// This file is in Magma syntax. It deals with calculations involving // the presentations of various groups. There is a second file in the same // directory called cs-surface-matrices_magma.txt which deals with matrix calculations. // Here is the presentation of $\bar\Gamma$ found in [CS2] // The relations in relnlist below are those listed in Theorem 1. F:=FreeGroup(3); relnlist:={ xu^3, xv^4, (xu*xv)^2*(xv*xu)^(-2), xb^3, xb*xv*xb^-1*xv^-1, (xb*xu*xv)^3, (xb*xu*xv*xu)^2*xv}; G,phi:=quo< F | relnlist>; u:=phi(xu); v:=phi(xv); b:=phi(xb); j:=(u*v)^2; ui:=u^-1; vi:=v^-1; bi:=b^-1; ji:=j^-1; // Setting up a convenient list of elements of $K=\langle u,v\rangle$. // Here is a transversal in $K$ for the cyclic subgroup generated by $j=(uv)^2$. // That is, it is a list $t_1,\ldots,t_{24}$ of 24 elements of $K$ so that $K$ // is a union of the 24 cosets $t_a\langle j\rangle$ of the subgroup $\langle j\rangle$ of $K$. // This list can be found, for example, but setting up the group $K$ as a finitely // presented group, and using the Transversal(Gp,subgp) command, as follows: FK:=FreeGroup(2); relnlistK:={ yu^3, yv^4, (yu*yv)^2*(yv*yu)^(-2)}; Kgp,phiK:=quo< FK | relnlistK>; uK:=phiK(yu); vK:=phiK(yv); jK:=(uK*vK)^2; uKi:=uK^-1; vKi:=vK^-1; jKi:=jK^-1; print "The order of Kgp is",#Kgp; // Output: 288 ZK:=sub< Kgp | jK>; // The command // Transversal(Kgp,ZK); // gives a transversal of $\langle j\rangle$ in $K$. // The following is a slight edit of the output of that command. Jtransversal:=[ G | Id(G), v, vi, u, ui, v^2, v*u, v*ui, vi*u, u*v, ui*v, u*vi, v^2*u, v^2*ui, v*u*vi, v*ui*v, vi*u*vi, u*v^2, u*vi*u, v^2*u*vi, vi*u*v^2, u*v^2*ui, ui*v^2*u, v*ui*v^2*u]; // Here is a list of the 288 elements of $K$: kklist:=[ G | Jtransversal[i1]*j^i2 : i1 in [1 .. 24], i2 in [0 .. 11]]; jtransversalwordlist:=[ [], ["v"], ["vi"], ["u"], ["ui"], ["v","v"], ["v","u"], ["v","ui"], ["vi","u"], ["u","v"], ["ui","v"], ["u","vi"], ["v","v","u"], ["v","v","ui"], ["v","u","vi"], ["v","ui","v"], ["vi","u","vi"], ["u","v","v"], ["u","vi","u"], ["v","v","u","vi"], ["vi","u","v","v"], ["u","v","v","ui"], ["ui","v","v","u"], ["v","ui","v","v","u"]]; jwordlist:=[ [], ["j"], ["j","j"], ["j","j","j"], ["j","j","j","j"], ["j","j","j","j","j"], ["j","j","j","j","j","j"], ["j","j","j","j","j","j","j"], ["j","j","j","j","j","j","j","j"], ["j","j","j","j","j","j","j","j","j"], ["j","j","j","j","j","j","j","j","j","j"], ["j","j","j","j","j","j","j","j","j","j","j"]]; kkwordlist:=[jtransversalwordlist[i1] cat jwordlist[i2] : i1 in [1 .. 24], i2 in [1 .. 12]]; // Calculations for Theorem 2: // *************************** // Here are the generators of the index 864 group $\Pi$ given in Theorem 2: a1:=v*u*vi*j^4*b*u*v*j^2; a2:=v^2*u*b*u*vi*u*v^2*j; a3:=ui*v^2*u*j^9*b*vi*u*vi*j^8; a1i:=a1^-1; a2i:=a2^-1; a3i:=a3^-1; Pi:=sub< G | a1,a2,a3>; // The following checks that $\Pi$ has abelianization $\Z^2$: print "AbelianQuotientInvariants(Pi)=",AbelianQuotientInvariants(Pi); // Output: [0,0] // Checking that $\Pi$ has index 864 in $\bar\Gamma$: print "Index of Pi in G is",Index(G,Pi); // Output: 864 // Checking that the elements $b^\mu k$, $\mu=-1,0,1$, $k\in K$, form // a set of coset representatives for the cosets $\Pi g$ of $\Pi$ in $\bar\Gamma$. Pitransversal:=[ G | b^j1*kklist[j2]: j1 in [-1,0,1], j2 in [1 .. 288]]; // print "Checking that Pitransversal is indeed a transversal for Pi in barGamma"; // print "This takes a few minutes. Progress seems slow at first, but it gets faster."; // for i1 in [1 .. 864] do // if IsDivisibleBy(i1,10) then print "Up to ",i1," out of 864"; end if; // for i2 in [i1+1 .. 864] do // testgp:=sub< G | a1,a2,a3,Pitransversal[i1]*Pitransversal[i2]^-1>; // idx:=Index(G,testgp); // if (idx eq 864) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 864"; end if; // end for; // end for; // We know that given any element $g$ of $\bar\Gamma$ having order 2 or 3, $g$ or $g^{-1}$ is conjugate to // one of the elements in the following two lists (see the file cs-surface-matrices_magma.txt and Proposition 1 for details): order2replist:=[ G | v^2,j^6,(b*ui)^2]; order3replist:=[ G | u,j^4,u*j^4,b*u*v]; // If $\Pi$ had any nontrivial elements of finite order, then it would // nontrivial elements of order dividing 24, and so elements of order either 2 or 3. // So it would contain a conjugate of one of the elements in order2replist or order3replist. // So it would contain a conjugate by $b^\mu k$ of one of these elements. // We next check that this is not the case: for t in order2replist do for ii in [1 .. 864] do testgp:=sub< G | a1,a2,a3,Pitransversal[ii]*t*Pitransversal[ii]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem"; end if; end for; end for; print "Finished checking that Pi contains no elements of order 2."; for t in order3replist do for ii in [1 .. 864] do testgp:=sub< G | a1,a2,a3,Pitransversal[ii]*t*Pitransversal[ii]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem"; end if; end for; end for; print "Finished checking that Pi contains no elements of order 3."; print "Finished checking that Pi is torsion-free."; // End of calculations for Theorem 2. // ********************************** // Calculations for the last part of Section 1.5. // ********************************************** // Checking that the normalizer in $\bar\Gamma$ of $\Pi$ contains $\Pi$ // as a subgroup of index 3, and is generated by $\Pi$ and $j^4$. NPi:=Normalizer(G,Pi); print "The index of the normalizer of Pi in barGamma is",Index(G,NPi); // Output: 288 print "It is",j^4 in NPi,"that j^4 is in the normalizer of Pi"; // Output: true // Checking that we can choose the isomorphism $\Pi/[\Pi,\Pi]\to\Z^2$ as given. // One way to do this is to get a presentation for $\Pi$ from the given presentation // of $\bar\Gamma$ using Magma's Rewrite routine. // The following elements $a_i'$ generate a subgroup of $\bar\Gamma$ conjugate to $\Pi$: // For some reason, Magma gives a much neater output when we apply the Rewrite routine // to this conjugated subgroup. But of course any relation satisfied by the $a_i'$ is // also satisfied by the $a_i$. and vice versa. // So we get a presentation of~$\Pi$ which is not so complicated. a1d:=v^2*ui*ji*b*v*ui; a2d:=v*ui*ji^2*b*j^2; a3d:=vi*j^3*b*u*vi*ji; // // As matrices (see the cs-surface-matrices_magma.txt file), // A1D:=V^2*UI*JI*B*V*UI; // A2D:=V*UI*JI^2*B*J^2; // A3D:=VI*J^3*B*U*VI*JI; // // The following are zero: // A1D - (U*V^2*UI*J^3)*A1*(U*V^2*UI*J^3)^-1; // A2D - (U*V^2*UI*J^3)*A2*(U*V^2*UI*J^3)^-1; // A3D - (U*V^2*UI*J^3)*A3*(U*V^2*UI*J^3)^-1; // Pid:=sub< G | a1d,a2d,a3d >; // RW,phi:=Rewrite(G,Pid); // // print "phi(RW.1)=",phi(RW.1); // print "phi(RW.2)=",phi(RW.2); // print "phi(RW.3)=",phi(RW.3); // // RW; // Relations of a presentation of $\Pi$: // a1i*a3i*a1*a2^2*a1i*a2i*a3i^3*a2*a1i^2*a3i^3, // a2^2*a1i*a2i*a1*a3^3*a1*a2i^3*a3^3*a1*a3*a1, // a3^3*a1^2*a2*a1i*a2i*a1*a3*a2i^3*a3^3*a1*a2, // a3i*a1i*a2i^2*a3^3*a1*a2i*a1i*a3i^3*a2^3*a3*a1, // a2i^3*a3^3*a1*a2*a3i^3*a2^3*a3i*a1i*a2i*a1*a3*a1i, // a3i*a1i*a3i^3*a2^2*a1i^2*a3i^3*a2*a1*a3*a1i*a2*a1*a2i^2*a1i*a3i, // a3^3*a1^2*a2*a3i*a1i*a2i^2*a3^3*a1^2*a3^3*a1*a3i*a1i*a2i, // a2i^3*a3^3*a1^2*a2^2*a1i*a2i*a1*a3i*a1i^2*a3i^3*a2^2*a1*a3*a1i, // a3*a2i^3*a3^3*a1*a3^3*a1*a3^3*a1^2*a2i*a1i^2*a3i^3*a2^2*a1, // a1i*a3i^3*a2^3*a1i*a2i*a1i*a3i^3*a2^4*a1*a2i*a1i^2*a3i^3*a1*a2i^2*a3^3*a1*a3i*a1i*a2i, // a3i^2*a2^4*a1*a2i*a1i^2*a3i^3*a1*a2i*a1i^2*a2*a1*a2i^2*a1i*a3*a1^2*a3*a1i*a2*a1*a2i^2*a1i*a2*a1i*a3i^3*a2*a1i*a3i, // a2i^3*a3^3*a1*a3*a1^2*a2i*a1i^2*a3i^3*a1i*a3i*a1i*a3i^3*a2^3*a1*a2i*a3^3*a1*a2^2*a1*a3*a1i*a3i^2*a1i*a3, // a1i*a3i^3*a2^3*a3i*a1i*a2i^3*a3^3*a1*a3^3*a1^2*a2*a3*a2i^3*a3^3*a1*a3*a2i^3*a3^3*a1*a3*a1*a3^3*a1^2*a2, // In the abelianized group, these relations all reduce to multiples of 3*a1-2*a2+7*a3 = 0 // The 36 elements $k_i$ mentioned at the beginning of Section 2. // ************************************************************** // They are ordered so that the table in Proposition 7 is neat. // We claim that the following list of 36 elements $k_i$ of $K$ // forms a set of representatives for the double cosets // $\Pi g \bar\Gamma_P$ in $\bar\Gamma$. It has the form // k_1',k_1'*j^4,k_1'*j^8,k_2',k_2'*j^4,...,k_{12}'*j^8: PibarGammabarGammaPdoublecosetreplist:=[G | v,v*j^4,v*j^8, v^2,v^2*j^4,v^2*j^8, v*u*vi,v*u*vi*j^4,v*u*vi*j^8, v*ui*v^2*u,v*ui*v^2*u*j^4,v*ui*v^2*u*j^8, vi,vi*j^4,vi*j^8, u*v^2,u*v^2*j^4,u*v^2*j^8, j,j*j^4,j*j^8, j^2,j^2*j^4,j^2*j^8, Id(G),j^4,j^8, j^3,j^3*j^4,j^3*j^8, u*v,u*v*j^4,u*v*j^8, ui*vi,ui*vi*j^4,ui*vi*j^8]; // The following is a list of the 24 elements of $\bar\Gamma_P$. // Working with matrices (see the file cs-surface-matrices_magma.txt), // we see that this list is just the subgroup $\langle u,b\rangle$ // of $\bar\Gamma$ generated by $u$ and $b$. We indicate in the list // below why the elements not obviously in this subgroup are indeed there. Pfixerlist:=[ G | Id(G), u, ui, b, b*u, b*ui, u*b, u*b*u, u*b*ui, ui*b, ui*b*u, ui*b*ui, v*u*b*j, // = ui*b^2 v*u*b*u*j, // = ui*b^2*u v*u*b*ui*j, // = ui*b^2*ui j*b*u*v, // = b^2*ui j*b*vi*j, // = b^2 j*b*vi*u*j, // = b^2*u u*j*b*u*v, // = u*b^2*ui u*j*b*vi*j, // = u*b^2 u*j*b*vi*u*j, // = u*b^2*u b*ui*b, b*ui*b*u, b*ui*b*ui]; // The following list of 864 elements of $\bar\Gamma$ forms a // set of representatives for the cosets $\Pi g$ of $\Pi$ in $\bar\Gamma$: GammaPbasedPitransversal:=[ G | PibarGammabarGammaPdoublecosetreplist[j1]*Pfixerlist[j2]: j1 in [1 .. 36], j2 in [1 .. 24]]; print "Checking that GammaPbasedPitransversal is indeed a transversal for Pi in barGamma"; print "This takes a few minutes. Progress seems slow at first, but it gets faster."; for i1 in [1 .. 864] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of ",864; end if; for i2 in [i1+1 .. 864] do testgp:=sub< G | a1,a2,a3,GammaPbasedPitransversal[i1]*GammaPbasedPitransversal[i2]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 864"; end if; end for; end for; // Calculations for Section 2.1. // ***************************** // The presentation of $\bar\Gamma_0$ given in Section 2.1 // ******************************************************* F0:=FreeGroup(4); relnlist0:={ xs2^2*xz0, xs3^3, xs12^12, xz0^4, xs12*xs3*xs2, xs2*xz0*xs2^-1*xz0^-1, xs3*xz0*xs3^-1*xz0^-1, xs12*xz0*xs12^-1*xz0^-1 }; Gamma0,phi0:=quo< F0 | relnlist0>; s2:=phi0(xs2); s3:=phi0(xs3); s12:=phi0(xs12); z0:=phi0(xz0); // The presentation of $\bar\Gamma_c$ given in Section 2.1 // ******************************************************* Fc:=FreeGroup(4); relnlistc:={ xt2^2, xt4^4*xzc^-1, xt12^12, xzc^3, xt12*xt4*xt2, xt2*xzc*xt2^-1*xzc^-1, xt4*xzc*xt4^-1*xzc^-1, xt12*xzc*xt12^-1*xzc^-1 }; Gammac,phic:=quo< Fc | relnlistc>; t2:=phic(xt2); t4:=phic(xt4); t12:=phic(xt12); zc:=phic(xzc); // End of calculations of Section 2.1. // *********************************** // Calculations for Section 2.2. // ***************************** // There are no Magma calculations in this section. // End of calculations for Section 2.2. // ************************************ // Calculations for Proposition 2. // ******************************* // See the file cs-surface-matrices_magma.txt for verification that the // 8 elements $g_1,\ldots,g_8$ of~$\Pi$ given in Proposition 2 // are indeed words in the generators $s_2$, $s_3$, $s_{12}$ and $z_0$ // of $\bar\Gamma_0$ given in Section 2.1. // Next we check that $g_1,\ldots,g_8$ generate a subgroup // of $\bar\Gamma_0$ of index 288, and so generate all of $\Pi_0$. // We use the words for $g_1,\ldots,g_8$ in terms of // $s_2$, $s_3$, $s_{12}$ and $z_0$. // Anticipating this result, we name the following subgroup Pi0: Pi0:=sub< Gamma0 | s12^4*s2*s12^4*s2*s12^4*z0, s12^8*s2*s12^4*s2*z0, s12^11*s2*s12^4*s2*s12^9*z0, s12^3*s2*s12^4*s2*s12^5*z0, s12^6*s2*s12^4*s2*s12^2*z0, s12^10*s2*s12^4*s2*s12^10*z0, s12*s2*s12^4*s2*s12^7*z0, s12^5*s2*s12^4*s2*s12^3*z0>; // The following checks that $\Pi_0$ is generated by the given 8 elements of $\bar\Gamma_0$: print "The index of Pi0 in barGamma_0 is", Index(Gamma0,Pi0); // Output: 288 // We now get a presentation for $\Pi_0$ from that of $\bar\Gamma_0$ // by using Magma's Rewrite routine. // R,f:=Rewrite(Gamma0,Pi0); // R; // "f(g1):=",f(Pi0.1); // "f(g2):=",f(Pi0.2); // "f(g3):=",f(Pi0.3); // "f(g4):=",f(Pi0.4); // "f(g5):=",f(Pi0.5); // "f(g6):=",f(Pi0.6); // "f(g7):=",f(Pi0.7); // "f(g8):=",f(Pi0.8); // // This gives a presentation of $\Pi_0$ in terms of // // new generators called R.1,...,R.8. We change these // // to R1,...,R8 by editing the output, getting the following // // cleaned-up output: // // // Finitely presented group R on 8 generators. // // Generators as words in group Gamma0: // // R1=s2*s3*s12*s2^-1*s3*s12^2*s3^-1*s12 // // R2=s2*s12^-3*s3*s12^4 // // R3=s12^4*s2*s12^-3*s3 // // R4=s3^-1*s12*s2*s3*s12^2*s3^-1*s12^2 // // R5=s3^-1*s12^4*s2*s12^-3*s3^-1 // // R6=s12^-1*s3*s12^2*s2*s3^-1*s12*s2^-1*s12^-2 // // R7=s12^-2*s3*s12*s2*s3^-1*s12^2*s2^-1*s12^-1 // // R8=s3*s12^-2*s3*s12^4*s2*s12^-1*s3^-1 // // Relations // // R7^-1*R2^-1*R5*R1^-1*R2*R3*R4*R7*R1*R8^-1*R5^-1*R3^-1*R6^-1*R4^-1*R8*R6=Id(R) // // // Notice that there is only one relation. // // // The map $f$ constructed by the routine gives an isomorphism // // from $\Pi_0$, with its old generators, to the "rewritten group" $R$: // f(g1):=R3*R2; // f(g2):=R2^-1; // f(g3):=R5^-1*R3^-1; // f(g4):=R3*R5*R8*R1^-1*R7^-1*R4^-1*R3^-1; // f(g5):=R3*R4*R7*R1; // f(g6):=R6; // f(g7):=R7^-1*R4^-1*R3^-1; // f(g8):=R3*R4; // // // We solve these equations, getting $R_1,\ldots,R_8$ in terms of the original // // generators $g_1,\ldots,g_8$. // R1:=g7*g5; // R2:=g2I; // R3:=g1*g2; // R4:=g2I*g1I*g8; // R5:=g2I*g1I*g3I; // R6:=g6; // R7:=g8I*g7I; // R8:=g3*g4*g5; // // // We then substitute these expressions into the single relation // // R7^-1*R2^-1*R5*R1^-1*R2*R3*R4*R7*R1*R8^-1*R5^-1*R3^-1*R6^-1*R4^-1*R8*R6; // // and cancel any $gi*giI$'s and $giI*gi$'s. // // The relation becomes // // g7*g8*g1I*g3I*g5I*g7I*g2I*g4I*g6I*g8I*g1*g2*g3*g4*g5*g6 = Id // // and conjugating this, we get the relation given in Proposition 