gives the precise behavior of the counting function when
perturbing by a suitable electric potential. Analog situations based on Iwatsuka models are
described in [5] or [14].

All the above described situations deal with constant magnetic field and the associated band
functions are well separated near the ground state energy in the sense that the infimum of the
second band function is larger than the ground state energy. In our case, the magnetic field is
non constant and there are infinitely many band functions that accumulate toward inf SpHAq,
see Figure 1, adding a technical challenge when studying the ground state energy.

In this article, we give a precise description of the spectrum of HA near 0 with asymptotic
expansion of the band functions. Then, we study the finiteness of the number of the negative
eigenvalues of HA ´ V for relatively compact perturbations V . On one hand, we display
classes of potentials giving rise to an accumulation at 0, of an infinite number of negative
eigenvalues, on the other hand, under a decreasing property of V`, we prove the finiteness
of the discrete spectrum of HA ´ V below 0. We obtain a class of polynomially decreasing
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potentials for which HA ´ V has a finite number of negative eigenvalues while the negative
spectrum of ´∆´ V is infinite.

1.2. Main results. Using the cylindrical coordinates of R3, we identify L2pR3q with the
weighted space L2pR` ˆ p0, 2πq ˆ R, rdrdϕdzq and the operator HA writes:

HA “ ´
1

r
BrrBr ´

B2
ϕ

r2
` plog r ´Dzq

2

acting on functions of L2pR` ˆ p0, 2πq ˆ R, rdrdϕdzq.
Let us recall the fibers decomposition of HA that can be found with more details in [24].

We denote by F3 the Fourier transform with respect to z and Φ the angular Fourier transform.
We have the direct integral decomposition (see [21, Section XIII.16] for the notations about
direct decomposition):

ΦF3HAF˚
3 Φ˚ :“

À

ÿ

mPZ

ż

À

kPR
gmpkqdk

where the operator

(1.2) gmpkq :“ ´
1

r
BrrBr `

m2

r2
` plog r ´ kq2

is defined as the extension of the quadratic form

qkmpuq :“

ż

R`

ˆ

|u1prq|2 `
m2

r2
|uprq|2 ` plog r ´ kq2|uprq|2

˙

rdr

initially defined on C80 pR`q and closed in L2
rpR`q :“ L2pR`, rdrq.

For all pm, kq P Z ˆ R the operator gmpkq has compact resolvent. We denote by λm,npkq,
n P N˚, the so-called band functions, i.e. the n-th eigenvalue of gmpkq associated with a
normalized eigenvector um,np¨, kq.

It is known ([24], see also Section 2.1) that k ÞÑ λm,npkq is decreasing with

lim
kÑ´8

λm,npkq “ `8; lim
kÑ`8

λm,npkq “ 0.

Exploiting semi-classical tools (with semi-classical parameter h “ e´k, k ąą 1, see Proposi-
tion 2.2), we obtain asymptotic behaviors of the eigenpairs of gmpkq as k tends to infinity. The
main result of Section 2 is the following

Theorem 1.1. For all pm,nq P Z ˆ N˚, there exist constants Cm,n ą 0 and k0 P R such that
for all k P pk0,`8q,

(1.3) |λm,npkq ´ p2n´ 1qe´k ` pm2
´ 1

4
´

npn´1q
2
qe´2k

| ď Cm,ne
´5k{2.

This asymptotics shows that all the band functions tend exponentially to the ground state
energy and cluster according to their energy level, see Figures 1 and 2.

Let us consider V , a multiplication operator such that V pHA`1q´1 is compact. Considered
in L2pR` ˆ p0, 2πq ˆ R, rdrdϕdzq, V is a function of pr, ϕ, zq and it is said axisymmetric
when it does not depend of ϕ.
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We want to know how reacts the ground state energy of HA under electrical perturbation.
For slowly decreasing potentials (with respect to r), we have an infinite number of negative
eigenvalues of HA ´ V :

Theorem 1.2. Assume V is a relatively compact perturbation of HA such that

(1.4) V px, y, zq ě xpx, yqy´α vKpzq, α ą 0.

If α and vK satisfy one of the assumptions (i), (ii) below, then, HA ´ V has an infinite number
of negative eigenvalues which accumulate to 0.

(i) α ă 1
2

and vK P L1pRq such that
ż

R
vKpzqdz ą 0.

(ii) vKpzq ě Cxzy´γ with γ ą 0 and α ` γ
2
ă 1.

The ideas of the proof will be discussed in Section 1.3 below.
We also have conditions giving finiteness of the negative spectrum.

Theorem 1.3. Assume V is a relatively compact perturbation of HA such that

(1.5) V px, y, zq ď xpx, yqy´α vKpzq,

with α ą 1, and vK P LppRq a non negative function with p P r1, 2s.

Then HA ´ V has, at most, a finite number of negative eigenvalues.

Let us give some comments concerning the above results in comparison with known border-
line behavior of perturbations of the Laplacian. Due to the diamagnetic inequality, one might
expect for most cases that the density of negative eigenvalues is more important for ´∆ ´ V
than for HA´V . Although it is not true in general (see Exemple 2 after Theorem 2.15 of [2]),
the above results illustrate this phenomenon. Theorem 1.2 is a case where the number of neg-
ative eigenvalues in presence of magnetic field is infinite as without magnetic field. Thanks to
Theorem 1.3, we see that the borderline behavior of the perturbation determining the finiteness
of the negative spectrum of HA ´ V is different than for ´∆´ V . In particular, we obtain:

Corollary 1.4. Let V be a measurable function on R3 that obeys

cxpx, yqy´αxzy´γ ď V px, y, zq ď Cxpx, yqy´αxzy´γ,

with α ` γ ă 2, α ą 1 and γ ą 1
2
.

Then the operator ´∆ ´ V has infinitely many negative eigenvalues while the negative
spectrum of HA ´ V is finite.

Proof. Since xpx, yqy´αxzy´γ ě xpx, y, zqy´pα`γq, according to [21, Theorem XIII.6] we know
that for V px, y, zq ě xpx, yqy´αxzy´γ with α`γ ă 2, the operator´∆´V has infinitely many
negative eigenvalues. The corollary is then deduced from Theorem 1.3. �
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A natural open question concern the existence of a borderline behavior of V which deter-
mine the finiteness of the negative spectrum of HA´V . Using our results, if such a borderline
potential Vb exists, it necessary satisfies:

C´xpx, yqy
´α´xzy´γ´ ď Vb ď C`xpx, yqy

´α`xzy´γ` ,

with 0 ă α´ ď maxp1´ γ´
2

; 1
2
q, γ´ ą 0 and α` ą 1, γ` ą 1

2
.

1.3. Contents and ideas. We described here the main line of the article and the methods we
use to prove Theorems 1.2 and 1.3.

‚ Philosophy of the proofs. In view of it fibers decomposition, the low-lying energies of HA

are reached by low values of λm,npkq (corresponding to large frequencies k). Thus, in order
to analyze negative eigenvalues of perturbations of HA, we need asymptotic behavior of the
eigenpairs of the reduced operators pgmpkqqmPZ for large k.

