// This file is in Magma syntax. // It deals with matrix calculations. // The file cs-surface-presentations_magma.txt deals with calculations // involving the presentations of the various groups. // The fields involved: L:=CyclotomicField(12); // z is a primitive 12-th root of 1. K:=sub< L | z+1/z >; // K is \Q(\sqrt(3)) // r=z+1/z is a square root of 3, positive // if $z=e^{2\pi i/12}$. Note that r = 2*z-z^3; RR:=RealField(20); hKR:=homRR | Sqrt(3)>; // Embedding of $K$ in $\R$. hLL:=homL | z^-1 >; // Complex conjugation on L. MatsL:=MatrixRing(L,3); ID3:=MatsL!1; // Calculations for Section 1.1: // ***************************** // Here is a form we can use. The "emptyset" in the name is a reference // to the naming scheme Cartwright and Steger used in their work on fake // projective planes. The determinant of the form is 1. Its eigenvalues // are 1 and -r+\sqrt2 and -r-sqrt2, and so are all positive if // r is the negative square root of 3. If we take r to be the positive // square root of 3, then one eigenvalue of Femptyset is positive, and // the other two are negative. // In the write-up, it is multiplied by -1 so that $B^2_\C(F)=\{[z]:F(z)<0\}$. Femptyset:=MatsL![ -r-1, 1,0, 1,1-r,0, 0, 0,1]; // Inverse of Femptyset FemptysetI:=MatsL![ 1-r, -1,0, -1,-1-r,0, 0, 0,1]; // We will mostly use the following diagonal form. Notice that // its (3,3) entry is negative when r is the positive square root of 3: Fdiag:=MatsL![1,0,0, 0,1,0, 0,0,1-r]; // Here is the inverse of Fdiag: FdiagI:=MatsL![1,0,0, 0,1,0, 0,0,-(1+r)/2]; // The function starmat calculates the complex conjugate // of the transpose of a matrix in MatsL. starmat:=function(matvar); return MatsL![hLL(matvar[1][1]),hLL(matvar[2][1]),hLL(matvar[3][1]), hLL(matvar[1][2]),hLL(matvar[2][2]),hLL(matvar[3][2]), hLL(matvar[1][3]),hLL(matvar[2][3]),hLL(matvar[3][3])]; end function; // We translate between the two forms using the following matrix: GAMMA0:=MatsL![ 1, 0,0, 1,1-r,0, 0, 0,1]; // Here is inverse of GAMMA0: GAMMA0I:=MatsL![ 1, 0,0, (r+1)/2,(-r-1)/2,0, 0, 0,1]; // Checking that we can get from one form to the other using GAMMA0: print "Femptyset - (1/(1-r))*starmat(GAMMA0))*Fdiag*GAMMA0 = ", Femptyset - (1/(1-r))*starmat(GAMMA0)*Fdiag*GAMMA0; // absFdiag equals Fdiag multiplied by the diagonal matrix Fstandard having diagonal entries 1,1,-1. // If a matrix g is unitary with respect to Fdiag, then h = absFdiag^{1/2}g absFdiag^{-1/2} is // unitary with respect to Fstandard, and the squared Hilbert-Schmidt norm of h // (i.e., \sum_{i,j}|h_{i,j}|^2) equals the trace of h^*h. This is calculated // by the function hsnormfn defined next. absFdiag:=MatsL![1,0,0, 0,1,0, 0,0,r-1]; absFdiagI:=MatsL![1,0,0, 0,1,0, 0,0,(r+1)/2]; hsnormfn:=function(matvar); return hKR(Trace(starmat(matvar)*absFdiag*matvar*absFdiagI)); end function; // Here are matrices which are unitary with respect to // Femptyset, and which have entries in $\Z[z]$. When we conjugate // them by GAMMA0, we get matrices unitary with respect to Fdiag // but which have entries in $(r-1)^{-1}\Z[z]$. Conversely, conjugating // a matrix which is unitary with respect to Fdiag by GAMMA0I transforms // it into a matrix which are unitary with respect to the form Femptyset. // Here are the matrices which are called $u'$, $v'$ and $b'$ in the write-up. UD:=MatsL![ z^3+z^2-z,1-z,0, z^3+z^2-1,z-z^3,0, 0,0,1]; VD:=MatsL![ z^3,0,0, z^3+z^2-z-1,1,0, 0,0,1]; BD:=MatsL![ 1, 0, 0, -2*z^3-z^2+2*z+2,z^3+z^2-z-1,-z^3-z^2, z^2+z, -z^3-1,-z^3+z+1]; // We also set JD:=(UD*VD)^2; JD:=MatsL![ z,0,0, 0,z,0, 0,0,1]; UDI:=UD^-1; VDI:=VD^-1; JDI:=JD^-1; BDI:=BD^-1; // The group $\bar\Gamma$ is generated by the matrices U, V and B (modulo powers of z) // The matrix J is just introduced to make the expressions for the elements of // $K=\langle u,v\rangle$ neater. // Here are the matrices called $u$, $v$, $j$ and~$b$ in the write-up."; U:=GAMMA0*UD*GAMMA0I; V:=GAMMA0*VD*GAMMA0I; J:=GAMMA0*JD*GAMMA0I; B:=GAMMA0*BD*GAMMA0I; UI:=U^-1; VI:=V^-1; JI:=J^-1; BI:=B^-1; // The relations from our presentation of $\bar\Gamma$. // The following are zero. U^3 - ID3; V^4 - ID3; (U*V)^2 - (V*U)^2; B^3 - ID3; B*V - V*B; (B*U*V)^3 - (1/z)*ID3; (B*U*V*U)^2*V - (1/z)*ID3; print "Finished checking that the matrices U, V and B"; print "satisfy the claimed relations."; // We next form a list of the 288 elements of $K$. To give // simple words for them, we use the subgroup $J=\langle j\rangle$ // of $K$, which has order 12 and is the center of $K$. The following // list of 24 elements $t_1,\ldots,t_{24}$ of~$K$ is a transversal // for $J$ in $K$. That is, each element of $K$ can be written as a // product $t_a*J^b$, where $a\in\{1,\ldots,24\}$ and $b\in\{0,\ldots,11\}$. // The list Jtransversal is a modification of the list found using the // Magma command Transversal(Gp,Subgp); (see the file cs-surface-presentations_magma.txt). Jtransversal:=[MatsL | ID3, V, VI, U, UI, V^2, V*U, V*UI, VI*U, U*V, UI*V, U*VI, V^2*U, V^2*UI, V*U*VI, V*UI*V, VI*U*VI, U*V^2, U*VI*U, V^2*U*VI, VI*U*V^2, U*V^2*UI, UI*V^2*U, V*UI*V^2*U]; kklist:=[MatsL | Jtransversal[i1]*J^i2 : i1 in [1 .. 24], i2 in [0 .. 11]]; kklistI:=[MatsL | ]; for ii in [1 .. #kklist] do kklistI:=Append(kklistI,kklist[ii]^-1); end for; // The following function takes a matrix k in $K$, and finds the index i1 // such that k=kklist[i1+1]. If the matrix is not in $K$, it returns -1. kkindex:=function(matvar); index:=-1; i1:=0; indexfound:=0; while ((i1 le 287) and (indexfound eq 0)) do if (matvar eq kklist[i1+1]) then index:=i1; indexfound:=1; end if; i1+:=1; end while; return index; end function; Jtransversalwordlist:=[ [], ["V"], ["VI"], ["U"], ["UI"], ["V","V"], ["V","U"], ["V","UI"], ["VI","U"], ["U","V"], ["UI","V"], ["U","VI"], ["V","V","U"], ["V","V","UI"], ["V","U","VI"], ["V","UI","V"], ["VI","U","VI"], ["U","V","V"], ["U","VI","U"], ["V","V","U","VI"], ["VI","U","V","V"], ["U","V","V","UI"], ["UI","V","V","U"], ["V","UI","V","V","U"]]; Jwordlist:=[ [], ["J"], ["J","J"], ["J","J","J"], ["J","J","J","J"], ["J","J","J","J","J"], ["J","J","J","J","J","J"], ["J","J","J","J","J","J","J"], ["J","J","J","J","J","J","J","J"], ["J","J","J","J","J","J","J","J","J"], ["J","J","J","J","J","J","J","J","J","J"], ["J","J","J","J","J","J","J","J","J","J","J"]]; kkwordlist:=[Jtransversalwordlist[i1] cat Jwordlist[i2] : i1 in [1 .. 24], i2 in [1 .. 12]]; print "The number of elements in kklist is",#kklist; for ii in [1 .. #kklist] do for jj in [ii+1 .. #kklist] do tmpmat:=kklist[jj]*kklist[ii]^(-1); if (tmpmat eq tmpmat[1][1]*ID3) then print "kklist[",ii,"] equals kklist[",jj,"]"; end if; end for; end for; print "finished checking that the 288 elements of kklist are distinct"; // End of calculations for section 1.1. // ************************************ // Calculations for section 1.3. // ***************************** // Calculations for Proposition 1: // ******************************* // // Here is a routine for finding the elements of finite // // order in $K\cup bK\cup bu^{-1}bK$: // // firsteltlist:=[MatsL | ID3,B,B*UI*B]; // firsteltwordlist:=[[],["B"],["B*UI*B"]]; // // for d in [2 .. 24] do // if IsDivisibleBy(24,d) then // print "\n"; // print "order",d,"list:=[MatsL |"; // for idx in [1,2,3] do // for ii in [1 .. 288] do // testmat:=(firsteltlist[idx]*kklist[ii])^d; // if (testmat eq testmat[1][1]*ID3) then // d_is_order:=1; // if IsDivisibleBy(d,2) then // d2:=IntegerRing()!(d/2); // testmat2:=(firsteltlist[idx]*kklist[ii])^d2; // if (testmat2 eq testmat2[1][1]*ID3) then d_is_order:=0; end if; // end if; // if IsDivisibleBy(d,3) then // d3:=IntegerRing()!(d/3); // testmat3:=(firsteltlist[idx]*kklist[ii])^d3; // if (testmat3 eq testmat3[1][1]*ID3) then d_is_order:=0; end if; // end if; // if (d_is_order eq 1) then print firsteltwordlist[idx],"*",kkwordlist[ii],","; end if; // end if; // end for; // end for; // print "];"; // end if; // end for; // // order2list:=[MatsL| // V*V, // U*V*V*UI, // UI*V*V*U, // J*J*J*J*J*J, // V*V*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J, // B*UI*B*UI]; // // order3list:=[MatsL| // U, // UI, // V*U*VI, // V*V*UI*J, // V*UI*V*J, // V*V*U*J*J*J, // VI*U*VI*J*J*J, // U*V*V*J*J*J, // J*J*J*J, // U*J*J*J*J, // UI*J*J*J*J, // V*U*VI*J*J*J*J, // V*V*UI*J*J*J*J*J, // V*UI*V*J*J*J*J*J, // V*V*U*J*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J*J, // J*J*J*J*J*J*J*J, // U*J*J*J*J*J*J*J*J, // UI*J*J*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J*J*J*J, // V*V*U*J*J*J*J*J*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J*J*J*J*J*J, // B, // B*V*U, // B*U*V, // B*V*V*U*VI, // B*VI*U*V*V, // B*U*J, // B*V*U*VI*J, // B*VI*J*J, // B*V*V*UI*J*J, // B*V*UI*V*J*J, // B*UI*B*VI, // B*UI*B*V*U, // B*UI*B*U*V, // B*UI*B*U*VI*U*J, // B*UI*B*V*UI*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*UI*V*J*J*J*J*J*J*J*J*J*J*J]; // // order4list:=[MatsL| // V, // VI, // VI*U*J, // U*VI*J, // V*UI*J*J, // UI*V*J*J, // J*J*J, // V*J*J*J, // VI*J*J*J, // V*V*J*J*J, // U*V*V*UI*J*J*J, // UI*V*V*U*J*J*J, // VI*U*J*J*J*J, // U*VI*J*J*J*J, // V*UI*J*J*J*J*J, // UI*V*J*J*J*J*J, // V*J*J*J*J*J*J, // VI*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J, // V*UI*J*J*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J*J*J, // J*J*J*J*J*J*J*J*J, // V*J*J*J*J*J*J*J*J*J, // VI*J*J*J*J*J*J*J*J*J, // V*V*J*J*J*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J*J*J*J, // V*UI*J*J*J*J*J*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J*J*J*J*J*J, // B*UI, // B*VI*U*J*J, // B*U*VI*J*J, // B*V*UI*J*J*J, // B*UI*V*J*J*J, // B*V*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*VI*U*VI*J*J*J*J*J*J*J*J*J*J*J, // B*U*V*V*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*J, // B*UI*B*U*J*J*J*J*J*J*J*J*J*J*J]; // // order6list:=[MatsL| // V*V*U*J, // VI*U*VI*J, // U*V*V*J, // J*J, // U*J*J, // UI*J*J, // V*V*J*J, // V*U*VI*J*J, // U*V*V*UI*J*J, // UI*V*V*U*J*J, // V*V*UI*J*J*J, // V*UI*V*J*J*J, // V*V*J*J*J*J, // U*V*V*UI*J*J*J*J, // UI*V*V*U*J*J*J*J, // V*V*U*J*J*J*J*J, // VI*U*VI*J*J*J*J*J, // U*V*V*J*J*J*J*J, // U*J*J*J*J*J*J, // UI*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J*J, // V*V*J*J*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J*J*J, // V*V*U*J*J*J*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J*J*J*J, // J*J*J*J*J*J*J*J*J*J, // U*J*J*J*J*J*J*J*J*J*J, // UI*J*J*J*J*J*J*J*J*J*J, // V*V*J*J*J*J*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J*J*J*J*J*J, // B*U, // B*V*V, // B*V*U*VI, // B*V*U*J, // B*U*V*J, // B*V*V*UI*J, // B*V*UI*V*J, // B*V*V*U*VI*J, // B*VI*U*V*V*J, // B*V*J*J, // B*UI*B, // B*UI*B*U, // B*UI*B*V*J, // B*UI*B*VI*U*J*J, // B*UI*B*U*VI*J*J, // B*UI*B*V*J*J*J*J*J*J*J*J*J*J, // B*UI*B*VI*U*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*U*VI*J*J*J*J*J*J*J*J*J*J*J]; // // order8list:=[MatsL| // V*UI*V*V*U, // V*U*J, // U*V*J, // V*V*U*VI*J, // VI*U*V*V*J, // U*VI*U*J*J, // V*UI*V*V*U*J*J*J, // V*U*J*J*J*J, // U*V*J*J*J*J, // V*V*U*VI*J*J*J*J, // VI*U*V*V*J*J*J*J, // U*VI*U*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J, // V*U*J*J*J*J*J*J*J, // U*V*J*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J*J*J*J, // V*U*J*J*J*J*J*J*J*J*J*J, // U*V*J*J*J*J*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J*J*J*J*J*J, // B*J, // B*V*J, // B*VI*J, // B*V*V*J, // B*U*J*J, // B*V*U*VI*J*J, // B*V*V*UI*J*J*J, // B*V*UI*V*J*J*J, // B*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*U*V*J*J*J*J*J*J*J*J*J*J*J, // B*V*V*U*VI*J*J*J*J*J*J*J*J*J*J*J, // B*VI*U*V*V*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*V*V*J, // B*UI*B*U*V*V*UI*J, // B*UI*B*UI*V*V*U*J, // B*UI*B*V*UI*V*J*J*J*J*J*J*J*J*J, // B*UI*B*V*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*U*V*V*J*J*J*J*J*J*J*J*J*J*J]; // // order12list:=[MatsL| // V*UI, // VI*U, // UI*V, // U*VI, // V*V*U, // V*V*UI, // V*UI*V, // VI*U*VI, // U*V*V, // J, // V*J, // VI*J, // U*J, // UI*J, // V*V*J, // V*UI*J, // UI*V*J, // V*U*VI*J, // U*V*V*UI*J, // UI*V*V*U*J, // V*J*J, // VI*J*J, // VI*U*J*J, // U*VI*J*J, // V*V*U*J*J, // V*V*UI*J*J, // V*UI*V*J*J, // VI*U*VI*J*J, // U*V*V*J*J, // U*J*J*J, // UI*J*J*J, // V*UI*J*J*J, // VI*U*J*J*J, // UI*V*J*J*J, // U*VI*J*J*J, // V*U*VI*J*J*J, // V*J*J*J*J, // VI*J*J*J*J, // V*UI*J*J*J*J, // UI*V*J*J*J*J, // V*V*U*J*J*J*J, // V*V*UI*J*J*J*J, // V*UI*V*J*J*J*J, // VI*U*VI*J*J*J*J, // U*V*V*J*J*J*J, // J*J*J*J*J, // V*J*J*J*J*J, // VI*J*J*J*J*J, // U*J*J*J*J*J, // UI*J*J*J*J*J, // V*V*J*J*J*J*J, // VI*U*J*J*J*J*J, // U*VI*J*J*J*J*J, // V*U*VI*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J, // V*UI*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J, // V*V*U*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J, // J*J*J*J*J*J*J, // V*J*J*J*J*J*J*J, // VI*J*J*J*J*J*J*J, // U*J*J*J*J*J*J*J, // UI*J*J*J*J*J*J*J, // V*V*J*J*J*J*J*J*J, // V*UI*J*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J*J, // V*J*J*J*J*J*J*J*J, // VI*J*J*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J*J, // V*V*U*J*J*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J*J*J, // U*J*J*J*J*J*J*J*J*J, // UI*J*J*J*J*J*J*J*J*J, // V*UI*J*J*J*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J*J*J*J, // V*J*J*J*J*J*J*J*J*J*J, // VI*J*J*J*J*J*J*J*J*J*J, // V*UI*J*J*J*J*J*J*J*J*J*J, // UI*V*J*J*J*J*J*J*J*J*J*J, // V*V*U*J*J*J*J*J*J*J*J*J*J, // V*V*UI*J*J*J*J*J*J*J*J*J*J, // V*UI*V*J*J*J*J*J*J*J*J*J*J, // VI*U*VI*J*J*J*J*J*J*J*J*J*J, // U*V*V*J*J*J*J*J*J*J*J*J*J, // J*J*J*J*J*J*J*J*J*J*J, // V*J*J*J*J*J*J*J*J*J*J*J, // VI*J*J*J*J*J*J*J*J*J*J*J, // U*J*J*J*J*J*J*J*J*J*J*J, // UI*J*J*J*J*J*J*J*J*J*J*J, // V*V*J*J*J*J*J*J*J*J*J*J*J, // VI*U*J*J*J*J*J*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J*J*J*J*J, // V*U*VI*J*J*J*J*J*J*J*J*J*J*J, // U*V*V*UI*J*J*J*J*J*J*J*J*J*J*J, // UI*V*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*V, // B*VI, // B*U*V*V*UI, // B*UI*V*V*U, // B*U*VI*U*J, // B*J*J, // B*V*V*J*J, // B*J*J*J, // B*V*J*J*J, // B*VI*J*J*J, // B*V*V*J*J*J, // B*V*V*U*J*J*J, // B*VI*U*VI*J*J*J, // B*U*V*V*J*J*J, // B*UI*J*J*J*J, // B*V*UI*V*V*U*J*J*J*J*J, // B*U*V*V*UI*J*J*J*J*J*J, // B*UI*V*V*U*J*J*J*J*J*J, // B*U*VI*U*J*J*J*J*J*J*J, // B*VI*U*J*J*J*J*J*J*J*J*J*J, // B*U*VI*J*J*J*J*J*J*J*J*J*J, // B*J*J*J*J*J*J*J*J*J*J*J, // B*V*J*J*J*J*J*J*J*J*J*J*J, // B*VI*J*J*J*J*J*J*J*J*J*J*J, // B*V*V*J*J*J*J*J*J*J*J*J*J*J, // B*V*UI*J*J*J*J*J*J*J*J*J*J*J, // B*UI*V*J*J*J*J*J*J*J*J*J*J*J, // B*V*UI*V*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*V*UI, // B*UI*B*UI*V, // B*UI*B*VI*U*VI, // B*UI*B*U*VI*U, // B*UI*B*VI*J, // B*UI*B*U*J, // B*UI*B*UI*J, // B*UI*B*V*U*VI*J, // B*UI*B*V*V*UI*J*J, // B*UI*B*VI*U*VI*J*J*J*J, // B*UI*B*V*U*VI*J*J*J*J*J*J*J*J*J, // B*UI*B*V*V*UI*J*J*J*J*J*J*J*J*J*J, // B*UI*B*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*UI*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*UI*B*U*V*J*J*J*J*J*J*J*J*J*J*J]; // // order24list:=[MatsL| // V*U, // U*V, // U*VI*U, // V*V*U*VI, // VI*U*V*V, // U*VI*U*J, // V*UI*V*V*U*J, // V*U*J*J, // U*V*J*J, // V*V*U*VI*J*J, // VI*U*V*V*J*J, // V*UI*V*V*U*J*J, // V*U*J*J*J, // U*V*J*J*J, // U*VI*U*J*J*J, // V*V*U*VI*J*J*J, // VI*U*V*V*J*J*J, // U*VI*U*J*J*J*J, // V*UI*V*V*U*J*J*J*J, // V*U*J*J*J*J*J, // U*V*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J, // V*U*J*J*J*J*J*J, // U*V*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J*J, // V*U*J*J*J*J*J*J*J*J, // U*V*J*J*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J*J*J, // V*U*J*J*J*J*J*J*J*J*J, // U*V*J*J*J*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J*J*J*J, // U*VI*U*J*J*J*J*J*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J*J*J*J*J, // V*U*J*J*J*J*J*J*J*J*J*J*J, // U*V*J*J*J*J*J*J*J*J*J*J*J, // V*V*U*VI*J*J*J*J*J*J*J*J*J*J*J, // VI*U*V*V*J*J*J*J*J*J*J*J*J*J*J, // V*UI*V*V*U*J*J*J*J*J*J*J*J*J*J*J, // B*V*V*U, // B*VI*U*VI, // B*U*V*V, // B*UI*J, // B*VI*U*J, // B*U*VI*J, // B*V*UI*J*J, // B*UI*V*J*J, // B*UI*B*V*V, // B*UI*B*V*V*U, // B*UI*B*U*V*V, // B*UI*B*U*V*V*UI, // B*UI*B*UI*V*V*U, // B*UI*B*V*UI*V*J*J*J*J*J*J*J*J*J*J]; // // // order2replist:=[MatsL | // V*V, // J*J*J*J*J*J, // B*UI*B*UI]; // // order2repwordlist:=[ // ["V*V"], // ["J*J*J*J*J*J"], // ["B*UI*B*UI"]]; // // order3replist:=[MatsL | // U, // J*J*J*J, // U*J*J*J*J, // B*U*V]; // // order3repwordlist:=[ // ["U"], // ["J*J*J*J"], // ["U*J*J*J*J"], // ["B*U*V"]]; // // order4replist:=[MatsL| // V, // J*J*J, // V*J*J*J, // V*V*J*J*J, // B*UI]; // // order4repwordlist:=[ // ["V"], // ["J*J*J"], // ["V*J*J*J"], // ["V*V*J*J*J"], // ["B*UI"]]; // // order6replist:=[MatsL| // J*J, // V*V*J*J, // V*V*U*J, // V*V*U*J*J*J*J*J, // B*V*V*UI*J, // B*V*V]; // // order6repwordlist:=[ // ["J*J"], // ["V*V*J*J"], // ["V*V*U*J"], // ["V*V*U*J*J*J*J*J"], // ["B*V*V*UI*J"], // ["B*V*V"]]; // // order8replist:=[MatsL| // U*V*J, // B*J, // (B*J)^3]; // // order8repwordlist:=[ // ["U*V*J"], // ["B*J"], // ["(B*J)^3"]]; // // order12replist:=[MatsL| // J, // J*J*J*J*J, // U*VI*J*J, // U*VI*J*J*J, // U*VI*J*J*J*J*J*J, // U*VI*J*J*J*J*J*J*J*J*J*J*J, // V*V*J, // U*V*V, // U*J, // U*J*J*J, // B*V, // (B*V)^(-5)]; // // order12repwordlist:=[ // ["J"], // ["J*J*J*J*J"], // ["U*VI*J*J"], // ["U*VI*J*J*J"], // ["U*VI*J*J*J*J*J*J"], // ["U*VI*J*J*J*J*J*J*J*J*J*J*J"], // ["V*V*J"], // ["U*V*V"], // ["U*J"], // ["U*J*J*J"], // ["B*V"], // ["(B*V)^(-5)"]]; // // order24replist:=[MatsL| // U*V, // V*U*J*J]; // // order24repwordlist:=[ // ["U*V"], // ["V*U*J*J"]]; // // BUIB:=B*UI*B; // // print "Confirming representatives for elements of order 12"; // print "The number of elements in order12list is",#order12list; // for ii in [1 .. #order12list] do // conjugatefound:=0; // target:=order12list[ii]^-1; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to",order12repwordlist[jj],"using",kkwordlist[i1]; // end if; // i1+:=1; // end while; // jj+:=1; // end while; // if (conjugatefound eq 0) then // target:=order12list[ii]; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to the inverse of",order12repwordlist[jj],"using",kkwordlist[i1]; // end if; // i1+:=1; // end while; // jj+:=1; // end while; // end if; // if (conjugatefound eq 0) then // target:=order12list[ii]^-1; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // i2:=1; // while ((i2 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]*B*kklist[i2]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to",order12repwordlist[jj],"using",kkwordlist[i1] cat ["B"] cat kkwordlist[i2]; // end if; // i2+:=1; // end while; // i1+:=1; // end while; // jj+:=1; // end while; // end if; // if (conjugatefound eq 0) then // target:=order12list[ii]; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // i2:=1; // while ((i2 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]*B*kklist[i2]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to the inverse of",order12repwordlist[jj],"using",kkwordlist[i1] cat ["B"] cat kkwordlist[i2]; // end if; // i2+:=1; // end while; // i1+:=1; // end while; // jj+:=1; // end while; // end if; // // if (conjugatefound eq 0) then // target:=order12list[ii]^-1; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // i2:=1; // while ((i2 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]*BUIB*kklist[i2]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to",order12repwordlist[jj],"using",kkwordlist[i1] cat ["B*UI*B"] cat kkwordlist[i2]; // end if; // i2+:=1; // end while; // i1+:=1; // end while; // jj+:=1; // end while; // end if; // if (conjugatefound eq 0) then // target:=order12list[ii]; // jj:=1; // while ((jj le #order12replist) and (conjugatefound eq 0)) do // i1:=1; // while ((i1 le 288) and (conjugatefound eq 0)) do // i2:=1; // while ((i2 le 288) and (conjugatefound eq 0)) do // conjmat:=kklist[i1]*BUIB*kklist[i2]; // testmat:=target*conjmat*order12replist[jj]*conjmat^-1; // if (testmat eq testmat[1][1]*ID3) then // conjugatefound:=1; // print "List element",ii,"is conjugate to the inverse of",order12repwordlist[jj],"using",kkwordlist[i1] cat ["B*UI*B"] cat kkwordlist[i2]; // end if; // i2+:=1; // end while; // i1+:=1; // end while; // jj+:=1; // end while; // end if; // // if (conjugatefound eq 0) then print "********* Problem with element number",ii," **************"; end if; // end for; // // UnsetLogFile(); // // // Confirming representatives for elements of order 2 // // ************************************************** // // The number of elements in order2list is 8 // List element 1 is conjugate to [V*V] using [] // List element 2 is conjugate to [V*V] using [U] // List element 3 is conjugate to [V*V] using [UI] // List element 4 is conjugate to [J*J*J*J*J*J] using [] // List element 5 is conjugate to [V*V] using [U*VI*U] // List element 6 is conjugate to [V*V] using [V*UI] // List element 7 is conjugate to [V*V] using [VI*U] // List element 8 is conjugate to [B*UI*B*UI] using [] // // // Confirming representatives for elements of order 3 // // ************************************************** // // The number of elements in order3list is 42 // List element 1 is conjugate to [U] using [] // List element 2 is conjugate to the inverse of [U] using [] // List element 3 is conjugate to [U] using [V] // List element 4 is conjugate to [U] using [VI] // List element 5 is conjugate to [U] using [V*V] // List element 6 is conjugate to [U] using [VI*U*VI] // List element 7 is conjugate to [U] using [UI*V] // List element 8 is conjugate to [U] using [V*U*VI] // List element 9 is conjugate to [J*J*J*J] using [] // List element 10 is conjugate to [U*J*J*J*J] using [] // List element 11 is conjugate to [U] using [V*V*U*VI] // List element 12 is conjugate to [U*J*J*J*J] using [V] // List element 13 is conjugate to [U*J*J*J*J] using [VI] // List element 14 is conjugate to [U*J*J*J*J] using [V*V] // List element 15 is conjugate to [U*J*J*J*J] using [VI*U*VI] // List element 16 is conjugate to [U*J*J*J*J] using [UI*V] // List element 17 is conjugate to [U*J*J*J*J] using [V*U*VI] // List element 18 is conjugate to the inverse of [J*J*J*J] using [] // List element 19 is conjugate to the inverse of [U] using [V*V*U*VI] // List element 20 is conjugate to [U*J*J*J*J] using [V*V*U*VI] // List element 21 is conjugate to the inverse of [U] using [VI*U*VI] // List element 22 is conjugate to the inverse of [U] using [V*U*VI] // List element 23 is conjugate to the inverse of [U] using [UI*V] // List element 24 is conjugate to the inverse of [U] using [V] // List element 25 is conjugate to the inverse of [U] using [V*V] // List element 26 is conjugate to the inverse of [U] using [VI] // List element 27 is conjugate to [U] using [U*B] // List element 28 is conjugate to [B*U*V] using [V] // List element 29 is conjugate to [B*U*V] using [] // List element 30 is conjugate to [B*U*V] using [V*V] // List element 31 is conjugate to [B*U*V] using [VI] // List element 32 is conjugate to the inverse of [B*U*V] using [UI] // List element 33 is conjugate to the inverse of [B*U*V] using [V*UI] // List element 34 is conjugate to the inverse of [U] using [UI*B*VI] // List element 35 is conjugate to the inverse of [B*U*V] using [U*V*J*J*J*J*J*J*J*J*J*J*J] // List element 36 is conjugate to the inverse of [B*U*V] using [V*V*UI] // List element 37 is conjugate to the inverse of [B*U*V] using [B*V] // List element 38 is conjugate to [B*U*V] using [B*U*J] // List element 39 is conjugate to [B*U*V] using [B] // List element 40 is conjugate to [B*U*V] using [U*B] // List element 41 is conjugate to the inverse of [B*U*V] using [UI*B*V] // List element 42 is conjugate to the inverse of [B*U*V] using [U*B*V] // // // Confirming representatives for elements of order 4 // // ************************************************** // // The number of elements in order4list is 42 // List element 1 is conjugate to [V] using [] // List element 2 is conjugate to the inverse of [V] using [] // List element 3 is conjugate to [V] using [U] // List element 4 is conjugate to [V] using [UI] // List element 5 is conjugate to [V] using [VI*U] // List element 6 is conjugate to [V] using [V*UI] // List element 7 is conjugate to [J*J*J] using [] // List element 8 is conjugate to [V*J*J*J] using [] // List element 9 is conjugate to [V] using [U*VI*U] // List element 10 is conjugate to [V*V*J*J*J] using [] // List element 11 is conjugate to [V*V*J*J*J] using [U] // List element 12 is conjugate to [V*V*J*J*J] using [UI] // List element 13 is conjugate to [V*J*J*J] using [U] // List element 14 is conjugate to [V*J*J*J] using [UI] // List element 15 is conjugate to [V*J*J*J] using [VI*U] // List element 16 is conjugate to [V*J*J*J] using [V*UI] // List element 17 is conjugate to the inverse of [V*J*J*J] using [U*VI*U] // List element 18 is conjugate to [V*J*J*J] using [U*VI*U] // List element 19 is conjugate to the inverse of [V*J*J*J] using [V*UI] // List element 20 is conjugate to the inverse of [V*J*J*J] using [VI*U] // List element 21 is conjugate to the inverse of [V*J*J*J] using [UI] // List element 22 is conjugate to the inverse of [V*J*J*J] using [U] // List element 23 is conjugate to the inverse of [J*J*J] using [] // List element 24 is conjugate to the inverse of [V] using [U*VI*U] // List element 25 is conjugate to the inverse of [V*J*J*J] using [] // List element 26 is conjugate to [V*V*J*J*J] using [U*VI*U] // List element 27 is conjugate to [V*V*J*J*J] using [V*UI] // List element 28 is conjugate to [V*V*J*J*J] using [VI*U] // List element 29 is conjugate to the inverse of [V] using [V*UI] // List element 30 is conjugate to the inverse of [V] using [VI*U] // List element 31 is conjugate to the inverse of [V] using [UI] // List element 32 is conjugate to the inverse of [V] using [U] // List element 33 is conjugate to [B*UI] using [] // List element 34 is conjugate to [B*UI] using [U*B*U*V] // List element 35 is conjugate to [B*UI] using [UI*B*VI] // List element 36 is conjugate to [B*UI] using [VI*U*B*U*V] // List element 37 is conjugate to [B*UI] using [V*UI*B*VI] // List element 38 is conjugate to [B*UI] using [V] // List element 39 is conjugate to [B*UI] using [V*V] // List element 40 is conjugate to [B*UI] using [VI] // List element 41 is conjugate to the inverse of [V] using [B*U] // List element 42 is conjugate to [V] using [V*U*B*UI] // // // Confirming representatives for elements of order 6 // // ************************************************** // // The number of elements in order6list is 56 // List element 1 is conjugate to [V*V*U*J] using [] // List element 2 is conjugate to [V*V*U*J] using [V] // List element 3 is conjugate to [V*V*U*J] using [U] // List element 4 is conjugate to [J*J] using [] // List element 5 is conjugate to [V*V*U*J*J*J*J*J] using [V*V*UI] // List element 6 is conjugate to [V*V*U*J] using [VI] // List element 7 is conjugate to [V*V*J*J] using [] // List element 8 is conjugate to [V*V*U*J*J*J*J*J] using [U*V] // List element 9 is conjugate to [V*V*J*J] using [U] // List element 10 is conjugate to [V*V*J*J] using [UI] // List element 11 is conjugate to [V*V*U*J*J*J*J*J] using [V*UI] // List element 12 is conjugate to [V*V*U*J*J*J*J*J] using [UI] // List element 13 is conjugate to the inverse of [V*V*J*J] using [U*VI*U] // List element 14 is conjugate to the inverse of [V*V*J*J] using [V*UI] // List element 15 is conjugate to the inverse of [V*V*J*J] using [VI*U] // List element 16 is conjugate to [V*V*U*J*J*J*J*J] using [] // List element 17 is conjugate to [V*V*U*J*J*J*J*J] using [V] // List element 18 is conjugate to [V*V*U*J*J*J*J*J] using [U] // List element 19 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [VI] // List element 20 is conjugate to [V*V*U*J*J*J*J*J] using [VI] // List element 21 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [] // List element 22 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [U] // List element 23 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [V] // List element 24 is conjugate to [V*V*J*J] using [U*VI*U] // List element 25 is conjugate to [V*V*J*J] using [V*UI] // List element 26 is conjugate to [V*V*J*J] using [VI*U] // List element 27 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [U*V] // List element 28 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [UI] // List element 29 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [V*UI] // List element 30 is conjugate to the inverse of [J*J] using [] // List element 31 is conjugate to [V*V*U*J] using [V*V*UI] // List element 32 is conjugate to the inverse of [V*V*U*J*J*J*J*J] using [V*V*UI] // List element 33 is conjugate to the inverse of [V*V*J*J] using [] // List element 34 is conjugate to [V*V*U*J] using [U*V] // List element 35 is conjugate to the inverse of [V*V*J*J] using [U] // List element 36 is conjugate to the inverse of [V*V*J*J] using [UI] // List element 37 is conjugate to [V*V*U*J] using [V*UI] // List element 38 is conjugate to [V*V*U*J] using [UI] // List element 39 is conjugate to [B*V*V*UI*J] using [V] // List element 40 is conjugate to [B*V*V] using [] // List element 41 is conjugate to [B*V*V*UI*J] using [V*V] // List element 42 is conjugate to the inverse of [B*V*V*UI*J] using [UI] // List element 43 is conjugate to the inverse of [B*V*V*UI*J] using [U*V*J*J*J*J*J*J*J*J*J*J*J] // List element 44 is conjugate to [B*V*V*UI*J] using [] // List element 45 is conjugate to [B*V*V*UI*J] using [VI] // List element 46 is conjugate to the inverse of [B*V*V*UI*J] using [V*UI] // List element 47 is conjugate to the inverse of [B*V*V*UI*J] using [V*V*UI] // List element 48 is conjugate to the inverse of [B*V*V] using [J*J*J*J*J*J*J*J*J*J*J] // List element 49 is conjugate to the inverse of [B*V*V*UI*J] using [B*V] // List element 50 is conjugate to [B*V*V*UI*J] using [B*V] // List element 51 is conjugate to [V*V*U*J] using [B*U*V] // List element 52 is conjugate to [V*V*U*J] using [U*B*U*V] // List element 53 is conjugate to [V*V*U*J] using [UI*B*U*V] // List element 54 is conjugate to [V*V*U*J] using [U*J*B*V] // List element 55 is conjugate to [V*V*U*J] using [V*U*B*U] // List element 56 is conjugate to [V*V*U*J] using [J*B*V] // // // Confirming representatives for elements of order 8 // // ************************************************** // // The number of elements in order8list is 42 // List element 1 is conjugate to [U*V*J] using [V*U] // List element 2 is conjugate to [U*V*J] using [V] // List element 3 is conjugate to [U*V*J] using [] // List element 4 is conjugate to [U*V*J] using [V*V] // List element 5 is conjugate to [U*V*J] using [VI] // List element 6 is conjugate to [U*V*J] using [U] // List element 7 is conjugate to the inverse of [U*V*J] using [VI*U] // List element 8 is conjugate to the inverse of [U*V*J] using [VI*U*VI] // List element 9 is conjugate to the inverse of [U*V*J] using [V*V*U*VI] // List element 10 is conjugate to the inverse of [U*V*J] using [U*VI] // List element 11 is conjugate to the inverse of [U*V*J] using [V*U*VI] // List element 12 is conjugate to the inverse of [U*V*J] using [V*V*U] // List element 13 is conjugate to [U*V*J] using [VI*U] // List element 14 is conjugate to [U*V*J] using [VI*U*VI] // List element 15 is conjugate to [U*V*J] using [V*V*U*VI] // List element 16 is conjugate to [U*V*J] using [U*VI] // List element 17 is conjugate to [U*V*J] using [V*U*VI] // List element 18 is conjugate to [U*V*J] using [V*V*U] // List element 19 is conjugate to the inverse of [U*V*J] using [V*U] // List element 20 is conjugate to the inverse of [U*V*J] using [V] // List element 21 is conjugate to the inverse of [U*V*J] using [] // List element 22 is conjugate to the inverse of [U*V*J] using [V*V] // List element 23 is conjugate to the inverse of [U*V*J] using [VI] // List element 24 is conjugate to the inverse of [U*V*J] using [U] // List element 25 is conjugate to [B*J] using [] // List element 26 is conjugate to [(B*J)^3] using [] // List element 27 is conjugate to the inverse of [B*J] using [] // List element 28 is conjugate to the inverse of [(B*J)^3] using [] // List element 29 is conjugate to the inverse of [B*J] using [UI*B*VI*U*J] // List element 30 is conjugate to the inverse of [B*J] using [V*UI*B*VI*U*J] // List element 31 is conjugate to the inverse of [B*J] using [J*J*J*J*J*J*J*J*J*J*J*B*U] // List element 32 is conjugate to the inverse of [B*J] using [V*V*UI*B*VI*U*J] // List element 33 is conjugate to [B*J] using [V*U*B*V*U] // List element 34 is conjugate to [B*J] using [U*B*V*U] // List element 35 is conjugate to [B*J] using [V*V*U*B*V*U] // List element 36 is conjugate to [B*J] using [VI*U*B*V*U] // List element 37 is conjugate to the inverse of [U*V*J] using [B*V] // List element 38 is conjugate to the inverse of [U*V*J] using [U*B*V] // List element 39 is conjugate to the inverse of [U*V*J] using [UI*B*V] // List element 40 is conjugate to [U*V*J] using [U*J*B*VI] // List element 41 is conjugate to [U*V*J] using [V*U*B] // List element 42 is conjugate to [U*V*J] using [J*B*VI] // // // Confirming representatives for elements of order 24 // // *************************************************** // // The number of elements in order24list is 62 // List element 1 is conjugate to [U*V] using [V] // List element 2 is conjugate to [U*V] using [] // List element 3 is conjugate to the inverse of [U*V] using [U] // List element 4 is conjugate to [U*V] using [V*V] // List element 5 is conjugate to [U*V] using [VI] // List element 6 is conjugate to [U*V] using [U] // List element 7 is conjugate to [V*U*J*J] using [V*UI] // List element 8 is conjugate to [V*U*J*J] using [] // List element 9 is conjugate to [V*U*J*J] using [VI] // List element 10 is conjugate to [V*U*J*J] using [V] // List element 11 is conjugate to [V*U*J*J] using [V*V] // List element 12 is conjugate to the inverse of [V*U*J*J] using [U*V] // List element 13 is conjugate to the inverse of [V*U*J*J] using [VI*U*V*V] // List element 14 is conjugate to the inverse of [V*U*J*J] using [V*UI*V] // List element 15 is conjugate to [V*U*J*J] using [UI] // List element 16 is conjugate to the inverse of [V*U*J*J] using [U*V*V] // List element 17 is conjugate to the inverse of [V*U*J*J] using [UI*V] // List element 18 is conjugate to the inverse of [V*U*J*J] using [V*V*UI] // List element 19 is conjugate to the inverse of [U*V] using [VI*U] // List element 20 is conjugate to the inverse of [U*V] using [VI*U*VI] // List element 21 is conjugate to the inverse of [U*V] using [V*V*U*VI] // List element 22 is conjugate to the inverse of [U*V] using [U*VI] // List element 23 is conjugate to the inverse of [U*V] using [V*U*VI] // List element 24 is conjugate to [U*V] using [VI*U] // List element 25 is conjugate to [U*V] using [VI*U*VI] // List element 26 is conjugate to [U*V] using [V*V*U*VI] // List element 27 is conjugate to the inverse of [U*V] using [V*V*U] // List element 28 is conjugate to [U*V] using [U*VI] // List element 29 is conjugate to [U*V] using [V*U*VI] // List element 30 is conjugate to [U*V] using [V*V*U] // List element 31 is conjugate to [V*U*J*J] using [U*V] // List element 32 is conjugate to [V*U*J*J] using [VI*U*V*V] // List element 33 is conjugate to [V*U*J*J] using [V*UI*V] // List element 34 is conjugate to [V*U*J*J] using [U*V*V] // List element 35 is conjugate to [V*U*J*J] using [UI*V] // List element 36 is conjugate to the inverse of [V*U*J*J] using [V*UI] // List element 37 is conjugate to the inverse of [V*U*J*J] using [] // List element 38 is conjugate to the inverse of [V*U*J*J] using [VI] // List element 39 is conjugate to [V*U*J*J] using [V*V*UI] // List element 40 is conjugate to the inverse of [V*U*J*J] using [V] // List element 41 is conjugate to the inverse of [V*U*J*J] using [V*V] // List element 42 is conjugate to the inverse of [V*U*J*J] using [UI] // List element 43 is conjugate to the inverse of [U*V] using [V*U] // List element 44 is conjugate to the inverse of [U*V] using [V] // List element 45 is conjugate to the inverse of [U*V] using [] // List element 46 is conjugate to the inverse of [U*V] using [V*V] // List element 47 is conjugate to the inverse of [U*V] using [VI] // List element 48 is conjugate to [U*V] using [V*U] // List element 49 is conjugate to the inverse of [U*V] using [V*UI*B] // List element 50 is conjugate to the inverse of [U*V] using [V*V*UI*B] // List element 51 is conjugate to the inverse of [U*V] using [U*J*J*J*J*J*J*J*J*J*J*J*B*V] // List element 52 is conjugate to the inverse of [U*V] using [UI*B] // List element 53 is conjugate to [U*V] using [U*B] // List element 54 is conjugate to [U*V] using [V*U*B] // List element 55 is conjugate to [U*V] using [VI*U*B] // List element 56 is conjugate to [U*V] using [V*V*U* // List element 57 is conjugate to [U*V] using [V*B*UI*B] // List element 58 is conjugate to the inverse of [U*V] using [V*J*J*J*J*J*J*J*J*J*J*J*B*UI*B*U] // List element 59 is conjugate to the inverse of [U*V] using [VI*B*UI*B] // List element 60 is conjugate to [U*V] using [U*V*B*UI*B] // List element 61 is conjugate to [U*V] using [UI*V*B*UI*B] // List element 62 is conjugate to the inverse of [U*V] using [U*VI*B*UI*B] // // // Confirming representatives for elements of order 12 // // *************************************************** // // The number of elements in order12list is 156 // List element 1 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*V ] // List element 2 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V ] // List element 3 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V ] // List element 4 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*V ] // List element 5 is conjugate to [U*V*V] using [UI ] // List element 6 is conjugate to the inverse of [U*V*V] using [] // List element 7 is conjugate to the inverse of [U*V*V] using [VI ] // List element 8 is conjugate to [U*V*V] using [VI ] // List element 9 is conjugate to [U*V*V] using [] // List element 10 is conjugate to [J] using [] // List element 11 is conjugate to [U*VI*J*J] using [U ] // List element 12 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [UI*V ] // List element 13 is conjugate to [U*J] using [] // List element 14 is conjugate to [U*V*V] using [V ] // List element 15 is conjugate to [V*V*J] using [] // List element 16 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [] // List element 17 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [VI ] // List element 18 is conjugate to [U*J] using [V ] // List element 19 is conjugate to [V*V*J] using [U ] // List element 20 is conjugate to [V*V*J] using [UI ] // List element 21 is conjugate to [U*VI*J*J*J] using [U ] // List element 22 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U ] // List element 23 is conjugate to [U*VI*J*J] using [VI ] // List element 24 is conjugate to [U*VI*J*J] using [] // List element 25 is conjugate to the inverse of [U*V*V] using [VI*U ] // List element 26 is conjugate to [U*J] using [VI ] // List element 27 is conjugate to [U*J] using [V*V ] // List element 28 is conjugate to the inverse of [U*V*V] using [U ] // List element 29 is conjugate to the inverse of [U*V*V] using [V*U ] // List element 30 is conjugate to [U*J*J*J] using [] // List element 31 is conjugate to the inverse of [U*V*V] using [V*V*U ] // List element 32 is conjugate to [U*VI*J*J] using [V*V ] // List element 33 is conjugate to [U*VI*J*J*J] using [VI ] // List element 34 is conjugate to [U*VI*J*J] using [V ] // List element 35 is conjugate to [U*VI*J*J*J] using [] // List element 36 is conjugate to [U*J*J*J] using [V ] // List element 37 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [UI*V ] // List element 38 is conjugate to [U*VI*J*J] using [UI*V ] // List element 39 is conjugate to [U*VI*J*J*J] using [V*V ] // List element 40 is conjugate to [U*VI*J*J*J] using [V ] // List element 41 is conjugate to [U*J] using [VI*U*VI ] // List element 42 is conjugate to [U*J*J*J] using [VI ] // List element 43 is conjugate to [U*J*J*J] using [V*V ] // List element 44 is conjugate to [U*J] using [UI*V ] // List element 45 is conjugate to [U*J] using [V*U*VI ] // List element 46 is conjugate to [J*J*J*J*J] using [] // List element 47 is conjugate to [U*VI*J*J*J*J*J*J] using [U ] // List element 48 is conjugate to [U*VI*J*J*J] using [UI*V ] // List element 49 is conjugate to the inverse of [U*J*J*J] using [V*V*U*VI ] // List element 50 is conjugate to [U*J] using [V*V*U*VI ] // List element 51 is conjugate to the inverse of [V*V*J] using [U*VI*U ] // List element 52 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [V ] // List element 53 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [V*V ] // List element 54 is conjugate to the inverse of [U*J*J*J] using [VI*U*VI ] // List element 55 is conjugate to the inverse of [V*V*J] using [V*UI ] // List element 56 is conjugate to the inverse of [V*V*J] using [VI*U ] // List element 57 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [] // List element 58 is conjugate to [U*VI*J*J*J*J*J*J] using [VI ] // List element 59 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [VI ] // List element 60 is conjugate to [U*VI*J*J*J*J*J*J] using [] // List element 61 is conjugate to [U*J*J*J] using [VI*U*VI ] // List element 62 is conjugate to the inverse of [U*J*J*J] using [V*U*VI ] // List element 63 is conjugate to the inverse of [U*J*J*J] using [UI*V ] // List element 64 is conjugate to [U*J*J*J] using [UI*V ] // List element 65 is conjugate to [U*J*J*J] using [V*U*VI ] // List element 66 is conjugate to the inverse of [J*J*J*J*J] using [] // List element 67 is conjugate to the inverse of [U*VI*J*J*J] using [UI*V ] // List element 68 is conjugate to the inverse of [U*VI*J*J*J*J*J*J] using [U ] // List element 69 is conjugate to the inverse of [U*J] using [V*V*U*VI ] // List element 70 is conjugate to [U*J*J*J] using [V*V*U*VI ] // List element 71 is conjugate to [V*V*J] using [U*VI*U ] // List element 72 is conjugate to [U*VI*J*J*J*J*J*J] using [V*V ] // List element 73 is conjugate to [U*VI*J*J*J*J*J*J] using [V ] // List element 74 is conjugate to the inverse of [U*J] using [VI*U*VI ] // List element 75 is conjugate to [V*V*J] using [V*UI ] // List element 76 is conjugate to [V*V*J] using [VI*U ] // List element 77 is conjugate to the inverse of [U*VI*J*J] using [UI*V ] // List element 78 is conjugate to [U*VI*J*J*J*J*J*J] using [UI*V ] // List element 79 is conjugate to the inverse of [U*VI*J*J*J] using [V ] // List element 80 is conjugate to the inverse of [U*VI*J*J*J] using [V*V ] // List element 81 is conjugate to the inverse of [U*J*J*J] using [V ] // List element 82 is conjugate to the inverse of [U*J] using [V*U*VI ] // List element 83 is conjugate to the inverse of [U*J] using [UI*V ] // List element 84 is conjugate to the inverse of [U*J*J*J] using [V*V ] // List element 85 is conjugate to the inverse of [U*J*J*J] using [VI ] // List element 86 is conjugate to [U*V*V] using [V*V*U ] // List element 87 is conjugate to the inverse of [U*J*J*J] using [] // List element 88 is conjugate to the inverse of [U*VI*J*J*J] using [] // List element 89 is conjugate to the inverse of [U*VI*J*J] using [V ] // List element 90 is conjugate to the inverse of [U*VI*J*J*J] using [VI ] // List element 91 is conjugate to the inverse of [U*VI*J*J] using [V*V ] // List element 92 is conjugate to [U*V*V] using [VI*U ] // List element 93 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U ] // List element 94 is conjugate to the inverse of [U*VI*J*J*J] using [U ] // List element 95 is conjugate to the inverse of [U*VI*J*J] using [] // List element 96 is conjugate to the inverse of [U*VI*J*J] using [VI ] // List element 97 is conjugate to the inverse of [U*J] using [V ] // List element 98 is conjugate to [U*V*V] using [V*U ] // List element 99 is conjugate to [U*V*V] using [U ] // List element 100 is conjugate to the inverse of [U*J] using [V*V ] // List element 101 is conjugate to the inverse of [U*J] using [VI ] // List element 102 is conjugate to the inverse of [J] using [] // List element 103 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [UI*V ] // List element 104 is conjugate to the inverse of [U*VI*J*J] using [U ] // List element 105 is conjugate to the inverse of [U*V*V] using [V ] // List element 106 is conjugate to the inverse of [U*J] using [] // List element 107 is conjugate to the inverse of [V*V*J] using [] // List element 108 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [VI ] // List element 109 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [] // List element 110 is conjugate to the inverse of [U*V*V] using [UI ] // List element 111 is conjugate to the inverse of [V*V*J] using [U ] // List element 112 is conjugate to the inverse of [V*V*J] using [UI ] // List element 113 is conjugate to [B*V] using [] // List element 114 is conjugate to [(B*V)^(-5)] using [] // List element 115 is conjugate to [U*V*V] using [U*B ] // List element 116 is conjugate to [U*V*V] using [V*U*B ] // List element 117 is conjugate to the inverse of [U*V*V] using [UI*B*V ] // List element 118 is conjugate to the inverse of [(B*V)^(-5)] using [J*J*J*J*J*J*J*J*J*J*J ] // List element 119 is conjugate to the inverse of [B*V] using [J*J*J*J*J*J*J*J*J*J*J ] // List element 120 is conjugate to the inverse of [V*V*J] using [J*J*J*J*J*J*J*J*J*J*J*B ] // List element 121 is conjugate to the inverse of [U*VI*J*J] using [J*J*J*J*J*J*J*J*J*J*J*B*U ] // List element 122 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [J*J*J*J*J*J*J*J*J*J*J*B*UI*V ] // List element 123 is conjugate to the inverse of [J] using [J*J*J*J*J*J*J*J*J*J*J*B ] // List element 124 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U*J*J*J*J*J*J*J*J*J*J*J*B*V ] // List element 125 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [UI*B ] // List element 126 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*UI*B ] // List element 127 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*V*UI*B ] // List element 128 is conjugate to the inverse of [U*V*V] using [U*J*J*J*J*J*J*J*J*J*J*J*B*UI ] // List element 129 is conjugate to [U*V*V] using [V*V*U*B ] // List element 130 is conjugate to [U*V*V] using [VI*U*B ] // List element 131 is conjugate to the inverse of [U*V*V] using [V*V*UI*B*V ] // List element 132 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*V*U*B*V*V ] // List element 133 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [VI*U*B*V*V ] // List element 134 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [J*B*UI*V ] // List element 135 is conjugate to [J] using [J*B ] // List element 136 is conjugate to [V*V*J] using [J*B ] // List element 137 is conjugate to [U*VI*J*J] using [J*B*U ] // List element 138 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*U*B*V*V ] // List element 139 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U*B*V*V ] // List element 140 is conjugate to the inverse of [U*V*V] using [V*UI*B*V ] // List element 141 is conjugate to the inverse of [U*J] using [UI*B ] // List element 142 is conjugate to the inverse of [U*J] using [U*B ] // List element 143 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*B*UI*B*UI*V ] // List element 144 is conjugate to [U*J] using [U*J*B*VI ] // List element 145 is conjugate to the inverse of [U*J] using [B ] // List element 146 is conjugate to [(B*V)^(-5)] using [B*U ] // List element 147 is conjugate to the inverse of [B*V] using [B*U ] // List element 148 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [V*J*J*J*J*J*J*J*J*J*J*J*B*UI*B*V*V ] // List element 149 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [VI*B*UI*B*V ] // List element 150 is conjugate to the inverse of [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U*VI*B*UI*B*V ] // List element 151 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [U*V*B*UI*B*UI*V ] // List element 152 is conjugate to [U*VI*J*J*J*J*J*J*J*J*J*J*J] using [UI*V*B*UI*B*UI*V ] // List element 153 is conjugate to the inverse of [(B*V)^(-5)] using [V*U*B*V*U ] // List element 154 is conjugate to [B*V] using [V*U*B*V*U ] // List element 155 is conjugate to [U*J] using [V*U*B ] // List element 156 is conjugate to [U*J] using [J*B*VI ] // End of calculations for Proposition 1. // ************************************** // Calculations for the table of representatives of order d, for the various d's. // ****************************************************************************** // We shall shortly be listing the 24 elements of $\bar\Gamma$ which fix // $P=(c(\zeta-1)/\sqrt{r-1},(\zeta-1)/\sqrt{r-1})$. To find // this list, note that if $g.P=P$, then $d(g.O,O)\le d(g.O,g.P)+d(g.P,P)+d(P,O)=2d(P,0)$, // since $\bar\Gamma$ acts on $B^2_\C$ preserving the hyperboli metric $d$. From formula (3.3) // in [CS2], we have $\cosh(2d(P,0))=2\cosh^2(d(P,0))-1$=2/(1-|P|^2)-1=(1+|P|^2)/(1-|P|^2)$, // where $|z|=\sqrt{|z_1|^2+|z_2|^2}$ for $z=(z_1,z_2)\in B^2_\C$. // We calculate that $|P|^2=2r-3$, where $r=\sqrt3$, and so $\cosh(2d(P,0))=r+1$. So // $g.P=P$ implies that $d(g.0,0)\le\cosh^{-1}(r+1)$. This means that // $\cosh^2(d(g.0,0))\le(r+1)^2=2r+4$, and so $g\in K \cup KbK \cup Kbu^{-1}bK$ (see // the remark after Proposition 3.2 in [CS2]). So to find the $g\in\bar\Gamma$ such // that $g.P=P$, we need only search amongst the elements in the finite set // $S=K\cup KbK \cup Kbu^{-1}bK$ to find those satisfying $g.P=P$. // As explained in Section 1.1, if $g$ is a matrix unitary with respect to the diagonal // form $F$, then the action of $gZ$ on $B^2_\C^2$ is obtained by conjugating $g$ by // the diagonal matrix $D$ with diagonal matrix with diagonal entries 1, 1 and $\sqrt{r-1}$, // and $(gZ).(z,w)=(z',w')$ means that $(DgD^{-1})(z,w,1)^t=\lambda(z',w',1)^t$ for some // scalar $\lambda$. So $(gZ).(z,w)=(z,w)$ if and only if $(z,w,1/\sqrt{r-1})$ is an // eigenvalue of $g$. That is, $(gZ)(z'/\sqrt{r-1},w'/\sqrt{r-1})$ if and only if // $(z',w',1)$ is an eigenvector of $g$. // So the point $P=(c(\zeta-1)/\sqrt{r-1},(\zeta-1)/\sqrt{r-1})$ is fixed by $gZ\in\bar\Gamma$ // if and only if $(c(\zeta-1),\zeta-1,1)^t$ is an eigenvector of $g$. We set up this // vector as follows: VecSpaceL:=RMatrixSpace(L,3,1); Orig:=VecSpaceL![0,0,1]; c:=(r-1)*(z^3-1)/2; Pvec:=VecSpaceL![c*(z-1),z-1,1]; // Her is a list of the 24 elements fixing $P$. It is a subset of the above set $S$, // but it is also equal to $\langle u,b\rangle$. The following lists the 24 elements // making it evident that they are in $K\cup KbK \cup Kbu^{-1}bK$. It clearly // contains $\langle b,u\rangle$, and for the eight elements not obviously in $\langle b,u\rangle$, // a second formula for the group element is given making this evident. Pfixerlist:=[MatsL | ID3, U, UI, B, B*U, B*UI, U*B, U*B*U, U*B*UI, UI*B, UI*B*U, UI*B*UI, V*U*B*J, // = UI*B^2, V*U*B*U*J, // = UI*B^2*U, V*U*B*UI*J, // = UI*B^2*UI, J*B*U*V, // = B^2*UI, J*B*VI*J, // = B^2, J*B*VI*U*J, // = B^2*U, U*J*B*U*V, // = U*B^2*UI, U*J*B*VI*J, // = U*B^2, U*J*B*VI*U*J,// = U*B^2*U B*UI*B, B*UI*B*U, B*UI*B*UI]; for ii in [1 .. #Pfixerlist] do tmpvec:=Pfixerlist[ii]*Pvec; if (tmpvec ne tmpvec[3][1]*Pvec) then print "element number",ii," of Pfixerlist does not fix Pvec."; end if; end for; print "finished checking that the elements of Pfixerlist fix Pvec."; // We now check a presentation for the stabilizer of $P$, // and check that $P$ belongs to 4 distinct mirrors of type $A$. fmat2:=B*UI; fmat3:=J*B*VI*J; fmat3d:=U; fmatz:=(B*UI)^2; r1:=ID3; r2:=fmat2; r3:=fmat3; r4:=fmat3d*fmat2; // Checking that Pvec is in r_nu(M_c). // The following are zero: tmpvec:=r1^-1*Pvec; tmpvec[1][1]-c*tmpvec[2][1]; tmpvec:=r2^-1*Pvec; tmpvec[1][1]-c*tmpvec[2][1]; tmpvec:=r3^-1*Pvec; tmpvec[1][1]-c*tmpvec[2][1]; tmpvec:=r4^-1*Pvec; tmpvec[1][1]-c*tmpvec[2][1]; // Checking that the r_nu(M_c) are distinct. // The following are NOT zero: print "The following six numbers are not zero:"; MM:=r1^-1*r2;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); MM:=r1^-1*r3;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); MM:=r1^-1*r4;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); MM:=r2^-1*r3;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); MM:=r2^-1*r4;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); MM:=r3^-1*r4;MM[1][2]-c*(c*MM[2][1]-MM[1][1]+MM[2][2]); print "Finished checking that the r_nu(M_c) are distinct."; // The following are zero: fmatz*Pvec - Pvec; fmat2*Pvec - Pvec; fmat3*Pvec - (1/z)*Pvec; fmat3d*Pvec-Pvec; print "Finished checking that fmatz, fmat2, fmat3 and fmat3d fix P."; // The following are zero: fmat2^2 - fmatz; fmat3^3 - (1/z^3)*ID3; fmat3d^3 - ID3; fmatz^2 - ID3; fmat3d*fmat3*fmat2 - (1/z)*ID3; fmat2*fmatz-fmatz*fmat2; fmat3*fmatz-fmatz*fmat3; fmat3d*fmatz-fmatz*fmat3d; print "Finished checking the relations in the stabilizer of P."; // Calculations concerning the fixed points of $bv$, $buv$ and $bj$. // ***************************************************************** // We now list three elements $\xi$ of $B(\C^2)$ for which // $\bar\Gamma_\xi$ is cyclic of order 12, 8 and 3, respectively. // For the last two of these, the entries of $\xi$ are in an // extension file of $\ell$. // The following vector vec12 corresponds to the point $\xi_{12}=(0,(\zeta-1)/\sqrt{r-1})$ of $B^2_\C$: // We have $|\xi_{12}|^2=(r-1)/2$. This is smaller than $|P|^2$, and so to find // the $gZ\in\bar\Gamma$ which fix~$\xi_{12}$, we need only look amongst the // $gZ$ in the set $S=K \cup KbK \cup Kbu^{-1}bK$, seeking those having // vec12 as eigenvector. vec12:=VecSpaceL![0,z-1,1]; gamma12:=B*V; // This is an element of \bar\Gamma of order 12 // the following is zero: gamma12*vec12-vec12; // The following vector vec8 corresponds to the point $\xi_8=(0,(1-2\sin(\pi/12))\zeta^3/\sqrt{r-1})$ of $B^2_\C$: // We have $|\xi_8|^2=r-\sqrt{2}$. This is smaller than $|P|^2$, and so to find // the $gZ\in\bar\Gamma$ which fix~$\xi_8$, we need only look amongst the // $gZ$ in the set $S=K \cup KbK \cup Kbu^{-1}bK$, seeking those having // vec8 as eigenvector. P8:=PolynomialRing(L); L8:=ext; VecSpaceL8:=RMatrixSpace(L8,3,1); vec8:=VecSpaceL8![0,(lam8*(z-1)*(z^2-1)+1)*z^3,1]; // The middle entry of vec8 is equal to $(1-2\sin(\pi/12))\zeta^3$ when $\lambda=e^{-i\pi/4}$. MatsL8:=MatrixRing(L8,3); gamma8:=MatsL8!