2. // See the file cs-surface-matrices_magma.txt for the conversion of the $g_i$'s // to generators $u_i$ and $v_i$ satisfying the standard surface relation. // End of calculations for Proposition 2. // ************************************** // Calculations for Proposition 3. // ******************************* // For Proposition 3(a), we use the fact, checked above in // the proof of Theorem 2, that the elements $b^\mu k$, $\mu\in\{0,1,-1\}$, $k\in K$, // form a transversal for $\Pi$ in $\bar\Gamma$. // For Proposition 3(b), no Magma calculations are necessary. // For Proposition 3(c), we first check that $g\Pi_0g^{-1}\subset\Pi$ for all // $g\in\bar\Gamma$. We need only check that $gg_jg^{-1}\in\Pi$ for each of // the 8 generators $g_1,\ldots,g_8$ of~$\Pi_0$ for each $g$ of the form $b^\mu k$. // Here are the 8 generators $g_1,\ldots,g_8$ of~$\Pi_0$: g1:=a3i*a3i*a3i*a1i*a2*a1; g3:=a2*a1i*a1i*a3i*a3i*a3i*a1i; g5:=j^4*a2*a1*j^8*a2i*a3*a3*a3*a1*a1; g7:=j^4*a1i*a2i*j^4*a2*a1*j^4; g2:=j^4*g1*j^8; g4:=j^4*g3*j^8; g6:=j^4*g5*j^8; g8:=j^4*g7*j^8; glist:=[ G | g1,g2,g3,g4,g5,g6,g7,g8]; print "Checking that for all mu in {0,1,-1}, k in K"; print "and pi in Pi_0, b^mu*k*pi*k^-1*b^(-mu) is in Pi."; for jj in [1 .. 8] do for ii in [1 .. #kklist] do for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,b^mu*kklist[ii]*glist[jj]*kklist[ii]^-1*b^(-mu)>; idx:=Index(G,testgp); if (idx lt 864) then print "b^",mu,"*",kkwordlist[ii],"g_",jj,"(",kkwordlist[ii],")^-1*b^(",-mu,") is not in Pi"; end if; end for; end for; end for; // To show that $k_\alpha\Pi_0k_\alpha^{-1}=\Pi_\alpha$ for $\alpha=1,\infty$, we first set up a // transversal for $\Pi_0$ in $\bar\Gamma_0$ using representatives for the double cosets // $\Pi_0\gamma K_0$, where $K_0=K\cap\bar\Gamma_0$. // Here is a list of the elements of $K_0$: K0list:=[ G | v^i1*j^i2 : i1 in [0 .. 3], i2 in [0 .. 11]]; // We claim that $\bar\Gamma_0$ is the union of the six double cosets $\Pi_0 g K_0$, // for the elements $g$ in the following list: Pi0K0doublecosetreplist:=[G | Id(G),j^9*b*j^7,j^10*b*j^7,j^11*b*j^7,b*j^7,j^9*b*j^2*bi*j]; Pi0inbarGamma0transversal:=[ G | Pi0K0doublecosetreplist[i1]*K0list[i2] : i1 in [1 .. 6], i2 in [1 .. 48]]; print "Checking that pizero_in_gammazero_transversal is indeed a transversal for Pi_0 in barGamma_0"; print "by checking that the elements are in different cosets of Pi."; for i1 in [1 .. 288] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of 288"; end if; for i2 in [i1+1 .. 288] do testgp:=sub< G | a1,a2,a3,Pi0inbarGamma0transversal[i1]*Pi0inbarGamma0transversal[i2]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 864"; end if; end for; end for; // Here are the 6 elements $k_\alpha$, $\alpha\in\{0,1,-1,i,-i,\infty\}$ given in Lemma 2: kzero:=Id(G); kinfty:=ui*v^2*u*j^6; kplusi:=u*j; kminus1:=v*u*j; kminusi:=v^2*u*j; kplus1:=v^3*u*j; print "Checking that if t is in Pi0inbarGamma0transversal, and t is not 1"; print "then kplus1*t*kplus1^-1 is not in Pi"; for i1 in [1 .. 288] do testgp:=sub< G | a1,a2,a3,kplus1*Pi0inbarGamma0transversal[i1]*kplus1^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "For i1 =",i1,", kplus1*t_i1*kplus1^-1 is in Pi"; end if; end for; print "Checking that if t is in Pi0inbarGamma0transversal, and t is not 1"; print "then kinfty*t*kinfty^-1 is not in Pi"; for i1 in [1 .. 288] do testgp:=sub< G | a1,a2,a3,kinfty*Pi0inbarGamma0transversal[i1]*kinfty^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "For i1 =",i1,", kinfty*t_i1*kinfty^-1 is in Pi"; end if; end for; // No Magma calculations are needed for Proposition 3(d). // End of calculations for Proposition 3. // ************************************** // Calculations for Proposition 4: // ******************************* // See the file cs-surface-matrices_magma.txt for the expressing the 20 // generators given for $\Pi_c$ in terms of the generators $t_2$, $t_4$, // $t_{12}$ and $z_c$ of $\bar\Gamma_c$. // We first check that they generate a subgroup of index 324 in $\bar\Gamma_c$ // and so generate all of $\Pi_c$. Anticipating this result, // we call the following subgroup Pic: Pic:=sub< Gammac | t12^6*t2*t12^4*t2*t12^2, t12^10*t2*t12^4*t2*t12^10, t12^8*t2*t12^4*t2, t2*t12^4*t2*t12^8, t12^5*t2*t12^4*t2*t12^3, t12^9*t2*t12^4*t2*t12^11, t12^11*t2*t12^4*t2*t12^9, t12^3*t2*t12^4*t2*t12^5, t12^5*t2*t12^10*t2*t12^10*t2*t12^5, t12^9*t2*t12^10*t2*t12^10*t2*t12, t12*t2*t12^10*t2*t12^10*t2*t12^9, t12^6*t2*t12^10*t2*t12^10*t2*t12^4, t12^10*t2*t12^10*t2*t12^10*t2, t12^2*t2*t12^10*t2*t12^10*t2*t12^8, t12^8*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^11*zc^2, t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^7*zc^2, t12^5*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^2*zc^2, t12^9*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^10*zc^2, t12^6*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12*zc^2, t12^10*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^9*zc^2>; // The following checks that $\Pi_c$ is generated by the given 20 elements of $\bar\Gamma_c$: print "The index of Pic is", Index(Gammac,Pic); // Output: 324 // Now we show that $\Pi_c$ has a presentation with just // one relation, as given in the proof of Proposition 4. // We use Magma's routine Rewrite. This gives a presentation in terms of // new generators, which we call R1,... R20. // R,f:=Rewrite(Gammac,Pic); // // R; // "f(Gc1)=",f(R.1); // "f(Gc2)=",f(R.2); // "f(Gc3)=",f(R.3); // "f(Gc4)=",f(R.4); // "f(Gc5)=",f(R.5); // "f(Gc6)=",f(R.6); // "f(Gc7)=",f(R.7); // "f(Gc8)=",f(R.8); // "f(Gc9)=",f(R.9); // "f(Gc10)=",f(R.10); // "f(Gc11)=",f(R.11); // "f(Gc12)=",f(R.12); // "f(Gc13)=",f(R.13); // "f(Gc14)=",f(R.14); // "f(Gc15)=",f(R.15); // "f(Gc16)=",f(R.16); // "f(Gc17)=",f(R.17); // "f(Gc18)=",f(R.18); // "f(Gc19)=",f(R.19); // "f(Gc20)=",f(R.20); // // // The new generators are expressed in terms of // // the generators t2,t4,t12 and zc of the ambient group Gammac: // R1=(t12*t4^-1)^3 // R2=(t4*t12*t4^-2)^3 // R3=t12^2*t4^-1*t2*t4^-2*t12*t2 // R4=t2*t4*t12*t2*t4*t12*t2*t12^-1*t4^-1 // R5=t2*t12^-3*t4*t12^4 // R6=t4*t12^2*t4^-1*t2*t4^-2*t12^2 // R7=t12*t2*t4*t12*t2*t12^-1*t4^-1*t2*t4 // R8=t12^4*t2*t12^-3*t4 // R9=t12^3*t4^-1*t2*t4^-2*t12*t2*t12^-1 // R10=t4^-1*t12^2*t4^-1*t2*t4^-2*t12*t2*t4 // R11=t12^-1*t4*t12*t2*t4*t12*t2*t12^-1*t4^-2 // R12=t12^-1*t4*t12^2*t2*t4^-1*t12*t2*t12^-2 // R13=t12^-2*t4*t12*t2*t4^-1*t12^2*t2*t12^-1 // R14=t2*t4*t12^2*t2*t4*zc*t12^-3*t4^-1 // R15=t2*zc*t12^-2*t4^2*t12^2*t2*t12^-1*t4^-1 // R16=t2*t12^-2*t4*t12*t2*t4^-1*t12^2*t2*t4 // R17=t4^2*t12^2*t2*t4*zc*t12*t2*t12^-2 // R18=t4*t12^-1*t4*t12*t2*t4*t12*t2*t12^-1*t4*zc^-1 // R19=t4*t12^-1*t4*t12^2*t2*t12^-5 // R20=t12^4*t4^-1*t2*t12^-3*t4^2 // // // and Rewrite tells us that $\Pi_c$ has a presentation with respect // // to these new generators which has just one relation: // R6^-1*R4^-1*R3^-1*R7*R10^-1*R18^-1*R14^-1*R4*R15^-1*R16*R20^-1*R9*R13^-1*R5^-1*R8^-1*R20*R17*R12^-1*R11*R1^-1*R14*R6*R13*R1*R19*R8*R10*R16^-1*R5*R19^-1*R18*R2^-1*R12*R3*R15*R2*R7^-1*R9^-1*R17^-1*R11^-1=Id(R) // // The