For existence of negative eigenvalues of HA ´ V (Theorem 1.2), by using min-max princi-
ple, the assumption (1.4) allows to consider axisymmetric potentials V pr, zq “ xry´α vKpzq.
Then we are reduced to prove existence of at least one negative eigenvalue for each operator
HA|pBϕ“mq ´ V , m P Z. The proof uses a construction of quasi-modes based on the eigen-
functions associated with λm,npkq that leads to a one-dimensional operator in the z variable.
The key point is a projection (in the r variable) of the potential V onto the eigenfunctions
of gmpkq that are localized near the wells of the potential plog r ´ kq2 for large k (formally
r „ ek). For V pr, zq “ xry´α vKpzq, the reduced operator compared to HA|pBϕ“mq ´ V writes
shortly as D2

z ´ e´αkvK ` λm,npkq. Then using Theorem 1.1 for n fixed (for instance n “ 1),
λm,1pkq is approximated by Cme´k and we obtain at least one negative eigenvalue for large k
as soon as α ă 1. For α ě 1, the method fails because existence of negative eigenvalues of
D2
z ´ e

´αkvK ` λm,npkq is far from evident.
The above method does not provide all the negative eigenvalues of HA ´ V and cannot

be applied to get the finiteness of negative eigenvalues. The proof of Theorem 1.3 uses a
more global analysis with the Birman-Schwinger principle. Let V pr, zq :“ xry´α vKpzq. It
is sufficient to show that the number of eigenvalues larger than 1, of the compact operator
T pλq “ V

1
2 pHA ` λq´1V

1
2 , is uniformly bounded with respect to λ ą 0. It is not difficult to

see that, Tąνpλq, the contribution of the energies of HA larger than ν ą 0, gives rise to a finite
number of eigenvalues. Then the challenge is to choose ν ą 0 sufficiently small such that
Tăνpλq :“ T pλq ´ Tąνpλq has small eigenvalues (i.e. ă 1). For that, we control the Hilbert-
Schmidt norm of Tăνpλq by a convolution product between some effective potential involving
the r-behavior of V and the Fourier transform of vK. We show that when α ą 1, the norm of
Tăνpλq is controlled by a convergent series (corresponding to the sum of the projections along
all the band functions) times Opνα´1q, and therefore goes to 0 as ν Ñ 0.

‚ Organisation of the article. In Section 2 we recall basis on the fibers of the operator HA

and their associated band functions λm,npkq. We give the localization of the associated eigen-
functions for large k and we prove Theorem 1.1. We also provide numerical computations of
the band functions. In Section 3, we construct quasi-modes for the perturbed operator HA´V
and we are led to study a one-dimensional problem in order to prove Theorem 1.2. Based
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on a uniform lower bound of the band functions, Section 4 combines the Birman-Schwinger
principle with results of Section 2 to prove Theorem 1.3.

2. DESCRIPTION OF THE 1D PROBLEM ASSOCIATED WITH THE UNPERTURBED
HAMILTONIAN

In this section we first recall results from [24] on the behavior of the band functions k ÞÑ
λm,npkq. Then we give Agmon estimates on the associated eigenfunctions and we perform an
asymptotic expansion of λm,npkq when k goes to `8.

Depending on the context we shall work with different operators all unitarily equivalent to
the operator gmpkq written in (1.2). Table 1 in the annex gives a description of these operators
and the notations we use.

2.1. Semi-classical point of view.

‚ Global behavior of the band functions. As in [24], we introduce the parameter

h :“ e´k

such that log r ´ k “ logphrq. The scaling ρ “ hr shows that gmpkq is unitarily equivalent to

(2.1) gmphq :“ ´h2 1

ρ
BρρBρ ` h

2m
2

ρ2
` log2

pρq

acting on L2
ρpR`q :“ L2pR`, ρdρq. We denote by pµm,nphq,um,np¨, hqqně1 the normalized

eigenpairs of this operator and by qmh the associated quadratic form. We have µm,nphq “
λm,npkq and

um,npρ, hq “ hum,n

´ρ

h
,´ log h

¯

where um,np¨, kq is a normalized eigenfunction associated with λm,npkq for gmpkq. Using the
min-max principle and the expression (2.1), it is clear that h ÞÑ µm,nphq is non decreasing on
p0,`8q and therefore k ÞÑ λm,npkq is non increasing on R. This was already used by Yafaev
(see [24]) who, moreover, shows (see [24, Lemma 2.2 & 2.3]) that

lim
hÑ0

µm,nphq “ 0 and lim
hÑ`8

µm,nphq “ `8 .

Note that these results are extended to more general magnetic fields in [25, Section 3].

‚ The fiber operator in an unweighted space. Sometimes it will be convenient to work in an
unweighted Hilbert space on the half-line, therefore we introduce the isometric transformation

M : L2
pR`, rdrq ÞÝÑ L2

pR`, drq
uprq ÞÝÑ

?
r uprq

and we define rgmpkq :“MgmpkqM˚. This operator expressed as

(2.2) rgmpkq :“ ´B2
r `

m2 ´ 1
4

r2
` plog r ´ kq2 ,

acting onL2pR`q and its precise definition can be derived from the natural associated quadratic
form initially defined on C80 pR`q and then closed in L2pR`q.
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2.2. Agmon estimates about the eigenpairs of the fiber operator. We write

gmphq “ ´h
2 1

ρ
BρρBρ ` V

m
h

with

V m
h pρq :“ log2

pρq ` h2m
2

ρ2
.

Let qhm denote the natural associated quadratic form. Assume that µ is an eigenvalue satisfying
µ ď E `Ophq with E ě 0, the eikonale equation on the Agmon weight φ writes

h2
|φ1|2 “ V m

h ´ E

that is

|φ1pρq|2 “
log2

pρq ´ E

h2
`
m2

ρ2
.

A solution is given by φhpρq{h with

(2.3) φhpρq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ż ρ

1

d

ˆ

plog ρ1q2 ´ E ` h2
m2

ρ12

˙

`

dρ1

ˇ

ˇ

ˇ

ˇ

ˇ

This function provides the general Agmon estimates:

Proposition 2.1. Let E ě 0 and C0 ą 0. For all β P p0, 1q there exist CpE, βq ą 0 and
h0 ą 0 such that for all L2

ρ-normalized eigenpairs pµ,uµq of gmphq with µ ď E ` C0h, there
holds:

(2.4) @h P p0, h0q, }eβ
φh
h uµ}L2

ρpR`q ď CpE, βq and qhm

´

eβ
φh
h uµ

¯

ď CpE, βq .

Proof. This proposition is an application of the well-known Agmon estimates for 1D Schrödinger
operators with confining potential. First we have the following identity for any Lipschitz
bounded function φ, see for example [22], [1] or [12]:

(2.5) xgmphqu, e
2φuyL2

ρpR`q “ qmh pe
φuq ´ h2

}φ1eφu}2L2
ρpR`q .

In particular when u “ uµ is an eigenfunction associated with the eigenvalue µ we get

(2.6)
ż

R`

`

h2
|Bρpe

φuhq|
2
`
`

V m
h ´ h2

|φ1|2 ´ µ
˘

|eφuh|
2
˘

ρdρ “ 0 .

We now use this identity with φ “ φh{h where φh is defined in (2.3). The remain of the proof
is classical and can be found with details in [11, Proposition 3.3.1] for example. �

Note that

φhpρq ě φ0pρq “

ˇ

ˇ

ˇ

ˇ

ż ρ

1

b

pplog ρ1q2 ´ Eq
`

dρ1
ˇ

ˇ

ˇ

ˇ

that does not depend neither on m nor on h. Therefore (2.4) remains true replacing φh by φ0

and we get L2 estimates uniformly in m, in particular:

(2.7) @β P p0, 1q, @h P p0, h0q, }eβ
φ0
h um,np¨, hq}L2

ρpR`q ď CpE, βq
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for all normalized eigenfunction um,np¨, hq of gmphq associated with any eigenvalue µm,nphq
satisfying µm,nphq ď E ` C0h where C0 ą 0 is a set constant.