(z^-1*B*J); // This is an element of \bar\Gamma of order 8 // the following is zero: gamma8*vec8-lam8*vec8; // The following vector vec3 corresponds to the point $Q$ of $B^2_\C$: // We have $|Q|^2=0.381315...$. This is smaller than $|P|^2$, and so to find // the $gZ\in\bar\Gamma$ which fix~$\xi_3$, we need only look amongst the // $gZ$ in the set $S=K \cup KbK \cup Kbu^{-1}bK$, seeking those having // vec3 as eigenvector. P3:=PolynomialRing(L); L3:=ext; VecSpaceL3:=RMatrixSpace(L3,3,1); MatsL3:=MatrixRing(L3,3); gamma3:=MatsL3!(B*U*V); // This is an element of \bar\Gamma of order 3 vec3:=VecSpaceL3![(z^3-z^2-z+1)+(z^2-z+1)*lam3+(-z^3+z^2-1)*lam3^2,z^3-(z-1)*lam3^2,1]; // the following is zero: gamma3*vec3-lam3*vec3; // Calculations for Lemma 2: // ************************* // Define the following elements of $K$: kpmm:=ID3; kmmp:=V; kmmm:=V^2; kpmp:=V^3; kmpp:=UI*V^2*U; kmpm:=V*UI*V^2*U; kppp:=V^2*UI*V^2*U; kppm:=V^3*UI*V^2*U; // The condition on a matrix $(k_{ij})$ that for $k(M_c)=M_\alpha$ // to hold is that $k_{13}=\alpha k_{23}$ and that $ck_{11}+k_{12}=\alpha(ck_{21}+k_{22})$. // So we check this: cppp:=(r+1)*(z^3+1)/2; cppm:=(r+1)*(z^3-1)/2; cpmp:=(r-1)*(z^3+1)/2; cpmm:=(r-1)*(z^3-1)/2; cmpp:=-(r+1)*(z^3+1)/2; cmpm:=-(r+1)*(z^3-1)/2; cmmp:=-(r-1)*(z^3+1)/2; cmmm:=-(r-1)*(z^3-1)/2; // // The following are zero: // kppp[1][3]-cppp*kppp[2][3]; // c*kppp[1][1]+kppp[1][2]-cppp*(c*kppp[2][1]+kppp[2][2]); // kppm[1][3]-cppm*kppm[2][3]; // c*kppm[1][1]+kppm[1][2]-cppm*(c*kppm[2][1]+kppm[2][2]); // kpmp[1][3]-cpmp*kpmp[2][3]; // c*kpmp[1][1]+kpmp[1][2]-cpmp*(c*kpmp[2][1]+kpmp[2][2]); // kpmm[1][3]-cpmm*kpmm[2][3]; // c*kpmm[1][1]+kpmm[1][2]-cpmm*(c*kpmm[2][1]+kpmm[2][2]); // // kmpp[1][3]-cmpp*kmpp[2][3]; // c*kmpp[1][1]+kmpp[1][2]-cmpp*(c*kmpp[2][1]+kmpp[2][2]); // kmpm[1][3]-cmpm*kmpm[2][3]; // c*kmpm[1][1]+kmpm[1][2]-cmpm*(c*kmpm[2][1]+kmpm[2][2]); // kmmp[1][3]-cmmp*kmmp[2][3]; // c*kmmp[1][1]+kmmp[1][2]-cmmp*(c*kmmp[2][1]+kmmp[2][2]); // kmmm[1][3]-cmmm*kmmm[2][3]; // c*kmmm[1][1]+kmmm[1][2]-cmmm*(c*kmmm[2][1]+kmmm[2][2]); // We also check that $k(M_c)=M_c$ for $k=J$ and $k=U$. // So the stabilizer $K_c$ of $M_c$ in $K$ is $\langle j,u\rangle$, // which has order 36. Hence the orbit of $M_c$ has order $288/36=8$. // // The following are zero: // J[1][3]-c*J[2][3]; // c*J[1][1]+J[1][2]-c*(c*J[2][1]+J[2][2]); // U[1][3]-c*U[2][3]; // c*U[1][1]+U[1][2]-c*(c*U[2][1]+U[2][2]); // kzero:=ID3; kplusi:=U*J; kminus1:=V*U*J; kminusi:=V^2*U*J; kplus1:=V^3*U*J; kinfty:=UI*V^2*U*J^6; // // // For $\alpha\ne\infty$, the condition on a matrix $(k_{ij})$ that for $k(M_0)=M_\alpha$ // // to hold is that $k_{13}=\alpha k_{23}$ and that $k_{12}=\alpha k_{22}$. // // The condition on a matrix $(k_{ij})$ that for $k(M_0)=M_\infty$ // // to hold is that $k_{23}=0=k_{22}$. // // So we check this: // alphazero:=0; // alphaplus1:=1; // alphaminus1:=-1; // alphaplusi:=z^3; // alphaminusi:=-z^3; // // // The following are zero: // kzero[1][3]-alphazero*kzero[2][3]; // kzero[1][2]-alphazero*kzero[2][2]; // // kplus1[1][3]-alphaplus1*kplus1[2][3]; // kplus1[1][2]-alphaplus1*kplus1[2][2]; // // kminus1[1][3]-alphaminus1*kminus1[2][3]; // kminus1[1][2]-alphaminus1*kminus1[2][2]; // // kplusi[1][3]-alphaplusi*kplusi[2][3]; // kplusi[1][2]-alphaplusi*kplusi[2][2]; // // kminusi[1][3]-alphaminusi*kminusi[2][3]; // kminusi[1][2]-alphaminusi*kminusi[2][2]; // // kinfty[2][3]; // kinfty[2][2]; // We also check that $k(M_0)=M_0$ for $k=J$ and $k=V$. // So the stabilizer $K_c$ of $M_c$ in $K$ is $\langle j,v\rangle$, // which has order 48. Hence the orbit of $M_c$ has order $288/48=6$. // // The following are zero: // J[1][3]; // J[1][2]; // V[1][3]; // V[1][2]; // End of calculations for Lemma 2. // ******************************** // End of calculations for Section 1.3. // ************************************ // Calculations for Theorem 2. // *************************** // Here are the generators of the subgroup $\Pi$ of $\bar\Gamma$: A1:=V*U*VI*J^4*B*U*V*J^2; A2:=V^2*U*B*U*VI*U*V^2*J; A3:=UI*V^2*U*J^9*B*VI*U*VI*J^8; A1I:=A1^-1; A2I:=A2^-1; A3I:=A3^-1; // The assertions in Theorem 2 are checked in the file cs-surface-presentations_magma.txt // Calculations about $j^4$ normalizing $\Pi$ (page 8): // **************************************************** // The following are zero: J^4*A1*J^8 - z^3*A3*A2I^3*A3^3*A1; J^4*A2*J^8 - (1/z)*A3I; J^4*A3*J^8 - (1/z)*A1I*A2I*A1*A2^2*A1I*A2I*A1*A3I*A1I*A2*A1; // Here are the relations for a presentation of $\Pi$. // It was found using Magma's Rewrite routine. It turned out // that Magma gave a simpler result if one applied the routine // to Pi, conjugated by U*V^2*UI*J^3: // A1D:=V^2*UI*JI*B*V*UI; // A2D:=V*UI*JI^2*B*J^2; // A3D:=VI*J^3*B*U*VI*JI; // // The following are zero: // A1D - (U*V^2*UI*J^3)*A1*(U*V^2*UI*J^3)^-1; // A2D - (U*V^2*UI*J^3)*A2*(U*V^2*UI*J^3)^-1; // A3D - (U*V^2*UI*J^3)*A3*(U*V^2*UI*J^3)^-1; // The following are zero: A1I*A3I*A1*A2^2*A1I*A2I*A3I^3*A2*A1I^2*A3I^3 - z^5*ID3; A2^2*A1I*A2I*A1*A3^3*A1*A2I^3*A3^3*A1*A3*A1 -z^3*ID3; A3^3*A1^2*A2*A1I*A2I*A1*A3*A2I^3*A3^3*A1*A2 - z^3*ID3; A3I*A1I*A2I^2*A3^3*A1*A2I*A1I*A3I^3*A2^3*A3*A1 - ID3; A2I^3*A3^3*A1*A2*A3I^3*A2^3*A3I*A1I*A2I*A1*A3*A1I - z^8*ID3; A3I*A1I*A3I^3*A2^2*A1I^2*A3I^3*A2*A1*A3*A1I*A2*A1*A2I^2*A1I*A3I - z^9*ID3; A3^3*A1^2*A2*A3I*A1I*A2I^2*A3^3*A1^2*A3^3*A1*A3I*A1I*A2I - (1/z)*ID3; A2I^3*A3^3*A1^2*A2^2*A1I*A2I*A1*A3I*A1I^2*A3I^3*A2^2*A1*A3*A1I -(1/z^4)*ID3; A3*A2I^3*A3^3*A1*A3^3*A1*A3^3*A1^2*A2I*A1I^2*A3I^3*A2^2*A1 - (1/z)*ID3; A1I*A3I^3*A2^3*A1I*A2I*A1I*A3I^3*A2^4*A1*A2I*A1I^2*A3I^3*A1*A2I^2*A3^3*A1*A3I*A1I*A2I-z^5*ID3; A3I^2*A2^4*A1*A2I*A1I^2*A3I^3*A1*A2I*A1I^2*A2*A1*A2I^2*A1I*A3*A1^2*A3*A1I*A2*A1*A2I^2*A1I*A2*A1I*A3I^3*A2*A1I*A3I - z*ID3; A2I^3*A3^3*A1*A3*A1^2*A2I*A1I^2*A3I^3*A1I*A3I*A1I*A3I^3*A2^3*A1*A2I*A3^3*A1*A2^2*A1*A3*A1I*A3I^2*A1I*A3 - (1/z^4)*ID3; A1I*A3I^3*A2^3*A3I*A1I*A2I^3*A3^3*A1*A3^3*A1^2*A2*A3*A2I^3*A3^3*A1*A3*A2I^3*A3^3*A1*A3*A1*A3^3*A1^2*A2 - (1/z^2)*ID3; // In the abelianized group, these relations all reduce to multiples of 3*A1-2*A2+7*A3 = 0 // Calculations for Section 1.3. // ***************************** // Calculations for Section 1.5. // ***************************** F3:=FiniteField(3); P3:=PolynomialRing(F3); F9:=ext< F3 | x^2+1 >; MatsF9:=MatrixRing(F9,3); GL3F9:=GeneralLinearGroup(3,F9); ID3F9:=MatsF9!1; F9conj:=hom< F9 -> F9 | -ii>; F9starmat:=function(matvar); return MatsF9![F9conj(matvar[1][1]),F9conj(matvar[2][1]),F9conj(matvar[3][1]), F9conj(matvar[1][2]),F9conj(matvar[2][2]),F9conj(matvar[3][2]), F9conj(matvar[1][3]),F9conj(matvar[2][3]),F9conj(matvar[3][3])]; end function; // We define $\rho$ from the ring of matrices with entries in~$\Z[\zeta]$ // to the ring of matrices with entries in $F_9$ by mapping $\zeta$ to $ii$. // Here are the images of $u'$, $v'$ and $b'$ under $\rho$ (in the notation of page 3): rhoUD:=MatsF9![ ii^3+ii^2-ii,1-ii,0, ii^3+ii^2-1,ii-ii^3,0, 0,0,1]; rhoVD:=MatsF9![ ii^3,0,0, ii^3+ii^2-ii-1,1,0, 0,0,1]; rhoBD:=MatsF9![ 1, 0, 0, -2*ii^3-ii^2+2*ii+2,ii^3+ii^2-ii-1,-ii^3-ii^2, ii^2+ii, -ii^3-1,-ii^3+ii+1]; // Recall that $\gamma_0$ is the matrix used to conjugate matrices unitary // with respect to Femptyset to matrices unitary with respect to Fdiag // We conjugate by the image CC of $\gamma_0$ to get matrices // with entries in $F_9$ which are unitary with respect to the usual form: CC:=MatsF9![ 1,0,0, 1,1,0, 0,0,1]; // That is, we form $\rho'$ by setting $\rho'(g)=CC*\rho(g)*CC^-1$. rhodUD:=CC*rhoUD*CC^-1; rhodVD:=CC*rhoVD*CC^-1; rhodBD:=CC*rhoBD*CC^-1; rhodJD:=(rhodUD*rhodVD)^2; // The following are zero, checking that the images are unitary with respect to the usual form. F9starmat(rhodUD)*rhodUD-ID3F9; F9starmat(rhodVD)*rhodVD-ID3F9; F9starmat(rhodBD)*rhodBD-ID3F9; // So we get a homomorphism $\bar\Gamma\to PU(3,\F_9)$, also denoted $\rho'$. This // is surjective. In fact, let $\bar\Gamma^1$ denote the index 3 subgroup of $\bar\Gamma$ // consisting of the elements having a matrix representative with // determinant 1. It is generated by $v$, $bu^{-1}$ and $u^{-1}b$. // The image under $\rho'$ of $\bar\Gamma^1$ is all of $PU(3,\F_9)$, // as we now check: testgp:=sub< GL3F9 | rhodVD,rhodBD*rhodUD^-1,rhodUD^-1*rhodBD>; #testgp; // output: 24192 =(6048 times 4) // We now give an explicit subgroup $\langle R,M\rangle$ of order 21 in $PU(3,\F_9)$. R:=MatsF9![ ii, ii-1, -ii, 1,-ii-1, -1, -ii-1, 0,-ii-1]; M:=MatsF9![ -ii, ii,1-ii, ii-1, -ii, ii, -ii,ii-1, -ii]; // The following are zero: R^7 - ID3F9; M^3 - ID3F9; M*R*M^2-R^2; // Recall that the generators of $\Pi$ are called $a_1$, $a_2$ and $a_3$. // The elements $a_i'=\gamma_0^{-1}a_i\gamma_0$ have entries in $\Z[\zeta]$. // Here are their images under $\rho$: rhoA1D:=MatsF9![ ii^3+ii^2-1, -ii^2+ii, ii, 2*ii^3+2*ii^2-ii-2,-ii^3+ii+1, ii^2+ii+1, ii^3+ii^2, -ii^2+1,-ii^3+ii+1]; rhoA2D:=MatsF9![ ii^3+ii^2-1,-ii^3+ii-1, 1, 2*ii^3+2*ii^2-1, -ii^2+1,-ii^3-ii^2+ii+1, ii^3+ii^2-1, 0, -ii^3+ii+1]; rhoA3D:=MatsF9![ ii^3-ii-1, -ii^2+1, ii^2-ii-1, 2*ii^3+ii^2-2*ii-2,-ii^3-ii^2+ii+1, ii^3-ii-1, -ii^3+ii+1, ii^2-1,-ii^3+ii+1]; // We then conjugate by CC rhodA1D:=CC*rhoA1D*CC^-1; rhodA2D:=CC*rhoA2D*CC^-1; rhodA3D:=CC*rhoA3D*CC^-1; // We now check that $\Pi={\rho'}^{-1}(\langle R,M\rangle)$. // The following are zero, showing that $\rho'(\Pi)$ is contained // in $\langle R,M\rangle$. M - (-rhodA1D*rhodA2D); R - (-ii*rhodA2D); R - (-rhodA3D^(-1)); // Now we see that $\Pi={\rho'}^{-1}(\langle R,M\rangle)$ since // $\Pi$ had index 288 in $\bar\Gamma^1$ and $\langle R,M\rangle$ // has index 288 in $PU(3,\F_9)$. // Calculations for Section 2.1. // ***************************** // The method of finding the stated presentations of the groups $\bar\Gamma_0$ // and $\bar\Gamma_c$ is to describe the precise form of the matrices in these groups, // and so to see that these groups are isomorphic to groups of 2 by 2 matrices which are // unitary with respect to simple specific forms and have entries in $\Z[\zeta]$. // We show that $\bar\Gamma_0$ is isomorphic to an index 3 subgroup of a group of 2 by 2 matrices called $U_0$, // while $\bar\Gamma_c$ is isomorphic to an index 4 subgroup of a group of 2 by 2 matrices called $U_c$. // Presentations of $U_0$ and $U_c$ may be found by various well-known methods. The quickest // way is perhaps to use quaternion algebras, for which routines are available in Magma, // but there are more elementary methods. // The details are given in a LaTeX file while is commented out below. // Having found presentations of $U_0$ and $U_c$, presentations of their index~3 and index~4 // subgroups $\bar\Gamma_0$ and $\bar\Gamma_c$ may be found using Magma's Rewrite routine. // Some fairly easy calculations show that the presentations thus found are equivalent to // the presentations stated in Section 2.1 // Start of LateX file: // ******************** // \documentclass[a4paper,reqno]{amsart} // \usepackage[]{amsmath, amsthm, amsfonts, verbatim, amssymb} // // \let\bbbibitem\bibitem // \renewcommand{\bibitem}[2][]{\bbbibitem[#1]{#2}\label{#2}} // // \hoffset=-6.5mm // \textwidth=14cm // \newcommand\C{{\mathbb C}} // \newcommand\F{{\mathbb F}} // \newcommand\Ham{{\mathbb H}} // \newcommand\Q{{\mathbb Q}} // \newcommand\R{{\mathbb R}} // \newcommand\Z{{\mathbb Z}} // \def\cO{{\mathcal O}} // \newcommand{\Adj}{\mathrm{Adj}} // \newcommand\U{{\mathrm U}} // \newcommand\SU{{\mathrm{SU}}} // \newcommand\cZ{{\mathcal Z}} // \begin{document} // \newtheorem {lemm}{Lemma} // \newtheorem {coro}{Corollary} // % // \title[Details about Section 2.1] // {Details about Section 2.1} // // \maketitle // We next want to describe the groups $\bar\Gamma_c$ and~$\bar\Gamma_0$ of elements fixing~$M_c$ and~$M_0$, // respectively. // \begin{lemm}\label{lem:gfixesMalpha}For any $\alpha\in\C$, a $3\times3$ matrix $g=(g_{ij})$ with complex entries // which is unitary with respect to~$F$ satisfies $g(M_\alpha)=M_\alpha$ if and only if // \begin{itemize} // \item[(a)] $g_{13}=\alpha g_{23}$, and // \item[(b)] $g_{12}=\alpha(\alpha g_{21}-g_{11}+g_{22})$. // \end{itemize} // \end{lemm} // \begin{proof}This is straightforward. // \end{proof} // \begin{section}{The case $\bar\Gamma_0$.} // // \begin{lemm}\label{lem:gamma0}If $gZ\in\bar\Gamma$, then $gZ\in\bar\Gamma_0$ if and // only if we can write // \begin{equation}\label{eq:gamma0matrix} // g=\theta' // \begin{pmatrix}1&0&0\\0&1&0\\0&0&\theta\end{pmatrix} // \begin{pmatrix} // 1&0&0\\ // 0&a&(r-1)b\\ // 0&\overline{b}&\overline{a} // \end{pmatrix} // \end{equation} // where $a,b\in\Z[\zeta]$, $\theta,\theta'\in\{\zeta^k:k=0,\ldots,11\}$, $|a|^2-(r-1)|b|^2=1$, // and $a-1\in(r-1)\Z[\zeta]$. This expression for~$g$ is unique, with $\theta'=g_{11}$ and ${\theta'}^3\theta=\det(g)$. // \end{lemm} // \begin{proof}Suppose that $gZ\in\bar\Gamma_0$. Applying Lemma~\ref{lem:gfixesMalpha} for $\alpha=0$ to $g$ and to // \begin{equation}\label{eq:ginv} // g^{-1}=F^{-1}g^*F=\begin{pmatrix} // {\bar g_{11}}&{\bar g_{21}}&-(r-1){\bar g_{31}}\\ // {\bar g_{12}}&{\bar g_{22}}&-(r-1){\bar g_{32}}\\ // -{\bar g_{13}}/(r-1)&-{\bar g_{23}}/(r-1)&{\bar g_{33}} // \end{pmatrix}, // \end{equation} // we see that $g_{12}=g_{13}=g_{21}=g_{31}=0$. The condition that $\gamma_0^{-1}g\gamma_0$ has entries in~$\Z[\zeta]$ // tells us that $g_{11}$, $g_{22}$, $g_{33}$, $g_{32}$, $(g_{11}-g_{22})/(r-1)$ and // $g_{23}/(r-1)$ are in~$\Z[\zeta]$. // // Now $g^*Fg=F$ implies that $|g_{11}|^2=1$. This and // $g_{11}\in\Z[\zeta]$ implies that $g_{11}$ is a power of~$\zeta$, and // so replacing $g$ by $g_{11}^{-1}g$, we may suppose that // $g_{11}=1$. Also, $a=g_{22}$ and $b=g_{23}/(r-1)$ are // in~$\Z[\zeta]$. Now // $\det(g)=\det(\gamma_0^{-1}g\gamma_0)\in\Z[\zeta]$, and $g^*Fg=F$ // implies that $|\det(g)|=1$. So $\theta=\det(g)$ is also a power // of~$\zeta$. Using the fact that $F^{-1}g^*F$ equals // $\theta^{-1}\Adj(g)$, we see that $g_{33}=\bar a\det(g)$ and // $g_{32}=\bar b\det(g)$, and then that $|a|^2-(r-1)|b|^2=1$. Finally, // it is easy to check that $\gamma_0^{-1}g\gamma_0$ has entries // in~$\Z[\zeta]$ if and only if $a-1\in(r-1)\Z[\zeta]$. // \end{proof} // Let $\U_0$ denote the group of matrices with entries in~$\Z[\zeta]$ which are // unitary with respect to // \begin{displaymath} // \begin{pmatrix} // 1&0\\ // 0&1-r // \end{pmatrix}. // \end{displaymath} // If $\SU_0$ is the subgroup of~$\U_0$ consisting of its elements // of determinant~1, then $\U_0$ is the semidirect product of~$\SU_0$ and the group // of order~12 generated by the matrix $z=\begin{pmatrix}1&0\\0&\zeta\end{pmatrix}$. // We define an embedding of~$\bar\Gamma_0$ into~$\U_0$ as follows. If $gZ\in\bar\Gamma_0$, // write~ // $g$ as in~\eqref{eq:gamma0matrix}, and set // \begin{equation}%\label{eq:phizero} // \psi_0(gZ)= // \begin{pmatrix} // 1&0\\ // 0&\theta // \end{pmatrix} // \begin{pmatrix} // a&(r-1)b\\ // \overline{b}&\overline{a} // \end{pmatrix}. // \end{equation} // \begin{lemm}\label{lem:su0presentation}The group $\SU_0$ is generated by // \begin{displaymath} // d=\begin{pmatrix} // \zeta&0\\ // 0&\zeta^{-1} // \end{pmatrix} // \quad\text{and}\quad // x=\begin{pmatrix} // \zeta^3+\zeta^2-1&-\zeta^2-\zeta+1\\ // \zeta^3+\zeta^2-1&-\zeta^3-\zeta^2 // \end{pmatrix}, // \end{displaymath} // and has the following presentation with respect to these generators: // \begin{displaymath} // \langle d,x\ |\ d^{12}=x^3=1, (dx^2)^3=d^6, d^6x=xd^6\rangle. // \end{displaymath} // We get a presentation of~$\U_0$ by adding the generator $z$ and // the relations $z^{12}=1$, $zdz^{-1}=d$ and $zxz^{-1}=d^6x^{-1}d$. The subgroup // $H_0=\langle xd,dx,d^3\rangle$ of~$\SU_0$ has index~3. // \end{lemm} // \begin{proof}Given a field~$\F$ not of characteristic~2, and $\alpha,\beta\in\F^\times$, // the {\it quaternion algebra\/} $(\alpha,\beta)_\F$ consists of elements // $\xi=x_0+x_1i+x_2j+x_3k$, where $x_0,\ldots,x_3\in\F$, with an associative multiplication // satisfying $ij=k=-ji$ and $i^2=\alpha$, $j^2=\beta$. The {\it reduced norm\/} $N(\xi)=N_A(\xi)$ of~$\xi$ is // $x_0^2-\alpha x_1^2-\beta x_2^2+\alpha\beta x_3^2$. If $\xi,\xi'\in A$, then $N(\xi\xi')=N(\xi)N(\xi')$. // Writing $a=x_0+x_1i$ and $b=x_2+x_3i$, we can think of $(\alpha,\beta)_\F$ as consisting of elements $a+bj$, // where $a,b\in\F(\sqrt{\alpha})$, $j^2=\beta$, and $ja=\overline{a}j$ for the automorphism // $\overline{\phantom{a}}:x_0+x_1i\mapsto x_0-x_1i$ of~$\F(\sqrt{\alpha})$. The classical Hamiltonian quaternion algebra is $\Ham=(-1,-1)_\R$. // We have $N_\Ham(a+bj)=|a|^2+|b|^2$ for $a,b\in\R(\sqrt{-1}\,)=\C$. // // Let $A=(-1,r-1)_{\Q(r)}$. Identifying $i\in A$ with $\zeta^3\in\ell=\Q(\zeta)$, we see that // $A=\{a+bj:a,b\in\ell\}$, and that $N(a+bj)=|a|^2-(r-1)|b|^2$. Let $\cO=\{a+bj\in A:a,b\in\Z[\zeta]\}$. // Then $\cO$ is a subring of~$A$, closed under (left) multiplication by~$\Z[r]$, and so is an {\it order\/} // in~$A$. In fact, it is a {\it maximal\/} order. // Clearly $\SU_0$ is isomorphic to the group $\cO^1$ of elements of~$\cO$ having reduced norm~1. // The group $\Z[r]^\times$ of units in~$\Z[r]$ consists of the elements $m+nr$, where $m,n\in\Z$ // and $m^2-3n^2=\pm1$. Now $m^2-3n^2=-1$ never holds, and $m^2-3n^2=1$ if and only if $m+nr=(2+r)^k$ // for some $k\in\Z$~(see \cite[\S7.8]{NZM}, for example). So $\Z[r]^\times$ is generated by~$-1$ and $2+r$. // If $\xi\in\cO^\times$, then $N(\xi)\in\Z[r]^\times$. // In fact, $N(\xi)$ is never equal to~$-1$, // for if $\epsilon:\Q(r)\to\R$ is the field embedding mapping $r$ to~$-\sqrt{3}$, then // \begin{displaymath} // f:x_0+x_1i+x_2j+x_3k\mapsto\epsilon(x_0)+\epsilon(x_1)\,i+\epsilon(x_2)\sqrt{\sqrt{3}+1}\;j+\epsilon(x_3)\sqrt{\sqrt{3}+1}\;k // \end{displaymath} // is an embedding of~$A$ into~$\Ham$ satisfying $\epsilon(N_A(\xi))=N_\Ham(f(\xi))$. // % To see a check of this, see the reduce syntax file hamiltonian_embeddings.red. // Now $\cO^1\subset\cO^\times$. Since $2+r=N(\zeta+1)$, if $\xi\in\cO^\times$ and $N(\xi)=(2+r)^k$, // then $\xi/(\zeta+1)^k\in\cO^1$. Since $(\zeta+1)^2=\zeta(2+r)$, we see that $\cO^1/\{1,-1\}$ // embeds as an index~2 subgroup of~$\cO^\times/\Z[r]^\times$. Magma has routines for finding a // presentation of~$\cO^\times/\Z[r]^\times$. As these may be less familiar to the reader, we give some // details. We set up $\Q(\zeta)$, $\Q(r)$ and~$A$ with the commands // \small{ // \begin{displaymath} // \begin{aligned} // &\mathtt{L\langle z\rangle:=CyclotomicField(12);}\phantom{XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX}\\ // &\mathtt{K\langle r\rangle:=sub\langle\; L\ |\ z+1/z\rangle;}\\ // &\mathtt{A\langle i,j,k\rangle:=QuaternionAlgebra\langle\; K\ |\ -1,\;r-1\rangle;} // \end{aligned} // \end{displaymath} // } // As $\zeta=(r+\zeta^3)/2$, we set $\mathtt{zz:=(r+i)/2;}$ and $\mathtt{O:=Order([1,zz,j,zz{*}j]);}$. Now // the commands $\mathtt{G:=FuchsianGroup(O);}$ and $\mathtt{u,m:=Group(G);}$ and $\mathtt{u;}$ give // a presentation for $\cO^\times/\Z[r]^\times$. The command $\mathtt{[A!Quaternion(m(U.i)):i\ in\ [1..2]];}$ // makes the generators $u_1$, $u_2$ explicit. We find that $u_1=(2+r-i)/2$ and $u_2=-(r+2)(i+k)$. These satisfy // $u_1^{12}=u_2^2=(u_1u_2)^3=1$ (mod~$\Z[r]^\times$). Note that $N(u_1)=N(u_2)=2+r$. Magma verifies that // the subgroup of the abstract group $\langle u_1,u_2\ |\ u_1^{12}=u_2^2=(u_1u_2)^3=1\rangle$ has a single // index~2 subgroup, and it is generated by $g_1=u_2u_1^{-1}$ and~$g_2=u_1^2$, and the relations // $g_1^3=(g_1g_2)^3=g_2^6=1$ give a presentation. For the given concrete $u_1,u_2\in A$, we // set $g_1=u_2u_1^{-1}$ and $g_2=(2-r)u_1^2$. Then $g_1,g_2\in\cO^1$ generate $\cO^1/\{-1,1\}$ // and satisfy $g_1^3=1$, $(g_1g_2)^3=-1=g_2^6$. The given elements~$d$ and~$x$ are just $g_2^{-1}$ // and $g_2^{-3}g_1g_2^{-3}$. So they and the given relations form a presentation of~$\SU_0$. // // The remaining assertions are routine to verify. // \end{proof} // \begin{lemm}\label{lem:imageofpsi0}The image under~$\psi_0$ of~$\bar\Gamma_0$ // is~$\langle z\rangle H_0$. // \end{lemm} // \begin{proof}The elements $xd$, $dx$, $d^3$ and~$z$ are all in $\psi_0(\bar\Gamma_0)$, being respectively // the images of the elements $gZ$ of~$\bar\Gamma_0$ for the following~$g$'s: // \begin{displaymath} // \zeta^{-4}j^{-3}bj^7,\quad\zeta^{-4}j^{-1}bj^5,\quad\zeta^{-3}v^{-1}j^6,\quad\text{and}\ \zeta j^{-1}. // \end{displaymath} // Now $d\not\in\psi_0(\bar\Gamma_0)$ since $\zeta-1\not\in(r-1)\Z[\zeta]$. So // we have $\langle z\rangle H_0\subset\psi_0(\bar\Gamma_0)\subsetneqq \U_0$. Since $H_0$ has index~3 in~$\SU_0$ // we have $\langle z\rangle H_0=\psi_0(\bar\Gamma_0)$. // \end{proof} // \begin{coro}The elements $s_2=(jb)^{-1}$, $s_3=b$, $s_{12}=j$ and $z_0=v$ generate // $\bar\Gamma_0$, and together with the relations // \begin{displaymath} // s_{12}^{12}=s_3^3=1,s_2^2=z_0^3,z_0^4=[s_{12},z_0]=[s_3,z_0]=[s_2,z_0]=s_{12}s_3s_2=1. // \end{displaymath} // form a presentation of~$\bar\Gamma_0$. // \end{coro} // \begin{proof}Let $\bar\Gamma_{\mathrm{ce}}$ denote the abstract finitely presented group // on generators $s_2$, $s_3$, $s_{12}$ and~$z_0$ and the stated relations. There is a homomorphism // $\bar\Gamma_{\mathrm{ce}}\to\bar\Gamma_0$ mapping $s_2$ to~$(jb)^{-1}$, $s_3$ to~$b$, $s_{12}$ to~$j$ // and $z_0$ to~$v$. The last lemma allows us to identify $\U_0$ with the abstract finitely presented // group with generators $d$, $x$ and~$z$ and the above-stated relations. Magma's {\tt Rewrite(G,H)\/} command, applied to this finitely presented // group and its subgroup $H=\psi_0(\bar\Gamma_0)$ (which has index~3 in~$\U_0$), gives a presentation of~$H$, // with generators $R_1=dx$ and $R_2=xzx^{-1}$. Now $R_1=\psi_0(s_{12}^{-1}s_3s_{12}^5)$ // and $R_2=\psi_0(s_{12}^{-2}s_3s_{12}^5z_0^2)$. Thus $\bar\Gamma_0$ is generated by $s_2$, $s_3$, $s_{12}$ and~$z_0$. // The {\tt Rewrite\/} command gives relations involving words in $R_1$ and~$R_2$. Using // $R_1=\psi_0(s_{12}^{-1}s_3s_{12}^5)$ and $R_2=\psi_0(s_{12}^{-2}s_3s_{12}^5z_0^2)$, we can express // these words as words in $s_2$, $s_3$, $s_{12}$ and~$z_0$, and it is routine to verify that // these words equal~1 is a consequence of the stated relations of the central extension. This // means that there is a homomorphism $H\to\bar\Gamma_{\mathrm{ce}}$ mapping $R_1$ and~$R_2$ // to~$s_{12}^{-1}s_3s_{12}^5$ and~$s_{12}^{-2}s_3s_{12}^5z_0^2$ respectively, and that the homomorphisms // $\bar\Gamma_{\mathrm{ce}}\to\bar\Gamma_0\to H$ are isomorphisms.\end{proof} // // \end{section} // // \begin{section}{The case $\bar\Gamma_c$.