lines // "f(Gci)=",f(R.i); // // express the old generators Gci in terms of the Ri's. We get // Gc1=R19I*R18*R2I // Gc2=R12 // Gc3=R5I // Gc4=R8I // Gc5=R19I*R1I*R13I // Gc6=R13 // Gc7=R14I*R4*R15I*R16*R20I // Gc8=R9*R13I*R5I*R8I*R20*R17*R12I*R11*R1I*R14*R6*R13*R1*R19*R8*R10*R16I*R5 // Gc9=R19I*R14I*R4*R15I*R16*R20I*R9*R13I*R5I*R8I*R20*R17*R12I*R11*R1I*R14*R6*R13*R1*R19*R8*R10*R16I*R5 // Gc10=R6I // Gc11=R9I // Gc12=R19I*R18*R2I*R12*R3*R5 // Gc13=R2 // Gc14=R17I*R20I // Gc15=R5I*R8I*R20*R17*R12I*R11*R1I // Gc16=R14*R6*R13*R1*R19 // Gc17=R19I*R14I*R4*R15I*R16*R20I*R9*R13I*R5I*R8I*R20*R17*R12I*R11*R1I*R14*R6*R13*R1*R19*R8*R10*R16I*R5*R19I*R18*R2I*R12*R3*R15*R2*R7I*R9I*R17I*R11I // Gc18=R6I*R4I*R3I // Gc19=R19I*R18*R2I*R12*R3*R15 // Gc20=R2*R7I*R9I // We can solve these equations for the Ri's in terms of the Gci's, getting // R1 = Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // R2 = Gc13; // R3 = Gc2I*Gc1I*Gc12*Gc3; // R4 = Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10; // R5 = Gc3I; // R6 = Gc10I; // R7 = Gc11*Gc20I*Gc13; // R8 = Gc4I; // R9 = Gc11I; // R10 = Gc4*Gc16I*Gc15I*Gc6*Gc11*Gc8*Gc12I*Gc19*Gc10I*Gc18*Gc2I*Gc1I*Gc12*Gc3*Gc16*Gc5*Gc10*Gc7*Gc14I*Gc20I*Gc19I*Gc9I*Gc17*Gc2*Gc14*Gc4I*Gc3I*Gc15*Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // R11 = Gc2*Gc14*Gc4I*Gc3I*Gc15*Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // R12 = Gc2; // R13 = Gc6; // R14 = Gc16*Gc5*Gc10; // R15 = Gc3I*Gc12I*Gc19; // R16 = Gc3I*Gc12I*Gc19*Gc10I*Gc18*Gc2I*Gc1I*Gc12*Gc3*Gc16*Gc5*Gc10*Gc7*Gc14I*Gc20I*Gc19I*Gc9I*Gc17*Gc2*Gc14*Gc4I*Gc3I*Gc15*Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // R17 = Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3*Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20; // R18 = Gc7*Gc8*Gc9I*Gc1*Gc13; // R19 = Gc7*Gc8*Gc9I; // R20 = Gc14I*Gc20I*Gc19I*Gc9I*Gc17*Gc2*Gc14*Gc4I*Gc3I*Gc15*Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // // and we also express the inverses of the Ri's in terms of the Gci's: // R1I = Gc7*Gc8*Gc9I*Gc5*Gc6; // R2I = Gc13I; // R3I = Gc3I*Gc12I*Gc1*Gc2; // R4I = Gc10I*Gc18*Gc2I*Gc1I*Gc12*Gc3; // R5I = Gc3; // R6I = Gc10; // R7I = Gc13I*Gc20*Gc11I; // R8I = Gc4; // R9I = Gc11; // R10I = Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3*Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc16I*Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc8I*Gc11I*Gc6I*Gc15*Gc16*Gc4I; // R11I = Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3*Gc4*Gc14I*Gc2I; // R12I = Gc2I; // R13I = Gc6I; // R14I = Gc10I*Gc5I*Gc16I; // R15I = Gc19I*Gc12*Gc3; // R16I = Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3*Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc16I*Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12*Gc3; // R17I = Gc20I*Gc19I*Gc9I*Gc17*Gc2*Gc14*Gc4I*Gc3I*Gc15*Gc6I*Gc5I*Gc9*Gc8I*Gc7I; // R18I = Gc13I*Gc1I*Gc9*Gc8I*Gc7I; // R19I = Gc9*Gc8I*Gc7I; // R20I = Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3*Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14; // // // Substituting these into the above relation in the Ri's, we get a single relation // // in terms of the Gci's. Cancelling any Gci*GciI's and GciI*Gci's, we get the single // // relation given in the proof of Proposition 4, after a conjugation: // // The following is the identity: // Gc4*Gc14I*Gc2I*Gc17I*Gc9*Gc19*Gc20*Gc14*Gc7I*Gc10I*Gc5I*Gc16I*Gc3I*Gc12I*Gc1*Gc2*Gc18I*Gc10*Gc19I*Gc12 // *Gc8I*Gc11I*Gc6I*Gc15*Gc16*Gc4I*Gc13I*Gc1I*Gc17*Gc18*Gc11*Gc20I*Gc13*Gc7*Gc8*Gc9I*Gc5*Gc6*Gc15I*Gc3; // End of calculations for Proposition 4. // ************************************** // Calculations for Proposition 5: // ******************************* // For Proposition 5(a): See the file cs-surface-matrices_magma.txt for the routine // which finds elements $\pi$ such that $\pi(M)=M'$. No Magma calculations are // needed for Proposition 5(b). // For Proposition 5(c), we first set up transversal for $\Pi_c$ in~$\bar\Gamma_c$ // which uses the subgroup $K_c=K\cap\bar\Gamma_c$. // Here is a list of the elements of $K_c$: Kclist:=[ G | u^i1*j^i2 : i1 in [0 .. 2], i2 in [0 .. 11]]; // We now show that the following list of 9 elements is a set of double coset // representatives for $\Pi_c\backslash(\bar\Gamma_c)/K_c$: PicKcdoublecosetreplist:=[G | Id(G),j^7*b*ui*b*u*j^7,j^8*b*ui*b*u*j^7,j^9*b*ui*b*u*j^7,j^10*b*ui*b*u*j^7,j^7*b*ui*b*u*j^11*b*ui*b*ui*j^2, j^8*b*ui*b*u*j^11*b*ui*b*ui*j^2,j^9*b*ui*b*u*j^11*b*ui*b*ui*j^2,j^10*b*ui*b*u*j^11*b*ui*b*ui*j^2]; PicinGammactransversal:=[ G | PicKcdoublecosetreplist[i1]*Kclist[i2] : i1 in [1 .. 9], i2 in [1 .. 36]]; print "Checking that Pic_in_Gammac_transversal is indeed a transversal for Pi_c in barGamma_c"; print "by checking that the elements are in different cosets of Pi."; for i1 in [1 .. 324] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of 324"; end if; for i2 in [i1+1 .. 324] do testgp:=sub< G | a1,a2,a3,PicinGammactransversal[i1]*PicinGammactransversal[i2]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 864"; end if; end for; end for; // Here are the 20 generators of $\Pi_c$ given in the proof of Proposition 4: gc1:=j^8*a1i*a2*a1*a3*a1i*j^4*a2*a1; gc3:=j^4*a2*a1*a2i*a2i*a1i*a3*j^4*a3*a3*a3*j^4; gc5:=j^8*a1i*j^4*a2*a1*j^4*a3*a2i*a1*a3*a1i*j^8; gc7:=j^8*a2*a1*j^4*a3i*j^4*a2*a1i*a2i*a3i*a3i*a3i*j^8; gc9:=j^8*a1i*a2i*a2i*a1i*a3i*j^8*a1i*a2i*j^8; gc12:=a2i*a1*a3*a1i*a3i*j^4*a3*a1*a2*a2*a1i*a2i*j^8; gc15:=j^4*a1*j^4*a2*a3*a1i*j^4; gc17:=j^8*a1i*a1i*a2i*j^4*a3*a1*a2*a1; gc19:=a2i*a1*a3*a1i*a3i*a3i*j^4*a1*a2*j^4*a1i*a2i*j^4; gc2:=j^4*gc1*j^8; gc4:=j^4*gc3*j^8; gc6:=j^4*gc5*j^8; gc8:=j^4*gc7*j^8; gc10:=j^4*gc9*j^8; gc11:=j^4*gc10*j^8; gc13:=j^4*gc12*j^8; gc14:=j^4*gc13*j^8; gc16:=j^4*gc15*j^8; gc18:=j^4*gc17*j^8; gc20:=j^4*gc19*j^8; Picgeneratorlist:=[ G | gc1,gc2,gc3,gc4,gc5,gc6,gc7,gc8,gc9,gc10,gc11,gc12,gc13,gc14,gc15,gc16,gc17,gc18,gc19,gc20]; // To show that $h\pi h^{-1}\in\Pi$ for all $\pi\in\Pi_c$, it is enough // to show that $h gc_i h^{-1} \in \Pi$ for $i=1,\ldots,20$ and for all // $h$ is the transversal $\{b^\mu k:\mu=0,1,-1, k\in K\}$ of $\Pi$ in~$\bar\Gamma$. print "Checking that h Pi_c h^-1 is contained in Pi_c for all h in barGamma."; for ii in [1 .. #Pitransversal] do if IsDivisibleBy(ii,100) then print "Up to ii =",ii," out of 864"; end if; for jj in [1 .. 20] do testgp:=sub< G | a1,a2,a3,Pitransversal[ii]*Picgeneratorlist[jj]*Pitransversal[ii]^-1>; if (Index(G,testgp) lt 864) then print ii,jj; end if; end for; end for; print "Finished checking that for each generator g_i of Pi_c,"; print "and for each h in barGamma, h*g_i*h^-1 is in Pi."; // We then need to show that $k_\alpha\Pi_ck_\alpha^{-1}=\Pi_\alpha$ for // each $\alpha\in\{c_{+++},\ldots,c_{---}\}$. // Here are the 8 elements $k_\alpha$ given in Lemma 2 for these $\alpha$'s: kppp:=v^2*ui*v^2*u; kppm:=v^3*ui*v^2*u; kpmp:=v^3; kpmm:=Id(G); kmpp:=ui*v^2*u; kmpm:=v*ui*v^2*u; kmmp:=v; kmmm:=v^2; // The following checks that $k_{-c}\Pi_ck_{-c}^{-1}=\Pi_{-c}$. print "Finding the i1, i2 and i3 so that k_(-c)*t_i1*u^i2*j^i3*k_(-c)^(-1) is in Pi,"; print "where t_1,...,t_9 are the nine elements of PicKcdoublecosetreplist."; for i1 in [1 .. 