ON THE CARTWRIGHT-STEGER SURFACE

DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

Abstract In this article, we study various concrete algebraic and differential geometric prop-
erties of the Cartwright-Steger surface. In particular, we determine the genus of a generic
fiber of the Albanese fibration, and deduce that the singular fibers are not totally geodesic,
answering an open problem about fibrations of a complex ball quotient over a Riemann sur-
face.

0. INTRODUCTION

The Cartwright-Steger surface was found during work on the classification of fake projec-
tive planes completed in [PY] and [CS1]. A fake projective plane is a smooth surface with
the same Betti numbers as the projective plane but not biholomorphic to it. It is known
that a fake projective plane is a complex two ball quotient H\B(% with Euler number 3,
where II is an arithmetic lattice in PU(2, 1), cf. [PY]. In the scheme of classification of fake
projective planes carried out in [PY], it was conjectured but not proved in [PY] that the
lattice II associated to a fake projective plane cannot be defined over a pair of number fields
Ci11 = (Q(+/3),Q(¢12)), where (12 is a 12-th root of unity. Such a IT would be of index 864
in a certain maximal arithmetic subgroup I' of PU(2,1). As reported in [CS1], the authors
showed using a lengthy computer search that there is no torsion free lattice IT of index 864
in this T with b; (IT) = 0, but surprisingly there is one with by (IT) = 2. The surface IT\ B2 is
the subject of study in this article.

The Cartwright-Steger surface is unique as a Riemannian manifold with the given Euler
and first Betti numbers, but has two different biholomorphic structures given by complex
conjugation. From an algebraic geometric point of view, the fake projective planes and
the Cartwright-Steger surfaces are interesting since they have the smallest possible Euler
number, namely 3, among smooth surfaces of general type, and constitute all such surfaces.
From a differential geometric point of view, they are interesting since they constitute smooth
complex hyperbolic space forms, or complex ball quotients, of smallest volume in complex
dimension two. We refer the reader to [R], [Y1], and [Y2] for some general discussions related
to the above facts. Unlike fake projective planes, whose lattices arise from division algebras
of non-trivial degree as classified, the Cartwright-Steger surface is defined by Hermitian
forms over the number fields mentioned above. It is realized among experts that such a
surface is commensurable to a Deligne-Mostow surface, the type of surfaces which have
been studied by Picard, Le Vavasseur, Mostow, Deligne-Mostow, Terada and many others,
cf. [DM1].

Even though the lattice involved is described in [CS2], it is surprising that the algebraic
geometric structures of the surface are far from being understood. A typical problem is
to find out the genus of a generic fiber of the associated Albanese fibration. Conventional
algebraic geometric techniques do not seem to be readily applicable to such a problem. The
goal of this article is to develop tools and techniques which allow us to understand concrete
surfaces such as the Cartwright-Steger surface. In particular, we recover algebraic geometric
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properties from a description of the fundamental group of the surface, using a combina-
tion of various algebraic geometric, differential geometric, group theoretical techniques and
computer implementations.

Here are the results obtained in this paper.

Main Theorem Let X be the Cartwright-Steger surface and o : X — T the Albanese map.

(a) The genus of a generic fiber of « is 19.

(b) All fibers of a have multiplicity 1. The singular set of the fibration « consists of
either three nodal singularities or one tacnode singularity.

(c) The Albanese torus T is C/(Z + wZ), where w is a cube root of unity.

(d) The Picard number of X is 3, equal to h*1(X), so that all the Hodge (1,1) classes are
algebraic. The Néron-Severi group is generated by three immersed totally geodesic
curves we explicitly give.

(e) The automorphism group ¥ of X, isomorphic to Zs, has 9 fixed points, and induces
a nontrivial action on T which has 3 fixed points. Three fixed points of ¥ lie over
each fized point in T. Over one fixed point on T, the three fized points of ¥ are of
type £(1,1). The other 6 fized points of ¥ are of type 3(1,2).

The Main Theorem follows from Theorem 3, Lemma 9, Corollary 1, Lemma 5 and
Lemma 32.