} // We now describe $\bar\Gamma_c$. Recall that $c=(r-1)(\zeta^3-1)/2=\zeta^2-\zeta$. // // \begin{lemm}\label{lem:gammac}If $gZ\in\bar\Gamma$, then $gZ\in\bar\Gamma_c$ if and // only if we can write // \begin{equation}\label{eq:gammacmatrix} // g=\theta' // \begin{pmatrix}1&0&0\\0&1&0\\0&0&\theta\end{pmatrix} // \begin{pmatrix} // (a(2-r)+1)/(3-r)&c(a-1)/(3-r)&bc\\ // (a-1)\overline{c}/(3-r)&(a+2-r)/(3-r)&b\\ // \overline{b}\overline{c}/(r-1)&\overline{b}/(r-1)&\overline{a} // \end{pmatrix} // \end{equation} // where $a,b\in\Z[\zeta]$, $\theta,\theta'\in\{\zeta^k:k=0,\ldots,11\}$, $|a|^2-r|b|^2=1$, // and $a-1\in r\Z[\zeta]$. This expression for~$g$ is unique, with $\theta'=g_{11}-cg_{21}$ and ${\theta'}^3\theta=\det(g)$. // \end{lemm} // \begin{proof}Suppose that $gZ\in\bar\Gamma_0$. Applying Lemma~\ref{lem:gfixesMalpha} for $\alpha=c$ to~$g$ and to~$g^{-1}$, we have // $g_{13}=cg_{23}$, $g_{12}=c(cg_{21}-g_{11}+g_{22})$, // $\overline{g_{31}}=c\overline{g_{32}}$, and $\overline{g_{21}}=c(c\overline{g_{12}}-\overline{g_{11}}+\overline{g_{22}})$. // From the second and fourth of these equations, we find that $\overline{c}g_{12}=cg_{21}$. // // Using Lemma~\ref{lem:gfixesMalpha} again, we see that the map $g\mapsto g_{11}-cg_{21}$ // is multiplicative on the group of matrices satisfying $g(M_c)=M_c$. // So we get // $1=\bigl(g_{11}-cg_{21}\bigr)\bigl(\overline{g_{11}}-c\overline{g_{12}}\bigr) // =|g_{11}-cg_{21}|^2$ by applying this to $g$ and~$g^{-1}$, and so $\theta'=g_{11}-cg_{21}$ has modulus~1. The condition that $\gamma_0^{-1}g\gamma_0$ // has entries in~$\Z[\zeta]$ implies in particular that $g_{11},g_{21}\in\frac{1}{r-1}\Z[\zeta]$, // so that $\theta'\in\frac{1}{r-1}\Z[\zeta]$. This and $|\theta'|=1$ imply that // $\theta'\in\{\zeta^k:k=0,\ldots,11\}$. So replacing $g$ by ${\theta'}^{-1}g$, if necessary, we // may suppose that $g_{11}-cg_{21}=1$. We can now express $g_{11}$, $g_{12}$ and $g_{21}$ in terms // of~$g_{22}$. Now let $N=F^{-1}g^*F-{\Adj}(g)/\theta=(n_{ij})$, where $\theta=\det(g)$. By~\eqref{eq:ginv}, // this is zero. We solve $cn_{11}+n_{12}=0$ for $g_{22}$, obtaining $g_{22}=(|c|^2+\theta\overline{g_{33}})/(|c|^2+1)$. // Now solving $n_{31}=0$, we get $g_{32}=\overline{g_{23}}/((r-1){\bar\theta})=\theta\overline{g_{23}}/(r-1)$, // using $|\theta|=1$. Write $a=\theta\overline{g_{33}}$ and $b=g_{23}$. Then \eqref{eq:gammacmatrix} holds. // There is just one remaining condition on $a$ and~$b$ to ensure that // $N=0$, namely $|a|^2-r|b|^2=1$. This equation is also the condition that the determinant of the last // matrix on the right in~\eqref{eq:gammacmatrix} is~1. So taking determinants, we see that // $\det(g)={\theta'}^3\theta$. As in Lemma~\ref{lem:gamma0}, $\det(g)\in\Z[\zeta]$, and so // $\theta\in\{\zeta^k:k=0,\ldots,11\}$ too. Finally, by considering $g-I$, it is routine // to check that $\gamma_0^{-1}g\gamma_0$ has entries in~$\Z[\zeta]$ if and only if $a-1\in r\Z[\zeta]$. // \end{proof} // // Let $\U_c$ be the group of matrices with entries in~$\Z[\zeta]$ which are unitary // with respect to // \begin{displaymath} // \begin{pmatrix} // 1&0\\ // 0&-r // \end{pmatrix}. // \end{displaymath} // If $\SU_c$ is the subgroup of~$\U_c$ consisting of its elements // of determinant~1, then $\U_c$ is the semidirect product of~$\SU_c$ and the group // of order~12 generated by the above matrix~$z$. // We define an embedding of~$\bar\Gamma_c$ into~$\U_c$ as follows. If $gZ\in\bar\Gamma_c$, write // $g$ as in~\eqref{eq:gammacmatrix}, and set // \begin{equation}%\label{eq:phizero} // \psi_c(gZ)= // \begin{pmatrix} // 1&0\\ // 0&\theta // \end{pmatrix} // \begin{pmatrix} // a&rb\\ // \overline{b}&\overline{a} // \end{pmatrix}. // \end{equation} // Then $\psi_c$ is an injective homomorphism $\bar\Gamma_c\to \U_c$. // // \begin{lemm}\label{lem:piclemma}The group $\SU_c$ has generators // \begin{displaymath} // d=\begin{pmatrix}\zeta&0\\0&\zeta^{-1}\end{pmatrix},\ // q=\begin{pmatrix}r+1&r/c\\1/\overline{c}&r+1\end{pmatrix},\ \text{and}\ // s=\begin{pmatrix}\zeta^3(r+1)&r/c\\1/\overline{c}&\zeta^{-3}(r+1)\end{pmatrix}, // \end{displaymath} // and has the following presentation with respect to these generators: // \begin{displaymath} // \SU_c=\langle d,q,s\ |\ d^{12}=1,s^2=(qd^3)^2=(qd^2sd^2)^2=d^6\rangle. // \end{displaymath} // A presentation for $\U_c$ is obtained to adding to the above presentation of~$\SU_c$ the generator // $z$ and the relations $z^{12}=1$, $zd=dz$, $zsz^{-1}=dqd^2$ and $zqz^{-1}=d^{-2}sd^{-1}$. // The subgroup $H_c=\langle sd,ds,q\rangle$ has index~4 in~$\SU_c$. // \end{lemm} // \begin{proof}The proof is similar to that of Lemma~\ref{lem:su0presentation}. We // use the quaternion algebra $A=(-1,r)_{\Q(r)}$ and the maximal order $\cO=\{a+bj:a,b\in\Z[\zeta]\}$. // Since $N(a+bj)=|a|^2-r|b|^2$, we have $\SU_c\cong\cO^1$. Again $\cO^1/\{-1,1\}$ embeds as a // subgroup of index~2 in~$\cO^\times/\Z[r]^\times$ (we exclude $N(\xi)=-1$ in the same way, with // $3^{1/4}$ in place of $\sqrt{\sqrt{3}+1}$ in the definition of the embedding $A\to\Ham$). // This time we get a presentation // for $\cO^\times/\Z[r]^\times$ with generators $u_1=(r+2-i)/2$ and~$u_2=(r+1-(3r+5)i-2(r+2)k)/2$ // satisfying $u_1^{12}=u_2^4=(u_1u_2)^2=1$ (mod~$\Z[r]^\times$). The elements $g_1=u_2u_1^{-1}$, // $g_2=u_1^2$ and $g_3=u_1u_2$ generate one of the three index~2 subgroups of the abstract group // $\langle u_1,u_2\ |\ u_1^{12}=u_2^4=(u_1u_2)^2=1\rangle$, and this subgroup // has presentation $(g_1g_2)^2=(g_1g_3)^2=g_3^2=g_2^6=1$. For the given concrete $u_1,u_2\in A$, we // set $g_1=u_2u_1^{-1}$ and $g_2=(2-r)u_1^2$ and $g_3=(2-r)u_1u_2$. Then $g_1,g_2,g_3\in\cO^1$ generate // $\cO^1/\{-1,1\}$ and satisfy $(g_1g_2)^2=(g_1g_3)^2=g_3^2=g_2^6=-1$. We have $g_1=-ds$, $g_2=d^{-1}$ // and~$g_3=-d^2qd$. The result follows. // \end{proof} // // \begin{lemm}\label{lem:imageofpsic}The image of $\bar\Gamma_c$ in~$\U_c$ is~$\langle z\rangle H_c$. // \end{lemm} // \begin{proof}Now $H_c\subset\psi_c(\bar\Gamma_c)$, since for the following elements $g$ of~$\bar\Gamma$: // \begin{displaymath} // \zeta^{-4}j^7bu^{-1}bu j^7,\quad\zeta^{-4}j^{-3}bu^{-1}bu j^5,\quad j^4bu^{-1}bu^{-1}j^2, // \end{displaymath} // we have $\det(g)=1$, $g_{11}-cg_{21}=1$, $g_{13}=cg_{23}$ and $g_{12}=c(cg_{21}-g_{11}+g_{22})$, while $\psi_c(gZ)$ // equals $sd$, $ds$ and~$q$, respectively. Also, $z=\psi_c(gZ)$ for $g=\zeta j^{-1}$. Hence $\langle z\rangle H_c\subset\psi_c(\bar\Gamma_c)$. // Now $d,d^2,d^3\not\in\psi_c(\bar\Gamma_c)$, since $\zeta^i-1\not\in r\Z[\zeta]$ for $i=1,2,3$, // and so the index of~$\psi_c(\bar\Gamma_c)$ in~$\U_c$ is at least~4. Since $[\SU_c:H_c]=4$, we must have // $\psi_c(\bar\Gamma_c)=\langle z\rangle H_c$. // \end{proof} // \begin{coro}The elements $t_2=(bu^{-1})^2$, $t_4=j^{-1}(bu^{-1})^2$, $t_{12}=j$ and $z_c=u$ // $\bar\Gamma_c$, and together with the relations // \begin{displaymath} // t_{12}^{12}=1,t_4^4=z_c,t_2^2=z_c^3=[t_{12},z_c]=[t_4,z_c]=[t_2,z_c]=t_{12}t_4t_2=1. // \end{displaymath} // form a presentation of~$\bar\Gamma_c$. // \end{coro} // \begin{proof}Let $\bar\Gamma_{\mathrm{ce}}$ denote the abstract finitely presented group // on generators $t_2$, $t_4$, $t_{12}$ and~$z_c$ and the stated relations. There is a homomorphism // $\bar\Gamma_{\mathrm{ce}}\to\bar\Gamma_c$ mapping $t_2$ to~$(bu^{-1})^2$, $t_4$ to~$j^{-1}(bu^{-1})^2$, $t_{12}$ to~$j$ // and $z_c$ to~$u$. The last lemma allows us to identify $\U_c$ with the abstract finitely presented // group with generators $d$, $q$, $s$ and~$z$ and the above-stated relations. Magma's {\tt Rewrite(G,H)\/} command, applied to this finitely presented // group and its subgroup $H=\psi_c(\bar\Gamma_c)$ (which has index~4 in~$\U_c$), gives a presentation of~$H$, // with generators $R_1=z$, $R_2=dqd^{-1}$ and $R_3=s^2d^{-2}$. Now $R_1=\psi_c(t_{12}^{-1})$, $R_2=\psi_c(t_{12}^6t_2)$ // and $R_3=\psi_c(z_c^{-1}t_{12}^8)$. Thus $\bar\Gamma_c$ is generated by $t_2$, $t_4$, $t_{12}$ and~$z_c$. // The {\tt Rewrite\/} command gives relations involving words in $R_1$, $R_2$ and~$R_3$. Using // $R_1=\psi_c(t_{12}^{-1})$, $R_2=\psi_c(t_{12}^6t_2)$ and $R_3=\psi_c(z_c^{-1}t_{12}^8)$, we can express // these words as words in $t_2$, $t_4$, $t_{12}$ and~$z_c$, and it is routine to verify that // these words equal~1 is a consequence of the stated relations of the central extension. This // means that there is a homomorphism $H\to\bar\Gamma_{\mathrm{ce}}$ mapping $R_1$, $R_2$ and~$R_3$ // to~$t_{12}^{-1}$, $t_{12}^6t_2$ and~$z_c^{-1}t_{12}^8$ respectively, and that the homomorphisms // $\bar\Gamma_{\mathrm{ce}}\to\bar\Gamma_c\to H$ are isomorphisms.\end{proof} // \end{section} // \begin{thebibliography}{12mm} // \bibitem[NZM]{NZM}Niven, I., Zuckermann H. S., Montgomery, H. L, An Introduction to the Theory of Numbers, // (Fifth Edition), Wiley, 1991. // \end{thebibliography} // \end{document} // end of Latex File. // ****************** // The presentation of the group $\bar\Gamma_0$: // ********************************************* // The following elements s2, s3, s12 and z0 all satisfy these conditions, // and so are in $\bar\Gamma_0$. s2:=(J*B)^-1; s3:=B; s12:=J; z0:=V; // The following are zero, checking that s2,s3,s12 and z0 satisfy // the stated relations of $\bar\Gamma_0$: s2^2-z*z0^3; s3^3-ID3; s12^12-ID3; z0^4-ID3; s12*s3*s2-ID3; s2*z0-z0*s2; s3*z0-z0*s3; s12*z0-z0*s12; // This means that there is a homomorphism from the abstract group with // the presentation stated for $\bar\Gamma_0$ in Section 2.1 to the group $\bar\Gamma_0$. // See the commented out LateX file for the definition of the group $U_0$ and // the injective homomorphism $\psi_0:\bar\Gamma_0\to U_0$. As proved in that file, // the image of $\bar\Gamma_0$ under~$\psi_0$ has index 3 in $U_0$. // Here we set up that map $\psi_0$: Mats2L:=MatrixRing(L,2); Fzero:=Mats2L![1,0, 0,1-r]; FzeroI:=Mats2L![1,0, 0,-(r+1)/2]; ID2:=Mats2L!1; starmat2:=function(matvar); return Mats2L![hLL(matvar[1][1]),hLL(matvar[2][1]), hLL(matvar[1][2]),hLL(matvar[2][2])]; end function; // Here are the generators of U_0: X:=Mats2L![z^3+z^2-1,-z^2-z+1, z^3+z^2-1,-z^3-z^2]; D:=Mats2L![z,0, 0,z^-1]; ZMAT:=Mats2L![1,0, 0,z]; // Here are their inverses: XI:=X^-1; DI:=D^-1; ZMATI:=ZMAT^-1; // Checking that d, z and ZMAT are unitary with respect to Fzero: // The following are zero: starmat2(D)*Fzero*D-Fzero; starmat2(X)*Fzero*X-Fzero; starmat2(ZMAT)*Fzero*ZMAT-Fzero; // Here is the function $\psi_0$ described above // It maps elements of $\bar\Gamma_0$ to U_0: psizero:=function(matvar); if ((matvar[1][1] eq 0) or (matvar[1][2] ne 0) or (matvar[1][3] ne 0) or (matvar[2][1] ne 0) or (matvar[3][1] ne 0)) then print "Error - matrix does not fix M_0"; return matvar; end if; tmpmat:=(1/matvar[1][1])*matvar; return Mats2L![tmpmat[2][2],tmpmat[2][3],tmpmat[3][2],tmpmat[3][3]]; end function; // The following are zero: psizero(z^-4*J^-3*B*J^7) - X*D; psizero(z^-4*J^-1*B*J^5) - D*X; psizero(z^-3*V^-1*J^6) - D^3; psizero(z*J^-1)- ZMAT; // See the LateX file for how we find a presentation for $U_0$: // The group $U_0$ is generated by the above matrices X, D and ZMAT, and // has the presentation // $\langle d,x,z | d^{12}=x^3=z^12=1, (dx^2)^3=d^6, d^6x=xd^6, zdz^-1=d, zxz^-1= d^6x^{-1}d\rangle$. // We set up an abstract finitely presented group with this presentation: // FU0:=FreeGroup(3); // relnlistU0:={ // xd^12, // xx^3, // (xd*xx^2)^3*xd^-6, // xd^6*xx*xd^-6*xx^-1, // xz^12, // xz*xd*xz^-1*xd^-1, // xz*xx*xz^-1*xd^-1*xx*xd^-6}; // // U0gp,phi0:=quo< FU0 | relnlistU0>; // // d:=phi0(xd); // x:=phi0(xx); // zabstract:=phi0(xz); // // // We know that $\psi_0:\bar\Gamma_0\to U_0$ is an injective homomorphism. We // // identify $U_0$ with the above finitely presented group U0gp. // // Now $\psi_0$ has image containing $xd$, $dx$, $d^3$ and $zabstract$. // // We check that the subgroup generated by these four elements is normal and of index 3: // testsubgroup:=sub< U0gp | x*d,d*x,d^3,zabstract>; // print "the index of testsubgroup in U0gp is", Index(U0gp,testsubgroup); // output: 3 // print "it is",IsNormal(U0gp,testsubgroup),"that testsubgroup is normal in U0gp"; // // We know that $\psi_0(\bar\Gamma_0)$ is a proper subgroup of $U_0$ because, for // // example, the matrix $X$ has $(1,1)$ entry $a=\zeta^3+\zeta^2-1$, which does not // // satisfy the condition $a-1\in(r-1)\Z[\zeta]$ which must be satisfied by the $(1,1)$ // // entry of any matrix in the image of $\bar\Gamma_0$ of $\bar\Gamma_0$. Since // // $\psi_0(\bar\Gamma_0)$ contains the index 3 testsubgroup, we must have $\psi_0(bar\Gamma_0)=testsubgroup$. // // psi0bargamma0:=testsubgroup; // // // To get a presentation for the index 3 subgroup, and hence of $\bar\Gamma_0$, we using following Magma command: // R:=Rewrite(U0gp,psi0bargamma0); // print R; // // // // Output: // // Finitely presented group R on 2 generators // // Generators as words in group U0gp // // R1=U0gp.1*U0gp.2 // // R2=U0gp.2*U0gp.3*U0gp.2^-1 // // Relations // // R2*R1*R2^-2*R1*R2^-1*R1*R2*R1^-1*R2=Id(R) // // R2*R1^-1*R2*R1*R2^-1*R1*R2^-2*R1*R2=Id(R) // // R2^-1*R1*R2*R1^-2*R2^2*R1^-1*R2^-1*R1^2*R2^-1=Id(R) // // R2^12=Id(R) // // R2^2*R1*R2^-3*R1*R2^2*R1*R2^-1*R1^-1*R2^-1*R1*R2=Id(R) // // // // U0gp.1, U0gp.2 and U0gp.3 here are d, x and zabstract, respectively. // // So the index 3 subgroup is generated by the following // // two elements, which are images under $\psi_0$ of the // // explicit elements of $\bar\Gamma_0$: // R1:=D*X; // R2:=X*ZMAT*X^-1; // // // The following are zero: // psizero(z^-4*J^-1*B*J^5) - D*X; // psizero(z^3*J^10*B*V^2*J^5) - X*ZMAT*X^-1; // // // In terms of the given generators $s_2=(jb)^{-1}$, $s_3=b$, $s_{12}=j$ and $z_0=v$ of the central extension, // // we have // psizero(z^-4*s12^-1*s3*s12^5) - D*X; // psizero(z^3*s12^10*s3*z0^2*s12^5) - X*ZMAT*X^-1; // // // We now replace R1 and R2 in the five relations found above by the Rewrite routine // // by s12^-1*s3*s12^5 and s12^10*s3*z0^2*z12^5, respectively, and check that they // // are consequences of the stated relations amongst s_2, s_3, s_{12} and z_0 of the central extension. // // This means that there is a homomorphism from $\psi_0(\bar\Gamma_0)$ to the central extension // // mapping R1 to s12^-1*s3*s12^5 and R2 to s12^10*s3*z0^2*s12^5 // // write // s3i:=s3^-1; // s12i:=s12^-1; // // s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5; // s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5; // s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2; // (s12^10*s3*z0^2*s12^5)^12; // s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*s3i*s12*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5; // // Showing that these five relations are consequences of the relations given for the central extension: // // First relation: // s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5; // //-> using z0 cental and z0^4=1 // s12^10*s3*s12^5*s12i*s3*s12^5*s12^7*s3i*s12^2*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*s12^5*s12^7*s3i*s12*s12^10*s3*s12^5; // //-> using s12^12=1 and s12i=s12^-1: // s12^10*s3*s12^4*s3*s3i*s12^2*s12^7*s3i*s12*s3*s3i*s12*s3*s12^3*s3*s3i*s12^11*s3*s12^5; // //-> using s3*s3i=1 // s12^10*s3*s12^4*s12^2*s12^7*s3i*s12*s12*s3*s12^3*s12^11*s3*s12^5; // //-> using s12^12=1 // s12^10*s3*s12*s3i*s12^2*s3*s12^2*s3*s12^5; // //-> conjugating by s12^5 // s12^3*s3*s12*s3i*s12^2*s3*s12^2*s3; // //-> using s3i=s2*s12 // s12^3*s3*s12*s2*s12*s12^2*s3*s12^2*s3; // //-> using s12*s3=s2^-1=s2*z0 // s12^2*s2*z0*s12*s2*s12^2*s2*z0*s12*s2*z0; // //-> using z0 central // s12^2*s2*s12*s2*s12^2*s2*s12*s2*z0^3; // //-> using s2*s12=s3i // s12^2*s3i*s3i*s12*s3i*s2*z0^3; // //-> using s3^3=1 // s12^2*s3*s12*s3*s3*s2*z0^3; // //-> conjugating by s12^-1 and using z0 central: // s12*s3*s12*s3*s3*s2*s12*z0^3; // //-> using s3*s2*s12=1 // s12*s3*s12*s3*z0^3; // //-> using s12*s3=s2^-1: // s2^-1*s2^-1*z0^3; // // using s2^2=z0^3 // ID3; // // // Second relation: // s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5; // //-> using z0 central and z0^4=1 // s12^10*s3*s12^5*s12^7*s3i*s12*s12^10*s3*s12^5*s12i*s3*s12^5*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^7*s3i*s12^2*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*s12^5; // //-> using s12^12=1 // s12^10*s3*s3i*s12^11*s3*s12^4*s3*s3i*s12*s3*s3i*s12^9*s3i*s12*s3*s12^3*s3*s12^5; // //-> using s3*s3i=1 // s12^10*s12^11*s3*s12^4*s12*s12^9*s3i*s12*s3*s12^3*s3*s12^5; // //-> using s12^12=1 // s12^9*s3*s12^2*s3i*s12*s3*s12^3*s3*s12^5; // //-> conjugating by s12^5 // s12^2*s3*s12^2*s3i*s12*s3*s12^3*s3; // //-> using s3i=s3^2 // s12* s12*s3 *s12* s12*s3 *s3* s12*s3 *s12^2* s12*s3; // // -> using s12*s3=s2^-1=s2*z0 // s12*s2*z0*s12*s2*z0*s3*s2*z0*s12^2*s2*z0; // //-> using z0 central and z0^4=1 // s12*s2*s12*s2*s3*s2*s12^2*s2; // //-> using s3*s2*s12=1 // s12*s2*s12*s2*s12*s2; // //-> using s12*s2=s3i // s3i*s3i*s3i; // //-> using s3^3=1 // ID3; // // -> Third relation: // s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^7*s3i*s12*s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12^7*s3i*s12*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2; // // -> using z0 central and z0^4=1: // s12^7*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*s12^5*s12^7*s3i*s12*s12^7*s3i*s12*s12^10*s3*s12^5*s12^10*s3*s12^5*s12^7*s3i*s12*s12^7*s3i*s12^2*s12i*s3*s12^5*s12i*s3*s12^5*s12^7*s3i*s12^2; // // -> Using s12^12=1: // s12^7*s3i*s12*s3*s12^3*s3*s3i*s12^8*s3i*s12^11*s3*s12^3*s3*s3i*s12^8*s3i*s12*s3*s12^4*s3*s3i*s12^2; // // -> Using s3*s3i=1 // s12^7*s3i*s12*s3*s12^3*s12^8*s3i*s12^11*s3*s12^3*s12^8*s3i*s12*s3*s12^4*s12^2; // // -> Using s12^12=1: // s12^7*s3i*s12*s3*s12^11*s3i*s12^11*s3*s12^11*s3i*s12*s3*s12^6; // // -> conjugating by s12^6 // s12*s3i*s12*s3*s12^11*s3i*s12^11*s3*s12^11*s3i*s12*s3; // // -> using s3i=s3*s3 // s12*s3 *s3* s12*s3 *s12^10*s12*s3*s3*s12^10*s12*s3*s12^10*s12*s3*s3*s12*s3; // // -> using s12*s3=s2^-1=s2*z0 // s2*z0 *s3* s2*z0 *s12^10* s2*z0 *s3*s12^10* s2*z0 *s12^10* s2*z0 *s3* s2*z0; // // -> using z0 central and z0^4=1: // s2*s3*s2*s12^10*s2*s3*s12^10*s2*s12^10*s2*s3*s2*z0^2; // // -> using s3*s2=s12^-1 // s2*s12^9*s2*s3*s12^10*s2*s12^10*s2*z0^2*s12^-1; // // -> using s3*s2=s12^-1 // s2*s12*s12^8*s2*s3*s12^10*s2*s12*s12^9*s2*s12*s12^10*z0^2; // // -> using s2*s12=s3i // s3i*s12^8*s2*s3*s12^10*s3i*s12^9*s3i*s12^10*z0^2; // // -> invert, and use s12^12=1 // z0^-2*s12^2*s3*s12^3*s3*s12^2*s3i*s2^-1*s12^4*s3*z0^2; // // -> using z0 central and z0^4=1 and s2^-1=s2*z0 // s12*s12*s3*s12^2*s12*s3*s12*s12*s3*s3*s2*s12^3*s12*s3*z0^3; // // -> using s12*s3=s2^-1=s2*z0 // s12*s2*z0*s12^2*s2*z0*s12*s2*z0*s3*s2*s12^3*s2*z0*z0^3; // // -> using z0 central and z0^4=1 // s12*s2*s12*s12*s2*s12*s2*s3*s2*s12*s12^2*s2*z0^3; // // -> using s2*s12=s3^=1=s3*s3 // s12*s3*s3*s12*s3*s3*s2*s3*s3*s3*s12^2*s2*z0^3; // // -> using s3^3=1 // s12*s3*s3*s12*s3*s3*s2*s12*s12*s2*z0^3; // // -> using s3*s2*s12=1 // s12*s3*s3*s12*s3*s12*s2*z0^3; // // -> using s12*s3=s2^-1=s2*z0 // s2*z0*s3*s2*z0*s12*s2*z0^3; // // -> using z0 central and z0^4=1 // s2*s3*s2*s12*s2*z0; // // -> using s3*s2*s12=1 // s2*s2*z0; // // -> using s2^-1=s2*z0 // ID3; // // // Fourth relation: // (s12^10*s3*z0^2*s12^5)^12; // //-> using z0 central and z0^4=1 // (s12^10*s3*s12^5)^12; // //-> conjugating by s12^5 // (s12^3*s3)^12; // //-> using s12*s3=s2^-1=s2*z0 // (s12^2*s2*z0)^12; // //-> using z0 central and z0^4=1 // (s12^2*s2)^12; // //-> conjugating by s12^-1 // (s12*s2*s12)^12; // //-> using s2*s12=s3^-1 // (s12*s3i)^12; // //-> conjugating by s3 // (s3*s12*s3)^12; // //-> using s12*s3=s2^-1=s2*z0 // (s3*s2*z0)^12; // //-> using z0 central and z0^4=1 // (s3*s2)^12; // //-> using s3*s2=s12i // (s12i)^12; // //-> using s12^12=1 // ID3; // // // Fifth relation // s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5*s12^10*s3*z0^2*s12^5*s12i*s3*s12^5*s12^7*z0^2*s3i*s12^2*s12^7*s3i*s12*s12^7*z0^2*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*z0^2*s12^5; // // -> using z0 central and z0^4=1 // s12^10*s3*s12^5*s12^10*s3*s12^5*s12i*s3*s12^5*s12^7*s3i*s12^2*s12^7*s3i*s12^2*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*s12^5*s12^10*s3*s12^5*s12i*s3*s12^5*s12^7*s3i*s12^2*s12^7*s3i*s12*s12^7*s3i*s12^2*s12i*s3*s12^5*s12^10*s3*s12^5; // // -> using s12^12=1 // s12^10*s3*s12^3*s3*s12^4*s3*s3i*s12^9*s3i*s12^9*s3i*s12*s3*s12^3*s3*s12^3*s3*s12^4*s3*s3i*s12^9*s3i*s12^8*s3i*s12*s3*s12^3*s3*s12^5; // // -> using s3*s3i=1 // s12^10*s3*s12^3*s3*s12^4*s12^9*s3i*s12^9*s3i*s12*s3*s12^3*s3*s12^3*s3*s12^4*s12^9*s3i*s12^8*s3i*s12*s3*s12^3*s3*s12^5; // // -> using s12^12=1 // s12^10*s3*s12^3*s3*s12*s3i*s12^9*s3i*s12*s3*s12^3*s3*s12^3*s3*s12*s3i*s12^8*s3i*s12*s3*s12^3*s3*s12^5; // // -> conjugating by s12^5, writing s3i=s3*s3 // s12^3*s3*s12^3*s3*s12*s3*s3*s12^9*s3*s3*s12*s3*s12^3*s3*s12^3*s3*s12*s3*s3*s12^8*s3*s3*s12*s3*s12^3*s3; // // -> writing s12^j*s3=s12^(j-1)*s12*s3 if j\ge2 // s12^2*s12*s3*s12^2*s12*s3*s12*s3*s3*s12^8*s12*s3*s3*s12*s3*s12^2*s12*s3*s12^2*s12*s3*s12*s3*s3*s12^7*s12*s3*s3*s12*s3*s12^2*s12*s3; // // -> using s12*s3=s2^-1=s2*z0 // s12^2*s2*z0*s12^2*s2*z0*s2*z0*s3*s12^8*s2*z0*s3*s2*z0*s12^2*s2*z0*s12^2*s2*z0*s2*z0*s3*s12^7*s2*z0*s3*s2*z0*s12^2*s2*z0; // // -> using z0 central and z0^4=1 // s12^2*s2*s12^2*s2*s2*s3*s12^8*s2*s3*s2*s12^2*s2*s12^2*s2*s2*s3*s12^7*s2*s3*s2*s12^2*s2*z0^3; // // -> writing s2*s12^j=s2*s12*s12^(j-1) if j\ge2 // s12*s12*s2*s12*s12*s2*s2*s3*s12^8*s2*s3*s2*s12*s12*s2*s12*s12*s2*s2*s3*s12^7*s2*s3*s2*s12*s12*s2*z0^3; // // -> using s2*s12=s3^-1=s3*s3 // s12*s12*s3*s3*s12*s2*s2*s3*s12^8*s2*s3*s3*s3*s12*s3*s3*s12*s2*s2*s3*s12^7*s2*s3*s3*s3*s12*s2*z0^3; // // -> using s3^3=1 // s12*s12*s3*s3*s12*s2*s2*s3*s12^8*s2*s12*s3*s3*s12*s2*s2*s3*s12^7*s2*s12*s2*z0^3; // // -> using s2*s2=z0^3, which is central // s12*s12*s3*s3*s12*s3*s12^8*s2*s12*s3*s3*s12*s3*s12^7*s2*s12*s2*z0; // // -> using s2*s12*s3=1 // s12*s12*s3*s3*s12*s3*s12^7*s12*s3*s12*s3*s12^7*s2*s12*s2*z0; // // -> using s12*s3=s2^-1=s2*z0 // s12*s2*z0*s3*s2*z0*s12^7*s2*z0*s2*z0*s12^7*s2*s12*s2*z0; // // -> using z0 central and z0^4=1 // s12*s2*s3*s2*s12^7*s2*s2*s12^7*s2*s12*s2*z0; // // -> using s2*s2=z0^3, which is central // s12*s2*s3*s2*s12*s12^6*s12^7*s2*s12*s2; // // -> using s3*s2*s12=1 // s12*s2*s12^6*s12^7*s2*s12*s2; // // -> using s12^12=1 // s12*s2*s12*s2*s12*s2; // // -> conjugating by s12^-1 // s2*s12*s2*s12*s2*s12; // // -> using s2*s12=s3i // s3i*s3i*s3i; // // -> using s3^3=1. // The presentation of the group $\bar\Gamma_c$: // ********************************************* // We set t4:=J^-1*(B*U^-1)^2; t12:=J; t2:=(B*U^-1)^2; zc:=U; // The following being zero mean that t2,t4,t12 and zc fix $M_c$: t2[1][2]-c*(c*t2[2][1]-t2[1][1]+t2[2][2]); t4[1][2]-c*(c*t4[2][1]-t4[1][1]+t4[2][2]); t12[1][2]-c*(c*t12[2][1]-t12[1][1]+t12[2][2]); zc[1][2]-c*(c*zc[2][1]-zc[1][1]+zc[2][2]); // THE FOLLOWING ARE zero: t2^2 - ID3; t4^4 - z^4*zc; t12^12 - ID3; t2*zc - zc*t2; t4*zc - zc*t4; t12*zc - zc*t12; t12*t4*t2 - ID3; // This means that there is a homomorphism from the abstract group with // the presentation stated for $\bar\Gamma_c$ in Section 2.1 to the group $\bar\Gamma_c$. // See the commented out LateX file for the definition of the group $U_c$ and // the injective homomorphism $\psi_c:\bar\Gamma_c\to U_c$. As proved in that file, // the image of $\bar\Gamma_c$ under~$\psi_c$ has index 4 in $U_c$. // Here we set up that map $\psi_c$: psic:=function(matvar); if ((matvar[1][1]-c*matvar[2][1] eq 0) or (matvar[1][3] ne c*matvar[2][3]) or (matvar[1][2] ne c*(c*matvar[2][1]-matvar[1][1]+matvar[2][2]))) then print "Error - matrix does not stabilize M_c"; return matvar; end if; tmpmat1:=(1/(matvar[1][1]-c*matvar[2][1]))*matvar; tmpmat2:=MatsL![1,0,0,0,1,0,0,0,1/Determinant(tmpmat1)]*tmpmat1; resultmat1:=Mats2L![hLL(tmpmat2[3][3]),r*tmpmat2[2][3],hLL(tmpmat2[2][3]),tmpmat2[3][3]]; return Mats2L![1,0,0,Determinant(tmpmat1)]*resultmat1; end function; // Here now are the generators of U_c. As well as D (as above), we have: S:=Mats2L![z^3*(r+1),r/c, 1/hLL(c),z^-3*(r+1)]; Q:=Mats2L![r+1,r/c, 1/hLL(c),r+1]; Fc:=Mats2L![1,0, 0,-r]; // The following are zero: psic((1/z^4)*J^7*B*UI*B*U*J^7) - S*D; psic((1/z^4)*J^9*B*UI*B*U*J^5) - D*S; psic(J^4*B*UI*B*UI*J^2) - Q; psic(z*JI)-ZMAT; // The group $U_c$ is generated by the above matrices D, Q, S and ZMAT, and // has the presentation // $\langle d,q,s,z\ |\ d^{12}=z^{12}=1,s^2=(qd^3)^2=(qd^2sd^2)^2=d^6,\ zd=dz, zsz^{-1}=dqd^2, zqz^{-1}=d^{-2}sd^{-1}\rangle$. // Assuming this, we now explain why $\bar\Gamma_c$ has the presentation of the // central extension given in the write-up: FUc:=FreeGroup(4); relnlistc:={ xd^12, xs^2*xd^-6, (xq*xd^3)^2*xd^-6, (xq*xd^2*xs*xd^2)^2*xd^-6, xz^12, xz*xd*xz^-1*xd^-1, xz*xq*xz^-1*xd*xs^-1*xd^2, xz*xs*xz^-1*xd^-2*xq^-1*xd^-1}; Uc,phic:=quo< FUc | relnlistc>; d:=phic(xd); q:=phic(xq); s:=phic(xs); zabstract:=phic(xz); testsubgroup:=sub< Uc | s*d,d*s,q,zabstract>; // print "The index of testsubgroup in Uc is",Index(Uc,testsubgroup); // Output: 4 // print "It is",IsNormal(Uc,testsubgroup),"that testsubgroup is normal in Uc"; // Output: true // testsubgroup is contained in the image $\psi_c(\bar\Gamma_c)$ of $\bar\Gamma_c$ in~$U_c$, // and has index~4 in $U_c$. Now $d,d^2,d^3\not\in\psi_c(\bar\Gamma_c)$, since // $\zeta^i-1\not\in r\Z[\zeta]$ for $i=1,2,3$, and so the index of~$\psi_c(\bar\Gamma_c)$ // in~$\U_c$ is at least~4. We conclude that $\psi_c(\bar\Gamma_c)$ equals testsubgroup. psicbargammac:=testsubgroup; print "The index of psicbargammac in Uc is",Index(Uc,psicbargammac); // Output: 4 print "It is",IsNormal(Uc,psicbargammac),"that psicbargammac is normal in Uc"; // Output: true // R:=Rewrite(Uc,psicbargammac); // print R; //Output: // Finitely presented group R on 3 generators // Generators as words in group Uc // R1=Uc.4 // R2=Uc.1*Uc.2*Uc.1^-1 // R3=Uc.3^2*Uc.1^-2 // Relations // R3^3=Id(R) // (R3^-1,R1)=Id(R) // R1^2*R2*R3^-1*R1^-2*R2*R3=Id(R) // R1^-1*R2*R1*R3*R2*R3*R1*R2*R1^-1*R2^-1=Id(R) // R1^12=Id(R) R1:=ZMAT; R2:=D*Q*D^-1; R3:=S^2*D^-2; // The following are zero: psic(z*JI) - ZMAT; psic(J^6*B*UI*B*UI)-D*Q*D^-1; psic(z^(-4)*UI*J^8) - S^2*D^-2; // In terms of the given generators $t_2=(bu^{-1})^2$, $t4=j^{-1}(bu^{-1})^2$, $t_{12}=j$ // and $z_c=u$ of the central extension, we have psic(z*t12^-1) - R1; psic(t12^6*t2) - R2; psic(z^(-4)*zc^-1*t12^8) - R3; // We now replace R1, R2 and R3 in the five relations found above by the Rewrite routine // by t12^-1, t12^6*t2 and zc^-1*t12^8, respectively, and check that they // are consequences of the stated relations amongst t_2, t_4, t_{12} and z_c of the central extension. // This means that there is a homomorphism from $\psi_c(\bar\Gamma_c)$ to the central extension // mapping R1 to t12^-1, R2 to t12^6*t2 and R3 to zc^-1*t12^8 // write t2i:=t2^-1; t4i:=t4^-1; t12i:=t12^-1; zci:=zc^-1; // Here are the five relations found by the Rewrite routine: R3^3; R3^-1*R1*R3*R1^-1; R1^2*R2*R3^-1*R1^-2*R2*R3; R1^-1*R2*R1*R3*R2*R3*R1*R2*R1^-1*R2^-1; R1^12; // Expressed in terms of t2, t4, t12 and zc, they are: (zci*t12^8)^3; t12^4*zc*t12i*(zci*t12^8)*t12; t12i^2*(t12^6*t2)*t12^4*zc*t12^2*(t12^6*t2)*(zci*t12^8); t12*(t12^6*t2)*t12i*(zci*t12^8)*(t12^6*t2)*(zci*t12^8)*t12i*(t12^6*t2)*t12*t2i*t12^6; t12i^12; // // First relation // (zc^-1*t12^8)^3; // // -> using zci=zc^-1 is central // (zc^-1)^3*t12^24; // // Using t12^12=1=zc^3: // ID3; // // // Second relation: // t12^4*zc*t12i*zci*t12^8*t12; // //-> using zc and zci=zc^-1 are central // t12^4*t12i*t12^8*t12; // // -> using t12^12=1 // ID3; // // // Third relation: // t12i^2*t12^6*t2*t12^4*zc*t12^2*t12^6*t2*zci*t12^8; // //-> using zc and zci=zc^-1 are central // t12i^2*t12^6*t2*t12^4*t12^2*t12^6*t2*t12^8; // // -> using t12^12=1 // t12^4*t2*t2*t12^8; // // -> using t2^2=1 // t12^4*t12^8; // // -> using t12^12=1 // ID3; // // // Fourth relation: // t12*t12^6*t2*t12i*zci*t12^8*t12^6*t2*zci*t12^8*t12i*t12^6*t2*t12*t2i*t12^6; // // -> using zc and zci=zc^-1 are central // t12*t12^6*t2*t12i*t12^8*t12^6*t2*t12^8*t12i*t12^6*t2*t12*t2i*t12^6*zci^2; // // -> using t12^12=zc^3=t2^2=1 // t12^7*t2*t12*t2*t12*t2*t12*t2*t12^6*zc; // // -> using t2*t12=t4i // t12^7*t4i*t4i*t4i*t4i*t12^5*zc; // // -> using t4^4=zc // t12^7*zci*t12^5*zc; // // -> using zc and zci=zc^-1 are central and t12^12=1 // ID3; // // // Fifth relation: // t12i^12; // // -> using t12^12=1 // ID3; // end of calculations for Section 2.1. // ************************************ // // Calculations for Proposition 2: // ******************************* // Now let's look at the subgroup $\bar\Gamma_0$ consisting of the // $g\in\bar\Gamma$ such that $g(M_0)=M_0$. The image under $\rho'$ // (see calculations for Section 1.6) of such an element has the form // (*,0,0), // (0,*,*), (1) // (0,*,*) // So reducing mod scalars, the image is contained in $U(2,\F_9)$, // which has order 96. Let $\bar\Gamma^1_0$ denote the subgroup // of $\bar\Gamma_0$ consisting of the elements having a matrix // representative of determinant 1. Since $-bj$, $\zeta^{-1}v$ and $-j^3$ are // all in $\bar\Gamma^1_0$, we see that already the image of $\bar\Gamma^1_0$ // is equal to $U(2,\F_9)$. testgp:=sub< GL3F9 | rhodBD*rhodJD,rhodVD,rhodJD^3>; #testgp; // Output: 384 = 96 times 4. // Notice that the image under $\rho'$ of $\Pi_0=\bar\Gamma_0\cap\Pi=\bar\Gamma^1_0\cap\Pi$ // must be trivial, since the only element of $\langle R,M\rangle$ of the form (1) // is the trivial element. // Write $\bar\Gamma^1_0$ as a union of cosets $\Pi_0t$, $t\in T$, say. // Then the images $\rho'(t)$, $t\in T$, are distinct, since $\rho'(t)=\rho'(t')$ // implies that $t't^{-1}$ is in the kernel of~$\rho'$ and so in the preimage of $\langle R,M\rangle$. // Hence $|T|=96$. That is $[\bar\Gamma^1_0,\Pi_0]=96$. Since $[\bar\Gamma_0,\bar\Gamma^1_0]=3$, // we have checked that $[\bar\Gamma_0,\Pi_0]=288$. // The following matrices are in~$\Pi_0$. Because of the scalar factors, // they all have the form // (1,0,0), // (0,a,b), // (0,c,d) g1:=z^5*A3I*A3I*A3I*A1I*A2*A1; g3:=(1/z^4)*A2*A1I*A1I*A3I*A3I*A3I*A1I; g5:=z^3*J^4*A2*A1*J^8*A2I*A3*A3*A3*A1*A1; g7:=J^4*A1I*A2I*J^4*A2*A1*J^4; g2:=J^4*g1*J^8; g4:=J^4*g3*J^8; g6:=J^4*g5*J^8; g8:=J^4*g7*J^8; g1I:=g1^-1; g2I:=g2^-1; g3I:=g3^-1; g4I:=g4^-1; g5I:=g5^-1; g6I:=g6^-1; g7I:=g7^-1; g8I:=g8^-1; // The following equals the identity matrix: g1*g2*g3*g4*g5*g6*g7*g8*g1I*g3I*g5I*g7I*g2I*g4I*g6I*g8I; // We can express the g_i's as words in the generators s2,s3, s12 and z0 // of $\bar\Gamma_0$: // The following are zero: g1 - (1/z)*s12^4*s2*s12^4*s2*s12^4*z0; g2 - (1/z)*s12^8*s2*s12^4*s2*z0; g3 - (1/z)*s12^11*s2*s12^4*s2*s12^9*z0; g4 - (1/z)*s12^3*s2*s12^4*s2*s12^5*z0; g5 - (1/z)*s12^6*s2*s12^4*s2*s12^2*z0; g6 - (1/z)*s12^10*s2*s12^4*s2*s12^10*z0; g7 - (1/z)*s12*s2*s12^4*s2*s12^7*z0; g8 - (1/z)*s12^5*s2*s12^4*s2*s12^3*z0; g1I - (1/z)*s12^8*s2*s12^8*s2*s12^8*z0; g2I - (1/z)*s2*s12^8*s2*s12^4*z0; g3I - (1/z)*s12^3*s2*s12^8*s2*s12*z0; g4I - (1/z)*s12^7*s2*s12^8*s2*s12^9*z0; g5I - (1/z)*s12^10*s2*s12^8*s2*s12^6*z0; g6I - (1/z)*s12^2*s2*s12^8*s2*s12^2*z0; g7I - (1/z)*s12^5*s2*s12^8*s2*s12^11*z0; g8I - (1/z)*s12^9*s2*s12^8*s2*s12^7*z0; // We can then use our presentation of $\bar\Gamma_0$ to check that // $\langle g_1,\ldots,g_8\rangle$ has index 288 in $\bar\Gamma_0$, // and so equals $\Pi_0$. See the other magma file. // Replacing $g_1,\ldots,g_8$ by generators satisfying the canonical relation: // Set D1:=g1*g2*g3*g4*g5*g6*g7; D2:=g1*g2*g3*g4; D3:=g1; D4:=g3I; E1:=g8*g1I*g3I*g5I; E2:=g5*g6*g2I; E3:=g2*g3*g6I; E4:=g6; // The following are words in the Di's and Ei's and so words in g1,...,g8: U1:=D1; V1:=E1; U2:=E1*D2*E1^-1; V2:=E1*E2*E1^-1; U3:=E1*E2*D3*E2^-1*E1^-1; V3:=E1*E2*E3*E2^-1*E1^-1; U4:=E1*E2*E3*D4*E3^-1*E2^-1*E1^-1; V4:=E1*E2*E3*E4*E3^-1*E2^-1*E1^-1; // The following is zero: ID3 - (U1*V1*U1^-1*V1^-1)*(U2*V2*U2^-1*V2^-1)*(U3*V3*U3^-1*V3^-1)*(U4*V4*U4^-1*V4^-1); // ID3 is a product of four commutators // Checking that gi's are words in the Ui's and Vi's: U1I:=U1^-1; U2I:=U2^-1; U3I:=U3^-1; U4I:=U4^-1; V1I:=V1^-1; V2I:=V2^-1; V3I:=V3^-1; V4I:=V4^-1; // The following are zero: g1 - V1I*V2I*U3*V2*V1; g2 - V1I*V2I*V4*U4*V3*V2*V1; g3 - V1I*V2I*V3I*U4I*V3*V2*V1; g4 - V1I*V2I*V3I*V4I*U3I*V2*U2*V1; g5 - V1I*V4*U4*V4I*V3*V2*V1; g6 - V1I*V2I*V3I*V4*V3*V2*V1; g7 - V1I*V2I*V3I*U4I*V4I*U2I*V1*U1; g8 - V4*U4*V4I*U4I*V3*U3*V2*V1; // End of calculations for Proposition 2. // ************************************** // Calculations for Proposition 3. // ******************************* // (a) Firstly, see the other Magma file for the check that the elements $b^\mu k$, $\mu=0,1,-1$, $k\in K$, // form a set of coset representatives for the cosets $\Pi g$ of $\Pi$ in $\bar\Gamma$. // // The following routine finds elements $\pi$ of~$\Pi$ of minimal // // length (if there are any of length at most 6) such that $\pi(b^\mu(M_\alpha))=M_\beta$. // // Here $\beta\in\{0,1,\infty\}$, $\alpha\in\{0,1,-1,i,-i,\infty\}$ and $\mu\in\{0,1,-1\}$. // genlist:=[MatsL | ID3,A1,A1I,A2,A2I,A3,A3I]; // genletters:=[[],["A1"],["A1I"],["A2"],["A2I"],["A3"],["A3I"]]; // possiblefollowingletters:=[ // [1,2,3,4,5,6,7], // [2,4,5,6,7], // [3,4,5,6,7], // [2,3,4,6,7], // [2,3,5,6,7], // [2,3,4,5,6], // [2,3,4,5,7]]; // // // Here are the elements listed in the second table of Lemma 2: // kzero:=ID3; // kplusi:=U*J; // kminus1:=V*U*J; // kminusi:=V^2*U*J; // kplus1:=V^3*U*J; // kinfty:=UI*V^2*U*J^6; // // kalphalist:=[MatsL | kzero,kplus1,kminus1,kplusi,kminusi,kinfty]; // alphalist:=["0","1","-1","i","-i","infty"]; // print "\nFinding pi in Pi and beta in {0,1,infty} such that pi(b^mu(M_alpha))=M_beta.