WhenE “ 0 (that means that we are looking at the low-lying energies), the Agmon distance
φ0 is explicit:

φ0pρq “

ˇ

ˇ

ˇ

ˇ

ż ρ

1

| log ρ1|dρ1
ˇ

ˇ

ˇ

ˇ

“ |ρ log ρ´ ρ` 1| .

Let us express this in the original cylindrical variable r “ ρ
h

with the Fourier parameter k “
´ log h. The associated Agmon distance writes

(2.8) Φ0pr, kq :“
φ0pρq

h
“ ekφ0pre

´k
q “ rplog r ´ kq ´ r ` ek .

Writing the previous estimates in these variables we get that for k large enough:

(2.9) }eβΦ0p¨,kqum,np¨, kq}L2
rpR`q ď Cp0, βq and }eβΦ0p¨,kq

rum,np¨, kq}L2pR`q ď Cp0, βq

where rum,nprq :“
?
r um,np¨, kq is a normalized eigenvector associated with λm,npkq for the

operator rgmpkq in the unweighted space L2pR`q, see (2.2).
The function r ÞÑ Φ0pr, kq is positive, decreasing on p0, ekq and increasing on pek,`8q.

It vanishes when r “ ek, so (2.9) means that the eigenfunctions of the operator gmpkq are
localized in the minimum of the wells, reached for r “ ek.

2.3. Asymptotics for the small energy. In this section we provide an asymptotic expansion
of µm,nphq for fixed pm,nq when h goes to 0, namely:

Proposition 2.2. For all pm,nq P Zˆ N˚ there exists Cm,n ą 0 and h0 ą 0 such that

@h P p0, h0q, |µm,nphq ´ p2n´ 1qh´ pm2
´ 1

4
´

npn´1q
2
qh2
| ď Cm,nh

5{2.

The operator gmphq written in (2.1) is a semiclassical Schrödinger operator with a potential
which has a unique minimum at ρ “ 1. We will use the technics of the harmonic approximation
as described in [7], [22] or [11] to derive the asymptotics of the eigenvalues. The remain of
this section is devoted to the proof of Proposition 2.2 which implies Theorem 1.1 because
λm,npkq “ µm,npe

´kq.

‚ Canonical transformations. As above we introduce the operator rgmphq :“MgmphqM˚ in
the unweighted space where M : upρq ÞÑ

?
ρupρq. We get

rgmphq “ ´h
2
B

2
ρ ` h

2m
2 ´ 1

4

ρ2
` log2 ρ

acting on the unweighted space L2pR`q. Apply now the change of variable t “ ρ´1
?
h

. We get
that rgmphq is unitarily equivalent to hpgmphq where

pgmphq :“ ´B2
t `

log2
p1`

?
htq

h
` h

m2 ´ 1
4

p1`
?
htq2

acting on L2pIhq with Ih “ p´h´1{2,`8q. As we will see below, this operator has a suitable
shape to make an asymptotic expansion of its eigenvalues when hÑ 0.
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‚ Asymptotic expansion and formal construction of quasi-modes. We write a Taylor expansion
of the potential near t “ 0:

log2
p1`

?
htq

h
` h

m2 ´ 1
4

1`
?
ht
“ t2 ´ h1{2t3 ` p11

12
t4 `m2

´ 1
4
qh`Rpt, hq(2.10)

where Rpt, hq will later be controlled by p1` |t|q5h3{2.
We write

pgmphq “ L0 ` h
1{2L1 ` hL2 `Rp¨, hq

where
$

’

&

’

%

L0 :“ ´B2
t ` t

2 ,

L1 :“ ´t3 ,

L2 :“
`

11
12
t4 `m2

´ 1
4

˘

.

At first we consider these operator as acting on L2pRq and we look at a quasi-mode for L0 `

h1{2L1 ` hL2 defined on R. Using a suitable cut-off function this procedure will provide a
quasi-mode for pgmphq.

We look for a quasi-mode of the form

pEphq, fp¨, hqq “ pE0 ` h
1{2E1 ` hE2, f0 ` h

1{2f1 ` hf2q .

We are led to solve the following system:
$

&

%

L0f0 “ E0f0 ,(2.11a)
L1f0 ` L0f1 “ E0f1 ` E1f0 ,(2.11b)
L2f0 ` L1f1 ` L0f2 “ E2f0 ` E1f1 ` E0f2 .(2.11c)

SinceL0 is the quantum harmonic oscillator, to solve (2.11a) we choose forE0 the n-th Landau
level:

(2.12) E0 :“ 2n´ 1, n ě 1

and
f0 “ f0,n :“ Ψn, n ě 1

where Ψn is the n-th normalized Hermite’s function with the convention that Ψ1ptq “ p2πq
´1{4e´t

2{2.
We take the scalar product of (2.11b) onto f0,n and we find

E1 “ xpL0 ´ E0qf1, f0,ny ` xL1f0,n, f0,ny “ xL1f0,n, f0,ny .

Notice that f0,n is either even or odd and that L1f0,n has the opposite parity. Therefore the
function L1f0,n ¨ f0,n is odd for all n ě 1 and we get

(2.13) E1 “ 0 .

We find f1 by solving (2.11b):

(2.14) pL0 ´ E0qf1 “ ´L1f0,n “ t3Ψnptq .

Using tΨnptq “
b

n´1
2

Ψn´1ptq `
a

n
2
Ψn`1ptq, we write t3Ψnptq on the basis of the Hermite’s

functions:
t3Ψnptq “ anΨn´3ptq ` bnΨn´1ptq ` cnΨn`1ptq ` dnΨn`3ptq
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with

(2.15) @n ě 1,

$

’

’

’

’

’

&

’

’

’

’

’

%

an “ 2´3{2
a

pn´ 1qpn´ 2qpn´ 3q

bn “ 2´3{23pn´ 1q
?
n´ 1

cn “ 2´3{23n
?
n

dn “ 2´3{2
a

npn` 1qpn` 2q .

Therefore the unique solution to (2.14) orthogonal to f0,n is:

f1 “ f1,n :“

ˆ

´
an
6

Ψn´3 ´
bn
2

Ψn´1 `
cn
2

Ψn`1 `
dn
6

Ψn`3

˙

with an “ 0 when n ď 3 and bn “ 0 when n “ 1 (see (2.15)).
We now take the scalar product of (2.11c) onto f0,n:

(2.16) E2 “ xL2f0,n, f0,ny ` xL1f1,n, f0,ny .

Computations provide

xL2f0,n, f0,ny “
`

11
12
}t2f0,n}

2
`m2

´ 1
4

˘

“
`

11
16
p2n2

´ 2n` 1q `m2
´ 1

4

˘

and

xL1f1,n, f0,ny “

ˆ

a2
n

6
`
b2
n

2
´
c2
n

2
´
d2
n

6

˙

“
1

16

`

´30n2
` 30n´ 11

˘

,

therefore we get

(2.17) E2 “

ˆ

´
npn´ 1q

2
`m2

´
1

4

˙

.

We deduce from (2.11c):

pL0 ´ E0qf2 “ E2f0,n ´ L1f1,n ´ L2f0,n .

Since the compatibility condition is satisfied by the choice of E2 (see (2.16)), the Fredholm al-
ternative provides a unique solution f2 “ f2,n orthogonal to f0,n. As above it may be computed
explicitly using the Hermite’s functions. Notice that f2,n depends on m as E2, see (2.17).