9] do for i2 in [0 .. 2] do for i3 in [0 .. 11] do transversalelt:=PicKcdoublecosetreplist[i1]*u^i2*j^i3; testgp:=sub< G | a1,a2,a3,kmmm*transversalelt*kmmm^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "(i1,i2,i3)=(",i1,",",i2,",",i3,"), k_-c*transversalelt*k_-c^-1 is in Pi_c"; end if; end for; end for; end for; // Output: (1,0,0) only // Calculation for Proposition 5(d): // We now find all the transversal elements $t$ in the above transversal of $\Pi_c$ // in $\bar\Gamma_c$ such that $btb^{-1}\in\Pi_{b(M_c)}$ (or equivalently, such // that $btb^{-1}\in\Pi$). print "Finding the i1, i2 and i3 so that b*t_i1*u^i2*j^i3*b^(-1) is in Pi,"; print "where t_1,...,t_9 are the nine elements of PicKcdoublecosetreplist."; for i1 in [1 .. 9] do for i2 in [0 .. 2] do for i3 in [0 .. 11] do transversalelt:=PicKcdoublecosetreplist[i1]*u^i2*j^i3; testgp:=sub< G | a1,a2,a3,b*transversalelt*bi>; idx:=Index(G,testgp); if (idx eq 864) then print "(i1,i2,i3)=(",i1,",",i2,",",i3,"), b*transversalelt*bi is in Pi_c"; end if; end for; end for; end for; // Output: (1,0,0),(6,2,8) and (8,2,6) // We now find all the transversal elements $t$ in the above transversal of $\Pi_c$ // in $\bar\Gamma_c$ such that $b^{-1}tb\in\Pi_{b^{-1}(M_c)}$ (or equivalently, such // that $btb^{-1}\in\Pi$). print "Finding the i1, i2 and i3 so that b^(-1)*k_(-c)*t_i1*u^i2*j^i3*k_(-c)^(-1)*b is in Pi,"; print "where t_1,...,t_9 are the nine elements of PicKcdoublecosetreplist."; for i1 in [1 .. 9] do for i2 in [0 .. 2] do for i3 in [0 .. 11] do transversalelt:=PicKcdoublecosetreplist[i1]*u^i2*j^i3; testgp:=sub< G | a1,a2,a3,bi*transversalelt*b>; idx:=Index(G,testgp); if (idx eq 864) then print "(i1,i2,i3)=(",i1,",",i2,",",i3,"), bi*transversalelt*b is in Pi_c"; end if; end for; end for; end for; // Output: (1,0,0),(3,2,7),(5,0,9) // End of calculations for Proposition 5. // ************************************** // Calculations for the last bit of Section 2.4. // ********************************************* // We give presentations of $\Pi_M$ for $M=b(M_c)$ and $M=b^{-1}(M_c)$. // Firstly, we set up $\bar\Gamma_c$: Fc:=FreeGroup(4); relnlistc:={ xt2^2, xt4^4*xzc^-1, xt12^12, xzc^3, xt12*xt4*xt2, xt2*xzc*xt2^-1*xzc^-1, xt4*xzc*xt4^-1*xzc^-1, xt12*xzc*xt12^-1*xzc^-1}; Gammac,phic:=quo< Fc | relnlistc>; t2:=phic(xt2); t4:=phic(xt4); t12:=phic(xt12); zc:=phic(xzc); // In the file cs-surface-matrices_magma.txt, we find elements $p_1,\ldots,p_8$ // belonging to $\Pi_{b(M_c)}$, and we exhibit each $b^{-1}p_ib$ as an element // of $\bar\Gamma_c$ by expressing $b^{-1}p_ib$ as a word in the generators // $t_2$, $t_4$, $t_{12}$ and $z_c$ of $\bar\Gamma_c$. We now check that // the $b^{-1}p_ib$'s generate all of $b^{-1}\Pi_{b(M_c)}b$, by checking // that the subgroup they generate has index 108 in~$\bar\Gamma_c$. // Anticipating this result, we call the subgroup generated // by the $b^{-1}p_ib$'s subgroupbMc. // That is, here is the group we check to be $b^{-1}\Pi_{b(M_c)}b$: subgroupbMc:=sub< Gammac | t12^9*t2*t12^11*t2*t12^8*zc, t12^9*t2*t12^3*t2*t12^4*zc, t12*t2*t12^11*t2*t12^4*zc, t2*t12*t2*t12^7*zc^2, t12^8*t2*t12^11*t2*t12^9*t2*t12^2, t12^11*t2*t12^3*t2*t12^2*zc, t12^10*t2*t12^11*t2*t12^2*t2*t12^3*zc^2, t2*t12^11*t2*t12^10*t2*t12^5*zc^2>; print "The index of subgroupbMc in Gammac is",Index(Gammac,subgroupbMc); // Output: 108 // In the file cs-surface-matrices_magma.txt, we find elements $m_1,\ldots,m_8$ // belonging to $\Pi_{b^{-1}(M_c)}$, and we exhibit each $bm_ib^{-1}$ as an element // of $\bar\Gamma_c$ by expressing $b^{-1}p_ib$ as a word in the generators // $t_2$, $t_4$, $t_{12}$ and $z_c$ of $\bar\Gamma_c$. We now check that // the $bm_ib^{-1}$'s generate all of $b\Pi_{b^{-1}(M_c)}b^{-1}$, by checking // that the subgroup they generate has index 108 in~$\bar\Gamma_c$. // Anticipating this result, we call the subgroup generated // by the $bm_ib^{-1}$'s subgroupbinvMc. // That is, here is the group we check to be $b\Pi_{b^{-1}(M_c)}b^{-1}$: subgroupbinvMc:=sub< Gammac | t12^8*t2*t12^2*zc, t2*t12^10*zc, t12^6*t2*t12^8*zc^2, t12^9*t2*t12^10*t2*t12^10*t2*t12, t12^11*t2*t12^7*t2*t12^11*t2*t12, t12^9*t2*t12^4*t2*t12^11, t2*t12*t2*t12^3*t2*t12^11*t2*t12*zc, t12^9*t2*t12^8*t2*t12^7>; print "The index of subgroupbinvMc in Gammac is",Index(Gammac,subgroupbinvMc); // Output: 108 // Here is the subgroup $\Pi_c$, seen as a subgroup of $\bar\Gamma_c$ // by exhibiting each of the 20 generators $g_1,\ldots,g_{20}$ (defined in the // proof of Proposition 4) as words in the generators of $\bar\Gamma_c$ given in Section 2.1. Pic:=sub< Gammac | t12^6*t2*t12^4*t2*t12^2, t12^10*t2*t12^4*t2*t12^10, t12^8*t2*t12^4*t2, t2*t12^4*t2*t12^8, t12^5*t2*t12^4*t2*t12^3, t12^9*t2*t12^4*t2*t12^11, t12^11*t2*t12^4*t2*t12^9, t12^3*t2*t12^4*t2*t12^5, t12^5*t2*t12^10*t2*t12^10*t2*t12^5, t12^9*t2*t12^10*t2*t12^10*t2*t12, t12*t2*t12^10*t2*t12^10*t2*t12^9, t12^6*t2*t12^10*t2*t12^10*t2*t12^4, t12^10*t2*t12^10*t2*t12^10*t2, t12^2*t2*t12^10*t2*t12^10*t2*t12^8, t12^8*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^11*zc^2, t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^7*zc^2, t12^5*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^2*zc^2, t12^9*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^10*zc^2, t12^6*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12*zc^2, t12^10*t2*t12^11*t2*t12^3*t2*t12^11*t2*t12^9*zc^2>; // Checking that $\Pi_c$ is contained in $b^{-1}\Pi_M b$, where $M=b(M_c)$, // as a subgroup of index 3. Index(subgroupbMc,Pic); // Output: 3 // Checking that $\Pi_c$ is contained in $b\Pi_M b^{-1}$, where $M=b^{-1}(M_c)$, // as a subgroup of index 3. Index(subgroupbinvMc,Pic); // Output: 3 // We now want to get presentations for the groups $\Pi_M$, where $M=b(M_c)$ // // and $M=b^{-1}(M_c)$. // // We do this using Rewrite. // // R,f:=Rewrite(Gammac,subgroupbMc); // R; // "f(g1):=",f(subgroupbMc.1); // "f(g2):=",f(subgroupbMc.2); // "f(g3):=",f(subgroupbMc.3); // "f(g4):=",f(subgroupbMc.4); // "f(g5):=",f(subgroupbMc.5); // "f(g6):=",f(subgroupbMc.6); // "f(g7):=",f(subgroupbMc.7); // "f(g8):=",f(subgroupbMc.8);' // // // This tells us that subgroupbMc has a presentation with respect to // // new generators R1,...,R8 satisfying just one relation: // // R6*R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R7I*R1I*R3*R5I*R3I = Id(R) // // These generators Ri can be expressed in terms of the generators // // of the ambient group $\Gamma_c$ as follows: // R1:=t2*t12^-1*t4*t12*t4^-1*t2; // R2:=t4*t12^-1*t4*zc*t12*t2; // R3:=t4^-1*t12*t2*zc^-1*t12^-1*t4^-1; // R4:=t4^2*t12^2*t4^-1*t2*t12^-1; // R5:=t4*t12^2*t2*t4*t12^-1*t4^-1; // R6:=t4^-1*t2*t12^-1*t4*t12^-1*t4^-1*t12; // R7:=t12*t2*zc*t12^-1*t4*t12*t2*t12^-2; // R8:=t12^3*t4^-1*t12*t4^-1*t12*t2*t12^-1; // // Writing // R1I:=R1^-1; // R2I:=R2^-1; // R3I:=R3^-1; // R4I:=R4^-1; // R5I:=R5^-1; // R6I:=R6^-1; // R7I:=R7^-1; // R8I:=R8^-1; // // // Let us write $Q_i$ for the generators $b^{-1}p_ib$ of the