\n"; // for mu in [0,1,-1] do // for alpha in [1,2,3,4,5,6] do // for beta in [1,2,6] do // firstlist:=[MatsL | kalphalist[beta]^-1*ID3,kalphalist[beta]^-1*A1,kalphalist[beta]^-1*A1I,kalphalist[beta]^-1*A2,kalphalist[beta]^-1*A2I,kalphalist[beta]^-1*A3,kalphalist[beta]^-1*A3I]; // lastlist:=[MatsL | B^mu*kalphalist[alpha],A1*B^mu*kalphalist[alpha],A1I*B^mu*kalphalist[alpha],A2*B^mu*kalphalist[alpha],A2I*B^mu*kalphalist[alpha],A3*B^mu*kalphalist[alpha],A3I*B^mu*kalphalist[alpha]]; // for i1 in [1 .. 7] do // for i2 in possiblefollowingletters[i1] do // tmpmat1:=firstlist[i1]*genlist[i2]; // for i3 in possiblefollowingletters[i2] do // tmpmat2:=tmpmat1*genlist[i3]; // for i4 in possiblefollowingletters[i3] do // tmpmat3:=tmpmat2*genlist[i4]; // for i5 in possiblefollowingletters[i4] do // tmpmat4:=tmpmat3*genlist[i5]; // for i6 in possiblefollowingletters[i5] do // MM:=tmpmat4*lastlist[i6]; // if ((MM[1][2] eq 0) and (MM[1][3] eq 0)) then // Test whether $m$ is in $\bar\Gamma_0$ for $m=k_\beta^-1\pi b^\mu k_\alpha$ // print "When mu = ",mu," and alpha=",alphalist[alpha],", the answer is:"; // print "beta=",alphalist[beta]," and pi=",genletters[i1] cat genletters[i2] cat genletters[i3] cat genletters[i4] cat genletters[i5] cat genletters[i6]; // break beta; // end if; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // // // Output: // // Finding pi in Pi and beta in {0,1,infty} such that pi(b^mu(M_alpha))=M_beta. // // When mu = 0 and alpha= 0 , the answer is: // beta= 0 and pi= [] // When mu = 0 and alpha= 1 , the answer is: // beta= 1 and pi= [] // When mu = 0 and alpha= -1 , the answer is: // beta= 0 and pi= [ A1I, A2I ] // When mu = 0 and alpha= i , the answer is: // beta= 0 and pi= [ A1I, A2I, A1 ] // When mu = 0 and alpha= -i , the answer is: // beta= infty and pi= [ A2I ] // When mu = 0 and alpha= infty , the answer is: // beta= infty and pi= [] // // When mu = 1 and alpha= 0 , the answer is: // beta= 0 and pi= [] // When mu = 1 and alpha= 1 , the answer is: // beta= 1 and pi= [ A2I, A2I ] // When mu = 1 and alpha= -1 , the answer is: // beta= 1 and pi= [ A3, A3, A3, A1, A1, A2I ] // When mu = 1 and alpha= i , the answer is: // beta= 1 and pi= [ A1I, A3I, A3I, A3I ] // When mu = 1 and alpha= -i , the answer is: // beta= 1 and pi= [ A2I ] // When mu = 1 and alpha= infty , the answer is: // beta= infty and pi= [ A2I, A1, A2I ] // // When mu = -1 and alpha= 0 , the answer is: // beta= 0 and pi= [] // When mu = -1 and alpha= 1 , the answer is: // beta= infty and pi= [ A3I, A1I, A2I ] // When mu = -1 and alpha= -1 , the answer is: // beta= infty and pi= [ A3I, A1I, A2I, A2I ] // When mu = -1 and alpha= i , the answer is: // beta= 1 and pi= [ A3I, A3I ] // When mu = -1 and alpha= -i , the answer is: // beta= infty and pi= [ A2I, A2I ] // When mu = -1 and alpha= infty , the answer is: // beta= 0 and pi= [ A1I, A1I, A3I, A3I, A3I ] // Magma is not needed in proving Proposition 3(b). // See the other Magma file for the checks needed in Proposition 3(c). // Magma is not needed in proving Proposition 3(d). // // End of calculations for Proposition 3. // ************************************** // Calculations for the end of Section 2.3. // **************************************** // Here we express the 8 generators $k_1g_jk_1^{-1}$ of $\Pi_1$ // and the 8 generators $k_\infty g_jk_\infty^{-1}$ of $\Pi_\infty$ // in terms of the generators $a_1$, $a_2$ and $a_3$ of $\Pi$: // The following are zero: kplus1*g1*kplus1^-1 - (z^2)*A2I*A2I*A2I*A3*A3*A3*A1*A2*A1*A3*A1*A2; kplus1*g3*kplus1^-1 - (z^3)*J^4*(A2I*A2I*A1I*A3I*A1*A2*A2*A1I*A2I*A1)*J^8; kplus1*g5*kplus1^-1 - (z^5)*J^8*(A1I*A3I*A1*A2*A2*A1I*A2I*A1*A3*A3)*J^4; kplus1*g7*kplus1^-1 - (-z)*J^4*(A1I*A1I*A3I*A3I*A3I*A1I*A3I)*J^8; // Recall that the following are also zero: kplus1*g2*kplus1^-1 - J^4*(kplus1*g1*kplus1^-1)*J^8; kplus1*g4*kplus1^-1 - J^4*(kplus1*g3*kplus1^-1)*J^8; kplus1*g6*kplus1^-1 - J^4*(kplus1*g5*kplus1^-1)*J^8; kplus1*g8*kplus1^-1 - J^4*(kplus1*g7*kplus1^-1)*J^8; // The following are zero: kinfty*g1*kinfty^-1 - (1/z^4)*J^4*A1I*A3I*A3I*A1I*J^8*A1I*A2I; kinfty*g3*kinfty^-1 - (1/z^2)*J^8*A3*A1*A2*A1I*A2I*J^4; kinfty*g5*kinfty^-1 - (1/z)*J^8*A2I*A3I*J^4; kinfty*g7*kinfty^-1 - (1/z^2)*J^4*A1*A3*A1I*A3I*A3I*J^8; // Recall that the following are also zero: kinfty*g2*kinfty^-1 - J^4*(kinfty*g1*kinfty^-1)*J^8; kinfty*g4*kinfty^-1 - J^4*(kinfty*g3*kinfty^-1)*J^8; kinfty*g6*kinfty^-1 - J^4*(kinfty*g5*kinfty^-1)*J^8; kinfty*g8*kinfty^-1 - J^4*(kinfty*g7*kinfty^-1)*J^8; // Calculations for Proposition 4: // ****************************** // Here are the 20 elements of $\Pi_c$ listed in Proposition 4: Gc1:=J^8*A1I*A2*A1*A3*A1I*J^4*A2*A1; Gc3:=z*J^4*A2*A1*A2I*A2I*A1I*A3*J^4*A3*A3*A3*J^4; Gc5:=z^4*J^8*A1I*J^4*A2*A1*J^4*A3*A2I*A1*A3*A1I*J^8; Gc7:=(1/z^5)*J^8*A2*A1*J^4*A3I*J^4*A2*A1I*A2I*A3I*A3I*A3I*J^8; Gc9:=z^4*J^8*A1I*A2I*A2I*A1I*A3I*J^8*A1I*A2I*J^8; Gc12:=(-1)*A2I*A1*A3*A1I*A3I*J^4*A3*A1*A2*A2*A1I*A2I*J^8; Gc15:=z*J^4*A1*J^4*A2*A3*A1I*J^4; Gc17:=(1/z^2)*J^8*A1I*A1I*A2I*J^4*A3*A1*A2*A1; Gc19:=(1/z)*A2I*A1*A3*A1I*A3I*A3I*J^4*A1*A2*J^4*A1I*A2I*J^4; Gc2:=J^4*Gc1*J^8; Gc4:=J^4*Gc3*J^8; Gc6:=J^4*Gc5*J^8; Gc8:=J^4*Gc7*J^8; Gc10:=J^4*Gc9*J^8; Gc11:=J^4*Gc10*J^8; Gc13:=J^4*Gc12*J^8; Gc14:=J^4*Gc13*J^8; Gc16:=J^4*Gc15*J^8; Gc18:=J^4*Gc17*J^8; Gc20:=J^4*Gc19*J^8; Gc1I:=Gc1^-1; Gc2I:=Gc2^-1; Gc3I:=Gc3^-1; Gc4I:=Gc4^-1; Gc5I:=Gc5^-1; Gc6I:=Gc6^-1; Gc7I:=Gc7^-1; Gc8I:=Gc8^-1; Gc9I:=Gc9^-1; Gc10I:=Gc10^-1; Gc11I:=Gc11^-1; Gc12I:=Gc12^-1; Gc13I:=Gc13^-1; Gc14I:=Gc14^-1; Gc15I:=Gc15^-1; Gc16I:=Gc16^-1; Gc17I:=Gc17^-1; Gc18I:=Gc18^-1; Gc19I:=Gc19^-1; Gc20I:=Gc20^-1; // Checking that the Gci are in $\bar\Gamma_c$. The following are zero: Gc1[1][3]-c*Gc1[2][3]; Gc1[1][2] - c*(c*Gc1[2][1]-Gc1[1][1]+Gc1[2][2]); Gc2[1][3]-c*Gc2[2][3]; Gc2[1][2] - c*(c*Gc2[2][1]-Gc2[1][1]+Gc2[2][2]); Gc3[1][3]-c*Gc3[2][3]; Gc3[1][2] - c*(c*Gc3[2][1]-Gc3[1][1]+Gc3[2][2]); Gc4[1][3]-c*Gc4[2][3]; Gc4[1][2] - c*(c*Gc4[2][1]-Gc4[1][1]+Gc4[2][2]); Gc5[1][3]-c*Gc5[2][3]; Gc5[1][2] - c*(c*Gc5[2][1]-Gc5[1][1]+Gc5[2][2]); Gc6[1][3]-c*Gc6[2][3]; Gc6[1][2] - c*(c*Gc6[2][1]-Gc6[1][1]+Gc6[2][2]); Gc7[1][3]-c*Gc7[2][3]; Gc7[1][2] - c*(c*Gc7[2][1]-Gc7[1][1]+Gc7[2][2]); Gc8[1][3]-c*Gc8[2][3]; Gc8[1][2] - c*(c*Gc8[2][1]-Gc8[1][1]+Gc8[2][2]); Gc9[1][3]-c*Gc9[2][3]; Gc9[1][2] - c*(c*Gc9[2][1]-Gc9[1][1]+Gc9[2][2]); Gc10[1][3]-c*Gc10[2][3]; Gc10[1][2] - c*(c*Gc10[2][1]-Gc10[1][1]+Gc10[2][2]); Gc11[1][3]-c*Gc11[2][3]; Gc11[1][2] - c*(c*Gc11[2][1]-Gc11[1][1]+Gc11[2][2]); Gc12[1][3]-c*Gc12[2][3]; Gc12[1][2] - c*(c*Gc12[2][1]-Gc12[1][1]+Gc12[2][2]); Gc13[1][3]-c*Gc13[2][3]; Gc13[1][2] - c*(c*Gc13[2][1]-Gc13[1][1]+Gc13[2][2]); Gc14[1][3]-c*Gc14[2][3]; Gc14[1][2] - c*(c*Gc14[2][1]-Gc14[1][1]+Gc14[2][2]); Gc15[1][3]-c*Gc15[2][3]; Gc15[1][2] - c*(c*Gc15[2][1]-Gc15[1][1]+Gc15[2][2]); Gc16[1][3]-c*Gc16[2][3]; Gc16[1][2] - c*(c*Gc16[2][1]-Gc16[1][1]+Gc16[2][2]); Gc17[1][3]-c*Gc17[2][3]; Gc17[1][2] - c*(c*Gc17[2][1]-Gc17[1][1]+Gc17[2][2]); Gc18[1][3]-c*Gc18[2][3]; Gc18[1][2] - c*(c*Gc18[2][1]-Gc18[1][1]+Gc18[2][2]); Gc19[1][3]-c*Gc19[2][3]; Gc19[1][2] - c*(c*Gc19[2][1]-Gc19[1][1]+Gc19[2][2]); Gc20[1][3]-c*Gc20[2][3]; Gc20[1][2] - c*(c*Gc20[2][1]-Gc20[1][1]+Gc20[2][2]); print "Finished checking that the Gc_i's are in barGamma_c."; // The following is the identity matrix: Gc4*Gc14^-1*Gc2^-1*Gc17^-1*Gc9*Gc19*Gc20*Gc14*Gc7^-1*Gc10^-1*Gc5^-1*Gc16^-1*Gc3^-1*Gc12^-1*Gc1*Gc2*Gc18^-1*Gc10*Gc19^-1 *Gc12*Gc8^-1*Gc11^-1*Gc6^-1 *Gc15*Gc16*Gc4^-1*Gc13^-1*Gc1^-1*Gc17*Gc18*Gc11*Gc20^-1*Gc13*Gc7*Gc8*Gc9^-1*Gc5*Gc6*Gc15^-1*Gc3; // Checking the action of the outer automorphism of $\Pi$ on~$\Pi_c$. // The following are zero: J^4*Gc1*J^8 - Gc2; J^4*Gc2*J^8 - Gc2^-1*Gc1^-1; J^4*Gc3*J^8 - Gc4; J^4*Gc4*J^8 - Gc4^-1*Gc3^-1; J^4*Gc5*J^8 - Gc6; J^4*Gc6*J^8 - Gc6^-1*Gc5^-1; J^4*Gc7*J^8 - Gc8; J^4*Gc8*J^8 - Gc8^-1*Gc7^-1; J^4*Gc9*J^8 - Gc10; J^4*Gc10*J^8 - Gc11; J^4*Gc11*J^8 - Gc9; J^4*Gc12*J^8 - Gc13; J^4*Gc13*J^8 - Gc14; J^4*Gc14*J^8 - Gc12; J^4*Gc15*J^8 - Gc16; J^4*Gc16*J^8 - Gc16^-1*Gc15^-1; J^4*Gc17*J^8 - Gc18; J^4*Gc18*J^8 - Gc18^-1*Gc17^-1; J^4*Gc19*J^8 - Gc20; J^4*Gc20*J^8 - Gc20^-1*Gc19^-1; // Here we express each of these 20 generators of $\Pi_c$ // in terms of the four generators of $\bar\Gamma_c$ given // in Section 2.1. // The following are zero: Gc1 - t12^6*t2*t12^4*t2*t12^2; Gc2 - t12^10*t2*t12^4*t2*t12^10; Gc3 - t12^8*t2*t12^4*t2; Gc4 - t2*t12^4*t2*t12^8; Gc5 - t12^5*t2*t12^4*t2*t12^3; Gc6 - t12^9*t2*t12^4*t2*t12^11; Gc7 - t12^11*t2*t12^4*t2*t12^9; Gc8 - t12^3*t2*t12^4*t2*t12^5; Gc9 - t12^5*t2*t12^10*t2*t12^10*t2*t12^5; Gc10 - t12^9*t2*t12^10*t2*t12^10*t2*t12; Gc11 - t12*t2*t12^10*t2*t12^10*t2*t12^9; Gc12 - t12^6*t2*t12^10*t2*t12^10*t2*t12^4; Gc13 - t12^10*t2*t12^10*t2*t12^10*t2; Gc14 - t12^2*t2*t12^10*t2*t12^10*t2*t12^8; Gc15 - (1/z^4)*t12^8*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^11*zc^2; Gc16 - (1/z^4)*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^7*zc^2; Gc17 - (1/z^4)*t12^5*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^2*zc^2; Gc18 - (1/z^4)*t12^9*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^10*zc^2; Gc19 - (1/z^4)*t12^6*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12*zc^2; Gc20 - (1/z^4)*t12^10*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^9*zc^2; Gc1I - t12^10*t2*t12^8*t2*t12^6; Gc2I - t12^2*t2*t12^8*t2*t12^2; Gc3I - t2*t12^8*t2*t12^4; Gc4I - t12^4*t2*t12^8*t2; Gc5I - t12^9*t2*t12^8*t2*t12^7; Gc6I - t12*t2*t12^8*t2*t12^3; Gc7I - t12^3*t2*t12^8*t2*t12; Gc8I - t12^7*t2*t12^8*t2*t12^9; Gc9I - t12^7*t2*t12^2*t2*t12^2*t2*t12^7; Gc10I - t12^11*t2*t12^2*t2*t12^2*t2*t12^3; Gc11I - t12^3*t2*t12^2*t2*t12^2*t2*t12^11; Gc12I - t12^8*t2*t12^2*t2*t12^2*t2*t12^6; Gc13I - t2*t12^2*t2*t12^2*t2*t12^2; Gc14I - t12^4*t2*t12^2*t2*t12^2*t2*t12^10; Gc15I - z^4*t12*t2*t12*t2*t12^9*t2*t12*t2*t12^4*zc; Gc16I - z^4*t12^5*t2*t12*t2*t12^9*t2*t12*t2*zc; Gc17I - z^4*t12^10*t2*t12*t2*t12^9*t2*t12*t2*t12^7*zc; Gc18I - z^4*t12^2*t2*t12*t2*t12^9*t2*t12*t2*t12^3*zc; Gc19I - z^4*t12^11*t2*t12*t2*t12^9*t2*t12*t2*t12^6*zc; Gc20I - z^4*t12^3*t2*t12*t2*t12^9*t2*t12*t2*t12^2*zc; print "Expressing the Di and Ei's in terms of the Gci's:"; D1:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc16I; D2:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc18*Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc6; D3:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc18; D4:=Gc4*Gc14I; D5:=Gc4*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc10*Gc19I*Gc12*Gc8I; D6:=Gc4; D7:=Gc13I*Gc1I*Gc17*Gc10*Gc19I*Gc12*Gc9I; D8:=Gc13I*Gc1I; D9:=Gc13I*Gc10*Gc19I; D10:=Gc13I; E1:=Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc8I*Gc11I*Gc6I*Gc15; E2:=Gc15I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc8I*Gc11I; E3:=Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc12I*Gc1*Gc2; E4:=Gc2I*Gc17I*Gc9*Gc19*Gc20; E5:=Gc20I*Gc13*Gc7; E6:=Gc7I*Gc10I*Gc5I; E7:=Gc5*Gc12I*Gc1*Gc17I; E8:=Gc17*Gc10*Gc19I*Gc12*Gc19*Gc13*Gc10I*Gc12I; E9:=Gc12; E10:=Gc10; print "Expressing the Ui and Vi's in terms of the Di's and Ei's:"; U1:=D1; V1:=E1; U2:=E1*D2*E1^-1; V2:=E1*E2*E1^-1; U3:=E1*E2*D3*E2^-1*E1^-1; V3:=E1*E2*E3*E2^-1*E1^-1; U4:=E1*E2*E3*D4*E3^-1*E2^-1*E1^-1; V4:=E1*E2*E3*E4*E3^-1*E2^-1*E1^-1; U5:=E1*E2*E3*E4*D5*E4^-1*E3^-1*E2^-1*E1^-1; V5:=E1*E2*E3*E4*E5*E4^-1*E3^-1*E2^-1*E1^-1; U6:=E1*E2*E3*E4*E5*D6*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; V6:=E1*E2*E3*E4*E5*E6*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; U7:=E1*E2*E3*E4*E5*E6*D7*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; V7:=E1*E2*E3*E4*E5*E6*E7*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; U8:=E1*E2*E3*E4*E5*E6*E7*D8*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; V8:=E1*E2*E3*E4*E5*E6*E7*E8*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; U9:=E1*E2*E3*E4*E5*E6*E7*E8*D9*E8^-1*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; V9:=E1*E2*E3*E4*E5*E6*E7*E8*E9*E8^-1*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; U10:=E1*E2*E3*E4*E5*E6*E7*E8*E9*D10*E9^-1*E8^-1*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; V10:=E1*E2*E3*E4*E5*E6*E7*E8*E9*E10*E9^-1*E8^-1*E7^-1*E6^-1*E5^-1*E4^-1*E3^-1*E2^-1*E1^-1; U1I:=U1^-1; U2I:=U2^-1; U3I:=U3^-1; U4I:=U4^-1; U5I:=U5^-1; U6I:=U6^-1; U7I:=U7^-1; U8I:=U8^-1; U9I:=U9^-1; U10I:=U10^-1; V1I:=V1^-1; V2I:=V2^-1; V3I:=V3^-1; V4I:=V4^-1; V5I:=V5^-1; V6I:=V6^-1; V7I:=V7^-1; V8I:=V8^-1; V9I:=V9^-1; V10I:=V10^-1; print "The following is the identity matrix:"; (U1*V1*U1I*V1I)*(U2*V2*U2I*V2I)*(U3*V3*U3I*V3I)*(U4*V4*U4I*V4I)*(U5*V5*U5I*V5I)*(U6*V6*U6I*V6I)*(U7*V7*U7I*V7I) *(U8*V8*U8I*V8I)*(U9*V9*U9I*V9I)*(U10*V10*U10I*V10I); print "Checking expressions for the Gci's in terms of the Ui's and Vi's:"; // The following are zero: Gc1 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*U8I*V8I*V9I*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc1I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V9*V8*U8*V7*V6*V5*V4*V3*V2*V1; Gc2 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V9*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V3*V2*V1; Gc2I - V1I*V2I*V3I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V9I*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc3 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V3*U3I*V3I*U4*V4 *U4I*V4I*U5*V5*U5I*V5I*U6*V6*U6I*V6I*U7*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V2*U2I*V2I*U3*V3*U3I*V3I*U4*V4*U4I*V4I*U5*V5*U5I*V5I*U6*V6 *U6I*V6I*U7*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I; Gc3I - V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*U7I*V6*U6*V6I*U6I*V5*U5*V5I*U5I*V4*U4*V4I*U4I*V3*U3*V3I*U3I*V2*U2*V2I*V10*U10*V10I*U10I*V9*U9*V9I *U9I*V8*U8*V8I*U8I*V7*U7*V7I*U7I*V6*U6*V6I*U6I*V5*U5*V5I*U5I*V4*U4*V4I*U4I*V3*U3*V3I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*V10 *U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc4 - V1I*V2I*V3I*V4I*V5I*U6*V5*V4*V3*V2*V1; Gc4I - V1I*V2I*V3I*V4I*V5I*U6I*V5*V4*V3*V2*V1; Gc5 - V1I*V2I*V3I*V4I*V5I*V6I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc5I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V6*V5*V4*V3*V2*V1; Gc6 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*U3I*V2*U2*V1; Gc6I - V1I*U2I*V2I*U3*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc7 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V10I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V5*V4*V3*V2*V1; Gc7I - V1I*V2I*V3I*V4I*V5I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc8 - V1I*V2I*V3I*V4I*U5I*V5I*U6*V6*U6I*V6I*V7I*U8*V10*U10*V10I*U10I*V9*U9*V8*V7*V6*V5*V4*V3*V2*V1; Gc8I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*U9I*V9I*U10*V10*U10I*V10I*U8I*V7*V6*U6*V6I*U6I*V5*U5*V4*V3*V2*V1; Gc9 - V1I*V2I*V3I*V4I*V5I*V6I*U7I*V7I*U8*V10*U10*V10I*U10I*V9*U9*V8*V7*V6*V5*V4*V3*V2*V1; Gc9I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*U9I*V9I*U10*V10*U10I*V10I*U8I*V7*U7*V6*V5*V4*V3*V2*V1; Gc10 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc10I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V10I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc11 - V1I*V2I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*U7I*V6*U6*V6I*U6I*V5*U5*V5I*V4*V3*V2*V1; Gc11I - V1I*V2I*V3I*V4I*V5*U5I*V5I*U6*V6*U6I*V6I*U7*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V2*V1; Gc12 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc12I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V8*V7*V6*V5*V4*V3*V2*V1; Gc13 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc13I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc14 - V1I*V2I*V3I*U4I*V4I*V5I*U6*V5*V4*V3*V2*V1; Gc14I - V1I*V2I*V3I*V4I*V5I*U6I*V5*V4*U4*V3*V2*V1; Gc15 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V3*U3I*V3I*U4*V4*U4I *V4I*U5*V5*U5I*V5I*U6*V6*U6I*V6I*U7*V7*U7I*V7I*U8*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V1; Gc15I - V1I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*U8I*V7*U7*V7I*U7I*V6*U6*V6I*U6I*V5*U5*V5I*U5I*V4*U4*V4I*U4I*V3*U3*V3I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I *U8I*V7*U7*V7I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc16 - U1I*V1I*V2I*V3I*U4*V4*U4I*V4I*V5I*U6*V6*V5*V4*V3*V2*V1; Gc16I - V1I*V2I*V3I*V4I*V5I*V6I*U6I*V5*V4*U4*V4I*U4I*V3*V2*V1*U1; Gc17 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V9I*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc17I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V9*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V7*V6*V5*V4*V3*V2*V1; Gc18 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V9*U9*V9*U9I*V9I*U10*V10*U10I*V10I*U8I*V7*V6*U6*V6I*U6I*V5*V4*U4*V4I*U4I*V3*U3*V2*V1; Gc18I - V1I*V2I*U3I*V3I*U4*V4*U4I*V4I*V5I*U6*V6*U6I*V6I*V7I*U8*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V9I*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc19 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*U9I*V9I*U10*V10*V9*V8*V7*V6*V5*V4*V3*V2*V1; Gc19I - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*V10I*U10I*V9*U9*V8*V7*V6*V5*V4*V3*V2*V1; Gc20 - V1I*V2I*V3I*V4I*V5I*V6I*V7I*V8I*V9I*U10I*V10I*V8*U8I*V8I*U9*V9*U9I*V9I*U10*V10*U10I*V10I*V4*V3*V2*V1; Gc20I - V1I*V2I*V3I*V4I*V10*U10*V10I*U10I*V9*U9*V9I*U9I*V8*U8*V8I*V10*U10*V9*V8*V7*V6*V5*V4*V3*V2*V1; // End of calculations for Proposition 4. // ************************************** // Calculations for Proposition 5. // ******************************* // For Proposition 5(a), the following routine quickly find $\beta$, $\nu$ and $\pi$ so // that $\pi(b^\mu(M_\alpha))=b^\nu(M_\beta)$, for all $\mu\in{0,1,-1\} // and $\alpha$ of the form $c_{\pm\pm\pm}$ EXCEPT that for $(\mu,\alpha)= // $(1,c_{++-})$, and $(\mu,\alpha)=(-1,c_{-+-})$ for which the elements // $\pi$ found have length 7 and 9, respectively. The routine after this one is // much slower, but finds $\nu$, $\beta$ and $\pi$ in each case. genlist:=[MatsL | ID3,A1,A1I,A2,A2I,A3,A3I]; genletters:=[[],["A1"],["A1I"],["A2"],["A2I"],["A3"],["A3I"]]; possiblefollowingletters:=[ [1,2,3,4,5,6,7], [2,4,5,6,7], [3,4,5,6,7], [2,3,4,6,7], [2,3,5,6,7], [2,3,4,5,6], [2,3,4,5,7]]; c:=(r-1)*(z^3-1)/2; nubetalist:=[[0,4],[0,8],[1,4],[-1,4]]; kalphalist:=[MatsL | kppp,kppm,kpmp,kpmm,kmpp,kmpm,kmmp,kmmm]; alphalist:=["ppp","ppm","pmp","pmm","mpp","mpm","mmp","mmm"]; // for mu in [0,1,-1] do // for alpha in [1 .. 8] do // nubetafound:=0; // for idx in [1 .. 4] do // nu:=nubetalist[idx][1]; // beta:=nubetalist[idx][2]; // firstlist:=[MatsL | kalphalist[beta]^-1*B^(-nu)*ID3,kalphalist[beta]^-1*B^(-nu)*A1,kalphalist[beta]^-1*B^(-nu)*A1I,kalphalist[beta]^-1*B^(-nu)*A2,kalphalist[beta]^-1*B^(-nu)*A2I,kalphalist[beta]^-1*B^(-nu)*A3,kalphalist[beta]^-1*B^(-nu)*A3I]; // lastlist:=[MatsL | B^mu*kalphalist[alpha],A1*B^mu*kalphalist[alpha],A1I*B^mu*kalphalist[alpha],A2*B^mu*kalphalist[alpha],A2I*B^mu*kalphalist[alpha],A3*B^mu*kalphalist[alpha],A3I*B^mu*kalphalist[alpha]]; // for i1 in [1 .. 7] do // for i2 in possiblefollowingletters[i1] do // tmpmat1:=firstlist[i1]*genlist[i2]; // for i3 in possiblefollowingletters[i2] do // tmpmat2:=tmpmat1*genlist[i3]; // for i4 in possiblefollowingletters[i3] do // tmpmat3:=tmpmat2*genlist[i4]; // for i5 in possiblefollowingletters[i4] do // tmpmat4:=tmpmat3*genlist[i5]; // for i6 in possiblefollowingletters[i5] do // MM:=tmpmat4*lastlist[i6]; // if ((MM[1][3] eq c*MM[2][3]) and (MM[1][2] eq c*(c*MM[2][1]-MM[1][1]+MM[2][2]))) then // Test whether $m$ is in $\bar\Gamma_c$ for $m=k_\beta^-1\pi b^\mu k_\alpha$ // print "For mu=",mu," and alpha=",alphalist[alpha]; // print "The solution is nu=",nu,"and beta=",alphalist[beta]," and pi equal to"; // print genletters[i1] cat genletters[i2] cat genletters[i3] cat genletters[i4] cat genletters[i5] cat genletters[i6]; // nubetafound:=1; // break idx; // end if; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // if (nubetafound eq 0) then print "For mu=",mu,"and alpha=",alphalist[alpha]," we need a longer word"; end if; // end for; // end for; // Here is the same routine, except that we look for words of length at most 9 in the generators of $\Pi$: // for mu in [0,1,-1] do // for alpha in [1 .. 6] do // nubetafound:=0; // for idx in [1 .. 4] do // nu:=nubetalist[idx][1]; // beta:=nubetalist[idx][2]; // firstlist:=[MatsL | kalphalist[beta]^-1*B^(-nu)*ID3,kalphalist[beta]^-1*B^(-nu)*A1,kalphalist[beta]^-1*B^(-nu)*A1I,kalphalist[beta]^-1*B^(-nu)*A2,kalphalist[beta]^-1*B^(-nu)*A2I,kalphalist[beta]^-1*B^(-nu)*A3,kalphalist[beta]^-1*B^(-nu)*A3I]; // lastlist:=[MatsL | B^mu*kalphalist[alpha],A1*B^mu*kalphalist[alpha],A1I*B^mu*kalphalist[alpha],A2*B^mu*kalphalist[alpha],A2I*B^mu*kalphalist[alpha],A3*B^mu*kalphalist[alpha],A3I*B^mu*kalphalist[alpha]]; // for i1 in [1 .. 