We finally define

fm,npt, hq :“ f0,nptq ` h
1{2f1,nptq ` hf2,nptq

‚ Evaluation of the quasi-mode and upper bound. The above construction provides functions
fm,np¨, hq defined on R. Let

Em,nphq :“ E0 ` h
1{2E1 ` hE2

where E0, E1 and E2 are defined in (2.12), (2.13) and (2.17). We check that
`

L0 ` h
1{2L1 ` hL2 ´ Em,nphq

˘

fm,np¨, hq “ h3{2
ppL1 ´ E1qf2,n ` pL2 ´ E2qf1,nq`h

2L2f2,n

and we get Cm,n ą 0 such that

(2.18) }
`

L0 ` h
1{2L1 ` hL2 ´ Em,nphq

˘

fm,np¨, hq}L2pRq ď Cm,nh
3{2.
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We will now use a cut-off function in order to get quasi-modes for pgmphq. Let χ P C80 pR, r0, 1sq
be a cut-off function increasing such that χptq “ 0 when t ď ´1{2 and χptq “ 1 when
t ě ´1{4. We define χpt, hq :“ χph1{2tq and

pvm,npt, hq :“ χpt, hqfm,npt, hq .

Recall that pgm,nphq acts on L2pIhq with Ih “ p´h´1{2,`8q. Since supp
`

pvm,np¨, hq
˘

Ă

p´1
2
h´1{2,`8q and pvm,np¨, hq has exponential decay at `8, we have pvm,n P domppgmphqq,

moreover:

(2.19) } ppgmphq ´ Em,nphqq pvm,np¨, hq}L2pIhq ď }rpgmphq, χp¨, hqsfm,np¨, hq}L2pIhq

`}χp¨, hqRp¨, hqfm,np¨, hq}L2pIhq`}χp¨, hq
`

L0 ` h
1{2L1 ` hL2 ´ Em,nphq

˘

fm,np¨, hq}L2pIhq,

where Rpt, hq is defined in (2.10) and satisfies

(2.20) DC ą 0, @h ą 0, @t P supppχp¨, hqq, |Rpt, hq| ď Ch3{2
p1` |t|q5.

Notice that supppχ1q and supppχ2q are supported in r´1
2
h´1{2,´1

4
h´1{2s. Since fm,np¨, hq

and f 1m,np¨, hq have exponential decay, standard commutator estimates, combined with (2.18),
(2.19) and (2.20), provide:
(2.21)

DCm,n, Dh0 ą 0, @h P p0, h0q,

#

} ppgmphq ´ Em,nphqq pvm,np¨, hq}L2pIhq ď Cm,nh
3{2,

ˇ

ˇ}pvm,np¨, hq}L2pIhq ´ 1
ˇ

ˇ ď Cm,nh
1{2.

Since gmphq is unitarily equivalent to hpgmphq, µm,nphq{h is the n-th eigenvalue of pgmphq and
the spectral theorem applied to (2.21) shows that

(2.22) DCm,n, Dh0 ą 0, @h P p0, h0q
µm,nphq

h
ď Em,nphq ` Cm,nh

3{2

and we have proved the upper bound of Proposition 2.2.

‚ Arguments for the lower bound. The complete procedure for the proof of the lower bound
of the eigenvalues of pgmphq using the harmonic approximation can be found in [7, Chapter 4]
or [11, Chapter 3]. We recall here the main arguments. Let

pΦ0pt, hq :“ p1`
?
htq logp1`

?
htq ´

?
ht, t P Ih

be the distance of Agmon in the t-variable, the estimate provided in (2.7) becomes:

@β P p0, 1q, }eβ
pΦ0
h
pum,np¨, hq}L2pIhq ď CpE, βq

where pum,np¨, hq is the n-th eigenvector associated to pgmphq. Therefore there holds a priori
estimates on the eigenfunctions proving that they concentrate near t “ 0 when h tends to 0.
These eigenfunctions are then used as quasi-modes for the first order approximation L0 and
this provides a rough lower bound on the eigenvalues µm,nphq

h
of pgmphq by the eigenvalues

of L0 that are the Landau levels, modulo some remainders. Combining this with (2.22), we
obtain the existence of gaps in the spectrum of pgmphq and the spectral theorem applied to
(2.21) proved the lower bound on µm,nphq

h
and therefore the lower bound of Proposition 2.2.
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2.4. Numerical approximation of the band functions. We use the finite element library
Mélina ([16]) to compute numerical approximations of the band functions λm,npkq with 0 ď
m ď 2 and 1 ď n ď 4. For k P r´2, 6s, the computations are made on the interval r0, Ls
with L large enough and an artificial Dirichlet boundary condition at r “ L. According to
the decay of the eigenfunctions provided by the Agmon estimates we have chosen L “ 2e6 so
that the region tr „ eku, where are localized the associated eigenfunction, is included in the
computation domain.

On Figure 1 we have plot the numerical approximation of λm,npkq for the range of param-
eters described above. According to the theory, they all decrease from `8 toward 0. Notice
that the band functions may cross for different values of m.

On figure 2 we have zoomed on the lowest energies λ ăă 1 and we have also plotted the
first order asymptotics k ÞÑ p2n ´ 1qe´k. We see that for set 1 ď n ď 4, the band functions
λm,npkq0ďmď2 cluster around the first order asymptotic p2n´1qe´k according to Theorem 1.1.

−2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

k

 

 
m=0
m=1
m=2

FIGURE 1. The band functions λm,npkq for 0 ď m ď 2 and 1 ď n ď 4 and k P r´2, 6s.
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FIGURE 2. Zoom on the lowest energies compared with the first order asymp-
totics p2n´ 1qe´k. Each cluster corresponds to an energy level n.

3. CONSTRUCTION OF QUASI-MODES AND INFINITENESS OF NEGATIVE
EIGENVALUES

In this section we prove Theorem 1.2 giving infinitely many eigenvalues below 0 for a slowly
decreasing perturbation.

First, we consider V depending only on pr, zq and we construct quasi-modes which allow to
reduce the existence of infinitely many negatives eigenvalues to the existence of one negative
eigenvalue for some 1D-effective problems D2

z ´ Vm,n. Then, we study the effective potential
Vm,n and conclude the proof of Theorem 1.2.

3.1. Quasi-modes. We construct quasi-modes for the perturbed operator HA´V where V is
axisymmetric. Let

ψm,npr, ϕ, z, kq :“ eimϕeikzum,npr, kqfpzq

where f P L2pRq, pm,n, kq will be chosen later and um,np¨, kq is a normalized eigenfunction
of gmpkq associated with λm,npkq. We have:

Lemma 3.1. For any ε ą 0,
(3.1)
xpHA´V qψm,n, ψm,ny ď p1`εqλm,npkq}f}

2
L2pRq`p1`ε

´1
q ‖ Dzf ‖2

L2pRq ´xVm,np., kqf, fyL2pRq
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with

(3.2) Vm,npz, kq :“

ż

r

|rum,npr, kq|
2V pr, zqdr; rum,npr, kq :“

?
r um,npr, kq.

Proof. We have

HAψm,npr, ϕ, z, kq “ eimϕeikzfpzqgmpkqum,npr, kq

` eimϕeikzum,npr, kq
`

D2
zf ` 2plog r ´ kqDzfpzq

˘

,

that is

pHA ´ V qψm,npr, ϕ, z, kq “ λm,npkqψm,npr, ϕ, z, kq

` eimϕeikzum,npr, kq
`

D2
zf ` 2plog r ´ kqDzfpzq ´ V pr, zqfpzq

˘

.

pHA ´ V qψm,n ¨ ψm,n “ λm,npkqum,npr, kq
2fpzq2`

um,npr, kq
2
´

D2
zfpzq ` 2plog r ´ kqDzfpzq ´ V pr, zqfpzq

¯

fpzq.