group $b^{-1}\Pi_{b(M_c)}b$, // // // Q1:=BI*P1*B; // Q2:=BI*P2*B; // Q3:=BI*P3*B; // Q4:=BI*P4*B; // Q5:=BI*P5*B; // Q6:=BI*P6*B; // Q7:=BI*P7*B; // Q8:=BI*P8*B; // // // and their inverses: // Q1I:=BI*P1I*B; // Q2I:=BI*P2I*B; // Q3I:=BI*P3I*B; // Q4I:=BI*P4I*B; // Q5I:=BI*P5I*B; // Q6I:=BI*P6I*B; // Q7I:=BI*P7I*B; // Q8I:=BI*P8I*B; // // the equations "f(g_i)=f(subgroupbMc.i);" give formulas of the form // // Qi = word in R1,...,R8, namely (in matrix terms): // Q1 := R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R7I*R1I*R3*R5I*R3I*Q4; // Q2 := R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R7I*R4I*Q4; // Q3 := R1I*R3*(1/z^4)*Q7*R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R7I*R4I*Q4; // Q4 := (1/z^4)*R6*R5I*R2*R1I*R2I*R4*R7I*R8I; // Q5 := (z^4)*R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R1I*R3*Q7*R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R4I*R2*R1*R2I*R5; // Q6 := R5; // Q7 := z^4*R5I*R3I*R6; // Q8 := z^4*R3*Q7*R8*R7*R4I*R2*R1*R2I*R5*R6I*R4*R8I*R7I*R1I*R1I*R2I*Q4; // // // We can solve this for the Ri's in terms of the Qi's (working with matrices, for example), // // obtaining the following being zero: // // R1 - Q4*Q1I*Q7I*Q6I*Q7*Q2*Q3I; // R2 - (1/z^4)*Q4*Q8I*Q3*Q2I*Q7I*Q6*Q7*Q1*Q4I; // R3 - z^4*Q4*Q1I*Q7I*Q6I; // R4 - Q4*Q3I; // R5 - Q6; // R6 - Q4*Q1I; // R7 - (1/z^4)*Q3*Q2I*Q5*Q1; // R8 - Q1I*Q5I*Q3I; // // R1I - Q3*Q2I*Q7I*Q6*Q7*Q1*Q4I; // R2I - z^4*Q4*Q1I*Q7I*Q6I*Q7*Q2*Q3I*Q8*Q4I; // R3I - (1/z^4)*Q6*Q7*Q1*Q4I; // R4I - Q3*Q4I; // R5I - Q6I; // R6I - Q1*Q4I; // R7I - z^4*Q1I*Q5I*Q2*Q3I; // R8I - Q3*Q5*Q1; // // // When we substitute these formulas for the Ri's into the single // // relation of the presentation for subgroupbMc in terms of the Ri's, // // and after cancelling the Qi*QiI's and QiI*Qi's, we obtain (after a conjugation) // // the relation // // Q5I*Q2I*Q5*Q1*Q3*Q8I*Q4*Q1I*Q7I*Q6I*Q7*Q2*Q3I*Q8*Q4I*Q6 = Id // // given in Section 2.4. // // // While we're at it, we repeat this for the group $b\Pi_{b^{-1}(M_c)}b^{-1}$ // // R,f:=Rewrite(Gammac,subgroupbinvMc); // R; // "f(g1):=",f(subgroupbinvMc.1); // "f(g2):=",f(subgroupbinvMc.2); // "f(g3):=",f(subgroupbinvMc.3); // "f(g4):=",f(subgroupbinvMc.4); // "f(g5):=",f(subgroupbinvMc.5); // "f(g6):=",f(subgroupbinvMc.6); // "f(g7):=",f(subgroupbinvMc.7); // "f(g8):=",f(subgroupbinvMc.8); // // // This tells us that subgroupbinvMc has a presentation with respect to // // new generators R1,...,R8 satisfying just one relation: // R3I*R8I*R7I*R3*R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R5*R1*R4 = Id(R) // / These generators Ri can be expressed in terms of the generators // // of the ambient group $\Gamma_c$ as follows: // // R1:=t12^2*zc^-1*t2; // R2:=(t12*t4^-1)^3; // R3:=t4*t12^5*t4^-2; // R4:=t4^-1*t12^3*t2*t12^-1*t4*zc^-1; // R5:=t12^-1*t4*t12*t2*t4^-1*t12^2*zc^-1; // R6:=t4*t12^2*t4^-1*t2*t4^-2*t12^2; // R7:=t4*t12^-1*t4*t12*t2*t4*t12^-2*t4; // R8:=t4^-1*t12*t2*t4^2*t12*t2*t12^-2*t4^-1; // // // Writing // R1I:=R1^-1; // R2I:=R2^-1; // R3I:=R3^-1; // R4I:=R4^-1; // R5I:=R5^-1; // R6I:=R6^-1; // R7I:=R7^-1; // R8I:=R8^-1; // // // Let us write $Q_i$ for the generators $bm_ib^{-1}$ of the group $b\Pi_{b^{-1}(M_c)}b^{-1}$, // // // Q1:=B*M1*BI; // Q2:=B*M2*BI; // Q3:=B*M3*BI; // Q4:=B*M4*BI; // Q5:=B*M5*BI; // Q6:=B*M6*BI; // Q7:=B*M7*BI; // Q8:=B*M8*BI; // // Q1I:=Q1^-1; // Q2I:=Q2^-1; // Q3I:=Q3^-1; // Q4I:=Q4^-1; // Q5I:=Q5^-1; // Q6I:=Q6^-1; // Q7I:=Q7^-1; // Q8I:=Q8^-1; // // The lines "f(gi)=",f(subgroupbinvMc.i); give us equations for // the old generators in terms of the new ones. We can verify these // using matrices. The following are zero: // Q1 - z^4*R5I; // Q2 - z^4*R1I; // Q3 - (1/z^4)*R1*R4*R1I; // Q4 - R6I*R3*R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R5*R1*R4*R3I*R8I*R7I; // Q5 - R3*R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R3*R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R5*R1*R4*R3I*R8I*R7I; // Q6 - (1/z^4)*R6I*R8I*R4*R7I*R2I; // Q7 - R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R3*R2I*R1I*R2*R7*R4I*R8*R6*R5I*R6I*R5*R1*R4*R3I*R8I*R7I; // Q8 - z^4*R6I*R8I*R1I; // // Using matrices as an aid, we can solve these relations for the Ri in terms of the Qi's: // // The following are zero: // R1 - z^4*Q2I; // R2 - Q2*Q6I*Q1*Q4*Q7I; // R3 - Q5*Q7I; // R4 - z^4*Q2*Q3*Q2I; // R5 - z^4*Q1I; // R6 - Q4I; // R7 - Q7*Q4I*Q1I*Q6*Q2I*Q6I*Q8*Q3*Q2I; // R8 - Q2*Q8I*Q4; // // R1I - (1/z^4)*Q2; // R2I - Q7*Q4I*Q1I*Q6*Q2I; // R3I - Q7*Q5I; // R4I - (1/z^4)*Q2*Q3I*Q2I; // R5I - (1/z^4)*Q1; // R6I - Q4; // R7I - Q2*Q3I*Q8I*Q6*Q2*Q6I*Q1*Q4*Q7I; // R8I - Q4I*Q8*Q2I; // // // When we substitute these formulas for the Ri's into the relation // // in R1,...,R8 found by Rewrite, and make the cancellations of the // // Qi*QiI's and QiI*Qi's, we get the relation // Q3*Q8I*Q4*Q5*Q7I*Q2*Q3I*Q1*Q5I*Q7*Q4I*Q1I*Q6*Q2I*Q6I*Q8 = Id // // or equivalently, the relation // M3*M8I*M4*M5*M7I*M2*M3I*M1*M5I*M7*M4I*M1I*M6*M2I*M6I*M8 = Id // // End of the calculations about the last bit of Section 2.4. // ********************************************************** // Calculations for Proposition 6: // ******************************* // The following are representatives for the distinct double cosets // $\Pi_0 g K_0$ in $\bar\Gamma_0$: rep01:=Id(G); rep02:=j^9*b*j^7; rep03:=j^10*b*j^7; rep04:=j^11*b*j^7; rep05:=b*j^7; rep06:=j^9*b*j^2*bi*j; kplus1:=v^3*u*j; kinfty:=ui*v^2*u*j^6; // The following are representatives for the distinct double cosets // $\Pi_1 g K_1$ in $\bar\Gamma_1$: rep11:=kplus1*rep01*kplus1^-1; rep12:=kplus1*rep02*kplus1^-1; rep13:=kplus1*rep03*kplus1^-1; rep14:=kplus1*rep04*kplus1^-1; rep15:=kplus1*rep05*kplus1^-1; rep16:=kplus1*rep06*kplus1^-1; // The following are representatives for the distinct double cosets // $\Pi_\infty g K_\infty$ in $\bar\Gamma_\infty$: repinfty1:=kinfty*rep01*kinfty^-1; repinfty2:=kinfty*rep02*kinfty^-1; repinfty3:=kinfty*rep03*kinfty^-1; repinfty4:=kinfty*rep04*kinfty^-1; repinfty5:=kinfty*rep05*kinfty^-1; repinfty6:=kinfty*rep06*kinfty^-1; doublereplist:=[ G | rep01,rep02,rep03,rep04,rep05,rep06, rep11,rep12,rep13,rep14,rep15,rep16, repinfty1,repinfty2,repinfty3,repinfty4,repinfty5,repinfty6]; namelist:=["0","1","infty"]; for ii in [1 .. 