As an immediate consequence, see Theorem 4, we have answered an open problem com-
municated to us by Ngaiming Mok on properties of fibrations on complex ball quotients.

Corollary There exists a fibration of a smooth complexr two ball quotient over a smooth
Riemann surface with non-totally geodesic singular fibers.

Apart from the results above, we have given a detailed analysis of the Albanese map
in §5. Moreover, results on the surface parallel to an original construction of Livné [Li] on
fibrations of a complex hyperbolic surface over a Riemann surface are explained in Section 6.
As another application, we have used the surface to derive some interesting properties related
to a question of Nori [N] on Lefschetz properties for singular ample curves on a projective
algebraic surface in §7.

Here are a few words about the presentation of the article. To streamline our arguments
and to make the results more understandable, we state and prove the geometric results
of the article sequentially in the main parts of the article. Many of these results rely on
computations in the groups IT and T', often obtained with assistance of the algebra package
Magma, and we present these in an appendix. More details can be found on the webpage
of the first author at http://www.maths.usyd.edu.au/u/donaldc/cs-surface/.
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1. BASIC FACTS

1.1. Let F be a Hermitian form on C* with signature (2,1). We denote by U(F) = {g €
GL(3,C) | g*Fg = F} the subgroup of GL(3,C) preserving the form F', by SU(F') the sub-
group of U(F) of elements with determinant 1, and by PU(F') their image in PGL(3,C).
The group PU(F') is naturally identified with the group of biholomorphisms of the two-ball
BA(F) :={[z] e P2A =P(C?)| F(z) < 0}.

Our aim is to study a special complex hyperbolic surface X = II\BZ(F) where II is
a cocompact torsion-free lattice in some PU(F'). The group II appears as a finite index
subgroup of an arithmetic lattice T' which can be easily described as follows.

Let ¢ = (12 be a primitive 12-th root of unity. Then r = ¢ + (™! is a square root of 3.
Let £ = Q(¢) and k = Q(r) C £. For real and complex calculations below, we take ¢ = ™/,
and then r is the positive square root of 3. We could define T' to be the group of 3 x 3
matrices ¢’ with entries in £ such that ¢'* F'g’ = F’, where

r+1 -1 0
F=|(-1 r-1 0],
0 0o -1

such that ¢’ has entries in Z[¢], modulo Z = {¢/T: j =0,...,11}.
However, it is convenient to work with a diagonal form instead of F’. Notice that F' =
(r— 1)1y Fryp for

10 0 1 0 0
F=10 1 0 , and Y=|1 1-r O
0 0 1-—r 0 0 1

So we instead define I to be the group of matrices g, modulo Z, with entries in ¢, which are
unitary with respect to F' for which ¢’ = ’yo_lg’yo has entries in Z[(]. Such ¢’s have entries
in L Z[¢] € 1z[q].

Since F is diagonal, it is easy to make the group PU(F') act on the standard unit two-ball,
which we will just denote by B2: if gZ € T, the action of gZ on B2 is given by

Z/

(92).(z,w) = (¢',w') if DgD™! =A|w' |,
1

— 8 W

for some A € C, where D is the diagonal matrix with diagonal entries 1, 1 and /7 — 1.

We often ignore the distinction between matrices g and elements gZ of T', though we
sometimes need to carefully distinguish these two objects.

Now I' contains a subgroup K of order 288 generated by the two matrices u = you'vy, !
and v = yov'y; " where

GH-¢ 1-¢ 0 ¢ 00
u = <3+<271 4743 0 and v = C3+<27€71 1 0
0 0 1 0 0 1

A presentation for K is given by the relations
u? =v* =1, and (uwv)? = (vu)?.
The elements of K are most neatly expressed if we use not only the generators v and v, but
also j = (uv)?, which is the diagonal matrix with diagonal entries ¢, ¢ and 1, and which
generates the center of K. B
There is one further generator needed for I', namely b = b’y ! for

1 0 0
V=|-23-¢+2¢+2 G+-¢-1 -¢-¢
SRS -1 =G4+



4 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

Theorem 1 ([CS2]). A presentation of T is given by the generators u, v and b and the
relations

ud =0t =03 =1, (w)? = (vu)?, vb=bv, (bw)® = (buvu)?v = 1.