Integrating over pr, zq in the weighted space pR` ˆ R, rdrdzq we get

(3.3) xpHA ´ V qψm,n, ψm,nyL2pR`ˆR,rdrdzq “ λm,npkq}f}
2
L2pRq

` }Dzf}
2
` 2

ż

r,z

plog r ´ kq|um,npr, kq|
2Dzfpzqfpzqrdrdz ´

ż

z

Vm,npz, kq|fpzq|
2dz.

Then, using that for any ε ą 0,

|2plog r ´ kqDzfpzqfpzq| ď εplog r ´ kq2|fpzq|2 ` ε´1
|Dzf |

2,

we deduce,

xpHA ´ V qψm,n, ψm,ny ď λm,npkq}f}
2
L2pRq ` p1` ε

´1
q ‖ Dzf ‖2

L2pRq

`ε

ż

r,z

plog r ´ kq2|um,npr, kq|
2
|fpzq|2rdrdz ´ xVm,np., kqf, fyL2pRq.

Since in the sense of quadratic form in L2pR`ˆR, rdrdzq, we have plog r´ kq2 ď gmpkq, we
obtain (3.1) using again that gmpkqum,npr, kq “ λm,npkqum,npr, kq. �

Remark 3.2. According to the Feynman-Hellmann formula, the third term in the right hand
side of (3.3) is related to the derivative of λm,npkq:

λ1m,npkq “ ´2

ż

r,z

plog r ´ kq|um,npr, kq|
2rdr.

This quantity could be studied more carefully as in [13] where it is done for another fibered
operator, but here, we need only some rough estimates.
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3.2. Estimate on the reduced potential. We are looking at the asymptotic behavior of the
1D potential z ÞÑ Vm,npz, kq (defined in Lemma 3.1) by using the localization properties of
the eigenfunctions rum,np¨, kq when k goes to `8. In this section all the Landau’s notations
refer to an asymptotic behavior when k goes to `8. Set pm,nq P ZˆN˚, Cm,n ą 2n´ 1 and
choose k large enough such that λm,npkq ď Cm,ne

´k (see Theorem 1.1). Write R “ Ik Y AIk
with Ik “ rek ´ apkq, ek ` apkqs and apkq “ opekq will be chosen later. We use (2.9) with
E “ 0:

ż

AIk

|rum,npr, kq|
2dr ď Cp0, βq sup

rPAIk

e´βΦ0pr,kq

where the Agmon distance Φ0 is defined in (2.8). Since Φ0p¨, kq is decreasing on p0, ekq and
increasing on pek,`8q we have

inf
AIk

Φ0p¨, kq “ minpΦ0pe
k
˘ apkq, kqq .

Since apkq “ opekq, we have an asymptotic expansion at these points:

Φ0pe
k
˘ apkq, kq “

kÑ`8

1

2
a2
pkqe´k `Opapkq3e´2k

q .

Assume that

(3.4) lim
kÑ`8

a2
pkqe´k “ `8 and lim

kÑ`8
a3
pkqe´2k

“ 0

(for instance apkq “ eδk, 1
2
ă δ ă 2

3
) then we have

e´βΦ0pek˘apkq,kq „
kÑ`8

e´
β
2
apkq2e´k

and for such an apkq we get

(3.5) sup
rPAIk

e´βΦ0pr,kq „
kÑ`8

e´
β
2
apkq2e´k .

We have

Vm,npz, kq ě inf
rPIk

V pr, zq

ż

Ik

|rum,npr, kq|
2dr

ě inf
rPIk

V pr, zqp1´ Cp0, βq sup
rPAIk

e´βΦ0pr,kqq

where we have used }rum,np¨, kq}L2pR`q “ 1.
Set β P p0, 1q once for all. Choose ε ą 0. Then we deduce from the choice of apkq in (3.4)

and (3.5) that there exists k0 that depends a priori of pm,nq such that

(3.6) @k ě k0, @z P R, Vm,npz, kq ě p1´ εq inf
rPIk

V pr, zq
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3.3. Proof of Theorem 1.2. According to the min-max principle, since V satisfies (1.4), it
is sufficient to prove the infinity of the negative eigenvalues for the axisymmetric potential
V pr, zq “ xry´αvKpzq. Let us denote by Hm

A the restriction of HA to eimϕL2pR`ˆR, rdrdzq.
For V axisymmetric,

(3.7) HA ´ V is unitarily equivalent to ‘mPZ pH
m
A ´ V q.

Then HA ´ V has infinitely many negative eigenvalues provided that Hm
A ´ V has at least

one’s for all m P Z, a fact that we prove below.
From now on we denote by σ1pHq the first eigenvalue (whenever it exists) of a self-adjoint

operator H . We deduce from the min-max principle and Lemma 3.1 that for any n P N˚,
σ1pH

m
A ´ V q ď σ1

`

p1` ε´1
qD2

z ´ Vm,np., kq ` p1` εqλm,npkq
˘

“ p1` ε´1
qσ1

ˆ

D2
z ´

ε

1` ε
Vm,np¨, kq ` ελm,npkq

˙

.

In particular, let us fix n “ 1. For V pr, zq “ xry´αvKpzq, the inequality (3.6) implies:

@k ě k0, @z P R, Vm,1pz, kq ě Ce´αkvKpzq,

and choosing k large enough such that λm,1pkq ď Cme
´k (Cm exists thanks to Theorem 1.1),

we deduce

(3.8) σ1pH
m
A ´ V q ď p1` ε

´1
qσ1pD

2
z ´

Cε
1`ε

e´αkvK ` εCme
´k
q.

Then we apply the following lemmas (Lemma 3.3 and Lemma 3.4), for k sufficiently large
with Λpkq “ e´αk, v “ Cε

1`ε
vK and λpkq “ εCme

´k and (3.8) provides

@m P Z, σ1pH
m
A ´ V q ă 0

We deduce Theorem 1.2 from (3.7).

3.4. Lemmas on negative eigenvalues for a family of some 1D Schrödinger operators.

Lemma 3.3. Let hpkq “ D2
z ´ Λpkqv on R, k P R with:

v P L1
pRq;

ż

R
vpzqdz ą 0, Λpkq ą 0.

Let λpkq be a positive function of k P R such that

(3.9) lim
kÑ`8

λpkq “ 0; lim
kÑ`8

λpkq

Λpkq2
“ 0.

Then, for k sufficiently large, σ1phpkq ` λpkqq ă 0.

Proof. Let us introduce the L2´normalized function

vkpzq :“ apkq
1
2 e´apkq|z|

with apkq satisfying limkÑ`8 apkq “ 0 and to be chosen. We use vkpzq as a quasi-mode:

xhpkqvk, vky “ apkq2 ´ Λpkqapkq

ż

R
vpzqe´2apkq|z|dz.



18 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

Since

lim
kÑ`8

ż

R
vpzqe´2apkq|z|dz “

ż

R
vpzqdz ą 0,

for k sufficiently large, there exists C ą 0 such that:

xhpkqvk, vky ď apkq2 ´ CΛpkqapkq.

By using the min-max principle, it remains to chose apkq such that apkq2 ´ CΛpkqapkq ă
´λpkq. Under the assumption (3.9), the polynomial X2 ´ CΛpkqX ` λpkq has two real roots
a`pkq ą a´pkq ą 0 with a´pkq ď

2λpkq
CΛpkq

tending to 0 as k tends to infinity. Then, there exists
apkq such that, for k sufficiently large,

xhpkqvk, vky ă ´λpkq,

and Lemma (3.3) holds. �

Lemma 3.4. Let hpkq “ D2
z ´ Vk on R, k P R with Vk satisfying:

Vkpzq ě Λpkqxzy´γ; γ P p0, 2q; Λpkq P p0, 1q.