7] do // for i2 in possiblefollowingletters[i1] do // tmpmat1:=firstlist[i1]*genlist[i2]; // for i3 in possiblefollowingletters[i2] do // tmpmat2:=tmpmat1*genlist[i3]; // for i4 in possiblefollowingletters[i3] do // tmpmat3:=tmpmat2*genlist[i4]; // for i5 in possiblefollowingletters[i4] do // tmpmat4:=tmpmat3*genlist[i5]; // for i6 in possiblefollowingletters[i5] do // tmpmat5:=tmpmat4*genlist[i6]; // for i7 in possiblefollowingletters[i6] do // tmpmat6:=tmpmat5*genlist[i7]; // for i8 in possiblefollowingletters[i7] do // tmpmat7:=tmpmat6*genlist[i8]; // for i9 in possiblefollowingletters[i8] do // MM:=tmpmat7*lastlist[i9]; // if ((MM[1][3] eq c*MM[2][3]) and (MM[1][2] eq c*(c*MM[2][1]-MM[1][1]+MM[2][2]))) then // Test whether $m$ is in $\bar\Gamma_c$ for $m=k_\beta^-1\pi b^\mu k_\alpha$ // print "For mu=",mu," and alpha=",alphalist[alpha]; // print "The solution is nu=",nu,", beta=",alphalist[beta]," and pi equal to"; // print genletters[i1] cat genletters[i2] cat genletters[i3] cat genletters[i4] cat genletters[i5] cat genletters[i6] cat genletters[i7] cat genletters[i8] cat genletters[i9]; // nubetafound:=1; // break idx; // end if; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // if (nubetafound eq 0) then print "For mu=",mu,"and alpha=",alphalist[alpha]," we need a longer word"; end if; // end for; // end for; // // Output of the quick routine: // // *************************** // For mu= 0 and alpha= ppp // The solution is nu= 0 and beta= mmm and pi equal to // [ A2, A2 ] // For mu= 0 and alpha= ppm // The solution is nu= 0 and beta= pmm and pi equal to // [ A1, A3I ] // For mu= 0 and alpha= pmp // The solution is nu= 0 and beta= mmm and pi equal to // [ A3I, A1, A2, A2 ] // For mu= 0 and alpha= pmm // The solution is nu= 0 and beta= pmm and pi equal to // [] // For mu= 0 and alpha= mpp // The solution is nu= 0 and beta= pmm and pi equal to // [ A1, A3I, A1, A3 ] // For mu= 0 and alpha= mpm // The solution is nu= 0 and beta= mmm and pi equal to // [ A2, A2, A1I, A3I ] // For mu= 0 and alpha= mmp // The solution is nu= 0 and beta= pmm and pi equal to // [ A1I, A2I, A2I, A1I ] // For mu= 0 and alpha= mmm // The solution is nu= 0 and beta= mmm and pi equal to // [] // For mu= 1 and alpha= ppp // The solution is nu= 0 and beta= pmm and pi equal to // [ A3I, A3I, A3I ] // For mu= 1 and alpha= ppm we need a longer word // For mu= 1 and alpha= pmp // The solution is nu= 0 and beta= mmm and pi equal to // [ A2, A1I, A2I, A2I, A2I ] // For mu= 1 and alpha= pmm // The solution is nu= 1 and beta= pmm and pi equal to // [] // For mu= 1 and alpha= mpp // The solution is nu= 0 and beta= pmm and pi equal to // [ A1I, A2I, A1, A3, A2I ] // For mu= 1 and alpha= mpm // The solution is nu= -1 and beta= pmm and pi equal to // [ A3, A1, A2I ] // For mu= 1 and alpha= mmp // The solution is nu= 0 and beta= mmm and pi equal to // [ A2, A1I, A2I ] // For mu= 1 and alpha= mmm // The solution is nu= 0 and beta= pmm and pi equal to // [ A1I, A2I, A2I ] // For mu= -1 and alpha= ppp // The solution is nu= 0 and beta= mmm and pi equal to // [ A2, A1I, A1I, A3I, A3I, A3I ] // For mu= -1 and alpha= ppm // The solution is nu= 0 and beta= mmm and pi equal to // [ A1I, A1I, A3I, A3I, A3I, A2I ] // For mu= -1 and alpha= pmp // The solution is nu= -1 and beta= pmm and pi equal to // [ A2, A2, A1, A3 ] // For mu= -1 and alpha= pmm // The solution is nu= -1 and beta= pmm and pi equal to // [] // For mu= -1 and alpha= mpp // The solution is nu= 1 and beta= pmm and pi equal to // [ A3, A3, A3, A1, A2I ] // For mu= -1 and alpha= mpm we need a longer word // For mu= -1 and alpha= mmp // The solution is nu= 0 and beta= pmm and pi equal to // [ A1I, A2I, A2I, A2I ] // For mu= -1 and alpha= mmm // The solution is nu= 0 and beta= pmm and pi equal to // [ A1I, A2I ] // // // Output of the slower routine: // // ***************************** // For mu= 0 and alpha= ppp // The solution is nu= 0 , beta= mmm and pi equal to // [ A2, A2 ] // For mu= 0 and alpha= ppm // The solution is nu= 0 , beta= pmm and pi equal to // [ A1, A3I ] // For mu= 0 and alpha= pmp // The solution is nu= 0 , beta= mmm and pi equal to // [ A3I, A1, A2, A2 ] // For mu= 0 and alpha= pmm // The solution is nu= 0 , beta= pmm and pi equal to // [] // For mu= 0 and alpha= mpp // The solution is nu= 0 , beta= pmm and pi equal to // [ A1, A3I, A1, A3 ] // For mu= 0 and alpha= mpm // The solution is nu= 0 , beta= mmm and pi equal to // [ A2, A2, A1I, A3I ] // For mu= 1 and alpha= ppp // The solution is nu= 0 , beta= pmm and pi equal to // [ A3I, A3I, A3I ] // For mu= 1 and alpha= ppm // The solution is nu= 0 , beta= mmm and pi equal to // [ A1I, A2I, A3I, A3I, A1, A1, A2I ] // For mu= 1 and alpha= pmp // The solution is nu= 0 , beta= mmm and pi equal to // [ A2, A1I, A2I, A2I, A2I ] // For mu= 1 and alpha= pmm // The solution is nu= 1 , beta= pmm and pi equal to // [] // For mu= 1 and alpha= mpp // The solution is nu= 0 , beta= pmm and pi equal to // [ A1I, A2I, A1, A3, A2I ] // For mu= 1 and alpha= mpm // The solution is nu= -1 , beta= pmm and pi equal to // [ A3, A1, A2I ] // For mu= -1 and alpha= ppp // The solution is nu= 0 , beta= mmm and pi equal to // [ A2, A1I, A1I, A3I, A3I, A3I ] // For mu= -1 and alpha= ppm // The solution is nu= 0 , beta= mmm and pi equal to // [ A1I, A1I, A3I, A3I, A3I, A2I ] // For mu= -1 and alpha= pmp // The solution is nu= -1 , beta= pmm and pi equal to // [ A2, A2, A1, A3 ] // For mu= -1 and alpha= pmm // The solution is nu= -1 , beta= pmm and pi equal to // [] // For mu= -1 and alpha= mpp // The solution is nu= 1 , beta= pmm and pi equal to // [ A3, A3, A3, A1, A2I ] // For mu= -1 and alpha= mpm // The solution is nu= 1 , beta= pmm and pi equal to // [ A2, A1I, A1I, A3I, A1, A3I, A1I, A2I, A2I ] // End of calculations for Proposition 5: // ************************************** // Calculations for the last bit of Section 2.4. // ********************************************* // We give generators of $\Pi_M$ for $M=b(M_c)$. While we're at it, we'll // also give generators of $\Pi_M$ for $M=b^{-1}(M_c)$. // Here are the elements $p_1,\ldots,p_8$ given in Section 2.4, // though here we have multiplied them by scalars so that // the matrices $g=b^{-1}p_jb$, which are in $\bar\Gamma_c$, as // we see below, satisfy the normalization $g_{11}-c*g_{21}=1$. P1:=(1/z)*A2*A2*A2*A1I*A3I*J^8*A2I*A2I*A1I*J^4; P2:=A3*A3*A3*A1*A3*A3*A2*A1*J^4*A3I*J^8*A3I*A3I*A1I*A3I*A3I*A3I; P3:=z^4*J^8*A1I*A3I*A3I*A3I*A2*A2*J^4*A3I*A3I*A1I*A3I*A3I*A3I; P4:=(1/z^2)*J^8*A2*A1*A2I*A2I*A1I*J^4*A3*A3*A3*A1*A1*A2I; P5:=(1/z^4)*A3*A3*A3*A1*A3*A3*J^4*A1I*J^8*A3*A3*A1*A2I*A2I*A2I; P6:=z^4*A3*A3*A3*A1*A2*A1*A3*A2I*A2I*A2I; P7:=(1/z)*A3*A3*A3*A1*J^8*A1*A2I*A2I*A1I*A3*A3*J^4; P8:=(1/z^2)*J^4*A3I*A3I*J^8*A2*A1*A2*A1*A2I*A2I; P1I:=P1^-1; P2I:=P2^-1; P3I:=P3^-1; P4I:=P4^-1; P5I:=P5^-1; P6I:=P6^-1; P7I:=P7^-1; P8I:=P8^-1; // The following is the identity matrix: P5I*P2I*P5*P1*P3*P8I*P4*P1I*P7I*P6I*P7*P2*P3I*P8*P4I*P6; Plist:=[MatsL | P1,P2,P3,P4,P5,P6,P7,P8]; // The following gives an output of 24 0's, checking that the $p_j$ // satisfy $g=b^{-1}p_jb\in\bar\Gamma_c$, and also the normalization $g_{11}-cg_{21}=1$. for jj in [1 .. #Plist] do tmpmat:=BI*Plist[jj]*B; print tmpmat[1][1]-c*tmpmat[2][1] - 1, tmpmat[1][3]-c*tmpmat[2][3], tmpmat[1][2]-c*(c*tmpmat[2][1]-tmpmat[1][1]+tmpmat[2][2]); end for; // We can also see that the $b^{-1}p_jb$'s are in $\bar\Gamma_c$ by // exhibiting each of them as a word in the generators $t_2$, $t_4$, // $t_{12}$ and $z_c$ given in Section 2.1. // The following are zero: BI*P1*B - z^4*t12^9*t2*t12^11*t2*t12^8*zc; BI*P2*B - z^4*t12^9*t2*t12^3*t2*t12^4*zc; BI*P3*B - z^4*t12*t2*t12^11*t2*t12^4*zc; BI*P4*B - z^8*t2*t12*t2*t12^7*zc^2; BI*P5*B - t12^8*t2*t12^11*t2*t12^9*t2*t12^2; BI*P6*B - z^4*t12^11*t2*t12^3*t2*t12^2*zc; BI*P7*B - z^8*t12^10*t2*t12^11*t2*t12^2*t2*t12^3*zc^2; BI*P8*B - z^8*t2*t12^11*t2*t12^10*t2*t12^5*zc^2; // To see that $p_1,\ldots,p_8$ generate $\Pi_M$ for $M=b(M_c)$, // we check that the subgroup of $\bar\Gamma_c$ generated by // the $b^{-1}p_jb$'s generates a subgroup of $\bar\Gamma_c$ // of index 108, containing $\Pi_c$ as a subgroup of index 3, // in accordance with Proposition 5(d). We'll do that in the // other magma file. // Changing the generators of $\Pi_M$, where $M=b(M_c)$, from $p_1,\ldots,p_8$ // to variables $u_i$ and $v_i$, $i=1,\ldots,4$, which satisfy the standard // surface group relation: // Set D1:=P5I*P2I*P5*P1*P3*P8I*P4*P1I*P7I; D2:=P5I*P2I*P5*P1*P3*P8I; D3:=P5I*P2I*P5*P1; D4:=P5I; E1:=P6I; E2:=P4*P1I*P2*P3I; E3:=P3; E4:=P2I; U1:=D1; V1:=E1; U2:=E1*D2*E1^-1; V2:=E1*E2*E1^-1; U3:=E1*E2*D3*E2^-1*E1^-1; V3:=E1*E2*E3*E2^-1*E1^-1; U4:=E1*E2*E3*D4*E3^-1*E2^-1*E1^-1; V4:=E1*E2*E3*E4*E3^-1*E2^-1*E1^-1; U1I:=U1^-1; U2I:=U2^-1; U3I:=U3^-1; U4I:=U4^-1; V1I:=V1^-1; V2I:=V2^-1; V3I:=V3^-1; V4I:=V4^-1; ID3 - (U1*V1*U1^-1*V1^-1)*(U2*V2*U2^-1*V2^-1)*(U3*V3*U3^-1*V3^-1)*(U4*V4*U4^-1*V4^-1); // ID3 is a product of four commutators print "ID3 is a product of four commutators"; // Expressing the old generators Pi and their inverses in terms of the new generators Ui and Vi: // The following are zero: P1 - V1I*V2I*V3I*U4*V4I*U4I*V3*U3*V2*V1; P1I - V1I*V2I*U3I*V3I*U4*V4*U4I*V3*V2*V1; P2 - V1I*V2I*V3I*V4I*V3*V2*V1; P2I - V1I*V2I*V3I*V4*V3*V2*V1; P3 - V1I*V2I*V3*V2*V1; P3I - V1I*V2I*V3I*V2*V1; P4 - V1I*V4*U4*V4I*U4I*V3*U3*V2*V1; P4I - V1I*V2I*U3I*V3I*U4*V4*U4I*V4I*V1; P5 - V1I*V2I*V3I*U4I*V3*V2*V1; P5I - V1I*V2I*V3I*U4*V3*V2*V1; P6 - V1I; P6I - V1; P7 - U1I*V1I*U2*V4*V3*V2*V1; P7I - V1I*V2I*V3I*V4I*U2I*V1*U1; P8 - V1I*U2I*V2I*U3*V3*V2*V1; P8I - V1I*V2I*V3I*U3I*V2*U2*V1; // Here are the generators of $\Pi_M$ for $M=b^{-1}(M_c)$: M1:=z^2*J^8*A1*A3I*A1I*A2I*A2I*J^8*A2*A1*J^8; M2:=(1/z^3)*J^8*A1*A3*A3*A3*J^4; M3:=(1/z^5)*J^4*A2I*A2I*A1I*A3I*J^8*A1*A3I*A3I*A1I*A2I*A2I; M4:=(-1)*J^8*A1*A3I*A1I*A2*A1I*A2I*J^4*A2I*A2I*A3*A3*A3*A1; M5:=z^4*J^4*A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^4*A2I*A3*A3*A3*A1; M6:=(1/z^4)*J^4*A1I*A2I*A1*A3*A3*A3*A1*A2I*J^4*A1I*A2I*A2I*A3*A3*A3*J^4; M7:=z^2*A3*A1*A2*J^4*A2*A1*J^8; M8:=(-1)*J^4*A1I*A2I*A1*A2*A2*A1*J^8*A2*A3I*A1I*A2I*A2I; M1I:=M1^-1; M2I:=M2^-1; M3I:=M3^-1; M4I:=M4^-1; M5I:=M5^-1; M6I:=M6^-1; M7I:=M7^-1; M8I:=M8^-1; // The following is the identity matrix: M3*M8I*M4*M5*M7I*M2*M3I*M1*M5I*M7*M4I*M1I*M6*M2I*M6I*M8; Mlist:=[MatsL | M1,M2,M3,M4,M5,M6,M7,M8]; // The following gives an output of 24 0's, checking that the $m_j$'s // satisfy $g=bm_jb^{-1}\in\bar\Gamma_c$, and also the normalization $g_{11}-cg_{21}=1$. for jj in [1 .. #Mlist] do tmpmat:=B*Mlist[jj]*BI; print tmpmat[1][1]-c*tmpmat[2][1] - 1, tmpmat[1][3]-c*tmpmat[2][3], tmpmat[1][2]-c*(c*tmpmat[2][1]-tmpmat[1][1]+tmpmat[2][2]); end for; // We can also see that the $bm_jb^{-1}$'s are in $\bar\Gamma_c$ by // exhibiting each of them as a word in the generators $t_2$, $t_4$, // $t_{12}$ and $z_c$ given in Section 2.1. // The following are zero: B*M1*BI - z^4*t12^8*t2*t12^2*zc; B*M2*BI - z^4*t2*t12^10*zc; B*M3*BI - z^8*t12^6*t2*t12^8*zc^2; B*M4*BI - t12^9*t2*t12^10*t2*t12^10*t2*t12; B*M5*BI - t12^11*t2*t12^7*t2*t12^11*t2*t12; B*M6*BI - t12^9*t2*t12^4*t2*t12^11; B*M7*BI - z^4*t2*t12*t2*t12^3*t2*t12^11*t2*t12*zc; B*M8*BI - t12^9*t2*t12^8*t2*t12^7; // To see that $m_1,\ldots,m_8$ generate $\Pi_M$ for $M=b^{-1}(M_c)$, // we check that the subgroup of $\bar\Gamma_c$ generated by // the $bm_jb^{-1}$'s generates a subgroup of $\bar\Gamma_c$ // of index 108, containing $\Pi_c$ as a subgroup of index 3, // in accordance with Proposition 5(d). We'll do that in the // other magma file. // Changing the generators of $\Pi_M$, where $M=b^{-1}(M_c)$, from $m_1,\ldots,m_8$ // to variables $u_i$ and $v_i$, $i=1,\ldots,4$, which satisfy the standard // surface group relation: D1:=M3; D2:=M1*M5I*M7*M4I*M1I*M6; D3:=M1*M5I; D4:=M1; E1:=M8I*M4*M5*M7I*M2; E2:=M2I; E3:=M7*M4I*M1I*M4; E4:=M4I; // Then we define $u_i$ and $v_i$ by setting: U1:=D1; V1:=E1; U2:=E1*D2*E1^-1; V2:=E1*E2*E1^-1; U3:=E1*E2*D3*E2^-1*E1^-1; V3:=E1*E2*E3*E2^-1*E1^-1; U4:=E1*E2*E3*D4*E3^-1*E2^-1*E1^-1; V4:=E1*E2*E3*E4*E3^-1*E2^-1*E1^-1; U1I:=U1^-1; U2I:=U2^-1; U3I:=U3^-1; U4I:=U4^-1; V1I:=V1^-1; V2I:=V2^-1; V3I:=V3^-1; V4I:=V4^-1; // The following is zero: ID3 - (U1*V1*U1I*V1I)*(U2*V2*U2I*V2I)*(U3*V3*U3I*V3I)*(U4*V4*U4I*V4I); // ID3 is a product of four commutators print "ID3 is a product of four commutators"; // Expressing the original generators $M_i$ in terms of the new // generators $u_i$ and $v_i$. The following are zero: M1 - V1I*V2I*V3I*U4*V3*V2*V1; M1I - V1I*V2I*V3I*U4I*V3*V2*V1; M2 - V1I*V2I*V1; M2I - V1I*V2*V1; M3 - U1; M3I - U1I; M4 - V1I*V2I*V3I*V4I*V3*V2*V1; M4I - V1I*V2I*V3I*V4*V3*V2*V1; M5 - V1I*V2I*U3I*V3I*U4*V3*V2*V1; M5I - V1I*V2I*V3I*U4I*V3*U3*V2*V1; M6 - V1I*V2I*V3I*V4I*U3I*V2*U2*V1; M6I - V1I*U2I*V2I*U3*V4*V3*V2*V1; M7 - V1I*V2I*V4*U4*V4I*V3*V2*V1; M7I - V1I*V2I*V3I*V4*U4I*V4I*V2*V1; M8 - V1I*V2I*V3I*V4I*V3*U3I*V3I*U4*V4*U4I*V4I; M8I - V4*U4*V4I*U4I*V3*U3*V3I*V4*V3*V2*V1; // End of calculations needed for the last bit of Section 2.4. // *********************************************************** // Calculations for Proposition 6: // ****************************** // It is easy to see that $n_\mu(\pi(M))=n_\mu(M)$ for any mirror $M$ and any $\pi\in\Pi$. // so we need only consider the cases $M=M_0$, $M=M_1$ and $M=M_\infty$. // It is also easy to see that the number $n_\mu(M_\alpha)$ of $\Pi_\alpha \xi\in \Pi_\alpha\backslash M_\alpha$ // such that $\Pi\xi=\Pi(b^\mu O)$ is equal to the number of double cosets $\Pi_\alpha g K_\alpha$, // where $g\in\bar\Gamma_\alpha$, such that $g\in\Pi b^\mu K$. // In this proposition, $\alpha\in\{0,1,\infty\}$, and we first find representatives $g\in\bar\Gamma_\alpha$ // for the six double cosets $\Pi_\alpha g K_\alpha$. // The case $\alpha=0$. // ******************** // We have already seen in the calculations for Proposition 3(c) that the following six elements rep01:=ID3; rep02:=J^9*B*J^7; rep03:=J^10*B*J^7; rep04:=J^11*B*J^7; rep05:=B*J^7; rep06:=J^9*B*J^2*BI*J; // are representatives for the six double cosets $\Pi_0 g K_0$. // We can see which of these representatives $g$ lie in $\Pi b^\mu K$ // using Magma's Index routine. Alternatively, we can see this by // noting that the following are zero: rep01 - B^0; rep02 - z^4*(J^4*A3I*A3I*A3I*A1I*A2*A1*J^8)*B^(-1)*(V*J^2); rep03 - (1/z)*(A1I*A2I)*B^0*(V*U*J^8); rep04 - (1/z^4)*(A1I*A1I*A3I*A3I*A3I)*B^(-1)*(UI*V^2*U*J); rep05 - B^1*J^7; rep06 - (1/z^4)*(J^4*A3I*A3I*A3I*J^8)*B^0*(U*V^2*J^4); // So $n_0(M_0)=3$, $n_1(M_0)=1$ and $n_{-1}(M_0)=2$. // The cases $\alpha=1,\infty$. // *************************** // Since $M_\alpha=k_\alpha(M_0)$ for $\alpha=1,\infty$, we get // $\bar\Gamma_\alpha=k_\alpha\bar\Gamma_0k_\alpha^{-1}$, // $\Pi_\alpha=k_\alpha\Pi_0k_\alpha^{-1}$ and $K_\alpha=k_\alpha K_0k_\alpha^{-1}$. // and the six elements $rep_{\alpha i}=k_\alpha rep_{0i}k_\alpha^{-1}$ // are representatives for the double cosets $\Pi_\alpha g K_\alpha$. kplus1:=V^3*U*J; rep11:=kplus1*rep01*kplus1^-1; rep12:=kplus1*rep02*kplus1^-1; rep13:=kplus1*rep03*kplus1^-1; rep14:=kplus1*rep04*kplus1^-1; rep15:=kplus1*rep05*kplus1^-1; rep16:=kplus1*rep06*kplus1^-1; // The following are zero: rep11 - B^0; rep12 - (1/z)*(A2I*A2I)*B^1*(U*VI*J^2); rep13 - (1/z)*(A2I)*B^1*(VI*U*VI*J^3); rep14 - z^3*(A3*A3*A3*A1*A1*A2I)*B^1*(U*V*V*UI); rep15 - (1/z^4)*(A1I*A3I*A3I*A3I)*B^1*(V*J^4); rep16 - z^2*(A2I*A2I*A3*A3*A3*A1*A3I*A1I*A2I*A2I)*B^(-1)*(V*U*VI*J^3); // So $n_0(M_1)=1$, $n_1(M_1)=4$ and $n_{-1}(M_1)=1$. kinfty:=UI*V^2*U*J^6; repinfty1:=kinfty*rep01*kinfty^-1; repinfty2:=kinfty*rep02*kinfty^-1; repinfty3:=kinfty*rep03*kinfty^-1; repinfty4:=kinfty*rep04*kinfty^-1; repinfty5:=kinfty*rep05*kinfty^-1; repinfty6:=kinfty*rep06*kinfty^-1; // The following are zero: repinfty1 - B^0; repinfty2 - (1/z)*(J^8*A1I*J^4)*B^(-1)*(V^2*UI*J^10); repinfty3 - (A2I*A2I)*B^(-1)*(U*V^2*J^7); repinfty4 - (1/z)*(A2I)*B^0*(U*V^2*J^6); repinfty5 - (-1)*(J^8*A3*A1I*A3I*A3I*A3I*A1I*J^4)*B^1*(V^2*J^4); repinfty6 - (1/z^2)*(J^8*A1I*A3I*J^4)*B^(-1)*(V*U*J^6); // So $n_0(M_\infty)=2$, $n_1(M_\infty)=1$ and $n_{-1}(M_\infty)=3$. // End of calculations for Proposition 6. // ************************************** // Calculations for Proposition 7: // ******************************* // As noted for Proposition 6, $n_\mu(\pi(M))=n_\mu(M)$ for any mirror $M$ and any $\pi\in\Pi$. // so we need only consider the cases $M=M_c$, $M=M_{-c}$, $M=b(M_c)$ and $M=b^{-1}(M_c)$. // Also, as for Proposition 6, the number $n_\mu(M_\alpha)$ of $\Pi_\alpha \xi\in \Pi_\alpha\backslash M_\alpha$ // such that $\Pi\xi=\Pi(b^\mu O)$ is equal to the number of double cosets $\Pi_\alpha g K_\alpha$, // where $g\in\bar\Gamma_\alpha$, such that $g\in\Pi b^\mu K$. // In this proposition, $\alpha\in\{c,-c\}$, and we first find representatives $g\in\bar\Gamma_\alpha$ // for the nine double cosets $\Pi_\alpha g K_\alpha$. // Here are representatives for the double cosets $\Pi_c g K_c$, $g\in\bar\Gamma_c$: repc1:=ID3; repc2:=J^7*B*UI*B*U*J^7; repc3:=J^8*B*UI*B*U*J^7; repc4:=J^9*B*UI*B*U*J^7; repc5:=J^10*B*UI*B*U*J^7; repc6:=J^7*B*UI*B*U*J^11*B*UI*B*UI*J^2; repc7:=J^8*B*UI*B*U*J^11*B*UI*B*UI*J^2; repc8:=J^9*B*UI*B*U*J^11*B*UI*B*UI*J^2; repc9:=J^10*B*UI*B*U*J^11*B*UI*B*UI*J^2; // We now exhibit these representatives in the form $\pi b^\mu k$ for $\pi\in\Pi$, // $\mu\in\{0,1,-1\}$ and $k\in K$. // The following are zero: repc1 - B^0; repc2 - z^3*(J^4*A2*A1*J^8*A3*A3*A3*A1*A1*A2I)*B^1*(V*UI*V*J^9); repc3 - z^4*(J^4*A1*A3*A3*J^4*A1I*J^4)*B^1*(VI*U*VI); repc4 - z*(A1I*A2I*A2I*A2I)*B^(-1)*(V*UI*J^9); repc5 - (1/z^2)*(A1I*A2I)*B^(-1)*(V*V*U*J^6); repc6 - (1/z^4)*(J^4*A1*A3*A3*A3*A1*A3I*J^8)*B^0*(V*UI*V*J^2); repc7 - z^2*(J^4*A1*A3I*J^8)*B^0*(U*VI*J^5); repc8 - z*(A1I*A2I*A2I)*B^1*(V*V*UI*J^2); repc9 - z^3*(J^8*A2*A1*J^4*A3)*B^0*(V*U*J^7); // So $n_0(M_c)=4$, $n_1(M_c)=3$ and $n_{-1}(M_c)=2$. // Here are representatives for the double cosets $\Pi_{-c} g K_{-c}$, $g\in\bar\Gamma_{-c}$. repmc1:=kmmm*repc1*kmmm^-1; repmc2:=kmmm*repc2*kmmm^-1; repmc3:=kmmm*repc3*kmmm^-1; repmc4:=kmmm*repc4*kmmm^-1; repmc5:=kmmm*repc5*kmmm^-1; repmc6:=kmmm*repc6*kmmm^-1; repmc7:=kmmm*repc7*kmmm^-1; repmc8:=kmmm*repc8*kmmm^-1; repmc9:=kmmm*repc9*kmmm^-1; // We now exhibit these representatives in the form $\pi b^\mu k$ for $\pi\in\Pi$, // $\mu\in\{0,1,-1\}$ and $k\in K$. // The following are zero: repmc1 - B^0; repmc2 - (J^4*A1*A2*A2*J^8)*B^(-1)*(U*V*J^6); repmc3 - (1/z^2)*(J^4*A3I*A3I*J^8)*B^0*(UI*V*V*U*J^7); repmc4 - (A1I*A2I*A3I*A3I*A3I*J^8*A2*A1*A2I*A2I*A1I*J^4)*B^1*(V); repmc5 - (1/z^4)*(J^8*A1I*A3I*A3I*A3I*A2*A2*J^4)*B^0*(U*VI*U*J^8); repmc6 - z*(J^4*A3I*A2*A1*J^8*A2I)*B^(-1)*(UI*V*V*U*J^5); repmc7 - (1/z)*(J^8*A2*A1*A3*A1I*J^4*A1I*A3I*A3I*A3I)*B^1*(UI*V*J); repmc8 - (J^8*A1I*A3I*A3I*A3I*A2*A1I*J^4)*B^1*(V*UI*V*V*U); repmc9 - z^4*(A2*J^4*A2*A1*A2I*A2I*J^8)*B^0*(V*J^6); // So $n_0(M_{-c})=4$, $n_1(M_{-c})=3$ and $n_{-1}(M_{-c})=2$. // We find (in the other Magma file) that $1$, $bt_2b^{-1}$ and // $bt_4b^{-1}$ form a set of representatives $\gamma\in\bar\Gamma_{b(M_c)}$ // for the distinct double cosets $\Pi_{b(M_c)}\gamma(bK_cb^{-1})$. // We also find in the other Magma file the $\mu\in\{0,1,-1\}$ // and the $k\in K$ such that $\gamma b\in\Pi b^\mu k$, for each // of these three $\gamma$'s. This is confirmed here by checking that // the following are zero: B*ID3 - B^1; B*t2 - z^4*(J^8*A1*A3*A3*J^4)*B^(-1)*(VI*U*V^2*J^-1); B*t4 - z^2*(A3*A3*A3*A1*A2I)*B^(-1)*(V*U*VI*J); // So $n_0(M)=0$, $n_1(M)=1$ and $n_{-1}(M)=2$ for $M=b(M_c)$. // We find (in the other Magma file) that $1$, $b^{-1}t_4b$ and // $b^{-1}t_2t_4b$ form a set of representatives $\gamma\in\bar\Gamma_{b^{-1}(M_c)}$ // for the distinct double cosets $\Pi_{b^{-1}(M_c)}\gamma(b^{-1}K_cb)$. // We also find in the other Magma file the $\mu\in\{0,1,-1\}$ // and the $k\in K$ such that $\gamma b^{-1}\in\Pi b^\mu k$, for each // of these three $\gamma$'s. This is confirmed here by noting that // the following are zero: B^(-1)*ID3 - B^(-1); B^-1*t4 - z*(J^4*A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^4)*B^1*(V*V*U*VI*J^5); B^-1*t2*t4 - z^2*(J^8*A1*A2*A2*A1*A3*A1I*J^4)*B^(-1)*(VI*J^8); // So $n_0(M)=0$, $n_1(M)=1$ and $n_{-1}(M)=2$ for $M=b^{-1}(M_c)$. t2:=(B*U^-1)^2; t4:=J^-1*t2; t12:=J; zc:=U; // The following is a set of 54 representatives for the double cosets // $\Pi_c\gamma(\bar\Gamma_c\cap\bar\Gamma_P)$ in // $\Pi_c\backslash\bar\Gamma_c/(\bar\Gamma_c\cap\bar\Gamma_P)$: replist:=[MatsL | ID3,t4,t12,t4^-1,t2*t4,t4^2,t4*t12,t12^2,t12*t4^-1,t4^-1*t12,t12^-1*t4,t2*t4*t12,t2*t12^-1*t4,t4^2*t12, t4*t12^2,t4*t12*t4^-1,t4*t12^-1*t4,t12*t2*t4,t12^3,t12^2*t4^-1,t4^-1*t2*t4,t4^-1*t12^2,t12^-1*t4*t12,t12^-2*t4, t2*t4*t12^2,t2*t12^-1*t4*t12,t2*t12^-2*t4,t4^2*t12^2,t4*t12*t2*t4,t4*t12^3,(t4*t12*t4^-1)^2,t4*t12^-1*t4*t12, t4*t12^-2*t4,t12*t2*t4*t12,t12*t2*t12^-1*t4,t12^2*t2*t4,t12^4,t12^3*t4^-1,t4^-1*t2*t12^-1*t4,t4^-1*t12*t2*t4, t4^-1*t12^2*t4^-1,t12^-1*t4*t12^2,t12^-2*t4*t12,t12^-3*t4,t2*t4*t12^3,t2*t4*t12^2*t4^-1,t2*t4*t12^-2*t4, t2*t12^-1*t4*t12^2,t2*t12^-2*t4*t12,t4^2*t12^3,t4^2*t12^2*t4^-1,t4*t12^-1*t4*t12^2,t4*t12^-3*t4,t12^-1*t4*t12^2*t4^-1]; // The following is a list of representatives for the double cosets $\Pi\gamma\bar\Gamma_P$ // in $\Pi\backslash\bar\Gamma/\bar\Gamma_P$. This is the list given at the beginning of // Section 2. The order of this list is chosen to make the table in Proposition 7 as neat as possible. PibarGammabarGammaPdoublecosetreplist:=[MatsL | V, V*J^4, V*J^8, V^2, V^2*J^4, V^2*J^8, V*U*VI, V*U*VI*J^4, V*U*VI*J^8, V*UI*V^2*U, V*UI*V^2*U*J^4, V*UI*V^2*U*J^8, VI, VI*J^4, VI*J^8, U*V^2, U*V^2*J^4, U*V^2*J^8, J, J^5, J^9, J^2, J^6, J^10, ID3, J^4, J^8, J^3, J^7, J^11, U*V, U*V*J^4, U*V*J^8, UI*VI, UI*VI*J^4, UI*VI*J^8]; // The following are zero replist[1] - (ID3)*PibarGammabarGammaPdoublecosetreplist[25]*Pfixerlist[1]; replist[2] - (ID3)*PibarGammabarGammaPdoublecosetreplist[30]*Pfixerlist[24]; replist[3] - (ID3)*PibarGammabarGammaPdoublecosetreplist[19]*Pfixerlist[1]; replist[4] - z^4*(J^8*A1*A3*A3*A3*A1*A3I*J^4)*PibarGammabarGammaPdoublecosetreplist[8]*Pfixerlist[23]; replist[5] - z^3*(J^8*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[10]*Pfixerlist[13]; replist[6] - (J^8*A2*A1*A2I*A2I*A2I*J^8*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[9]*Pfixerlist[8]; replist[7] - (1/z)*(J^8*A2*A1*J^4*A3)*PibarGammabarGammaPdoublecosetreplist[2]*Pfixerlist[22]; replist[8] - (ID3)*PibarGammabarGammaPdoublecosetreplist[22]*Pfixerlist[1]; replist[9] - z^2*(J^4*A1I*A2I*A1*A3*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[21]*Pfixerlist[4]; replist[10] - z^2*(J^8*A1*A3*A3*A3*A1*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[12]*Pfixerlist[10]; replist[11] - (ID3)*PibarGammabarGammaPdoublecosetreplist[24]*Pfixerlist[24]; replist[12] - z^3*(J^8*A1*A3I*J^8*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[31]*Pfixerlist[19]; replist[13] - z^5*(J^8*A1*A3I*J^8*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[11]*Pfixerlist[18]; replist[14] - z^2*(J^8*A1*A2*A2*A1I*A2I*J^4*A3)*PibarGammabarGammaPdoublecosetreplist[19]*Pfixerlist[17]; replist[15] - z*(J^4*A2I*A2I*A2I*A3*A3*J^4*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[1]*Pfixerlist[12]; replist[16] - (1/z)*(J^8*A2*A1*J^8*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[22]*Pfixerlist[4]; replist[17] - z^2*(J^8*A2*A1*A2I*A2I*A2I*J^8*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[3]*Pfixerlist[17]; replist[18] - z*(J^4*A1I*A2I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[5]*Pfixerlist[4]; replist[19] - (ID3)*PibarGammabarGammaPdoublecosetreplist[28]*Pfixerlist[1]; replist[20] - (1/z)*(J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[5]*Pfixerlist[16]; replist[21] - (J^8*A2*A1*A2I*A2I*A1I*A3I*J^4)*PibarGammabarGammaPdoublecosetreplist[24]*Pfixerlist[13]; replist[22] - (1/z^3)*(J^8*A1*A3*A3*A3*A1*A2I*J^8*A1I*A3I*A3I*A3I*A2*A2*J^8)*PibarGammabarGammaPdoublecosetreplist[11]*Pfixerlist[9]; replist[23] - (1/z)*(A1I*A2I)*PibarGammabarGammaPdoublecosetreplist[4]*Pfixerlist[16]; replist[24] - (ID3)*PibarGammabarGammaPdoublecosetreplist[21]*Pfixerlist[24]; replist[25] - z^3*(J^8*A1*J^4*A2*A1I)*PibarGammabarGammaPdoublecosetreplist[20]*Pfixerlist[11]; replist[26] - (1/z^3)*(J^8*A3I*A3I*A3I*A2*A2*A1I*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[24]*Pfixerlist[19]; replist[27] - (1/z)*(J^8*A3I*A3I*A3I*A2*A2*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[7]*Pfixerlist[3]; replist[28] - (1/z^3)*(J^8*A1*A3*A3*A3*A1*A3I*J^8*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[22]*Pfixerlist[7]; replist[29] - (1/z)*(J^8*A2*A1*J^4*A3)*PibarGammabarGammaPdoublecosetreplist[35]*Pfixerlist[24]; replist[30] - z*(J^4*A2I*A2I*A2I*A3*A3*J^4*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[7]*Pfixerlist[15]; replist[31] - (J^8*A1*A2*A2*A1I*A2I*J^8*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[4]*Pfixerlist[21]; replist[32] - z^4*(J^8*A2*A1*J^8*A3*A3*A3*A1*A3I*J^8)*PibarGammabarGammaPdoublecosetreplist[6]*Pfixerlist[21]; replist[33] - z^2*(A3*A3*A3*A2*A1*A2I*A2I*A2I)*PibarGammabarGammaPdoublecosetreplist[1]*Pfixerlist[2]; replist[34] - (1/z)*(J^4*A1I*A2I*A2I*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[36]*Pfixerlist[23]; replist[35] - z*(J^4*A1I*A2I*A2I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[2]*Pfixerlist[12]; replist[36] - z*(J^8*A2I*A1*A3*A1I*A3I*J^8*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[23]*Pfixerlist[5]; replist[37] - (ID3)*PibarGammabarGammaPdoublecosetreplist[26]*Pfixerlist[1]; replist[38] - (1/z^2)*(J^8*A2I*A1*A3*A1I*A3I*J^4*A2*A1)*PibarGammabarGammaPdoublecosetreplist[3]*Pfixerlist[22]; replist[39] - z^4*(J^8*A1*A3*A3*A3*A1*A3I*J^4*A2*A1)*PibarGammabarGammaPdoublecosetreplist[21]*Pfixerlist[11]; replist[40] - z^5*(J^8*A1*A3*A3*A3*A1*A2I*J^8*A3*A3*J^8)*PibarGammabarGammaPdoublecosetreplist[6]*Pfixerlist[11]; replist[41] - z*(J^8*A1*A3*A3*A3*A1*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[32]*Pfixerlist[19]; replist[42] - (1/z^2)*(A1I*A2)*PibarGammabarGammaPdoublecosetreplist[10]*Pfixerlist[18]; replist[43] - z^2*(A1I*A2I*A1*A3*A1I)*PibarGammabarGammaPdoublecosetreplist[20]*Pfixerlist[4]; replist[44] - (ID3)*PibarGammabarGammaPdoublecosetreplist[27]*Pfixerlist[24]; replist[45] - z^3*(J^8*A1*A3I*J^8*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[19]*Pfixerlist[19]; replist[46] - (J^8*A1*J^4*A2*A3I*A1I*A2)*PibarGammabarGammaPdoublecosetreplist[23]*Pfixerlist[9]; replist[47] - z^3*(J^8*A1*J^4*A2*A2*A1)*PibarGammabarGammaPdoublecosetreplist[33]*Pfixerlist[5]; replist[48] - (1/z^5)*(J^8*A3I*A3I*A3I*A2*A2*J^4*A3*A1*A3I*A1I*A2)*PibarGammabarGammaPdoublecosetreplist[23]*Pfixerlist[24]; replist[49] - (J^8*A3I*A3I*A3I*A2*A2*A1I*J^4*A2)*PibarGammabarGammaPdoublecosetreplist[8]*Pfixerlist[7]; replist[50] - (1/z^4)*(J^8*A1*A3*A3*A3*A1*A3I*J^4)*PibarGammabarGammaPdoublecosetreplist[9]*Pfixerlist[1]; replist[51] - (1/z^3)*(J^8*A1*A3*A3*A3*A1*A3I*J^4*A3*J^8*A1I*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[34]*Pfixerlist[1]; replist[52] - z^3*(J^8*A2*A1*J^8*A3*A3*A3*A1*J^4*A2*A2*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[20]*Pfixerlist[24]; replist[53] - (-1)*(A3*A3*A3*A2*A1*A2I*A1*J^8*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[29]*Pfixerlist[1]; replist[54] - (1/z^5)*(A1I*A2*A1I*A2I*J^4*A3*J^8)*PibarGammabarGammaPdoublecosetreplist[12]*Pfixerlist[9]; // From this we read off the first row of the table in Proposition 7. For example, PibarGammabarGammaPdoublecosetreplist[19] // occurs 3 times on the right in the above 54 expressions, and so $m_{19}(M_c)=3$. // From the set of 54 representatives for the double cosets // $\Pi_c\gamma(\bar\Gamma_c\cap\bar\Gamma_P)$ in // $\Pi_c\backslash\bar\Gamma_c/(\bar\Gamma_c\cap\bar\Gamma_P)$, // we get a set of 54 representatives $\gamma'$ for the double cosets // $\Pi_{-c}\gamma(\bar\Gamma_{-c}\cap k_{-c}\bar\Gamma_Pk_{-c}^{-1})$ in // $\Pi_{-c}\backslash\bar\Gamma_{-c}/(\bar\Gamma_{-c}\capk_{-c}\bar\Gamma_Pk_{-c}^{-1})$, // simply be conjugating by $k_{-c}$. According to Proposition 7, we need to find the // images in $\Pi\backslash\bar\Gamma/\bar\Gamma_P$ of $\gamma'k_{-c}$ for each // of these representatives $\gamma'$. That is, we need to find the image in $\Pi\backslash\bar\Gamma/\bar\Gamma_P$ // of $k_{-c}\gamma$ for each of the original 54 representatives $\gamma$. This we now do: // The following are zero: kmmm*replist[1] - (ID3)*PibarGammabarGammaPdoublecosetreplist[4]*Pfixerlist[1]; kmmm*replist[2] - z^2*(A2)*PibarGammabarGammaPdoublecosetreplist[18]*Pfixerlist[17]; kmmm*replist[3] - (J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[29]*Pfixerlist[10]; kmmm*replist[4] - (A2*A2)*PibarGammabarGammaPdoublecosetreplist[18]*Pfixerlist[1]; kmmm*replist[5] - (1/z^3)*(J^8*A3I*A3I*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[25]*Pfixerlist[9]; kmmm*replist[6] - z^2*(A2*A1I)*PibarGammabarGammaPdoublecosetreplist[8]*Pfixerlist[12]; kmmm*replist[7] - (1/z^3)*(A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[36]*Pfixerlist[10]; kmmm*replist[8] - (1/z^4)*(A1I*A3I*A3I*A3I*A2*A2)*PibarGammabarGammaPdoublecosetreplist[10]*Pfixerlist[22]; kmmm*replist[9] - z^3*(A3*A3*A3*A1*A1*A2)*PibarGammabarGammaPdoublecosetreplist[18]*Pfixerlist[5]; kmmm*replist[10] - (A2*A2*A1I)*PibarGammabarGammaPdoublecosetreplist[2]*Pfixerlist[7]; kmmm*replist[11] - (1/z^4)*(J^8*A1I*A3I*A3I*A3I*A2*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[12]*Pfixerlist[2]; kmmm*replist[12] - (1/z^3)*(J^8*A3I*A3I*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[13]*Pfixerlist[15]; kmmm*replist[13] - (1/z)*(J^8*A3I*A3I*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[1]*Pfixerlist[14]; kmmm*replist[14] - z*(A2*A1I*A2I)*PibarGammabarGammaPdoublecosetreplist[1]*Pfixerlist[21]; kmmm*replist[15] - z*(J^8*A1*A2*A2*J^4*A1)*PibarGammabarGammaPdoublecosetreplist[11]*Pfixerlist[6]; kmmm*replist[16] - (A2*J^4*A2*A1*A2I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[14]*Pfixerlist[1]; kmmm*replist[17] - z^3*(A2*A1I*A2I)*PibarGammabarGammaPdoublecosetreplist[10]*Pfixerlist[20]; kmmm*replist[18] - z^2*(J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[15]*Pfixerlist[19]; kmmm*replist[19] - (A3I)*PibarGammabarGammaPdoublecosetreplist[16]*Pfixerlist[12]; kmmm*replist[20] - (1/z^4)*(A1I*A3I*A3I*A3I*A2)*PibarGammabarGammaPdoublecosetreplist[4]*Pfixerlist[8]; kmmm*replist[21] - (J^8*A3I*A1*A2*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[32]*Pfixerlist[1]; kmmm*replist[22] - (A2*A2*A1I)*PibarGammabarGammaPdoublecosetreplist[26]*Pfixerlist[13]; kmmm*replist[23] - (1/z^4)*(J^8*A1I*A3I*A3I*A3I*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[6]*Pfixerlist[8]; kmmm*replist[24] - z*(A1I*A2I)*PibarGammabarGammaPdoublecosetreplist[28]*Pfixerlist[18]; kmmm*replist[25] - z^2*(A2*A1*J^4*A2I*A1*A3*A2I*A2I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[2]*Pfixerlist[6]; kmmm*replist[26] - (1/z^5)*(J^8*A3I*A3I*A1I*A3I*J^4*A1I*A3I*A3I*A3I)*PibarGammabarGammaPdoublecosetreplist[13]*Pfixerlist[22]; kmmm*replist[27] - (A2*A2)*PibarGammabarGammaPdoublecosetreplist[17]*Pfixerlist[24]; kmmm*replist[28] - (1/z^2)*(J^8*A3I*A2*A1*J^4*A3I*A1I*A2*A1)*PibarGammabarGammaPdoublecosetreplist[33]*Pfixerlist[22]; kmmm*replist[29] - (1/z)*(A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[9]*Pfixerlist[19]; kmmm*replist[30] - (1/z^3)*(A1I*A1I*A3I*A3I*A3I*A2*A1)*PibarGammabarGammaPdoublecosetreplist[9]*Pfixerlist[17]; kmmm*replist[31] - (1/z^4)*(J^8*A1*A2*A2*A3I*A1I*A2*J^8*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[14]*Pfixerlist[5]; kmmm*replist[32] - z^2*(A2*A1I*A2I*A2I*A2I)*PibarGammabarGammaPdoublecosetreplist[13]*Pfixerlist[5]; kmmm*replist[33] - (-1)*(A2*A1I*J^4*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[35]*Pfixerlist[18]; kmmm*replist[34] - (1/z)*(A1I*A3I*A3I*A3I*J^8*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[7]*Pfixerlist[21]; kmmm*replist[35] - (1/z)*(J^4*A1I*A2I*A3I*A3I*J^8)*PibarGammabarGammaPdoublecosetreplist[12]*Pfixerlist[6]; kmmm*replist[36] - z^3*(A3I*J^8*A2*A1*A2I*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[15]*Pfixerlist[2]; kmmm*replist[37] - (ID3)*PibarGammabarGammaPdoublecosetreplist[5]*Pfixerlist[1]; kmmm*replist[38] - (1/z^3)*(J^4*A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[34]*Pfixerlist[10]; kmmm*replist[39] - z*(J^8*A3I*A1*A2*A2*A1I*A2I*J^8*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[3]*Pfixerlist[6]; kmmm*replist[40] - z^2*(A2*A2*A1I)*PibarGammabarGammaPdoublecosetreplist[5]*Pfixerlist[15]; kmmm*replist[41] - (1/z)*(A2*A2*A1I)*PibarGammabarGammaPdoublecosetreplist[14]*Pfixerlist[15]; kmmm*replist[42] - (1/z^4)*(J^8*A1I*A3I*A3I*A3I*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[3]*Pfixerlist[14]; kmmm*replist[43] - z^3*(J^8*A3*A3*A3*A1*A1*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[17]*Pfixerlist[5]; kmmm*replist[44] - (ID3)*PibarGammabarGammaPdoublecosetreplist[6]*Pfixerlist[24]; kmmm*replist[45] - z^3*(A2*A1*J^4*A2I*A1*A3*A2I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[16]*Pfixerlist[20]; kmmm*replist[46] - (1/z^3)*(J^8*A3I*A3I*A1I*J^4*A3*A3*A3*A1*J^4*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[31]*Pfixerlist[24]; kmmm*replist[47] - (1/z^4)*(A3*A3*A3*A1*A1*A2*A2*A2)*PibarGammabarGammaPdoublecosetreplist[15]*Pfixerlist[8]; kmmm*replist[48] - (1/z^2)*(J^8*A3I*A3I*A1I*A3I*J^4)*PibarGammabarGammaPdoublecosetreplist[11]*Pfixerlist[2]; kmmm*replist[49] - (1/z^4)*(J^8*A3I*A3I*A2I*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[7]*Pfixerlist[11]; kmmm*replist[50] - z^3*(J^8*A3I*A2*A1*J^4*A3*A3*A1*J^4*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[16]*Pfixerlist[22]; kmmm*replist[51] - (1/z^2)*(A2*A1I*A2I*J^8*A1*A3I*J^4)*PibarGammabarGammaPdoublecosetreplist[8]*Pfixerlist[5]; kmmm*replist[52] - z^2*(A2*A1I*A2I*A2I*A2I)*PibarGammabarGammaPdoublecosetreplist[30]*Pfixerlist[18]; kmmm*replist[53] - (1/z^2)*(A2*A1I*A3I*J^4*A1I*A3I*A3I*A3I*A2*A2*J^8*A1I)*PibarGammabarGammaPdoublecosetreplist[17]*Pfixerlist[12]; kmmm*replist[54] - (1/z^5)*(J^8*A1I*A3I*A3I*A3I*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[27]*Pfixerlist[13]; // From this we read off the second row of the table in Proposition 7. For example, PibarGammabarGammaPdoublecosetreplist[13] // occurs 3 times on the right in the above 54 expressions, and so $m_{13}(M_{-c})=3$. t2:=(B*U^-1)^2; t4:=J^-1*t2; t12:=J; zc:=U; // The following is a list of 18 representatives of the double cosets $b^{-1}\Pi_{b(M_c)}b\gamma(\bar\Gamma_c\cap\bar\Gamma_P)$ // in $b^{-1}\Pi_{b(M_c)}b\backslash\bar\Gamma_c/(\bar\Gamma_c\cap\bar\Gamma_P)$, thought of as matrices. replist:=[ MatsL | ID3,t4,t12,t4^-1,t2*t4,t4^2,t4*t12,t12^2,t12*t4^-1,t12^-1*t4, t4^2*t12,t4*t12^2,t12*t2*t4,t12^3,t4^-1*t2*t4,t12^-2*t4,t12*t2*t12^-1*t4,t12^3*t4^-1]; // So the elements $B*\gamma*BI$ for the $\gamma$'s in this list form a set of // representatives $\gamma'$ for the double cosets $\Pi_{b(M_c)}b\gamma'b(\bar\Gamma_c\cap\bar\Gamma_P)b^{-1}$ in // $\Pi_{b(M_c)}\backslash\bar\Gamma_{b(M_c)}/b(\bar\Gamma_c\cap\bar\Gamma_P)b^{-1}$. // To get the third row of the tabel in Proposition 7, for each of these $\gamma'$'s, we need to // project $\gamma'*B$ onto $\Pi\backslash\bar\Gamma/\bar\Gamma_P$. // So we need to project $B*\gamma$, for each of the $\gamma$'s in replist, // onto $\Pi\backslash\bar\Gamma/\bar\Gamma_P$. B*replist[1] - (ID3)*PibarGammabarGammaPdoublecosetreplist[25]*Pfixerlist[4]; B*replist[2] - z*(A2*A2*A2)*PibarGammabarGammaPdoublecosetreplist[29]*Pfixerlist[6]; B*replist[3] - (ID3)*PibarGammabarGammaPdoublecosetreplist[34]*Pfixerlist[13]; B*replist[4] - z^2*(J^8*A1*A3I*J^8*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[35]*Pfixerlist[7]; B*replist[5] - z*(J^4*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[21]*Pfixerlist[7]; B*replist[6] - z*(J^8*A2*A1*A2I*A2I*A1I*A3I*J^4*A2)*PibarGammabarGammaPdoublecosetreplist[33]*Pfixerlist[11]; B*replist[7] - z^3*(A3*A3*A3*A1*A2*A1)*PibarGammabarGammaPdoublecosetreplist[24]*Pfixerlist[12]; B*replist[8] - (J^8*A1*A2*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[32]*Pfixerlist[12]; B*replist[9] - (J^8*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[23]*Pfixerlist[17]; B*replist[10] - z^5*(A3*A3*A3*A1)*PibarGammabarGammaPdoublecosetreplist[31]*Pfixerlist[17]; B*replist[11] - z^2*(J^4*A2I*A2I*A1I*A3I*J^8)*PibarGammabarGammaPdoublecosetreplist[28]*Pfixerlist[19]; B*replist[12] - z*(A3*A3*A3*A1*A2*J^8*A1I*J^4)*PibarGammabarGammaPdoublecosetreplist[19]*Pfixerlist[9]; B*replist[13] - (-1)*(J^8*A1I*A3I*A3I*A3I*A2*A2*J^8*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[27]*Pfixerlist[6]; B*replist[14] - (J^8*A1*A2*A2*A1I*A2I*J^4)*PibarGammabarGammaPdoublecosetreplist[30]*Pfixerlist[20]; B*replist[15] - z^4*(J^8*A1*A3I*J^8*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[26]*Pfixerlist[19]; B*replist[16] - z^5*(A3*A3*A3*A1*A3*A3*J^4*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[36]*Pfixerlist[9]; B*replist[17] - (1/z^4)*(J^8*A1I*A3I*A3I*A3I*A2*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[20]*Pfixerlist[9]; B*replist[18] - (1/z)*(J^8*A1*A2*A2*J^8*A2*A1*J^8)*PibarGammabarGammaPdoublecosetreplist[22]*Pfixerlist[12]; // We see that $PibarGammabarGammaPdoublecosetreplist[i]$, for $i=19,\ldots,36$ appears just once on the right // in the 18 expressions above, and so $m_i(M)=1$ for $M=b(M_c)$ for these $i$'s, and $m_i(M)=0$ for this~$M$ // and $i=1,\ldots,18$. // The following is a list of 18 representatives of the double cosets // $b\Pi_{b^{-1}(M_c)}b^{-1}\gamma(\bar\Gamma_c\cap\bar\Gamma_P)$ // in $b\Pi_{b^{-1}(M_c)}b^{-1}\backslash\bar\Gamma_c/(\bar\Gamma_c\cap\bar\Gamma_P)$, thought of as matrices. replist:=[ MatsL | ID3,t4,t12,t4^-1,t4^2,t4*t12,t12*t4^-1, t4^-1*t12,t12^-1*t4,t4^2*t12,t4*t12^2,t4*t12*t4^-1,t4*t12^-1*t4,t4^-1*t2*t4, t4^-1*t12^2,t12^-1*t4*t12,(t4*t12*t4^-1)^2,t4*t12^-1*t4*t12]; BI*replist[1] - z*(ID3)*PibarGammabarGammaPdoublecosetreplist[25]*Pfixerlist[17]; BI*replist[2] - z^2*(ID3)*PibarGammabarGammaPdoublecosetreplist[31]*Pfixerlist[14]; BI*replist[3] - (A2*A2*A2)*PibarGammabarGammaPdoublecosetreplist[15]*Pfixerlist[10]; BI*replist[4] - (1/z)*(J^8*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[32]*Pfixerlist[9]; BI*replist[5] - z^3*(ID3)*PibarGammabarGammaPdoublecosetreplist[16]*Pfixerlist[15]; BI*replist[6] - z*(J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[18]*Pfixerlist[15]; BI*replist[7] - (1/z^3)*(J^8*A3I*A3I*A3I*A2*A2*A2*J^4)*PibarGammabarGammaPdoublecosetreplist[28]*Pfixerlist[8]; BI*replist[8] - (1/z)*(J^8*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[26]*Pfixerlist[16]; BI*replist[9] - z^3*(J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[27]*Pfixerlist[18]; BI*replist[10] - z^2*(A3)*PibarGammabarGammaPdoublecosetreplist[35]*Pfixerlist[19]; BI*replist[11] - (1/z^3)*(A1I*A3I*A3I*A3I*A2*A2)*PibarGammabarGammaPdoublecosetreplist[34]*Pfixerlist[19]; BI*replist[12] - (J^4*A1I*A2I*J^8)*PibarGammabarGammaPdoublecosetreplist[33]*Pfixerlist[14]; BI*replist[13] - z*(J^4*A2I*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[36]*Pfixerlist[5]; BI*replist[14] - z*(J^8*A2*A1*J^4)*PibarGammabarGammaPdoublecosetreplist[17]*Pfixerlist[14]; BI*replist[15] - (1/z^5)*(J^8*A2*A1*J^4*A3I*A3I*A3I)*PibarGammabarGammaPdoublecosetreplist[13]*Pfixerlist[12]; BI*replist[16] - (1/z)*(J^4*A1I*A2I*A3I*A3I*A3I*J^8)*PibarGammabarGammaPdoublecosetreplist[14]*Pfixerlist[11]; BI*replist[17] - (1/z^4)*(A1I*A3I*A3I*A3I*A2*A2)*PibarGammabarGammaPdoublecosetreplist[30]*Pfixerlist[14]; BI*replist[18] - z*(J^4*A2I*A1I*J^8)*PibarGammabarGammaPdoublecosetreplist[29]*Pfixerlist[14]; // We see that $PibarGammabarGammaPdoublecosetreplist[i]$, for $i=13,\ldots,18$ and for $i=25,\ldots,36$ // appears just once on the right in the 18 expressions above, and so $m_i(M)=1$ for $M=b^{-1}(M_c)$ for // these $i$'s, and $m_i(M)=0$ for this~$M$ and for the other $i$'s between~1 and~36. // End of calculations for Proposition 7. // ************************************** // Calculations for Proposition 8. // ******************************* gamma12:=B*V; // The fixed point $\xi_{12}$ in $B(\C^2)$ of $\gamma_{12}$ is $(0,\zeta-1)$. // We can check this by calculating the following two expressions: gamma12[1][2]*(z-1)+gamma12[1][3]; // Output: 0 (gamma12[2][2]*(z-1)+gamma12[2][3])/(gamma12[3][2]*(z-1)+gamma12[3][3]); // Output: z-1 // Here is a list of 72 elements of $\bar\Gamma$. In the file cs-surface-presentations_magma.txt, // we check that they form a complete set of representatives for the double cosets // $\Pi g\langle\gamma_{12}\rangle$, $g\in\bar\Gamma$. // This list is ordered so that for $i=1,\ldots,24$, $\Pi(t_i\xi_{12})$ is in the image // of $M_0$, under the natural map $B(\C^2)\to\Pi\backslash B(\C^2)$, and so that, similarly, // for $i=25,\ldots,48$, $\Pi(t_i\xi_{12})$ is in the image of $M_1$, and // for $i=49,\ldots,72$, $\Pi(t_i\xi_{12})$ is in the image of $M_\infty$, as we check below. gamma12doublecosetlist:=[ MatsL | J^2,J^6,J^10, U*J,U*J^5,U*J^9, ID3,J^4,J^8, U*J^3,U*J^7,U*J^11, J,J^5,J^9, U*J^2,U*J^6,U*J^10, J^3,J^7,J^11, U,U*J^4,U*J^8, // VI*U*J,VI*U*J^5,VI*U*J^9, VI*U*J^3,VI*U*J^7,VI*U*J^11, B*U,B*U*J^4,B*U*J^8, VI*U*J^2,VI*U*J^6,VI*U*J^10, B*U*J,B*U*J^5,B*U*J^9, B*V*U*J,B*V*U*J^5,B*V*U*J^9, B*VI*U*J,B*VI*U*J^5,B*VI*U*J^9, VI*U,VI*U*J^4,VI*U*J^8, // V*UI*J,V*UI*J^5,V*UI*J^9, V*UI*J^2,V*UI*J^6,V*UI*J^10, U*VI*U*J,U*VI*U*J^5,U*VI*U*J^9, B^-1*V*U*J^2,B^-1*V*U*J^6,B^-1*V*U*J^10, V*UI,V*UI*J^4,V*UI*J^8, V*UI*J^3,V*UI*J^7,V*UI*J^11, U*VI*U,U*VI*U*J^4,U*VI*U*J^8, B*V*UI*V*V*U*J,B*V*UI*V*V*U*J^5,B*V*UI*V*V*U*J^9]; gamma12doublecosetwordlist:=[ ["J^2"],["J^6"],["J^10"], ["U*J"],["U*J^5"],["U*J^9"], ["ID3"],["J^4"],["J^8"], ["U*J^3"],["U*J^7"],["U*J^11"], ["J"],["J^5"],["J^9"], ["U*J^2"],["U*J^6"],["U*J^10"], ["J^3"],["J^7"],["J^11"], ["U"],["U*J^4"],["U*J^8"], // ["VI*U*J"],["VI*U*J^5"],["VI*U*J^9"], ["VI*U*J^3"],["VI*U*J^7"],["VI*U*J^11"], ["B*U"],["B*U*J^4"],["B*U*J^8"], ["VI*U*J^2"],["VI*U*J^6"],["VI*U*J^10"], ["B*U*J"],["B*U*J^5"],["B*U*J^9"], ["B*V*U*J"],["B*V*U*J^5"],["B*V*U*J^9"], ["B*VI*U*J"],["B*VI*U*J^5"],["B*VI*U*J^9"], ["VI*U"],["VI*U*J^4"],["VI*U*J^8"], // ["V*UI*J"],["V*UI*J^5"],["V*UI*J^9"], ["V*UI*J^2"],["V*UI*J^6"],["V*UI*J^10"], ["U*VI*U*J"],["U*VI*U*J^5"],["U*VI*U*J^9"], ["B^-1*V*U*J^2"],["B^-1*V*U*J^6"],["B^-1*V*U*J^10"], ["V*UI"],["V*UI*J^4"],["V*UI*J^8"], ["V*UI*J^3"],["V*UI*J^7"],["V*UI*J^11"], ["U*VI*U"],["U*VI*U*J^4"],["U*VI*U*J^8"], ["B*V*UI*V*V*U*J"],["B*V*UI*V*V*U*J^5"],["B*V*UI*V*V*U*J^9"]]; // Here is a list of 72 elements $\pi_i$ of~$\Pi$. They were // chosen so that: // For $i=1,\ldots,24$, $\pi_it_i\xi_{12}\in M_0$. // For $i=25,\ldots,48$, $\pi_it_i\xi_{12}\in M_1$. // For $i=49,\ldots,72$, $\pi_it_i\xi_{12}\in M_\infty$. pilist1:=[MatsL | ID3, ID3, ID3, A1I*A2I*A1, A1I*A2I*A1, A1I*A2I*A1, ID3, ID3, ID3, A1I*A2I*A1, A1I*A2I*A1, A1I*A2I*A1, ID3, ID3, ID3, A1I*A2I*A1, A1I*A2I*A1, A1I*A2I*A1, ID3, ID3, ID3, A1I*A2I*A1, A1I*A2I*A1, A1I*A2I*A1, ID3, ID3, ID3, ID3, ID3, ID3, A1I*A3I*A3I*A3I, A1I*A3I*A3I*A3I, A1I*A3I*A3I*A3I, ID3, ID3, ID3, A1I*A3I*A3I*A3I, A1I*A3I*A3I*A3I, A1I*A3I*A3I*A3I, A3*A3*A3*A1*A1*A2I, A3*A3*A3*A1*A1*A2I, A3*A3*A3*A1*A1*A2I, A2I*A2I, A2I*A2I, A2I*A2I, ID3, ID3, ID3, A2I, A2I, A2I, A2I, A2I, A2I, ID3, ID3, ID3, A3I*A1I*A2I*A2I, A3I*A1I*A2I*A2I, A3I*A1I*A2I*A2I, A2I, A2I, A2I, A2I, A2I, A2I, ID3, ID3, ID3, A2I*A1*A2I, A2I*A1*A2I, A2I*A1*A2I]; print "The length of pilist1 is",#pilist1; // Output: 72 print "Checking that for i=1,...,24, pi_i*t_i, applied"; print "to the fixed point of gamma_{12}, is in M_0."; for ii in [1 .. 24] do tmpmat:=pilist1[ii]*gamma12doublecosetlist[ii]; print tmpmat[1][2]*(z-1)+tmpmat[1][3]; end for; print "Checking that for i=25,...,48, pi_i*t_i, applied"; print "to the fixed point of gamma_{12}, is in M_1."; for ii in [25 .. 48] do tmpmat:=pilist1[ii]*gamma12doublecosetlist[ii]; print (tmpmat[1][2]*(z-1)+tmpmat[1][3]) - (tmpmat[2][2]*(z-1)+tmpmat[2][3]); end for; print "Checking that for i=49,...,72, pi_i*t_i, applied"; print "to the fixed point of gamma_{12}, is in M_infty."; for ii in [49 .. 72] do tmpmat:=pilist1[ii]*gamma12doublecosetlist[ii]; print tmpmat[2][2]*(z-1)+tmpmat[2][3]; end for; // The following is a list of 72 elements $\pi_i'$ of $\Pi$ such that // if $t_i$ is the $i$-th element of gamma12doublecosetlist, then // $\pi_i't_i\xi_{12}$ is in one of $M_c$, $M_{-c}$, $b(M_c)$ and $b^{-1}(M_c)$: pilist2:=[MatsL | A1I*A2I*A2I*A1I*A1I*A2I, A1*A3I*A3I*A1I*A2, A1*A3I*A1*A3*A1, A2I*A2I*A2I*A3*A3, A1*A3I*A1I, A1I*A2I*A1*A3, A1I*A3I*A3I*A3I*A2, A2*A2*A1I, A2*A1I*A2*A2, A1I*A2I, A2*A2*A1I*A3I*A2, A2*A1I*A2I*A2I*A2I, A3*A3*A3*A1, A2*A2*A2*A1I*A3I, A2*A1I*A1I*A3I*A1*A3I, A3*A3*A3*A1*A3*A3, A2*A1I*A1I*A3I*A1*A3I*A1I, A2*A2*A2*A3I, A3, A2*A2*A1*A3*A2*A2*A2, A3*A1, ID3, A2*A2*A1*A3*A1I, A3*A1*A2, A1*A3I*A2I*A1*A3I, A1*A3I*A1*A3*A1*A3*A1I, A1I*A2, A1*A3I*A1*A3*A2*A3I, A1*A3I*A3I*A1I*A2*A3I*A1I, A1I*A2I*A2I, ID3, A1I*A2*A2*A1*A2I, A1I*A2I*A1*A3*A2I*A2I, A3I, A1*A2*A2*A1I*A2I*A1*A3*A1I, A2, A1I*A2I*A1*A2*A2, A2*A2*A1I*A3I*A1*A2I, A2I*A2I, A2, A2*A2*A1I*A3I*A2*A1*A2I*A2I, A1I*A2I*A3I*A3I*A1*A2I*A2I*A2I, A2*A2*A2*A3I*A1I*A3I*A3I*A3I, A2*A1I*A3I*A3I*A3I*A1I*A3I*A3I*A3I, A2*A2*A2*A3I*A2I, A2*A2*A1*A3, A3*A1*A3*A3*A3, A2*A2*A2, A1I*A2I, A1*A3I*A2I*A1*A3, A1I*A2I*A2I*A1I*A2*A2*A1, A1I*A2I*A2I*A1I*A2, A1I*A2I*A2I*A1I*A3I, A2*A1, A3*A2I*A2I*A2I*A3*A3*A3*A1, A1*A3I*A2I, A1, A1*A3I*A1*A3*A2I*A2I, A1I*A2*A2*A3*A1*A3I*A1I*A2I*A2I, A1*A3I*A2I*A1*A3I, A2*A1I*A2I, A1I*A2I*A3I*A3I, A2*A1I*A1I*A3I*A3I*A3I*A2*A2*A1, A2*A2*A1I*A3*A1, A1I*A2I*A3I*A3I*A1*A3I, A1I*A2I*A1*A2*A2, A1*A2*A1I*A1I*A3I*A3I*A3I*A2*A1, A2*A2*A1I*A3*A1*A2I, A1I*A2I*A3I*A3I*A1, A2*A1I*A2I*A2I, A2*A1I*A2I*A2I*A2I*A3I, A1*A3*A2I*A2I*A2I*A3*A3*A3*A1]; piwordlist2:=[ ["A1I*A2I*A2I*A1I*A1I*A2I"], ["A1*A3I*A3I*A1I*A2"], ["A1*A3I*A1*A3*A1"], ["A2I*A2I*A2I*A3*A3"], ["A1*A3I*A1I"], ["A1I*A2I*A1*A3"], ["A1I*A3I*A3I*A3I*A2"], ["A2*A2*A1I"], ["A2*A1I*A2*A2"], ["A1I*A2I"], ["A2*A2*A1I*A3I*A2"], ["A2*A1I*A2I*A2I*A2I"], ["A3*A3*A3*A1"], ["A2*A2*A2*A1I*A3I"], ["A2*A1I*A1I*A3I*A1*A3I"], ["A3*A3*A3*A1*A3*A3"], ["A2*A1I*A1I*A3I*A1*A3I*A1I"], ["A2*A2*A2*A3I"], ["A3"], ["A2*A2*A1*A3*A2*A2*A2"], ["A3*A1"], ["ID3"], ["A2*A2*A1*A3*A1I"], ["A3*A1*A2"], ["A1*A3I*A2I*A1*A3I"], ["A1*A3I*A1*A3*A1*A3*A1I"], ["A1I*A2"], ["A1*A3I*A1*A3*A2*A3I"], ["A1*A3I*A3I*A1I*A2*A3I*A1I"], ["A1I*A2I*A2I"], ["ID3"], ["A1I*A2*A2*A1*A2I"], ["A1I*A2I*A1*A3*A2I*A2I"], ["A3I"], ["A1*A2*A2*A1I*A2I*A1*A3*A1I"], ["A2"], ["A1I*A2I*A1*A2*A2"], ["A2*A2*A1I*A3I*A1*A2I"], ["A2I*A2I"], ["A2"], ["A2*A2*A1I*A3I*A2*A1*A2I*A2I"], ["A1I*A2I*A3I*A3I*A1*A2I*A2I*A2I"], ["A2*A2*A2*A3I*A1I*A3I*A3I*A3I"], ["A2*A1I*A3I*A3I*A3I*A1I*A3I*A3I*A3I"], ["A2*A2*A2*A3I*A2I"], ["A2*A2*A1*A3"], ["A3*A1*A3*A3*A3"], ["A2*A2*A2"], ["A1I*A2I"], ["A1*A3I*A2I*A1*A3"], ["A1I*A2I*A2I*A1I*A2*A2*A1"], ["A1I*A2I*A2I*A1I*A2"], ["A1I*A2I*A2I*A1I*A3I"], ["A2*A1"], ["A3*A2I*A2I*A2I*A3*A3*A3*A1"], ["A1*A3I*A2I"], ["A1"], ["A1*A3I*A1*A3*A2I*A2I"], ["A1I*A2*A2*A3*A1*A3I*A1I*A2I*A2I"], ["A1*A3I*A2I*A1*A3I"], ["A2*A1I*A2I"], ["A1I*A2I*A3I*A3I"], ["A2*A1I*A1I*A3I*A3I*A3I*A2*A2*A1"], ["A2*A2*A1I*A3*A1"], ["A1I*A2I*A3I*A3I*A1*A3I"], ["A1I*A2I*A1*A2*A2"], ["A1*A2*A1I*A1I*A3I*A3I*A3I*A2*A1"], ["A2*A2*A1I*A3*A1*A2I"], ["A1I*A2I*A3I*A3I*A1"], ["A2*A1I*A2I*A2I"], ["A2*A1I*A2I*A2I*A2I*A3I"], ["A1*A3*A2I*A2I*A2I*A3*A3*A3*A1"]]; // Checking that pilist2 has the stated property: // for ii in [1 .. 72] do // testmat:=pilist2[ii]*gamma12doublecosetlist[ii]; // testquant:=testmat[1][2]*(z-1)+testmat[1][3] - c*(testmat[2][2]*(z-1)+testmat[2][3]); // if (testquant eq 0) then print "For ii = ",ii,piwordlist2[ii],"gives a pi such that pi*t_i*xi_12 isnin M_c"; end if; // testquant:=testmat[1][2]*(z-1)+testmat[1][3] - (-c)*(testmat[2][2]*(z-1)+testmat[2][3]); // if (testquant eq 0) then print "For ii = ",ii,piwordlist2[ii],"gives a pi such that pi*t_i*xi_12 is in M_(-c)"; end if; // testmat:=BI*pilist2[ii]*gamma12doublecosetlist[ii]; // testquant:=testmat[1][2]*(z-1)+testmat[1][3] - c*(testmat[2][2]*(z-1)+testmat[2][3]); // if (testquant eq 0) then print "For ii = ",ii,piwordlist2[ii],"gives a pi such that pi*t_i*xi_12 is in b(M_c)"; end if; // testmat:=B*pilist2[ii]*gamma12doublecosetlist[ii]; // testquant:=testmat[1][2]*(z-1)+testmat[1][3] - c*(testmat[2][2]*(z-1)+testmat[2][3]); // if (testquant eq 0) then print "For ii = ",ii,piwordlist2[ii],"gives a pi such that pi*t_i*xi_12 is in b^-1(M_c)"; end if; // end for; // For ii = 1, A1I*A2I*A2I*A1I*A1I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 2, A1*A3I*A3I*A1I*A2 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 3, A1*A3I*A1*A3*A1 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 4, A2I*A2I*A2I*A3*A3 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 5, A1*A3I*A1I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 6, A1I*A2I*A1*A3 gives a pi such that pi*t_i*xi_12 is in M_c // // For ii = 7, A1I*A3I*A3I*A3I*A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 8, A2*A2*A1I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 9, A2*A1I*A2*A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 10, A1I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 11, A2*A2*A1I*A3I*A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 12, A2*A1I*A2I*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // // For ii = 13, A3*A3*A3*A1 gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 14, A2*A2*A2*A1I*A3I gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 15, A2*A1I*A1I*A3I*A1*A3I gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 16, A3*A3*A3*A1*A3*A3 gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 17, A2*A1I*A1I*A3I*A1*A3I*A1I gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 18, A2*A2*A2*A3I gives a pi such that pi*t_i*xi_12 is in b(M_c) // // For ii = 19, A3 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 20, A2*A2*A1*A3*A2*A2*A2 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 21, A3*A1 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 22, ID3 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 23, A2*A2*A1*A3*A1I gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 24, A3*A1*A2 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // // For ii = 25, A1*A3I*A2I*A1*A3I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 26, A1*A3I*A1*A3*A1*A3*A1I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 27, A1I*A2 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 28, A1*A3I*A1*A3*A2*A3I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 29, A1*A3I*A3I*A1I*A2*A3I*A1I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 30, A1I*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 31, ID3 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 32, A1I*A2*A2*A1*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 33, A1I*A2I*A1*A3*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // // For ii = 34, A3I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 35, A1*A2*A2*A1I*A2I*A1*A3*A1I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 36, A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 37, A1I*A2I*A1*A2*A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 38, A2*A2*A1I*A3I*A1*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 39, A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 40, A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 41, A2*A2*A1I*A3I*A2*A1*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 42, A1I*A2I*A3I*A3I*A1*A2I*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // // For ii = 43, A2*A2*A2*A3I*A1I*A3I*A3I*A3I gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 44, A2*A1I*A3I*A3I*A3I*A1I*A3I*A3I*A3I gives a pi such that pi*t_i*xi_12 is in b(M_c) // For ii = 45, A2*A2*A2*A3I*A2I gives a pi such that pi*t_i*xi_12 is in b(M_c) // // For ii = 46, A2*A2*A1*A3 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 47, A3*A1*A3*A3*A3 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // For ii = 48, A2*A2*A2 gives a pi such that pi*t_i*xi_12 is in b^-1(M_c) // // For ii = 49, A1I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 50, A1*A3I*A2I*A1*A3 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 51, A1I*A2I*A2I*A1I*A2*A2*A1 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 52, A1I*A2I*A2I*A1I*A2 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 53, A1I*A2I*A2I*A1I*A3I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 54, A2*A1 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 55, A3*A2I*A2I*A2I*A3*A3*A3*A1 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 56, A1*A3I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 57, A1 gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 58, A1*A3I*A1*A3*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 59, A1I*A2*A2*A3*A1*A3I*A1I*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_c // For ii = 60, A1*A3I*A2I*A1*A3I gives a pi such that pi*t_i*xi_12 is in M_c // // For ii = 61, A2*A1I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 62, A1I*A2I*A3I*A3I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 63, A2*A1I*A1I*A3I*A3I*A3I*A2*A2*A1 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 64, A2*A2*A1I*A3*A1 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 65, A1I*A2I*A3I*A3I*A1*A3I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 66, A1I*A2I*A1*A2*A2 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 67, A1*A2*A1I*A1I*A3I*A3I*A3I*A2*A1 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 68, A2*A2*A1I*A3*A1*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 69, A1I*A2I*A3I*A3I*A1 gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 70, A2*A1I*A2I*A2I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 71, A2*A1I*A2I*A2I*A2I*A3I gives a pi such that pi*t_i*xi_12 is in M_(-c) // For ii = 72, A1*A3*A2I*A2I*A2I*A3*A3*A3*A1 gives a pi such that pi*t_i*xi_12 is in M_(-c) // Here is the routine used to find the list pilist2: // Tlist:=gamma12doublecosetlist; // Twordlist:=gamma12doublecosetwordlist; // // xi12:=VecSpaceL![0,z-1,1]; // // nubetalist:=[[0,4],[0,8],[1,4],[-1,4]]; // Mlist:=["M_c","M_{-c}","b(M_c)","b^-1(M_c)"]; // // genlist:=[MatsL | ID3,A1,A1I,A2,A2I,A3,A3I]; // genletters:=[[],["A1"],["A1I"],["A2"],["A2I"],["A3"],["A3I"]]; // possiblefollowingletters:=[ // [1,2,3,4,5,6,7], // [2,4,5,6,7], // [3,4,5,6,7], // [2,3,4,6,7], // [2,3,5,6,7], // [2,3,4,5,6], // [2,3,4,5,7]]; // // kalphalist:=[MatsL | kppp,kppm,kpmp,kpmm,kmpp,kmpm,kmmp,kmmm]; // alphalist:=["ppp","ppm","pmp","pmm","mpp","mpm","mmp","mmm"]; // for tidx in [1 .. 72] do // print "Doing the case tidx=",tidx; // for idx in [1 .. 4] do // //print "Case",idx; // nu:=nubetalist[idx][1]; // beta:=nubetalist[idx][2]; // firstlist:=[MatsL | kalphalist[beta]^-1*B^(-nu)*ID3,kalphalist[beta]^-1*B^(-nu)*A1,kalphalist[beta]^-1*B^(-nu)*A1I,kalphalist[beta]^-1*B^(-nu)*A2, // kalphalist[beta]^-1*B^(-nu)*A2I,kalphalist[beta]^-1*B^(-nu)*A3,kalphalist[beta]^-1*B^(-nu)*A3I]; // // lastlist:=[VecSpaceL | Tlist[tidx]*xi12,A1*Tlist[tidx]*xi12,A1I*Tlist[tidx]*xi12,A2*Tlist[tidx]*xi12,A2I*Tlist[tidx]*xi12,A3*Tlist[tidx]*xi12,A3I*Tlist[tidx]*xi12]; // for i1 in [1 .. 