18] do fl:=Floor((ii-1)/6); for jj in [1 .. #kklist] do for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,doublereplist[ii]*kklist[jj]^-1*b^(-mu)>; if (Index(G,testgp) eq 864) then print "rep",namelist[fl+1],ii-6*fl,"is in Pi*b^",mu,"*",kkwordlist[jj]; end if; end for; end for; end for; // Cleaned up output: // rep01 is in Pi*b^0*[] // rep02 is in Pi*b^-1*[v*j*j] // rep03 is in Pi*b^0*[v*u*j*j*j*j*j*j*j*j] // rep04 is in Pi*b^-1*[ui*v*v*u*j] // rep05 is in Pi*b^1*[j*j*j*j*j*j*j] // rep06 is in Pi*b^0*[u*v*v*j*j*j*j] // rep11 is in Pi*b^0*[] // rep12 is in Pi*b^1*[u*vi*j*j] // rep13 is in Pi*b^1*[vi*u*vi*j*j*j] // rep14 is in Pi*b^1*[u*v*v*ui] // rep15 is in Pi*b^1*[v*j*j*j*j] // rep16 is in Pi*b^-1*[v*u*vi*j*j*j] // repinfty1 is in Pi*b^0*[] // repinfty2 is in Pi*b^-1*[v*v*ui*j*j*j*j*j*j*j*j*j*j] // repinfty3 is in Pi*b^-1*[u*v*v*j*j*j*j*j*j*j] // repinfty4 is in Pi*b^0*[u*v*v*j*j*j*j*j*j] // repinfty5 is in Pi*b^1*[v*v*j*j*j*j] // repinfty6 is in Pi*b^-1*[v*u*j*j*j*j*j*j] // In the file cs-surface_matrices_magma.txt, these assertions are // checked with matrices. // End of calculations for Proposition 6. // ************************************** // Calculations for Proposition 7: // ******************************* // Here are double coset representatives for the double cosets // $\Pi_c g K_c$, $g\in\bar\Gamma_c$. repc1:=Id(G); repc2:=j^7*b*ui*b*u*j^7; repc3:=j^8*b*ui*b*u*j^7; repc4:=j^9*b*ui*b*u*j^7; repc5:=j^10*b*ui*b*u*j^7; repc6:=j^7*b*ui*b*u*j^11*b*ui*b*ui*j^2; repc7:=j^8*b*ui*b*u*j^11*b*ui*b*ui*j^2; repc8:=j^9*b*ui*b*u*j^11*b*ui*b*ui*j^2; repc9:=j^10*b*ui*b*u*j^11*b*ui*b*ui*j^2; // Here are double coset representatives for the double cosets // $\Pi_{-c} g K_{-c}$, $g\in\bar\Gamma_{-c}$. repmc1:=kmmm*repc1*kmmm^-1; repmc2:=kmmm*repc2*kmmm^-1; repmc3:=kmmm*repc3*kmmm^-1; repmc4:=kmmm*repc4*kmmm^-1; repmc5:=kmmm*repc5*kmmm^-1; repmc6:=kmmm*repc6*kmmm^-1; repmc7:=kmmm*repc7*kmmm^-1; repmc8:=kmmm*repc8*kmmm^-1; repmc9:=kmmm*repc9*kmmm^-1; doublereplist:=[ G | repc1,repc2,repc3,repc4,repc5,repc6,repc7,repc8,repc9, repmc1,repmc2,repmc3,repmc4,repmc5,repmc6,repmc7,repmc8,repmc9]; namelist:=["c","mc"]; for ii in [1 .. 18] do fl:=Floor((ii-1)/9); for jj in [1 .. #kklist] do for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,doublereplist[ii]*kklist[jj]^-1*b^(-mu)>; if (Index(G,testgp) eq 864) then print "rep",namelist[fl+1],ii-9*fl,"is in Pi*b^",mu,"*",kkwordlist[jj]; end if; end for; end for; end for; // Cleaned up output: // repc1 is in Pi*b^0*[] // repc2 is in Pi*b^1*[v,ui,v,j,j,j,j,j,j,j,j,j] // repc3 is in Pi*b^1*[vi,u,vi] // repc4 is in Pi*b^-1*[v,ui,j,j,j,j,j,j,j,j,j] // repc5 is in Pi*b^-1*[v,v,u,j,j,j,j,j,j] // repc6 is in Pi*b^0*[v,ui,v,j,j] // repc7 is in Pi*b^0*[u,vi,j,j,j,j,j] // repc8 is in Pi*b^1*[v,v,ui,j,j] // repc9 is in Pi*b^0*[v,u,j,j,j,j,j,j,j] // // repmc1 is in Pi*b^0*[] // repmc2 is in Pi*b^-1*[u,v,j,j,j,j,j,j] // repmc3 is in Pi*b^0*[ui,v,v,u,j,j,j,j,j,j,j] // repmc4 is in Pi*b^1*[v] // repmc5 is in Pi*b^0*[u,vi,u,j,j,j,j,j,j,j,j] // repmc6 is in Pi*b^-1*[ui,v,v,u,j,j,j,j,j] // repmc7 is in Pi*b^1*[ui,v,j] // repmc8 is in Pi*b^1*[v,ui,v,v,u] // repmc9 is in Pi*b^0*[v,j,j,j,j,j,j] // // We now show that the following list of 3 elements is a set of double coset // representatives for $b^{-1}\Pi_{b(M_c)}b\backslash(\bar\Gamma_c)/K_c$: binvPibMcbKcdoublecosetreplist:=[Gammac | Id(Gammac),t2,t4]; // by showing that the following list of 108 elements is a transversal // for $b^{-1}\Pi_{b(M_c)}b$ in $\bar\Gamma_c$: // The group $K_c=K\cap\bar\Gamma$ is generated by $u$ and $j$. In terms // of generators $t_2$, $t_4$, $t_{12}$ of Section 2.1, the two generators // of $K_c$ are $z_c$ and $t_{12}$, respectively. Kclistingammac:=[ Gammac | zc^i1*t12^i2 : i1 in [0 .. 2], i2 in [0 .. 11]]; binvPibMcbingammactransversal:=[ Gammac | binvPibMcbKcdoublecosetreplist[i1]*Kclistingammac[i2] : i1 in [1 .. 3], i2 in [1 .. 36]]; print "Checking that binvPibMcbingammactransversal is indeed a transversal for b^-1(Pi_(b(M_c))b in barGamma_c"; print "by checking that the elements are in different cosets of barGamma_c."; for i1 in [1 .. 108] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of 108"; end if; for i2 in [i1+1 .. 108] do testgp:=sub< Gammac | // the first 8 generators here are those of $b^{-1}\Pi_{b(M_c)}b$ t12^9*t2*t12^11*t2*t12^8*zc, t12^9*t2*t12^3*t2*t12^4*zc, t12*t2*t12^11*t2*t12^4*zc, t2*t12*t2*t12^7*zc^2, t12^8*t2*t12^11*t2*t12^9*t2*t12^2, t12^11*t2*t12^3*t2*t12^2*zc, t12^10*t2*t12^11*t2*t12^2*t2*t12^3*zc^2, t2*t12^11*t2*t12^10*t2*t12^5*zc^2, binvPibMcbingammactransversal[i1]*binvPibMcbingammactransversal[i2]^-1>; idx:=Index(Gammac,testgp); if (idx eq 108) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 108"; end if; end for; end for; // We now show that the following list of 3 elements is a set of double coset // representatives for $b\Pi_{b^{-1}(M_c)}b^{-1}\backslash(\bar\Gamma_c)/K_c$: bPibinvMcbinvKcdoublecosetreplist:=[Gammac | Id(Gammac),t4,t2*t4]; // by showing that the following list of 108 elements is a transversal // for $b\Pi_{b^{-1}(M_c)}b^{-1}$ in $\bar\Gamma_c$: bPibinvMcbinvingammactransversal:=[ Gammac | bPibinvMcbinvKcdoublecosetreplist[i1]*Kclistingammac[i2] : i1 in [1 .. 3], i2 in [1 .. 36]]; print "Checking that bPibinvMcbinvingammactransversal is indeed a transversal for b(Pi_(b^-1(M_c))b^-1 in barGamma_c"; print "by checking that the elements are in different cosets of barGamma_c."; for i1 in [1 .. 108] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of 108"; end if; for i2 in [i1+1 .. 108] do testgp:=sub< Gammac | // the first 8 generators here are those of $b\Pi_{b^{-1}(M_c)}b^{-1}$ t12^8*t2*t12^2*zc, t2*t12^10*zc, t12^6*t2*t12^8*zc^2, t12^9*t2*t12^10*t2*t12^10*t2*t12, t12^11*t2*t12^7*t2*t12^11*t2*t12, t12^9*t2*t12^4*t2*t12^11, t2*t12*t2*t12^3*t2*t12^11*t2*t12*zc, t12^9*t2*t12^8*t2*t12^7, bPibinvMcbinvingammactransversal[i1]*bPibinvMcbinvingammactransversal[i2]^-1>; idx:=Index(Gammac,testgp); if (idx eq 108) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 108"; end if; end for; end for; // Thinking of the three elements of binvPibMcbKcdoublecosetreplist as elements // of $\bar\Gamma$, they are 1, (b*u^-1)^2 and j^-1*(b*u^-1)^2. So we re-define binvPibMcbKcdoublecosetreplist:=[G | Id(G),(b*u^-1)^2,j^-1*(b*u^-1)^2]; // So the representatives for the double cosets $\Pi_{b(M_c)}\backslash\bar\Gamma_{b(M_c)}/bK_cb^{-1}$ // are $b\gamma b^{-1}$ for these three elements~$\gamma$. We need to find $\mu\in\{0,1,-1\}$ and $k\in K$ // so that $b\gamma\in\Pi b^\mu k$ for each of these $\gamma$'s. for ii in [1 .. 3] do for jj in [1 .. #kklist] do for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,b*binvPibMcbKcdoublecosetreplist[ii]*kklist[jj]^-1*b^(-mu)>; if (Index(G,testgp) eq 864) then print "b*rep",ii,"is in Pi*b^",mu,"*",kkwordlist[jj]; end if; end for; end for; end for; // Output: // b*rep1 is in Pi*b^1*[] // b*rep2 is in Pi*b^(-1)*[vi,u,v,v,j,j,j,j,j,j,j,j,j,j,j] // b*rep3 is in Pi*b^(-1)*[v,u,vi,j] // So $n_0(M)=0$, $n_1(M)=1$ and $n_{-1}(M)=2$ for $M=b(M_c)$. // These facts are confirmed by matrix calculations in the file cs-surface_matrices_magma.txt // Thinking of the three elements of bPibinvMcbinvKcdoublecosetreplist as elements // of $\bar\Gamma$, they are 1, j^-1*(b*u^-1)^2 and (b*u^-1)^2*j^-1*(b*u^-1)^2. So we re-define bPibinvMcbinvKcdoublecosetreplist:=[G | Id(G),j^-1*(b*u^-1)^2, (b*u^-1)^2*j^-1*(b*u^-1)^2]; // So the representatives for the double cosets $\Pi_{b^{-1}(M_c)}\backslash\bar\Gamma_{b^{-1}(M_c)}/(b^{-1}K_cb)$ // are $b^{-1}\gamma b$ for these three elements~$\gamma$. We need to find $\mu\in\{0,1,-1\}$ and $k\in K$ // so that $b^{-1}\gamma\in\Pi b^\mu k$ for each of these $\gamma$'s. for ii in [1 .. 