1.2. Let us record here the connection with a group which was first discovered by Mostow:
the group I is isomorphic to a group generated by complex reflections, denoted by T’ 1 in
the paper [Mol] and by I's 4 in [Pal, and whose presentation (see Parker [Pal) is

T34=(J,Ri,Ay : JP=R}=A1=1, A = (JR{'J)?, A1R; = R1 A;).

Defining Ry = JR;J ™!, it was shown in [Pa, Proposition 4.6] that the subgroup (A;, Ry)
of I'3 4 is finite, with order 288 (actually, it is isomorphic to K above). It has the simple
presentation

<A1,R2 : Aéll = RS’ = 1, A1R2A1R2 = R2A1R2A1>.

The following result was communicated to us by John Parker.
Proposition 1. There is an isomorphism 1 : T — T's 4 such that
P(u) = Ra, Y(v) = A1, and ¥(b) = R;.
It satisfies Y(K) = (A1, R2), and its inverse satisfies
VTHR) =0, TN A) = v, ¢TH(J) = buw,  and $TH(Rp) = .

1.3. It is also convenient to see I' as a (Deligne-)Mostow group: it corresponds to item 8
in the paper of Mostow [Mo2, p. 102] whose associated weights (2,2,2,7,11)/12 satisfy the
condition (XINT) in the notation of [Mo2]. We refer to [Mo2] and [DM2] for details on the
description below.

The orbifold quotient f\Bé is a compactification of the moduli space of 5-tuples of distinct
points (zg, x1, 22, x3,24) € (P&)® modulo the diagonal action of PGL(2,C) and the action
of the symmetric group on three letters ¥3 on the three first points. The compactification
can be described as follows. First, it can be easily seen that the moduli space @ of 5-tuples
of distinct points (2o, 1,22, 73, 24) € (P¢)® modulo the diagonal action of PGL(2,C) can
be realized as PZ with a configuration of six lines removed. In homogeneous coordinates
[Xo : X1 : X5] on PZ, these six lines correspond to the three lines of “type A” with equation
X; =X; (1 <i<j<2) and the three lines of “type B” with equation X; =0 (i =0, 1,2).
In fact, the compactification Q = PZ of @ is determined by the fact that we allow two or
three of the points xg, 1 and 2 to coincide (zo = x; corresponds to Xy = X1, ¢ = 22 to
Xo = X5 and 1 = x2 to X7 = X>) and we also allow one or two of the points g, 1 and 2
to coincide with x3 (zg = x3 corresponds to Xy = 0, 1 = 23 to X3 = 0 and x5 = 23 to
X5 =0).

Then, as we mentioned above, the underlying topological space of T'\ B2 is a compactifi-
cation R of /X3 and actually is the weighted projective plane P(1,2,3) = P% /33 where the
symmetric group on three letters X3 acts by permutation of the homogeneous coordinates
[Xo : X1 : Xo] on PZ. There are two remarkable (irreducible) divisors on P(1,2, 3): one is
the image D4 of the divisors of type A, the other one is the image Dp of the divisors of
type B. The divisor D4 has a cusp at the image P; of the point [1: 1 : 1] and the divisor
Dpg is smooth. These two divisors meet at two points: once at the image P, of the points
[1:0:0],[0:1:0] or [0:0: 1] where they are tangent, once at the image P3 of the points
[1:1:0],[1:0:1)or[0:1:1] where the intersection is transverse. There are also two
singular points on P(1,2, 3): one is a singularity of type A; and is the image Py € Dp of the
points [1: —1:0], [1:0: —1] or [0: 1: —1], the other one is a singularity of type Ay and is
the image Ps of the points [1: w : w?] or [1 : w? : W] where w is a primitive 3rd root of unity.