7] do // for i2 in possiblefollowingletters[i1] do // tmpmat1:=firstlist[i1]*genlist[i2]; // for i3 in possiblefollowingletters[i2] do // tmpmat2:=tmpmat1*genlist[i3]; // for i4 in possiblefollowingletters[i3] do // tmpmat3:=tmpmat2*genlist[i4]; // for i5 in possiblefollowingletters[i4] do // tmpmat4:=tmpmat3*genlist[i5]; // for i6 in possiblefollowingletters[i5] do // tmpmat5:=tmpmat4*genlist[i6]; // for i7 in possiblefollowingletters[i6] do // tmpmat6:=tmpmat5*genlist[i7]; // for i8 in possiblefollowingletters[i7] do // tmpmat7:=tmpmat6*genlist[i8]; // for i9 in possiblefollowingletters[i8] do // MM:=tmpmat7*lastlist[i9]; // if (MM[1][1] eq c*MM[2][1]) then // print genletters[i1] cat genletters[i2] cat genletters[i3] cat genletters[i4] cat genletters[i5] cat genletters[i6] cat genletters[i7] cat genletters[i8] cat genletters[i9] cat ["hello"] cat Twordlist[tidx],"*xi12 is in ",Mlist[idx]; // // break i1; // break idx; // end if; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // end for; // End of calculations for Proposition 8. // ************************************** // Calculations for the table in Section 2.8. // ****************************************** // Calculations with the abelianization map $f:\Pi\to\Z^2$: // We first set up the space $\Z^2$ of integer pairs $(m,n)$: Z2:=RMatrixSpace(IntegerRing(),1,2); // Here are the images in $\Z^2$ of the generators $a_1$, $a_2$ and $a_3$ of $\Pi$: f1:=Z2![1,3]; f2:=Z2![-2,1]; f3:=Z2![-1,-1]; f1I:=-f1; f2I:=-f2; f3I:=-f3; // // To calculate $f(\pi)$ for some specific elements $\pi$, it // is useful to first calculate $f(j^4a_ij^{-4})$ and $f(j^{-4}a_ij^4)$, // as we now do: // // Recall that the following are zero: // // // J^4*A1*J^8 - z^3*A3*A2I^3*A3^3*A1; // // J^4*A2*J^8 - (1/z)*A3I; // // J^4*A3*J^8 - (1/z)*A1I*A2I*A1*A2^2*A1I*A2I*A1*A3I*A1I*A2*A1; // // // // J^4*A1I*J^8 - (1/z^3)*(A1I*A3I*A3I*A3I*A2*A2*A2*A3I); // // J^4*A2I*J^8 - (z)*A3; // // J^4*A3I*J^8 - (z)*(A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1); // // // // J^8*A1*J^4 - (1/z^4)*A1I*A3I*A3I*A3I*A2*A2*A2*A3I*A1I; // // J^8*A2*J^4 - A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1; // // J^8*A3*J^4 - (1/z)*A2I; // // // // J^8*A1I*J^4 - (z^4)*A1*A3*A2I*A2I*A2I*A3*A3*A3*A1; // // J^8*A2I*J^4 - A1I*A2I*A1*A2*A2*A1I*A2I*A1*A3I*A1I*A2*A1; // // J^8*A3I*J^4 - (z)*A2; // We'll write Bi for J^4*Ai*J^(-4) and Ci for J^(-4)*Ai*J^4: // // B1:=z^3*A3*A2I^3*A3^3*A1; // B2:=(1/z)*A3I; // B3:=(1/z)*A1I*A2I*A1*A2^2*A1I*A2I*A1*A3I*A1I*A2*A1; // // B1I:=(1/z^3)*(A1I*A3I*A3I*A3I*A2*A2*A2*A3I); // B2I:=(z)*A3; // B3I:=(z)*(A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1); // // C1:=(1/z^4)*A1I*A3I*A3I*A3I*A2*A2*A2*A3I*A1I; // C2:=A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1; // C3:=(1/z)*A2I; // // C1I:=(z^4)*A1*A3*A2I*A2I*A2I*A3*A3*A3*A1; // C2I:=A1I*A2I*A1*A2*A2*A1I*A2I*A1*A3I*A1I*A2*A1; // C3I:=(z)*A2; // Here are the images of $j^4a_ij^{-4}$ under $f$: j4f1:=f3+f2I+f2I+f2I+f3+f3+f3+f1; j4f2:=f3I; j4f3:=f1I+f2I+f1+f2+f2+f1I+f2I+f1+f3I+f1I+f2+f1; j4f1I:=-j4f1; j4f2I:=-j4f2; j4f3I:=-j4f3; // and here are the images of $j^8a_ij^{-8}$ under $f$: j8f1:=f1I+f3I+f3I+f3I+f2+f2+f2+f3I+f1I; j8f2:=f1I+f2I+f1+f3+f1I+f2+f1+f2I+f2I+f1I+f2+f1; j8f3:=f2I; j8f1I:=-j8f1; j8f2I:=-j8f2; j8f3I:=-j8f3; // Calculations for $\Pi_0$: // ************************* // Here are the images under the abelianization map f of the generators of $\Pi_0$: fg1:=f3I+f3I+f3I+f1I+f2+f1; // [1,4] fg3:=f2+f1I+f1I+f3I+f3I+f3I+f1I; // [-2,-5] fg5:=j4f2+j4f1+f2I+f3+f3+f3+f1+f1; // [5,-1] fg7:=j4f1I+j4f2I+j8f2+j8f1; // [-7,2] fg2:=j4f3I+j4f3I+j4f3I+j4f1I+j4f2+j4f1; // [4,-5] fg4:=j4f2+j4f1I+j4f1I+j4f3I+j4f3I+j4f3I+j4f1I; // [-5,7] fg6:=j8f2+j8f1+j4f2I+j4f3+j4f3+j4f3+j4f1+j4f1; // [-1,-4] fg8:=j8f1I+j8f2I+f2+f1; // [2,5] fg1I:=-fg1; fg2I:=-fg2; fg3I:=-fg3; fg4I:=-fg4; fg5I:=-fg5; fg6I:=-fg6; fg7I:=-fg7; fg8I:=-fg8; // Recall that the generators $u_i$ and $v_i$ we found satisfying the standard // surface relation are conjugates of Di's and Ei's, respectively, where D1:=g1*g2*g3*g4*g5*g6*g7; D2:=g1*g2*g3*g4; D3:=g1; D4:=g3I; E1:=g8*g1I*g3I*g5I; E2:=g5*g6*g2I; E3:=g2*g3*g6I; E4:=g6; // Explicitly: U1:=D1; V1:=E1; U2:=E1*D2*E1^-1; V2:=E1*E2*E1^-1; U3:=E1*E2*D3*E2^-1*E1^-1; V3:=E1*E2*E3*E2^-1*E1^-1; U4:=E1*E2*E3*D4*E3^-1*E2^-1*E1^-1; V4:=E1*E2*E3*E4*E3^-1*E2^-1*E1^-1; // So the following are the images under $f$ of the $D_i$ and $E_i$ for // $\Pi_0$, which are the same as the images under $f$ of the $u_i$ and $v_i$, respectively fD1:=fg1+fg2+fg3+fg4+fg5+fg6+fg7; // = [-5,-2] fD2:=fg1+fg2+fg3+fg4; // = [-2,1] fD3:=fg1; // = [1,4] fD4:=fg3I; // = [2,5] fE1:=fg8+fg1I+fg3I+fg5I; // = [-2,7] fE2:=fg5+fg6+fg2I; // = [0,0] fE3:=fg2+fg3+fg6I; // = [3,-6] fE4:=fg6; // = [-1,-4] // These are the numbers in the first row of the table in Section 2.8. // // Now we repeat for $\Pi_1$ and $\Pi_\infty$: // // The following are zero: kplus1*g1*kplus1^-1 - (z^2)*A2I*A2I*A2I*A3*A3*A3*A1*A2*A1*A3*A1*A2; kplus1*g3*kplus1^-1 - (z^3)*J^4*(A2I*A2I*A1I*A3I*A1*A2*A2*A1I*A2I*A1)*J^8; kplus1*g5*kplus1^-1 - (z^5)*J^8*(A1I*A3I*A1*A2*A2*A1I*A2I*A1*A3*A3)*J^4; kplus1*g7*kplus1^-1 - (-z)*J^4*(A1I*A1I*A3I*A3I*A3I*A1I*A3I)*J^8; // The following are zero: kinfty*g1*kinfty^-1 - (1/z^4)*J^4*A1I*A3I*A3I*A1I*J^8*A1I*A2I; kinfty*g3*kinfty^-1 - (1/z^2)*J^8*A3*A1*A2*A1I*A2I*J^4; kinfty*g5*kinfty^-1 - (1/z)*J^8*A2I*A3I*J^4; kinfty*g7*kinfty^-1 - (1/z^2)*J^4*A1*A3*A1I*A3I*A3I*J^8; // // So we can get the images under $f$ of the generators $g_i'$ and $g_i''$ of $\Pi_1$ and $\Pi_\infty$: // // The images of g_1', g_3', g_5' and g_7' are fg1d:=f2I+f2I+f2I+f3+f3+f3+f1+f2+f1+f3+f1+f2; fg3d:=j4f2I+j4f2I+j4f1I+j4f3I+j4f1+j4f2+j4f2+j4f1I+j4f2I+j4f1; fg5d:=j8f1I+j8f3I+j8f1+j8f2+j8f2+j8f1I+j8f2I+j8f1+j8f3+j8f3; fg7d:=j4f1I+j4f1I+j4f3I+j4f3I+j4f3I+j4f1I+j4f3I; // // // Recall that the following are zero: // // kplus1*g2*kplus1^-1 - J^4*(kplus1*g1*kplus1^-1)*J^8; // // kplus1*g4*kplus1^-1 - J^4*(kplus1*g3*kplus1^-1)*J^8; // // kplus1*g6*kplus1^-1 - J^4*(kplus1*g5*kplus1^-1)*J^8; // // kplus1*g8*kplus1^-1 - J^4*(kplus1*g7*kplus1^-1)*J^8; // // So the images of g_2', g_4', g_6' and g_8' are fg2d:=j4f2I+j4f2I+j4f2I+j4f3+j4f3+j4f3+j4f1+j4f2+j4f1+j4f3+j4f1+j4f2; fg4d:=j8f2I+j8f2I+j8f1I+j8f3I+j8f1+j8f2+j8f2+j8f1I+j8f2I+j8f1; fg6d:=f1I+f3I+f1+f2+f2+f1I+f2I+f1+f3+f3; fg8d:=j8f1I+j8f1I+j8f3I+j8f3I+j8f3I+j8f1I+j8f3I; // // // The following are zero: // kinfty*g1*kinfty^-1 - (1/z^4)*J^4*A1I*A3I*A3I*A1I*J^8*A1I*A2I; // kinfty*g3*kinfty^-1 - (1/z^2)*J^8*A3*A1*A2*A1I*A2I*J^4; // kinfty*g5*kinfty^-1 - (1/z)*J^8*A2I*A3I*J^4; // kinfty*g7*kinfty^-1 - (1/z^2)*J^4*A1*A3*A1I*A3I*A3I*J^8; // // The images of g_1'', g_3'', g_5'' and g_7'' are fg1dd:=j4f1I+j4f3I+j4f3I+j4f1I+f1I+f2I; fg3dd:=j8f3+j8f1+j8f2+j8f1I+j8f2I; fg5dd:=j8f2I+j8f3I; fg7dd:=j4f1+j4f3+j4f1I+j4f3I+j4f3I; // // // Recall that the following are zero: // // kinfty*g2*kinfty^-1 - J^4*(kinfty*g1*kinfty^-1)*J^8; // // kinfty*g4*kinfty^-1 - J^4*(kinfty*g3*kinfty^-1)*J^8; // // kinfty*g6*kinfty^-1 - J^4*(kinfty*g5*kinfty^-1)*J^8; // // kinfty*g8*kinfty^-1 - J^4*(kinfty*g7*kinfty^-1)*J^8; // // So we can set fg2dd:=j8f1I+j8f3I+j8f3I+j8f1I+j4f1I+j4f2I; fg4dd:=f3+f1+f2+f1I+f2I; fg6dd:=f2I+f3I; fg8dd:=j8f1+j8f3+j8f1I+j8f3I+j8f3I; fg1dI:=-fg1d; fg2dI:=-fg2d; fg3dI:=-fg3d; fg4dI:=-fg4d; fg5dI:=-fg5d; fg6dI:=-fg6d; fg7dI:=-fg7d; fg8dI:=-fg8d; fg1ddI:=-fg1dd; fg2ddI:=-fg2dd; fg3ddI:=-fg3dd; fg4ddI:=-fg4dd; fg5ddI:=-fg5dd; fg6ddI:=-fg6dd; fg7ddI:=-fg7dd; fg8ddI:=-fg8dd; // So here are the images under $f$ of the $D_i$'s and $E_i$'s of $\Pi_\infty$, // where are the same as the images under $f$ of the canonical generators $u_i$ and $v_i$. fD1dd:=fg1dd+fg2dd+fg3dd+fg4dd+fg5dd+fg6dd+fg7dd; // =[-1,2] fD2dd:=fg1dd+fg2dd+fg3dd+fg4dd; // =[-2,1] fD3dd:=fg1dd; // =[-3,0] fD4dd:=fg3ddI; // =[-2,1] fE1dd:=fg8dd+fg1ddI+fg3ddI+fg5ddI; // =[2,-1] fE2dd:=fg5dd+fg6dd+fg2ddI; // =[0,0] fE3dd:=fg2dd+fg3dd+fg6ddI; // =[-1,2] fE4dd:=fg6dd; // =[3,0] // These are the entries in the second row of the table of Section 2.8. // // So here are the images under $f$ of the $D_i$'s and $E_i$'s of $\Pi_1$, // // where are the same as the images under $f$ of the canonical generators $u_i$ and $v_i$. fD1d:=fg1d+fg2d+fg3d+fg4d+fg5d+fg6d+fg7d; // =[-3,0] fD2d:=fg1d+fg2d+fg3d+fg4d; // =[2,-1] fD3d:=fg1d; // =[1,4] fD4d:=fg3dI; // =[0,3] fE1d:=fg8d+fg1dI+fg3dI+fg5dI; // =[0,3] fE2d:=fg5d+fg6d+fg2dI; // =[-4,2] fE3d:=fg2d+fg3d+fg6dI; // =[7,-8] fE4d:=fg6d; // =[-3,0] // We haven't included these entries in the table of Section 2.8. // The case $M=b(M_c)$: // ******************** // Here are the generators of $\Pi_M$ for $M=b(M_c)$: P1:=(1/z)*A2*A2*A2*A1I*A3I*J^8*A2I*A2I*A1I*J^4; P2:=A3*A3*A3*A1*A3*A3*A2*A1*J^4*A3I*J^8*A3I*A3I*A1I*A3I*A3I*A3I; P3:=z^4*J^8*A1I*A3I*A3I*A3I*A2*A2*J^4*A3I*A3I*A1I*A3I*A3I*A3I; P4:=(1/z^2)*J^8*A2*A1*A2I*A2I*A1I*J^4*A3*A3*A3*A1*A1*A2I; P5:=(1/z^4)*A3*A3*A3*A1*A3*A3*J^4*A1I*J^8*A3*A3*A1*A2I*A2I*A2I; P6:=z^4*A3*A3*A3*A1*A2*A1*A3*A2I*A2I*A2I; P7:=(1/z)*A3*A3*A3*A1*J^8*A1*A2I*A2I*A1I*A3*A3*J^4; P8:=(1/z^2)*J^4*A3I*A3I*J^8*A2*A1*A2*A1*A2I*A2I; P1I:=P1^-1; P2I:=P2^-1; P3I:=P3^-1; P4I:=P4^-1; P5I:=P5^-1; P6I:=P6^-1; P7I:=P7^-1; P8I:=P8^-1; print "Checking the relation satisfied by the Pi's:"; P5I*P2I*P5*P1*P3*P8I*P4*P1I*P7I*P6I*P7*P2*P3I*P8*P4I*P6; // Here are the images under $f$ of the generators of $\Pi_M$ for $M=b(M_c)$: fP1:=f2+f2+f2+f1I+f3I+j8f2I+j8f2I+j8f1I; // [-4,4] fP2:=f3+f3+f3+f1+f3+f3+f2+f1+j4f3I+f3I+f3I+f1I+f3I+f3I+f3I; // [0,2] fP3:=j8f1I+j8f3I+j8f3I+j8f3I+j8f2+j8f2+f3I+f3I+f1I+f3I+f3I+f3I; // [4,0] fP4:=j8f2+j8f1+j8f2I+j8f2I+j8f1I+f3+f3+f3+f1+f1+f2I; // [0,4] fP5:=f3+f3+f3+f1+f3+f3+j4f1I+f3+f3+f1+f2I+f2I+f2I; // [-2,0] fP6:=f3+f3+f3+f1+f2+f1+f3+f2I+f2I+f2I; // [2,0] fP7:=f3+f3+f3+f1+j8f1+j8f2I+j8f2I+j8f1I+j8f3+j8f3; // [0,2] fP8:=j4f3I+j4f3I+f2+f1+f2+f1+f2I+f2I; // [4,2] fP1I:=-fP1; fP2I:=-fP2; fP3I:=-fP3; fP4I:=-fP4; fP5I:=-fP5; fP6I:=-fP6; fP7I:=-fP7; fP8I:=-fP8; // Recall that the generators $u_i$ and $v_i$ we found satisfying the standard // surface relation are conjugates of Di's and Ei's, respectively, where D1:=P5I*P2I*P5*P1*P3*P8I*P4*P1I*P7I; D2:=P5I*P2I*P5*P1*P3*P8I; D3:=P5I*P2I*P5*P1; D4:=P5I; E1:=P6I; E2:=P4*P1I*P2*P3I; E3:=P3; E4:=P2I; // The following are the images under $f$ of the Di's and Ei's // used to form the canonical generators u_i and v_i of $\Pi_M$ for $M=b(M_c)$. // These are the same as the images of the the u_i and v_i, respectively: fD1:=fP5I+fP2I+fP5+fP1+fP3+fP8I+fP4+fP1I+fP7I; // [0,-2] fD2:=fP5I+fP2I+fP5+fP1+fP3+fP8I; // [-4,0] fD3:=fP5I+fP2I+fP5+fP1; // [-4,2] fD4:=fP5I; // [2,0] fE1:=fP6I; // [-2,0] fE2:=fP4+fP1I+fP2+fP3I; // [0,2] fE3:=fP3; // [4,0] fE4:=fP2I; // [0,-2] // These are the entries in the third row of the table in Section 2.8. // The case $M=b^{-1}(M_c)$: // ************************* // Here are the generators of $\Pi_M$ for $M=b^{-1}(M_c)$: M1:=z^2*J^8*A1*A3I*A1I*A2I*A2I*J^8*A2*A1*J^8; M2:=(1/z^3)*J^8*A1*A3*A3*A3*J^4; M3:=(1/z^5)*J^4*A2I*A2I*A1I*A3I*J^8*A1*A3I*A3I*A1I*A2I*A2I; M4:=(-1)*J^8*A1*A3I*A1I*A2*A1I*A2I*J^4*A2I*A2I*A3*A3*A3*A1; M5:=z^4*J^4*A1I*A1I*A3I*A3I*A3I*J^4*A1I*A2I*J^4*A2I*A3*A3*A3*A1; M6:=(1/z^4)*J^4*A1I*A2I*A1*A3*A3*A3*A1*A2I*J^4*A1I*A2I*A2I*A3*A3*A3*J^4; M7:=z^2*A3*A1*A2*J^4*A2*A1*J^8; M8:=(-1)*J^4*A1I*A2I*A1*A2*A2*A1*J^8*A2*A3I*A1I*A2I*A2I; M1I:=M1^-1; M2I:=M2^-1; M3I:=M3^-1; M4I:=M4^-1; M5I:=M5^-1; M6I:=M6^-1; M7I:=M7^-1; M8I:=M8^-1; // Checking the relation satisfied by the $m_i$'s. // The following is the identity matrix: M3*M8I*M4*M5*M7I*M2*M3I*M1*M5I*M7*M4I*M1I*M6*M2I*M6I*M8; // Here are the images under $f$ of the generators of $\Pi_M$ for $M=b^{-1}(M_c)$: fM1:=j8f1+j8f3I+j8f1I+j8f2I+j8f2I+j4f2+j4f1; // [0,2] fM2:=j8f1+j8f3+j8f3+j8f3; // [2,-2] fM3:=j4f2I+j4f2I+j4f1I+j4f3I+f1+f3I+f3I+f1I+f2I+f2I; // [2,0] fM4:=j8f1+j8f3I+j8f1I+j8f2+j8f1I+j8f2I+f2I+f2I+f3+f3+f3+f1; // [4,-2] fM5:=j4f1I+j4f1I+j4f3I+j4f3I+j4f3I+j8f1I+j8f2I+f2I+f3+f3+f3+f1; // [0,2] fM6:=j4f1I+j4f2I+j4f1+j4f3+j4f3+j4f3+j4f1+j4f2I+j8f1I+j8f2I+j8f2I+j8f3+j8f3+j8f3;// [6,0] fM7:=f3+f1+f2+j4f2+j4f1; // [2,0] fM8:=j4f1I+j4f2I+j4f1+j4f2+j4f2+j4f1+f2+f3I+f1I+f2I+f2I; // [6,-6] fM1I:=-fM1; fM2I:=-fM2; fM3I:=-fM3; fM4I:=-fM4; fM5I:=-fM5; fM6I:=-fM6; fM7I:=-fM7; fM8I:=-fM8; // Recall that the generators $u_i$ and $v_i$ for $\Pi_M$ for $M=b^{-1}(M_c)$ // were found satisfying the standard surface relation. They are conjugates of // Di's and Ei's, respectively, where D1:=M3; D2:=M1*M5I*M7*M4I*M1I*M6; D3:=M1*M5I; D4:=M1; E1:=M8I*M4*M5*M7I*M2; E2:=M2I; E3:=M7*M4I*M1I*M4; E4:=M4I; // Here are the images under $f$ of the $D_i$ and $E_i$ // of $\Pi_M$, where $M=b^{-1}(M_c)$. fD1:=fM3; // [2,0] fD2:=fM1+fM5I+fM7+fM4I+fM1I+fM6; // [4,0] fD3:=fM1+fM5I; // [0,0] fD4:=fM1; // [0,2] fE1:=fM8I+fM4+fM5+fM7I+fM2; // [-2,4] fE2:=fM2I; // [-2,2] fE3:=fM7+fM4I+fM1I+fM4; // [2,-2] fE4:=fM4I; // [-4,2] // These values were omitted from the table in Section 2.8. // Calculations with the Abelianization map $f:\Pi\to\Z^2$ // related to $M_c$ and $M_{-c}$. // Recall that the following are J^4*Ai*J^(-4)'s: B1:=z^3*A3*A2I^3*A3^3*A1; B2:=(1/z)*A3I; B3:=(1/z)*A1I*A2I*A1*A2^2*A1I*A2I*A1*A3I*A1I*A2*A1; B1I:=(1/z^3)*(A1I*A3I*A3I*A3I*A2*A2*A2*A3I); B2I:=(z)*A3; B3I:=(z)*(A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1); // Recall that the following are J^(-4)*Ai*J^4's: C1:=(1/z^4)*A1I*A3I*A3I*A3I*A2*A2*A2*A3I*A1I; C2:=A1I*A2I*A1*A3*A1I*A2*A1*A2I*A2I*A1I*A2*A1; C3:=(1/z)*A2I; C1I:=(z^4)*A1*A3*A2I*A2I*A2I*A3*A3*A3*A1; C2I:=A1I*A2I*A1*A2*A2*A1I*A2I*A1*A3I*A1I*A2*A1; C3I:=(z)*A2; // Recall that the 20 generators $g_i$ found for $\Pi_c$ // we described by giving $g_i$ for $i=1,3,5,7,9,12,15,17,19$, // and then using conjugation by $j^4$. // The following are zero: Gc1 - (C1I*C2*C1*C3*C1I*A2*A1); Gc3 - z*(B2*B1*B2I*B2I*B1I*B3*C3*C3*C3); Gc5 - z^4*(C1I*A2*A1*B3*B2I*B1*B3*B1I); Gc7 - (1/z^5)*(C2*C1*A3I*B2*B1I*B2I*B3I*B3I*B3I); Gc9 - z^4*(C1I*C2I*C2I*C1I*C3I*B1I*B2I); Gc12 - (-1)*(A2I*A1*A3*A1I*A3I*B3*B1*B2*B2*B1I*B2I); Gc15 - (z)*(B1*C2*C3*C1I); Gc17 - (1/z^2)*(C1I*C1I*C2I*A3*A1*A2*A1); Gc19 - (1/z)*(A2I*A1*A3*A1I*A3I*A3I*B1*B2*C1I*C2I); print "Finished expressing the Gc_i in terms of the Ai,Bi and Ci,"; print "where Bi=J^4*Ai*J^(-4) and Ci = J^8*Ai*J^(-8):"; // Here are the images of $j^4a_ij^{-4}$ under $f$: j4f1:=f3+f2I+f2I+f2I+f3+f3+f3+f1; j4f2:=f3I; j4f3:=f1I+f2I+f1+f2+f2+f1I+f2I+f1+f3I+f1I+f2+f1; j4f1I:=-j4f1; j4f2I:=-j4f2; j4f3I:=-j4f3; // and here are the images of $j^8a_ij^{-8}$ under $f$: j8f1:=f1I+f3I+f3I+f3I+f2+f2+f2+f3I+f1I; j8f2:=f1I+f2I+f1+f3+f1I+f2+f1+f2I+f2I+f1I+f2+f1; j8f3:=f2I; j8f1I:=-j8f1; j8f2I:=-j8f2; j8f3I:=-j8f3; // So here are the images under $f$ of the 9 generators $g_i$, $i=1,3,5,7,9,12,15,17,19$: fgc1:=j8f1I+j8f2+j8f1+j8f3+j8f1I+f2+f1; fgc3:=j4f2+j4f1+j4f2I+j4f2I+j4f1I+j4f3+j8f3+j8f3+j8f3; fgc5:=j8f1I+f2+f1+j4f3+j4f2I+j4f1+j4f3+j4f1I; fgc7:=j8f2+j8f1+f3I+j4f2+j4f1I+j4f2I+j4f3I+j4f3I+j4f3I; fgc9:=j8f1I+j8f2I+j8f2I+j8f1I+j8f3I+j4f1I+j4f2I; fgc12:=f2I+f1+f3+f1I+f3I+j4f3+j4f1+j4f2+j4f2+j4f1I+j4f2I; fgc15:=j4f1+j8f2+j8f3+j8f1I; fgc17:=j8f1I+j8f1I+j8f2I+f3+f1+f2+f1; fgc19:=f2I+f1+f3+f1I+f3I+f3I+j4f1+j4f2+j8f1I+j8f2I; // From these, we get the images under $f$ of the other 11 generators $g_i$: fgc2:=f1I+f2+f1+f3+f1I+j4f2+j4f1; fgc4:=j8f2+j8f1+j8f2I+j8f2I+j8f1I+j8f3+f3+f3+f3; fgc6:=f1I+j4f2+j4f1+j8f3+j8f2I+j8f1+j8f3+j8f1I; fgc8:=f2+f1+j4f3I+j8f2+j8f1I+j8f2I+j8f3I+j8f3I+j8f3I; fgc10:=f1I+f2I+f2I+f1I+f3I+j8f1I+j8f2I; fgc11:=j4f1I+j4f2I+j4f2I+j4f1I+j4f3I+f1I+f2I; fgc13:=j4f2I+j4f1+j4f3+j4f1I+j4f3I+j8f3+j8f1+j8f2+j8f2+j8f1I+j8f2I; fgc14:=j8f2I+j8f1+j8f3+j8f1I+j8f3I+f3+f1+f2+f2+f1I+f2I; fgc16:=j8f1+f2+f3+f1I; fgc18:=f1I+f1I+f2I+j4f3+j4f1+j4f2+j4f1; fgc20:=j4f2I+j4f1+j4f3+j4f1I+j4f3I+j4f3I+j8f1+j8f2+f1I+f2I; fgc1I:=-fgc1; fgc2I:=-fgc2; fgc3I:=-fgc3; fgc4I:=-fgc4; fgc5I:=-fgc5; fgc6I:=-fgc6; fgc7I:=-fgc7; fgc8I:=-fgc8; fgc9I:=-fgc9; fgc10I:=-fgc10; fgc11I:=-fgc11; fgc12I:=-fgc12; fgc13I:=-fgc13; fgc14I:=-fgc14; fgc15I:=-fgc15; fgc16I:=-fgc16; fgc17I:=-fgc17; fgc18I:=-fgc18; fgc19I:=-fgc19; fgc20I:=-fgc20; print "Finished calculating the images under f of the"; print "generators g_1,...,g_(20) of Pi_c."; // Checking Formula (3) at the end of Section 1.5: // *********************************************** Mats2Z:=MatrixRing(IntegerRing(),2); MM:=Mats2Z![0,-1,1,-1]; // The following are zero: j4f1-f1*MM; j4f2-f2*MM; j4f3-f3*MM; j8f1-j4f1*MM; j8f2-j4f2*MM; j8f3-j4f3*MM; fgc2 - fgc1*MM; fgc4 - fgc3*MM; fgc6 - fgc5*MM; fgc8 - fgc7*MM; fgc10 - fgc9*MM; fgc11 - fgc10*MM; fgc13 - fgc12*MM; fgc14 - fgc13*MM; fgc16 - fgc15*MM; fgc18 - fgc17*MM; fgc20 - fgc19*MM; // The following is the identity matrix: Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I* Gc16I*Gc3I* Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12 *Gc8I*Gc11I*Gc6I*Gc15*Gc16*Gc4I*Gc13I*Gc1I*Gc17*Gc18*Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3; print "word equals ID3"; // Recall that generators $u_i$ and $v_i$ for $\Pi_c$ were found satisfying the standard // surface group relation. They are conjugates in $\Pi_c$ of Di's and Ei's, i=1,...,10, // where D1:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc16I; D2:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc18*Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc6; D3:=Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc18; D4:=Gc4*Gc14I; D5:=Gc4*Gc7I*Gc10I*Gc5I*Gc4I*Gc13I*Gc1I*Gc17*Gc10*Gc19I*Gc12*Gc8I; D6:=Gc4; D7:=Gc13I*Gc1I*Gc17*Gc10*Gc19I*Gc12*Gc9I; D8:=Gc13I*Gc1I; D9:=Gc13I*Gc10*Gc19I; D10:=Gc13I; E1:=Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc8I*Gc11I*Gc6I*Gc15; E2:=Gc15I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc8I*Gc11I; E3:=Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc12I*Gc1*Gc2; E4:=Gc2I*Gc17I*Gc9*Gc19*Gc20; E5:=Gc20I*Gc13*Gc7; E6:=Gc7I*Gc10I*Gc5I; E7:=Gc5*Gc12I*Gc1*Gc17I; E8:=Gc17*Gc10*Gc19I*Gc12*Gc19*Gc13*Gc10I*Gc12I; E9:=Gc12; E10:=Gc10; // The images under $f$ of the $u_i$'s and $v_i$'s are the same as the images under $f$ of the // Di's and Ei's, which we now calculate: // Calculating the images of the Di's and Ei's under the abelianization map: fD1:=fgc4+fgc14I+fgc2I+fgc17I+fgc9+fgc19+fgc20+fgc14+fgc7I+fgc10I+fgc5I+fgc16I; // [4,-2] fD2:=fgc4+fgc14I+fgc2I+fgc17I+fgc9+fgc19+fgc20+fgc14+fgc7I+fgc10I+fgc5I+fgc4I +fgc13I+fgc1I+fgc17+fgc18+fgc11+fgc20I+fgc13+fgc7+fgc8+fgc9I+fgc5+fgc6; // [2,-4] fD3:=fgc4+fgc14I+fgc2I+fgc17I+fgc9+fgc19+fgc20+fgc14+fgc7I+fgc10I+fgc5I+fgc4I+fgc13I+fgc1I+fgc17+fgc18; // [2,-4] fD4:=fgc4+fgc14I; // [2,-4] fD5:=fgc4+fgc7I+fgc10I+fgc5I+fgc4I+fgc13I+fgc1I+fgc17+fgc10+fgc19I+fgc12+fgc8I; // [-6,6] fD6:=fgc4; // [-2,-2] fD7:=fgc13I+fgc1I+fgc17+fgc10+fgc19I+fgc12+fgc9I; // [-4,2] fD8:=fgc13I+fgc1I; // [-8,4] fD9:=fgc13I+fgc10+fgc19I; // [-6,0] fD10:=fgc13I; // [-2,4] fE1:=fgc3I+fgc12I+fgc1+fgc2+fgc18I+fgc10+fgc19I+fgc12+fgc8I+fgc11I+fgc6I+fgc15; // [4,-2] fE2:=fgc15I+fgc12I+fgc1+fgc2+fgc18I+fgc10+fgc19I+fgc12+fgc8I+fgc11I; // [-6,6] fE3:=fgc11+fgc20I+fgc13+fgc7+fgc8+fgc9I+fgc5+fgc12I+fgc1+fgc2; // [-2,-2] fE4:=fgc2I+fgc17I+fgc9+fgc19+fgc20; // [2,-4] fE5:=fgc20I+fgc13+fgc7; // [2,2] fE6:=fgc7I+fgc10I+fgc5I; // [-4,2] fE7:=fgc5+fgc12I+fgc1+fgc17I; // [-2,-2] fE8:=fgc17+fgc10+fgc19I+fgc12+fgc19+fgc13+fgc10I+fgc12I; // [8,2] fE9:=fgc12; // [2,2] fE10:=fgc10; // [6,-6] // The above values, and those calculated next, are the values remarked on right after the table of Section 2.8. // Here are generators for $\bar\Gamma_{-c}$: // The following are zero: kmmm*Gc1*kmmm^-1 - J^4*A1I*A3I*A3I*A3I*A2*A2*J^4*A2I*A2I*A3*A3*A3*A1*J^4; kmmm*Gc3*kmmm^-1 - z^2*J^8*A2*A2*A3*A3*J^4; kmmm*Gc5*kmmm^-1 - (1/z^4)*J^8*A1I*A2I*A1*A2*A2*J^8*A1I*A3I*A3I*A3I*J^8*A2*A1; kmmm*Gc7*kmmm^-1 - (1/z^3)*J^8*A1*A2*A2*A1I*A2I*J^8*A3I*A1I*A2*A1*A2I*J^8; kmmm*Gc9*kmmm^-1 - (1/z^2)*J^8*A1I*A2I*A3I*A3I*A1I*J^8*A2I*A2I*A1I*J^8; kmmm*Gc12*kmmm^-1 - J^4*A1I*A3I*A3I*A3I*A2*A2*J^8*A1I*J^4*A2*A1I*A3*J^8; kmmm*Gc15*kmmm^-1 - z^4*J^8*A2*A1*A3*A1I*J^4*A1I*A3I*A3I*A3I*A1I*A1I*A3I*A3I*A3I; kmmm*Gc17*kmmm^-1 - (1/z^2)*J^8*A1I*A2I*J^4*A1I*A3I*A3I*A3I*J^8*A1*A2I*A3*A3*A3*A1*J^4; kmmm*Gc19*kmmm^-1 - (1/z^2)*J^4*A1*A2*A1I*A1I*A3I*A3I*J^4*A2*A1I*A2I*J^8*A2*A2*A1I*A2I*J^8*A2I; print "Finished finding words for the generators of Pi_(-c):"; print "The following are zero matrices:"; kmmm*Gc1*kmmm^-1 - B1I*B3I*B3I*B3I*B2*B2*C2I*C2I*C3*C3*C3*C1; kmmm*Gc3*kmmm^-1 - z^2*C2*C2*C3*C3; kmmm*Gc5*kmmm^-1 - (1/z^4)*C1I*C2I*C1*C2*C2*B1I*B3I*B3I*B3I*A2*A1; kmmm*Gc7*kmmm^-1 - (1/z^3)*C1*C2*C2*C1I*C2I*B3I*B1I*B2*B1*B2I; kmmm*Gc9*kmmm^-1 - (1/z^2)*C1I*C2I*C3I*C3I*C1I*B2I*B2I*B1I; kmmm*Gc12*kmmm^-1 - B1I*B3I*B3I*B3I*B2*B2*A1I*B2*B1I*B3; kmmm*Gc15*kmmm^-1 - z^4*C2*C1*C3*C1I*A1I*A3I*A3I*A3I*A1I*A1I*A3I*A3I*A3I; kmmm*Gc17*kmmm^-1 - (1/z^2)*C1I*C2I*A1I*A3I*A3I*A3I*C1*C2I*C3*C3*C3*C1; kmmm*Gc19*kmmm^-1 - (1/z^2)*B1*B2*B1I*B1I*B3I*B3I*C2*C1I*C2I*B2*B2*B1I*B2I*A2I; print "Finished finding expressions in Ai, Bi and Ci for the generators of Pi_(-c):"; fgc1d:=j4f1I+j4f3I+j4f3I+j4f3I+j4f2+j4f2+j8f2I+j8f2I+j8f3+j8f3+j8f3+j8f1; fgc3d:=j8f2+j8f2+j8f3+j8f3; fgc5d:=j8f1I+j8f2I+j8f1+j8f2+j8f2+j4f1I+j4f3I+j4f3I+j4f3I+f2+f1; fgc7d:=j8f1+j8f2+j8f2+j8f1I+j8f2I+j4f3I+j4f1I+j4f2+j4f1+j4f2I; fgc9d:=j8f1I+j8f2I+j8f3I+j8f3I+j8f1I+j4f2I+j4f2I+j4f1I; fgc12d:=j4f1I+j4f3I+j4f3I+j4f3I+j4f2+j4f2+f1I+j4f2+j4f1I+j4f3; fgc15d:=j8f2+j8f1+j8f3+j8f1I+f1I+f3I+f3I+f3I+f1I+f1I+f3I+f3I+f3I; fgc17d:=j8f1I+j8f2I+f1I+f3I+f3I+f3I+j8f1+j8f2I+j8f3+j8f3+j8f3+j8f1; fgc19d:=j4f1+j4f2+j4f1I+j4f1I+j4f3I+j4f3I+j8f2+j8f1I+j8f2I+j4f2+j4f2+j4f1I+j4f2I+f2I; fgc2d:=j8f1I+j8f3I+j8f3I+j8f3I+j8f2+j8f2+f2I+f2I+f3+f3+f3+f1; fgc4d:=f2+f2+f3+f3; fgc6d:=f1I+f2I+f1+f2+f2+j8f1I+j8f3I+j8f3I+j8f3I+j4f2+j4f1; fgc8d:=f1+f2+f2+f1I+f2I+j8f3I+j8f1I+j8f2+j8f1+j8f2I; fgc10d:=f1I+f2I+f3I+f3I+f1I+j8f2I+j8f2I+j8f1I; fgc11d:=j4f1I+j4f2I+j4f3I+j4f3I+j4f1I+f2I+f2I+f1I; fgc13d:=j8f1I+j8f3I+j8f3I+j8f3I+j8f2+j8f2+j4f1I+j8f2+j8f1I+j8f3; fgc14d:=f1I+f3I+f3I+f3I+f2+f2+j8f1I+f2+f1I+f3; fgc16d:=f2+f1+f3+f1I+j4f1I+j4f3I+j4f3I+j4f3I+j4f1I+j4f1I+j4f3I+j4f3I+j4f3I; fgc18d:=f1I+f2I+j4f1I+j4f3I+j4f3I+j4f3I+f1+f2I+f3+f3+f3+f1; fgc20d:=j8f1+j8f2+j8f1I+j8f1I+j8f3I+j8f3I+f2+f1I+f2I+j8f2+j8f2+j8f1I+j8f2I+j4f2I; fgc1d:=j4f1I+j4f3I+j4f3I+j4f3I+j4f2+j4f2+j8f2I+j8f2I+j8f3+j8f3+j8f3+j8f1; // [2,2] fgc2d:=j8f1I+j8f3I+j8f3I+j8f3I+j8f2+j8f2+f2I+f2I+f3+f3+f3+f1; // [2,-4] fgc3d:=j8f2+j8f2+j8f3+j8f3; // [6,-6] fgc4d:=f2+f2+f3+f3; // [-6,0] fgc5d:=j8f1I+j8f2I+j8f1+j8f2+j8f2+j4f1I+j4f3I+j4f3I+j4f3I+f2+f1; // [0,0] fgc6d:=f1I+f2I+f1+f2+f2+j8f1I+j8f3I+j8f3I+j8f3I+j4f2+j4f1; // [0,0] fgc7d:=j8f1+j8f2+j8f2+j8f1I+j8f2I+j4f3I+j4f1I+j4f2+j4f1+j4f2I; // [2,-4] fgc8d:=f1+f2+f2+f1I+f2I+j8f3I+j8f1I+j8f2+j8f1+j8f2I; // [-4,2] fgc9d:=j8f1I+j8f2I+j8f3I+j8f3I+j8f1I+j4f2I+j4f2I+j4f1I; // [-2,4] fgc10d:=f1I+f2I+f3I+f3I+f1I+j8f2I+j8f2I+j8f1I; // [4,-2] fgc11d:=j4f1I+j4f2I+j4f3I+j4f3I+j4f1I+f2I+f2I+f1I; // [-2,-2] fgc12d:=j4f1I+j4f3I+j4f3I+j4f3I+j4f2+j4f2+f1I+j4f2+j4f1I+j4f3; // [-2,4] fgc13d:=j8f1I+j8f3I+j8f3I+j8f3I+j8f2+j8f2+j4f1I+j8f2+j8f1I+j8f3; // [4,-2] fgc14d:=f1I+f3I+f3I+f3I+f2+f2+j8f1I+f2+f1I+f3; // [-2,-2] fgc15d:=j8f2+j8f1+j8f3+j8f1I+f1I+f3I+f3I+f3I+f1I+f1I+f3I+f3I+f3I; // [6,-6] fgc16d:=f2+f1+f3+f1I+j4f1I+j4f3I+j4f3I+j4f3I+j4f1I+j4f1I+j4f3I+j4f3I+j4f3I; // [-6,0] fgc17d:=j8f1I+j8f2I+f1I+f3I+f3I+f3I+j8f1+j8f2I+j8f3+j8f3+j8f3+j8f1; // [2,2] fgc18d:=f1I+f2I+j4f1I+j4f3I+j4f3I+j4f3I+f1+f2I+f3+f3+f3+f1; // [2,-4] fgc19d:=j4f1+j4f2+j4f1I+j4f1I+j4f3I+j4f3I+j8f2+j8f1I+j8f2I+j4f2+j4f2+j4f1I+j4f2I+f2I;// [4,4] fgc20d:=j8f1+j8f2+j8f1I+j8f1I+j8f3I+j8f3I+f2+f1I+f2I+j8f2+j8f2+j8f1I+j8f2I+j4f2I; // [4,-8] fgc1dI:=-fgc1d; fgc2dI:=-fgc2d; fgc3dI:=-fgc3d; fgc4dI:=-fgc4d; fgc5dI:=-fgc5d; fgc6dI:=-fgc6d; fgc7dI:=-fgc7d; fgc8dI:=-fgc8d; fgc9dI:=-fgc9d; fgc10dI:=-fgc10d; fgc11dI:=-fgc11d; fgc12dI:=-fgc12d; fgc13dI:=-fgc13d; fgc14dI:=-fgc14d; fgc15dI:=-fgc15d; fgc16dI:=-fgc16d; fgc17dI:=-fgc17d; fgc18dI:=-fgc18d; fgc19dI:=-fgc19d; fgc20dI:=-fgc20d; // Recall that generators $u_i$ and $v_i$ for $\Pi_{-c}$ were found satisfying the standard // surface group relation. They are conjugates in $\Pi_{-c}$ of Di's and Ei's, i=1,...,10, // which are obtained from the original generators of $\Pi_{-c}$ in exactly the same way // as was done for the group $\Pi_c$. // Calculating the images of the Di's and Ei's under the abelianization map: fD1d:=fgc4d+fgc14dI+fgc2dI+fgc17dI+fgc9d+fgc19d+fgc20d+fgc14d+fgc7dI+fgc10dI+fgc5dI+fgc16dI; // [-4,8] fD2d:=fgc4d+fgc14dI+fgc2dI+fgc17dI+fgc9d+fgc19d+fgc20d+fgc14d+fgc7dI+fgc10dI+fgc5dI+fgc4dI +fgc13dI+fgc1dI+fgc17d+fgc18d+fgc11d+fgc20dI+fgc13d+fgc7d+fgc8d+fgc9dI+fgc5d+fgc6d; // [-8,4] fD3d:=fgc4d+fgc14dI+fgc2dI+fgc17dI+fgc9d+fgc19d+fgc20d+fgc14d+fgc7dI+fgc10dI+fgc5dI+fgc4dI+fgc13dI+fgc1dI+fgc17d+fgc18d; // [-6,6] fD4d:=fgc4d+fgc14dI; // [-4,2] fD5d:=fgc4d+fgc7dI+fgc10dI+fgc5dI+fgc4dI+fgc13dI+fgc1dI+fgc17d+fgc10d+fgc19dI+fgc12d+fgc8dI; // [-8,4] fD6d:=fgc4d; // [-6,0] fD7d:=fgc13dI+fgc1dI+fgc17d+fgc10d+fgc19dI+fgc12d+fgc9dI; // [-4,-4] fD8d:=fgc13dI+fgc1dI; // [-6,0] fD9d:=fgc13dI+fgc10d+fgc19dI; // [-4,-4] fD10d:=fgc13dI; // [-4,2] fE1d:=fgc3dI+fgc12dI+fgc1d+fgc2d+fgc18dI+fgc10d+fgc19dI+fgc12d+fgc8dI+fgc11dI+fgc6dI+fgc15d; // [8,-4] fE2d:=fgc15dI+fgc12dI+fgc1d+fgc2d+fgc18dI+fgc10d+fgc19dI+fgc12d+fgc8dI+fgc11dI; // [2,2] fE3d:=fgc11d+fgc20dI+fgc13d+fgc7d+fgc8d+fgc9dI+fgc5d+fgc12dI+fgc1d+fgc2d; // [4,-8] fE4d:=fgc2dI+fgc17dI+fgc9d+fgc19d+fgc20d; // [2,2] fE5d:=fgc20dI+fgc13d+fgc7d; // [2,2] fE6d:=fgc7dI+fgc10dI+fgc5dI; // [-6,6] fE7d:=fgc5d+fgc12dI+fgc1d+fgc17dI; // [2,-4] fE8d:=fgc17d+fgc10d+fgc19dI+fgc12d+fgc19d+fgc13d+fgc10dI+fgc12dI; // [6,0] fE9d:=fgc12d; // [-2,4] fE10d:=fgc10d; // [4,-2] // These values, and those calculated for $\bar\Gamma_c$ above, are the values remarked on right after the table of Section 2.8. // End of calculations for the table in Section 2.8. // ************************************************* // Calculations for Proposition 11. // ******************************** // The following elements are in $\Pi$, as shown in the file // cs-surface-presentations_magma.txt. elt1:=B^-1*(V*U*J*J*J)*(B*U*V)*(V*U*J*J*J)^-1*B^1*J^-4; elt2:=B^0*(UI*V*J)*(B*U*V)*(UI*V*J)^-1*B^0*J^-4; elt3:=B^1*(U*V*V*J*J)*(B*U*V)*(U*V*V*J*J)^-1*B^-1*J^-4; elt4:=B^-1*(V*V*U*J*J*J)*(B*U*V)*(V*V*U*J*J*J)^-1*B^1*J^-4; elt5:=B^0*(V*J*J)*(B*U*V)*(V*J*J)^-1*B^0*J^-4; elt6:=B^1*(V*UI*V)*(B*U*V)*(V*UI*V)^-1*B^-1*J^-4; // Here we confirm that the six elements are in $\Pi$ by exhibiting // words for each of them in the generators of $\Pi$. // The following are zero: elt1 - z^4*A2*A2*A1*A3*A3*A3; elt2 - J^8*A1*J^4; elt3 - z^2*J^8*A1*A2*A2*A2*J^4*A2*A1*A2I*A2I*A1I; elt4 - (1/z^5)*A3*A3*A3*A1*A1*A3*A3*A3; elt5 - (1/z)*J^4*A1I*A2I*J^8; elt6 - z*A2*A1I; // Here are the three elements $\pi_0$, $\pi_1$ and $\pi_{-1}$ // appearing in Equation (14), in the proof of Proposition 11. // The following are zero, showing that // $b^\mu j^4b^{-\mu}j^{-4}=\pi_\nu\in\Pi$ for $\pi_0=1$, // $\pi_1=a_2a_1^{-2}a_3^{-3}a_1^{-1}$ and // $\pi_{-1}=a_2^2a_1a_3a_1^{-1}$. pi0:=ID3; pi1:=(1/z^4)*A2*A1I^2*A3I^3*A1I; pim1:=A2^2*A1*A3*A1I; // The following are zero: B^0*J^4*BI^0*JI^4 - pi0; B*J^4*BI*JI^4 - pi1; BI*J^4*B*JI^4 - pim1; // Here are the images under the abelianization map $f$ of $\pi_0$, $\pi_1$ and $\pi_{-1}$: fpi0:=Z2!0; fpi1:=f2+f1I+f1I+f3I+f3I+f3I+f1I; fpim1:=f2+f2+f1+f3+f1I; // Here are the images under $f$ of the elements elt1,...,elt6 above. felt1 := f2+f2+f1+f3+f3+f3; // (-6,2) felt2 := j8f1; // (-4,1) felt3 := j8f1+j8f2+j8f2+j8f2+f2+f1+f2I+f2I+f1I; // (1,-6) felt4 := f3+f3+f3+f1+f1+f3+f3+f3; // (-4,0) felt5 := j4f1I+j4f2I; // (-4,3) felt6 := f2+f1I; // (-3,-2) // End of calculations for Proposition 11. // ***************************************