Let λpkq be a positive function of k P R such that

(3.10) lim
kÑ`8

λpkq

Λpkq
2

2´γ

“ 0.

Then, for k sufficiently large, σ1phpkq ` λpkqq ă 0.

Proof. Using the change of variable ζ “ Λpkq
1

2´γ z, it is clear that hpkq is unitarily equivalent
to Λpkq

2
2´γ h̃pkq with

h̃pkq :“ D2
ζ ´

1

Λpkq
2

2´γ

Vk

˜

ζ

Λpkq
1

2´γ

¸

.

By assumption on Vk, we have:

1

Λpkq
2

2´γ

Vk

˜

ζ

Λpkq
1

2´γ

¸

ě pΛ
2

2´γ pkq ` ζ2
q
´
γ
2 ě p1` ζ2

q
´
γ
2

where we have used Λpkq P p0, 1q. Then the min-max principle implies that the number of
negative eigenvalues of hpkq ` λpkq is larger that the number of eigenvalues of D2

ζ ´ xζy
´γ

below ´
λpkq

Λ
2

2´γ pkq
. Since γ ă 2, it is known (see [21, Theorem XIII.82]) that D2

ζ ´ xζy
´γ has

infinitely many negative eigenvalues. Then under the assumption (3.10) the number of negative
eigenvalues of hpkq ` λpkq tends to infinity with k and in particular Lemma 3.4 follows. �
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4. FINITE NUMBER OF NEGATIVE EIGENVALUES FOR PERTURBATION BY SHORT
RANGE POTENTIAL

The aim of this section is to prove Theorem 1.3. In Section 4.2, we study a Birman-
Schwinger type operator and reduce its study to the analysis of some compact canonical op-
erator involving the contribution of the small energies (λm,npkq ď ν ăă 1). Exploiting that
the eigenfunctions associated with λm,npkq are localized near ek and a uniform lower bound of
the band functions (see Section 4.1) we obtain (in Section 4.3) an upper bound of the Hilbert-
Schmidt norm of this canonical operator. Then, we are able to prove Theorem 1.3 by using
Birman-Schwinger principle and a Weyl’s inequality (see Section 4.4).

4.1. Uniform estimates for the one-dimensional problem. In order to prove Theorem 1.3
we need a uniform lower bound on the band functions near 0.

Lemma 4.1. Let ν0 ą 0. There exists C0 ą 0 such that for all pm,n, hq P Z ˆ N˚ ˆ p0,`8q
satisfying µm,nphq ď ν0 we have

µm,nphq ě C0nh.

‚ proof. For convenience, first we work with the operator

gmphq “ ´h
2 1

ρ
BρρBρ ` V

m
h with V m

h pρq :“ log2
pρq ` h2m

2

ρ2
.

We notice that in the sense of quadratic form we have gmphq ě g0phq and dompgmphqq Ă
dompg0phqq, therefore for all m P Z there holds µm,nphq ě µ0,nphq and it is sufficient to prove
the result for m “ 0.

We will split the proof depending on which region belongs the parameter h:

(1) For h P p0, h0q with h0 ą 0 to be chosen, we will use the semi-classical analysis
and the Agmon estimates on the eigenfunctions in order to compare g0phq with more
standard operators. The idea is to bound from below the potential log2 ρ on a suitable
interval by a quadratic potential such that the associated operator has known spectrum.

(2) On rh0,`8q, we use the increase of µ0,nphq with respect to both n and h in order to
get uniform estimates.

(1): Assume µm,nphq ď ν0. Denote by 0 ă ρ1 ă 1 ă ρ2 the two real numbers (depending
on ν0) such that

log2
pρ1q “ log2

pρ2q “ ν0 .

Set ρ11 P p0, ρ1q, ρ12 P pρ2,`8q and Ipν0q :“ pρ11, ρ
1
2q. Let Mpν0q :“ minpφ0pρ

1
1q,φ0pρ

1
2qq

where the Agmon distance φ0 has already been introduced in Section 2:

φ0pρq “

ˇ

ˇ

ˇ

ˇ

ż ρ

1

b

`

log2
pρq ´ ν0

˘

`
dρ

ˇ

ˇ

ˇ

ˇ

.

By construction we have Mpν0q ą 0 and since µ0,nphq ď ν0, the Agmon estimate (2.7)
provides h0 ą 0 such that (uniformly in n):

@h P p0, h0q,

ż

AIpν0q

|u0,npρ, hq|
2ρdρ ď Cpν0, βqe

´βMpν0q{h
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where β P p0, 1q is set.
Recall that rum,npρ, hq “

?
ρum,npρ, hq is a normalized eigenfunction of rgmphq “MgmphqM˚

associated with the eigenvalue µm,nphq. According to Proposition 2.1 (combined with above
arguments), it satisfies
(4.1)

@h P p0, h0q,

ż

AIpν0q

|ru0,npρ, hq|
2dρ` h2

ż

AIpν0q

|Bρru0,npρ, hq|
2dρ ď C̃pν0, βqe

´βMpν0q{h

For later use, we notice that since gmphq ě g0phq, in the sense of quadratic form, Proposi-
tion 2.1 gives also for rum,n:
(4.2)

@h P p0, h0q,

ż

AIpν0q

|rum,npρ, hq|
2dρ “

ż

AIpν0q

|um,npρ, hq|
2ρdρ ď Cpν0, βqe

´βMpν0q{h

uniformly with respect to pm,nq such that µm,nphq ď ν0. This estimate will be used in Section
4.3.

Set ε0 P p0, ρ11q. Let χ P C8pR`, r0, 1sq be a cut-off function such that χ “ 1 on Ipν0q and
χ “ 0 on p0, ρ11 ´ ε0q Y pρ

1
2 ` ε0,`8q.

We define Jpν0q :“ pρ11 ´ ε0, ρ
1
2 ` ε0q and rg

ν0

0 phq the operator acting as

´h2
B

2
ρ ` log2

pρq

on L2pJpν0qq with Dirichlet boundary conditions. Clearly χru0,np¨, hq belongs to the domain
of rgν0

0 phq and we have

prg
ν0

0 phq ´ µ0,nphqqpχru0,np¨, hqq “

ˆ

h2
r´B

2
ρ, χs `

1

4ρ2
h2χ

˙

ru0,np¨, hq.

Remark that supppχ1q and supppχ2q are included in ApIpν0qq. Using (4.1), we get another
constant C 1pν0, βq ą 0 such that

}prg
ν0

0 phq ´ µ0,nphqqχru0,np¨, hq}L2pJpν0qq ď C 1pν0, βqe
´βMpν0q{h `

1

4pρ11 ´ ε0q
2
h2

and
|1´ }χru0,np¨, hq}L2pJpν0qq| ď C 1pν0, βqe

´βMpν0q{h.

We denote by σnprg
ν0

0 phqq the n-th eigenvalue of rgν0

0 phq. Due to the Spectral Theorem, the
previous estimates indicate that there exists an eigenvalue of rgν0

0 phq near µ0,nphq up to an error
in Oph2q. Therefore there exists C2pν0, βq ą 0 such that

(4.3) σnprg
ν0

0 phqq ď µ0,nphq ` C
2
pν0, βqh

2.

We now bound from below σnprg
ν0

0 phqq using a lower bound on the potential. We have

(4.4) DCpν0q P p0, 1q, @ρ P Jpν0q, Cpν0qpρ´ 1q2 ď log2
pρq.