Remark 1. In the book [DM2, p. 111], the divisor D4 (resp. Dpg) is denoted by Daa (resp.
Dag) and the points Py, ..., Ps simply by 1,...,5.
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FIGURE 1. Q =PZ and R =P%/3;

There is a standard method to compute the weight of the orbifold divisors on ].:‘\B(% as
well as the local groups at the orbifold points, according to the weights (2,2,2,7,11)/12.
The weight of D4 is 3 = 2(1—(2+2)/12)~! and the weight of D is 4 = (1—(2+7)/12)7L.
This means that the preimage of D4 (resp. Dg) in BZ is a union of mirrors of complex
reflections of order 3 (resp. 4). We will denote by M4 (resp. Mp) the corresponding sets
of mirrors. Said another way, the isotropy group at a generic point of some M € M, is
isomorphic to Z3 and the isotropy group at a generic point of some M € Mg is isomorphic
to Z4, both generated by a complex reflection of the right order. This of course has to be
compared with the description of I' as I's 4.

The isotropy group at a point above the transverse intersection P3 of D4 and Dpg is
naturally isomorphic to Z3 x Z4. As Ps is a singularity of type Ay but does not belong to
any orbifold divisor, the local group at Ps is isomorphic to Zs. But since Py € Dy is a
singularity of type A;, the local group at P, has order 8 = 2 - 4 and actually is isomorphic
to Zg.

It is a little bit more difficult to determine the isotropy group above the points P; and Ps.
It will also be useful to describe the stabilizer in T' of a mirror. For this, one can use a
method similar to the one in [Derl, Lemma 2.12] and obtain the following lemma which
already appeared in an unpublished manuscript of Deraux and Yeung.

Lemma 1. Let M4 (resp. Mp) denote the set of mirrors of complex reflections of order 3
(resp. 4) in T.

Let P C B% denote the set of points above Py and T C B?C denote the set of points
above Py. The following holds.

(a) The group T acts transitively on My, on Mg, on P and on T.

(b) For each point x € P, the stabilizer of x is the one labelled 4 in the Shephard-Todd
list. It is a central extension of a (2,3, 3)-triangle group, with center of order 2, and
has order 24. There are precisely 4 mirrors in M 4 through each such x € P.

(¢c) For each pointy € T, the stabilizer of y is the one labelled §10 in the Shephard-Todd
list. It is a central extension of a (2,3,4)-triangle group, with center of order 12,
and has order 288. Through each such y € T, there are 8 elements of M and 6
elements of Mp.

(d) The stabilizer of any element M € M4 is a central extension of a (2,4,12)-triangle
group, with center of order 3.

(e) The stabilizer of any element M € Mp is a central extension of a (2,3,12)-triangle
group, with center of order 4.

Sketch of proof. (a) Follows from the above discussion.
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(b) The point Py corresponds to 2o = 21 = 22 so that the computation 3/2 = (1 — (2 +
2)/12)~! shows that the spherical triangle group associated to the projective action of the
isotropy group at x € P is (2,3,3). Indeed, we have to consider the triangle with angles
(27/3,27/3,27/3) and take the symmetry into account (i.e. dividing the triangle into six
parts), so that we obtain a triangle with angles (7/2,7/3,7/3). The center has order given
by 2 = (1—(2+2+2)/12)~. Comparing with [ST, Table 1], we see that the relevant group
is the one labelled #4 in the Shephard-Todd list and the rest of the assertion follows.

(¢) Similarly, the point P corresponds for instance to o = 1 = x3 and the additional
computation 4 = (1 — (2 + 7)/12)~! shows that the spherical triangle group associated to
the projective action of the isotropy group at y € T is (2,3,4). Indeed, we have to consider
the triangle with angles (7 /4,7/4,27/3) and take the symmetry into account (i.e. dividing
the triangle into two parts), so that we obtain a triangle with angles (7/2,7/3,7/4). The
center has order given by 12 = (1 — (2 + 2 + 7)/12)~!. Comparing with [ST, Table 2], we
see that the relevant group is the one labelled #10 in the Shephard-Todd list.