3] do for jj in [1 .. #kklist] do for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,b^(-1)*bPibinvMcbinvKcdoublecosetreplist[ii]*kklist[jj]^-1*b^(-mu)>; if (Index(G,testgp) eq 864) then print "b^(-1)*rep",ii,"is in Pi*b^",mu,"*",kkwordlist[jj]; end if; end for; end for; end for; // Output: // b^(-1)*rep1 is in Pi*b^-1*[] // b^(-1)*rep2 is in Pi*b^1*[v,v,u,vi,j,j,j,j,j] // b^(-1)*rep3 is in Pi*b^-1*[vi,j,j,j,j,j,j,j,j] // So $n_0(M)=0$, $n_1(M)=1$ and $n_{-1}(M)=2$ for $M=b^{-1}(M_c)$. // These facts are confirmed by matrix calculations in the file cs-surface_matrices_magma.txt. // End of calculations for Proposition 7. // ************************************** // Calculations for Proposition 8. // ******************************* // The distinct points $\Pi\xi\in\Pi\backslash B(\C^2)$ which project // to $P_3$ are the points $\Pi t_i\xi_{12}$, where $\xi_{12}\in B(\C^2)$ // is the fixed point of $\gamma_{12}=bv$, and where $t_1,\ldots,t_{72}$ // is a set of representatives for the double cosets // $\Pi g\langle\gamma_{12}\rangle$, $g\in\bar\Gamma$. // We found the following list of 72 elements, and check below that // they form a complete set of representatives. The list is divided // into 3 sublists of length 24, in line with the statement of Proposition 8. gamma12doublecosetlist:=[ G | j^2,j^6,j^10, u*j,u*j^5,u*j^9, Id(G),j^4,j^8, u*j^3,u*j^7,u*j^11, j,j^5,j^9, u*j^2,u*j^6,u*j^10, j^3,j^7,j^11, u,u*j^4,u*j^8, // vi*u*j,vi*u*j^5,vi*u*j^9, vi*u*j^3,vi*u*j^7,vi*u*j^11, b*u,b*u*j^4,b*u*j^8, vi*u*j^2,vi*u*j^6,vi*u*j^10, b*u*j,b*u*j^5,b*u*j^9, b*v*u*j,b*v*u*j^5,b*v*u*j^9, b*vi*u*j,b*vi*u*j^5,b*vi*u*j^9, vi*u,vi*u*j^4,vi*u*j^8, // v*ui*j,v*ui*j^5,v*ui*j^9, v*ui*j^2,v*ui*j^6,v*ui*j^10, u*vi*u*j,u*vi*u*j^5,u*vi*u*j^9, b^-1*v*u*j^2,b^-1*v*u*j^6,b^-1*v*u*j^10, v*ui,v*ui*j^4,v*ui*j^8, v*ui*j^3,v*ui*j^7,v*ui*j^11, u*vi*u,u*vi*u*j^4,u*vi*u*j^8, b*v*ui*v*v*u*j,b*v*ui*v*v*u*j^5,b*v*ui*v*v*u*j^9]; gamma12:=b*v; gamma12pitransversal:=[ G | gamma12doublecosetlist[j1]*gamma12^j2: j1 in [1 .. 72], j2 in [0 .. 11]]; print "Checking that gamma12pitransversal is indeed a transversal for Pi in barGamma"; print "This takes a few minutes. Progress seems slow at first, but it gets faster."; for i1 in [1 .. 864] do if IsDivisibleBy(i1,10) then print "Up to ",i1," out of ",864; end if; for i2 in [i1+1 .. 864] do testgp:=sub< G | a1,a2,a3,gamma12pitransversal[i1]*gamma12pitransversal[i2]^-1>; idx:=Index(G,testgp); if (idx eq 864) then print "Problem: For i1 =",i1,"and i2=",i2,"the index of testgp in G is 864"; end if; end for; end for; // End of calculations for Proposition 8. // ************************************** // Calculations for Proposition 11. // ******************************** // Here is a the list of representatives of nontrivial elements of finite // order in $\bar\Gamma$. Each nontrivial element of $\bar\Gamma$ is conjugate // the one of the elements in the list, or their inverse. torsionreplist:=[ G | // order 2: v*v, j*j*j*j*j*j, b*ui*b*ui, // order3: u, j*j*j*j, u*j*j*j*j, b*u*v, // order 4: v, j*j*j, v*j*j*j, v*v*j*j*j, b*ui, // order 6: j*j, v*v*j*j, v*v*u*j, v*v*u*j*j*j*j*j, b*v*v*ui*j, b*v*v, //order 8: u*v*j, b*j, (b*j)^3, // order 12: j, j*j*j*j*j, u*vi*j*j, u*vi*j*j*j, u*vi*j*j*j*j*j*j, u*vi*j*j*j*j*j*j*j*j*j*j*j, v*v*j, u*v*v, u*j, u*j*j*j, b*v, (b*v)^(-5), // order 24: u*v, v*u*j*j]; torsionrepwordlist:=[ // order 2: ["v*v"], ["j*j*j*j*j*j"], ["b*ui*b*ui"], // order 3: ["u"], ["j*j*j*j"], ["u*j*j*j*j"], ["b*u*v"], // order 4: ["v"], ["j*j*j"], ["v*j*j*j"], ["v*v*j*j*j"], ["b*ui"], // order 6: ["j*j"], ["v*v*j*j"], ["v*v*u*j"], ["v*v*u*j*j*j*j*j"], ["b*v*v*ui*j"], ["b*v*v"], //order 8: ["u*v*j"], ["b*j"], ["(b*j)^3"], // order 12: ["j"], ["j*j*j*j*j"], ["u*vi*j*j"], ["u*vi*j*j*j"], ["u*vi*j*j*j*j*j*j"], ["u*vi*j*j*j*j*j*j*j*j*j*j*j"], ["v*v*j"], ["u*v*v"], ["u*j"], ["u*j*j*j"], ["b*v"], ["(b*v)^(-5)"], // order 24: ["u*v"], ["v*u*j*j"]]; print "Finding mu in {0,1,-1} and k in K and t from the representative list of elements"; print "of finite order given in Proposition 11 (or the inverse of one of these t's),"; print "so that b^mu*k*t*k^-1*b^(-mu)*j^(-4) is in Pi. We exclude the case t=j^4 or its inverse."; for tidx in [1 .. #torsionreplist] do if (tidx ne 5) then // We want to treat the case j^4 separately. for mu in [0,1,-1] do for ii in [1 .. 288] do testgp:=sub< G | a1,a2,a3,b^mu*kklist[ii]*torsionreplist[tidx]*kklist[ii]^-1*b^(-mu)*j^(-4)>; idx:=Index(G,testgp); if (idx eq 864) then print "b^",mu,"*",kkwordlist[ii],"*",torsionrepwordlist[tidx],"*",kkwordlist[ii],"^-1*b^",-mu,"*j^-4 is in Pi"; end if; testgp:=sub< G | a1,a2,a3,b^mu*kklist[ii]*torsionreplist[tidx]^-1*kklist[ii]^-1*b^(-mu)*j^(-4)>; idx:=Index(G,testgp); if (idx eq 864) then print "b^",mu,"*",kkwordlist[ii],"*",torsionrepwordlist[tidx],"^(-1)*",kkwordlist[ii],"^-1*b^",-mu,"*j^-4 is in Pi"; end if; end for; end for; end if; end for; // Tidied up output: // b^0*(ui*v*j)*(b*u*v)*(ui*v*j)^-1*b^0*j^-4 is in Pi // b^0*(ui*v*j*j*j*j*j)*(b*u*v)*(ui*v*j*j*j*j*j)^-1*b^0*j^-4 is in Pi // b^0*(ui*v*j*j*j*j*j*j*j*j*j)*(b*u*v)*(ui*v*j*j*j*j*j*j*j*j*j)^-1*b^0*j^-4 is in Pi // // b^0*(v*j*j)*(b*u*v)*(v*j*j)^-1*b^0*j^-4 is in Pi // b^0*(v*j*j*j*j*j*j)*(b*u*v)*(v*j*j*j*j*j*j)^-1*b^0*j^-4 is in Pi // b^0*(v*j*j*j*j*j*j*j*j*j*j)*(b*u*v)*(v*j*j*j*j*j*j*j*j*j*j)^-1*b^0*j^-4 is in Pi // // b^1*(v*ui*v)*(b*u*v)*(v*ui*v)^-1*b^-1*j^-4 is in Pi // b^1*(v*ui*v*j*j*j*j)*(b*u*v)*(v*ui*v*j*j*j*j)^-1*b^-1*j^-4 is in Pi // b^1*(v*ui*v*j*j*j*j*j*j*j*j)*(b*u*v)*(v*ui*v*j*j*j*j*j*j*j*j)^-1*b^-1*j^-4 is in Pi // // b^1*(u*v*v*j*j)*(b*u*v)*(u*v*v*j*j)^-1*b^-1*j^-4 is in Pi // b^1*(u*v*v*j*j*j*j*j*j)*(b*u*v)*(u*v*v*j*j*j*j*j*j)^-1*b^-1*j^-4 is in Pi // b^1*(u*v*v*j*j*j*j*j*j*j*j*j*j)*(b*u*v)*(u*v*v*j*j*j*j*j*j*j*j*j*j)^-1*b^-1*j^-4 is in Pi // // b^-1*(v*u*j*j*j)*(b*u*v)*(v*u*j*j*j)^-1*b^1*j^-4 is in Pi // b^-1*(v*u*j*j*j*j*j*j*j)*(b*u*v)*(v*u*j*j*j*j*j*j*j)^-1*b^1*j^-4 is in Pi // b^-1*(v*u*j*j*j*j*j*j*j*j*j*j*j)*(b*u*v)*(v*u*j*j*j*j*j*j*j*j*j*j*j)^-1*b^1*j^-4 is in Pi // // b^-1*(v*v*u*j*j*j)*(b*u*v)*(v*v*u*j*j*j)^-1*b^1*j^-4 is in Pi // b^-1*(v*v*u*j*j*j*j*j*j*j)*(b*u*v)*(v*v*u*j*j*j*j*j*j*j)^-1*b^1*j^-4 is in Pi // b^-1*(v*v*u*j*j*j*j*j*j*j*j*j*j*j)*(b*u*v)*(v*v*u*j*j*j*j*j*j*j*j*j*j*j)^-1*b^1*j^-4 is in Pi print "Finding mu in {0,1,-1} and k in K and t is j^4 or its inverse,"; print "so that b^mu*k*t*k^-1*b^(-mu)*j^(-4) is in Pi."; for tidx in [1 .. #torsionreplist] do if (tidx eq 5) then // We want to treat the case j^4 separately. for mu in [0,1,-1] do testgp:=sub< G | a1,a2,a3,b^mu*torsionreplist[tidx]*b^(-mu)*j^(-4)>; idx:=Index(G,testgp); if (idx eq 864) then print "b^",mu,"*",torsionrepwordlist[tidx],"^-1*b^",-mu,"*j^-4 is in Pi"; end if; testgp:=sub< G | a1,a2,a3,b^mu*torsionreplist[tidx]^-1*b^(-mu)*j^(-4)>; idx:=Index(G,testgp); if (idx eq 864) then print "b^",mu,"*",torsionrepwordlist[tidx],"^(-1)*b^",-mu,"*j^-4 is in Pi"; end if; end for; end if; end for; // Output: // b^0*(j*j*j*j)^-1*b^0*j^-4 is in Pi // b^1*(j*j*j*j)^-1*b^-1*j^-4 is in Pi // b^-1*(j*j*j*j)^-1*b^1*j^-4 is in Pi // End of calculations for Proposition 11. // ***************************************