Let us introduce the harmonic oscillator

glow
phq :“ ´h2

B
2
ρ ` Cpν0qpρ´ 1q2, ρ P R

initially defined on C80 pRq and closed inL2pRq, whose eigenvalues are tCpν0q
1{2p2n´1qhunPN˚ .

Due to (4.4) and to the min-max principle (see for instance Section XIII.15 of [21]) we have
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σnprg
ν0

0 phqq ě Cpν0q
1{2p2n ´ 1qh for all n P N˚ and for h P p0, h0q. Therefore combin-

ing it with (4.3) we have proved the existence of h0 ą 0 and C0 ą 0 such that for all
pn, hq P N˚ ˆ p0, h0q such that µ0,nphq ď ν0, there holds

@h P p0, h0q, µ0,nphq ě C0nh.

(2): We now have to deal with the region h P ph0,`8q. Since µ0,1phq tends to `8 as h tends
to `8, there exists hν0 ą 0 such that

@n P N˚, @h ě hν0 , µ0,nphq ě µ0,1phq ě ν0 .

Therefore we are led to prove the lower bound for h P rh0, hν0s. The sequence pµ0,nph0qqně1

converges toward `8, therefore due to the monotonicity of h ÞÑ µ0,nphq we get

Dn0 P N˚, @n ě n0, @h P rh0, hν0s, µ0,nphq ě ν0.

Define C0 :“ µ0,1ph0q

n0hν0
ą 0, by construction, for all pn, hq P N˚ ˆ rh0, hν0s such that µ0,nphq ď

ν0 we have µ0,nphq ě C0nh, therefore the lemma is proved for h P rh0, hν0s.

4.2. Decomposition of the Birman-Schwinger operator for axisymmetric potentials. For
λ ą 0 and a non negative relatively bounded potential V , we introduce the Birman-Schwinger
operator:

(4.5) T pλq :“ V
1
2 pHA ` λq

´1V
1
2 .

Fix a real number ν ą 0 (chosen sufficiently small later) and let us decompose T pλq on the
low energies tE ď νu and the high energies tE ą νu of HA:

(4.6) T pλq “ Tăνpλq ` Tąνpλq,

with

Tăνpλq :“ V
1
2 pHA ` λq

´11r0,νspHAqV
1
2 ; Tąνpλq :“ V

1
2 pHA ` λq

´11sν,`8rpHAqV
1
2 .

Since HA1sν,`8rpHAq ě ν, the operator Tąνpλq is uniformly bounded with respect to λ ě 0.
On the other hand, according to the decomposition:

HA “ Φ˚F˚
3

¨

˝

À

ÿ

pm,nqPZˆN˚

ż

À

kPR
λm,npkqPm,npkqdk

˛

‚F3Φ,

with Pm,npkq : f ÞÑ xf, um,np¨, kqyum,np¨, kq, the orthogonal projection onto um,np., kq P
L2pR`, rdrq, we have

Tăνpλq “ V
1
2 Φ˚F˚

3

¨

˝

À

ÿ

pm,nqPZˆN˚

ż

À

kPR
Pm,npkq

1r0,νspλm,npkqq

λm,npkq ` λ
dk

˛

‚F3ΦV
1
2 .

Then, for an axisymmetric potential V , Tăνpλq is unitarily equivalent to the direct sum‘mPZKν,mpλq
with

Kν,mpλq :“ V
1
2F˚

3

˜

ż

À

kPR

À

ÿ

nPN˚

rPm,npkq
1r0,νspλm,npkqq

λm,npkq ` λ
dk

¸

F3V
1
2 ,



22 GROUND STATE OF A 3D MAGNETIC HAMILTONIAN

defined in L2pR` ˆ R, drdzq, with rPm,npkq :“ M˚Pm,npkqM “ x., rum,npkqyrum,npk, .q, the
orthogonal projection onto rum,np., kq P L

2pR`, drq, rum,npr, kq “
?
rum,npr, kq.

Let us introduce the operator:

Smpλq : L2
pR, l2pN˚qq ÝÑ L2

pR` ˆ R, drdzq,
defined, for pgnp.qqnPN˚ P L2pR, l2pN˚qq by

(4.7) Smpλqpgnqpr, zq :“
V

1
2 pr, zq
?

2π

ÿ

nPN˚

ż

R
gnpkq

eizk1r0,νspλm,npkqq

pλm,npkq ` λq
1
2

rum,npr, kqdk,

Its adjoint is given, for f P L2pR` ˆ R, drdzq, by

pSmpλq
˚
pfqqn pkq “

1
?

2π

1r0,νspλm,npkqq

pλm,npkq ` λq
1
2

ż

R`ˆR
e´izkrum,npr, kqpV

1
2fqpr, zqdrdz.

It is easy to check that Kν,mpλq “ SmpλqSmpλq
˚, and thus we have proved:

Lemma 4.2. Let λ ą 0, ν ą 0 and V be a non negative relatively bounded potential. The
Birman-Schwinger operator defined by (4.5) satisfies: T pλq “ Tăνpλq ` Tąνpλq, where:

‚ Tąνpλq is uniformly bounded with respect to λ ě 0,
‚ For V axisymmetric, Tăνpλq is unitarily equivalent to‘mPZSmpλqSmpλq˚ with Smpλq

defined by (4.7).

4.3. Norm estimate of the canonical operator. For Smpλq defined by (4.7), we prove the
following upper bound of the Hilbert-Schmidt norm of Smpλq˚Smpλq.

Proposition 4.3. Let V be the axisymmetric potential V pr, zq :“ xry´α vKpzq with α ą 1 and
a non negative function vK P LppRq, p P r1, 2s. Then there exist C ą 0 and ν0 ą 0 such that
for all ν P p0, ν0q and λ ą 0,

@m P Z, }Smpλq
˚Smpλq}2 ď Cνα´1.

First we have:

Lemma 4.4. There exist C ą 0 and ν0 ą 0 such that for all ν P p0, ν0q and λ ą 0, the
following upper bound of the Hilbert-Schmidt norm holds:

(4.8) @m P Z, }Smpλq
˚Smpλq}

2
2 ď C

ÿ

n,n1

ż

k

ż

k1
ιm,n1pk

1, νqιm,npk, νq|xvKpk
1
´ kq|2dk1dk

where we have set

ιm,npk, νq :“
1r0,νspλm,npkqq

λm,npkq ` λ
e´αk .

Proof. We check that Smpλq˚Smpλq : L2pR, l2pN˚qq ÝÑ L2pR, l2pN˚qq corresponds with

(4.9) pSmpλq
˚Smpλqpgn1qqn pkq “

1

2π
Lm,npkq

ż

z

ż

r

rum,npr, kqV pr, zq
ÿ

n1

ż

k1
gn1pk

1
qLm,n1pk

1
qrum,n1pr, k

1
qeizpk

1´kqdk1drdz
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where we have denoted

Lm,npkq :“
1r0,νspλm,npkqq
a

λm,npkq ` λ
.

The integral kernel of this operator is

Nm,n,n1pk, k
1
q :“ Lm,npkqLm,n1pk

1
q

ż

r

ż

z

V pr, zqrum,npr, kqrum,n1pr, k
1
qeizpk´k

1qdzdr

“ Lm,npkqLm,n1pk
1
qxvKpk

1
´ kq

ż

r

xry´αrum,npr, kqrum,n1pr, k
1
qdr.