(d) Follows from the interpretation of the stabilizer of M € M4 as a central extension
with center of order 3 (corresponding to the order of the reflection with mirror M) of a
Deligne-Mostow group with weights (2,4,7,11)/12 coming for instance from the collapsing
of x1 and 3. The associated triangle group is (2,4,12) since 2 = (1 — (2 + 4)/12)7 1,
4=01-2+7/12)and 12=(1 - (4+7)/12)"L.

(e) Similarly, the stabilizer of M € Mp is a central extension with center of order 4
(corresponding to the order of the reflection with mirror M) of a (Deligne-)Mostow group
with weights (2,2,9,11)/12 coming for instance from the collapsing of x5 and z5. We have
moreover to take care of the symmetry coming from the first two weights. The associated
triangle group is (2,3,12) since 3/2 = (1 — (24 2)/12)"! and 12 = (1 — (2+ 9)/12)7! so
that we have to divide into two parts a triangle with angles (27/3,7/12,7/12). O

Remark 2. The data concerning the isotropy groups can be recovered using calculations
in ', see Proposition A.8.

1.4. Cartwright and Steger discovered a very interesting torsion-free subgroup II of ' with
finite index. The surface IT\ B2 is called the Cartwright-Steger surface in this article.

Theorem 2 ([CS2]). The elements
a1 = vuv” Ytbuwvi?,  as = viubuwo T un?j  and  agz = utv?ugbu~
of T' generate a torsion-free subgroup I1 of index 864, with I1/[II,T1] = Z2.

Proof. Using the given presentation of T', the Magma Index command shows that II has
index 864 in I'. We see that I is torsion-free as follows. The 864 elements b*k, for n = 0,1, —1
and k € K, form a set of representatives for the cosets IIg of II in . One can verify this
by a method we shall use repeatedly: for g = b*k and ¢ = b* k’, we check that Ilg # IIg’
unless ¢/ = p and k' = k by having Magma calculate the index in ' of (ay,as, a3, g’g~").
If 1 # 7 € II has finite order, then m = gtg~! for one of the elements ¢ given in the table
of Proposition A.7, or the inverse of one of these. But then (b“k)t(b*k)~1 € II for some
u€{0,1,—1} and k € K, and Magma’s Index command shows that this is not the case.
The Magma AbelianQuotientInvariants command shows that II/[II,1I] = Z2. For
any isomorphism f : II/[II,TI] — Z2, the image under f of aja;?a} is trivial. We can
choose f so that it maps a1, as and as to (1,3), (=2,1) and (—1,—1), respectively. So
f(arayta2) = (1,0) and f(aj'azaz?®) = (0,1). O

luvfljS

Magma shows that the normalizer of II in I' contains IT as a subgroup of index 3, and is
generated by IT and j*. One may verify that
jtaj™" = ¢ (azay aja),
R Cilagl, and

Y -1 -1 -1_ 2 —1 —1 -1 -1
Jjrasi™ " =( "ay ay aiazal] ay aiaz G a20q.
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With the above isomorphism f : IT/[II, II] — Z2,
0 -1

f(r)=(m,n) = f@*'ni~*) = (m,n) (1 1) for all 7 € II. (1)

From now on, all the proofs involving computations with Magma will be given in the
appendix (§A).

1.5. Cartwright and Steger noticed that the group II can be exhibited as a congruence
subgroup of I': we have two reductions 75 : Z[(] — F4 = Fa[w] and 73 : Z[(] — Fg = F3]i]
defined by sending ¢ to w (resp. i) where 1 +w + w? = 0 (resp. i = —1). They induce
(surjective) group morphisms py : T' — PU(3,F) and p3 : I' — PU(3,Fg) (recall that
PU(3,F,) and PU(3,Fg) have respective cardinality 216 and 6048).

Note that for an element of PU(3,F,), the determinant is well defined since w® = 1. This
enables us to define a (surjective) morphism dety = det o py : I' — Fj;. Let us denote the
subgroup dety ' (1) of index 3 of T' by Ils.

Remark also that there exist subgroups of order 21 in PU(3,Fg) (they are all conjugate)
and let us denote one of them by Go;. Then, define II3 := pgl(Ggl): it is a subgroup of T’
of index 288 = 6048/21.

Finally, one can check that IIy N II5 is a torsion-free subgroup of I' of index 864 = 3 - 288
and that it is isomorphic to II.

1.6.

Lemma 2. The Cartwright-Steger surface X = II\B2 has the following numerical invari-
ants:

d=9 =3 xOx)=1, ¢:=r"0=1, p,:=0>"=1, K =3

Proof. The orbifold I'\ B2 has orbifold Euler characteristic 1/288 (see [PY] or [Sa] for in-
stance) so that X has Euler characteristic co(X) = 3 = 864/288. Then, as it is a two-ball

quotient, ¢#(X) = 9 and thus its arithmetic genus is x(Ox) = (¢} + c2) = 1. Since
I1/[I1, 1] = Z2, we have b; = 2¢ = 2. So, from

1 = x(Ox)=1-q+py,

3 = CQ(X) = 2b0 — 2b1 + bg,
we deduce that p, = 1, b = 5, and finally, ' = 3. O

We will see later (Corollary 1) that the Picard number of X is actually 3. It is our purpose
to understand the geometric properties of the surface X, especially using its Albanese map.

2. SUMMARY OF CONFIGURATIONS OF SOME TOTALLY GEODESIC DIVISORS

Here we summarize results about configuration of totally geodesic divisors on the Cart-
wright-Steger surface X = II\BZ. Let 7 : X — R = I'\ B2 be the projection. We use the
notation of §1.3. From the description of the local groups at Py, P, and P3, we know that
7~ 1(P,) consists of 3 = 864/288 points O; = I1(0),09 = II(b- 0),03 = II(b~1 - O) on X,
7~ 1(P;) consists of 36 = 864/24 points, and 7~ 1(P3) consists of 72 = 864/12 points.

For the curves D4 and Dp, their preimages 7—1(D4) and 7~(Dp) consist of singular
totally geodesic curves on X, denoted to be of types A and B respectively. The curves have
simple crossings at 7~ (P;) for i = 1,2, 3.

2.1. By Propositions A.9, A.10 and A.11, the (singular) totally geodesic curves on X of
type B consist of three curves of geometric genus 4, denoted by E1, Fs and F5 and associated
with My, My, and M; respectively (in the notation of Proposition A.10). These curves
are specified by having multiplicities at O1, O, O3 given by (3,1,2), (2,1,3) and (1,4,1)
respectively and the points in 7=!(P,) are the only ones where they can intersect.
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2.2. By Propositions A.13, A.14, A.15 and A.16, the (singular) totally geodesic curves on
X of type A consist of four curves denoted by Cy,Cs,C3 and Cy, associated with b(M.),
b=1(M,.), M, and M_. respectively (in the notation of Proposition A.14), and where the
geometric genera are given by 4,4,10 and 10 respectively. The curves of type A may inter-
sect at points in 7=1(P;) and 71 (P), and nowhere else. In the following discussions, we
shall mainly focus on C; and Cs, both of which cross Oy, Oy, O3 with multiplicities (0, 1, 2)
respectively. The corresponding multiplicities for C3 and Cy are (4,3,2). The curve C;
passes precisely once through exactly 18 of the 36 points in 7!(Py), as does Co. The curves
C and C5 intersect once at 12 of those 36 points.

2.3. A curve of type A and one of type B may intersect at points of 7~1(P3), apart from the
intersections at O;, j = 1,2, 3, mentioned by the data above. From Proposition A.18, we get
the following data. The curve E; intersects each of C;,7 = 1,2, 3,4 once in normal crossing
in 6 of the 72 points in 7~(P3). The curve E, has no intersection with C; and Cy, but
intersects once with each of Cs, Cy at 12 of the points of m7=*(P3). The curve Es3 intersects
each of C; and Cy once at three of the points of 771(Ps), and intersects each of the curves
C3 and Cy once at 9 of the points of 771(P3).