Then the Hilbert-Schmidt norm is given by

(4.10) 4π2
}Smpλq

˚Smpλq}
2
2 “

ÿ

n,n1

ż

k

ż

k1
Lm,npkq

2Lm,n1pk
1
q
2
|xvKpk

1
´ kq|2

ˇ

ˇ

ˇ

ˇ

ż

r

xry´αrum,npr, kqrum,n1pr, k
1
qdr

ˇ

ˇ

ˇ

ˇ

2

dkdk1.

Set ν0 ą 0 and pm,n, kq such that λm,npkq ď ν0. Applying (4.2) we know that there exists
Ikpν0q :“ rρ11e

k, ρ12e
ks, ρ11 ă 1 ă ρ12, such that for any k ě k0 sufficiently large (independent

of pm,nq),
ż

AIkpν0q

xry´α | rum,npk, rq |
2 dr ď

ż

AIkpν0q

| rum,npk, rq |
2 dr ď Cpν0, βqe

´βMpν0qek

with β P p0, 1q and Mpν0q ą 0. On the other hand, on Ikpν0q, we have
ż

Ikpν0q

xry´α | rum,npk, rq |
2 dr ď Cpν0qe

´αk

ż

Ikpν0q

| rum,npk, rq |
2 dr ď Cpν0qe

´αk.

Consequently,

(4.11)
ż

R`
xry´α | rum,npk, rq |

2 dr “ Ope´αkq,

uniformly with respect to pm,n, kq P Z ˆ N˚ ˆ R satisfying λm,npkq ď ν0. We deduce (4.8)
from (4.10), by using the Cauchy-Schwarz inequality. �

We now estimate the norm of the function ιm,npk, νq:

Lemma 4.5. There exists C ą 0 and ν0 ą 0 such that for all pm,n, kq P ZˆN˚ˆR, we have

@ν P p0, ν0q, @q ě 1, }ιm,np¨, νq}Lq ď C
να´1

nα
.

Proof. Set ν0 ą 0 and assume λm,npkq ď ν0. According to Lemma 4.1 there exists C0 ą 0
such that

(4.12) λm,npkq ě C0ne
´k,
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uniformly with respect to pm,n, kq P ZˆN˚ˆR. Then for ν P p0, ν0q there holds 1r0,νspλm,npkqq ď
1r0, ν

C0
spne

´kq and for any λ ą 0 we have

}ιm,n}
q
Lq “

ż

k

1r0,νspλm,npkqq

pλm,npkq ` λqq
e´αqkdk ď

ż

kělog
C0n
ν

1

pλm,npkq ` λqq
e´αqkdk

ď
1

pC0nqq

ż

kělog
C0n
ν

ep´α`1qqkdk

“
1

qpα ´ 1qpC0nqq

ˆ

ν

C0n

˙pα´1qq

and the lemma is proved. �

We notice that the r.h.s of (4.8) coincides with

C
ÿ

n,n1

ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|
2
qpkqdk .

Since vK P Lp with p P r1, 2s, then |xvK|2 P Lp
1{2 with p1 “ p

p´1
ě 2. Young’s inequality

provides for all q ě 1:

}ιm,n1 ˚ |xvK|
2
}Lr ď }ιm,n1}Lq}xvK}

2
Lp1
ď }ιm,n1}Lq}vK}

2
Lp

where 2
p1
` 1

q
“ 1` 1

r
. We now use Holder’s inequality combined with lemma 4.5 and we get

for all pm,n, n1q:

@ν P p0, ν0q,

ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|
2
qpkqdk ď C}vK}

2
Lp
ν2α´2

nαn1α
.

Since α ą 1, we get
ÿ

n,n1

ż

k

ιm,npk, νqpιm,n1p¨, νq ˚ |xvK|
2
qpkqdk “ Opν2α´2

q}vK}
2
Lp

ÿ

ně1

1

nα

ÿ

n1ě1

1

pn1qα

and therefore using Lemma 4.4 we conclude the proof of Proposition 4.3.

4.4. Proof of Theorem 1.3. Let λ ą 0, for simplicity we denote by N pλq :“ N pHA ´ V, λq
the number of negative eigenvalues of HA ´ V below ´λ. We want to prove that there exists
C ą 0 independent of λ, such that N pλq ď C.

The Birman-Schwinger principle gives for λ ą 0,

(4.13) N pλq “ n`

´

1, T pλq
¯

,

with T pλq defined by (4.5) and where for a self-adjoint operator T , n`ps, T q :“ Tr1ps,8qpT q;
is the counting function of positive eigenvalues of T .

Exploiting the decomposition of the Lemma 4.2 for ν ą 0 and the Weyl’s inequality, for
any ε ą 0, we have

(4.14) n`

´

1, T pλq
¯

ď n`

´

1´ ε, Tăνpλq
¯

` n`

´

ε, Tąνpλq
¯

.
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Since the compact operator Tąνpλq is uniformly bounded with respect to λ ě 0 then for ν ą 0
fixed there exists Cν ą 0 such that for all λ ě 0

(4.15) n`

´

ε, Tąνpλq
¯

ď Cν .

For Tăνpλq, according to the min-max principle, the assumption (1.5) allows to reduce the
study of the counting function to the axisymmetric potential V pr, zq “ xry´α vKpzq. Combin-
ing Lemma 4.2 with Proposition 4.3, for such V , we have:

}Tăνpλq} “ sup
mPZ

}SmpλqSmpλq
˚
} “ sup

mPZ
}Smpλq

˚Smpλq} ď sup
mPZ

}Smpλq
˚Smpλq}2 ď Cνα´1,

with C ą 0 and ν P p0, ν0q, ν0 fixed. Then choosing ν sufficiently small, all eigenvalues of
Tăνpλq are smaller to 1 ´ ε and n`

´

1 ´ ε, Tăνpλq
¯

“ 0. Consequently, combining (4.13),
(4.14) and (4.15), we deduce that N pλq is uniformly bounded with respect to λ ě 0 and
Theorem 1.3 holds.

Remark 4.6. Instead of the Hilbert-Schmidt norm in Proposition 4.3 we could consider the
trace norm of Smpλq˚Smpλq, but in such an estimate, vK has to be integrable and Theorem 1.3
would hold only for p “ 1.
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APPENDIX A. TABLE OF SYMBOLS FOR THE UNPERTURBED OPERATOR AND ITS
FIBERS

Notation Operator Space Form Eigenpairs

HA p´i∇´Aq2 L2pR3q spectrum“ R`
gmpkq ´1

rBrrBr `
m2

r2 ` plog r ´ kq
2 L2pR`, rdrq qkm pλm,npkq, um,npr, kqq

rgmpkq ´B2
r `

m2´ 1
4

r2 ` plog r ´ kq2 L2pR`, drq rqkm pλm,npkq, rum,npr, kqq

gmphq ´h2 1
ρBρρBρ ` h

2m2

ρ2 ` log2pρq L2pR`, ρdρq qhm pµm,nphq,um,npρ, hqq

rgmphq ´h2B2
ρ ` h

2m
2´ 1

4
ρ2 ` log2pρq L2pR`, dρq rqhm pµm,nphq, rum,npρ, hqq

pgmphq ´B2
t `h

m2´ 1
4

p1`h1{2tq2
`plogp1`h1{2tqq2 L2pIh, dtq pqhm ph´1µm,nphq, pum,npt, hqq

TABLE 1. Operators and notations. Remind that ρ “ hr with r “
a

x2 ` y2,
h “ e´k and Ih “ p´h´1{2,`8q.
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[10] V. V. GRUŠIN. Hypoelliptic differential equations and pseudodifferential operators with operator-valued
symbols. Mat. Sb. (N.S.) 88(130) (1972) 504–521.

[11] B. HELFFER. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin 1988.
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