Remark 3. It can be checked with Magma that the normalizations of the three curves E;
are orbifold coverings of degree 72 of the orbifold Pt endowed with three orbifold points of
respective multiplicities (2,3,12) hence by the Riemann-Hurwitz formula, the genus of E; is

indeed
72 2—-1 3-1 12-1
g(EZ-)—2<—2+ 5 + 3 + B )+1—4.
Note that 864 = 4 - 3 - 72 where 4 is the order of the reflections of type B and 3 the number
of curves of type B.

In the same way, the normalizations of Cy and Cy (resp. Cs and Cy) are orbifold coverings
of degree 36 (resp. 108) of the orbifold P{ endowed with three orbifold points of respective
multiplicities (2,3,12) so that g(C1) = g(Ca) = 4 and g(C3) = ¢g(Cy) = 10. Here again,
864 = 3(2-36 + 2 - 108) where 3 is the order of the reflections of type A.

All these computations are consistent with Lemmas 1(d) and (e).

2.4. We have seen that Hy(X,Z) = Ze; + Zey = Z? in terms of a basis e; and ey. Let D
be a smooth curve of genus 4. A presentation of (D) can be given as

4
<u1,1}1,u2,’02,U3,’U3,U4,U4 | H[uiavi] = 1>
i=1
For each of the curves D of genus 4, F;,¢ = 1,2,3 and Cj},j = 1,2, abusing notation we
denote by f : H1(D,Z) — Hy(X,Z) = Z? the homomorphism induced by the normalization
of the immersed image of D in X. Using Magma, we have found explicitly a basis of such
elements u;,v;,i = 1,...,4in m (D), and computed their images f(u;), f(u;) in H1(X,Z) in
terms of eq, ey (see Propositions A.12 and A.17). This is summarized as follows for Fy, Es
and C1, which is all we need for later computations.

D | f(w) f(vr) | flu2) | flv2) | f(us) | fl(vs) | flua) f(va)
Ei | (-5,-2)| (-2,7) | (-2,1) | (0,0) (1,4) | (3,-6) | (2,5) | (—-1,-4)
Es> (—1,2) (2,—1) (—2,1) (0,0) (—3,0) (—1,2) (— ,1) (3,0)
(o (0,—2) | (=2,0) | (—4,0) | (0,2) | (—4,2) | (4,0) (2,0) (0,—2)

3. PICARD NUMBER

3.1.
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Lemma 3. Suppose D is a reduced (not necessarily irreducible) totally geodesic curve on a
smooth complex two-ball quotient X self-intersecting only at Py, . .., Py with simple multiplic-
ities given by (by,--- ,bg) and let us denote by D; (i =1,...,n) its irreducible components,
l/ii their normalization. Let v : D = UilA)i — D be the normalization of D. Then

k
1~ o~ -
—32 )—1) and D-D:§(3(D)—|—(57 where 6:Zbi(bi—1)
i=1

and e(D) is the Euler characteristic of D.

Proof. Note that we are in the case of a (non necessarily connected) immersed smooth
curve in a surface, with singularities given by intersections of transversal local branches.
Moreover, it is well known that for a totally geodesic curve D in a two-ball quotient,
c1(Kp) = 2v*ci(Kx) (this is a simple computation involving the curvature form on B2).
As a consequence, by the adjunction formula,

Kx-D= /clKX Z/cl 732 (D) - 1).
Recall moreover from [BHPV, §II.11] that

g(D) = g(D)+6* (D), where g(D) = 1—1—2 —1) and 6*"(D Z dimc(v.05/0p)
xz€D

(here, the genus of a singular curve is its arithmetic genus). From the adjunction formula
for embedded curves, 2(g(D) — 1) = Kx - D + D - D and therefore,

DD =2(g(D)~1) - Kx -D = 2(g(D) +5"(D) = 1) = 3(9(D) ~ 1) = (1~ g(D)) +25"(D).
Finally, observe that in the case at hand, 6**(D) = § Zle bi(b; — 1) = %5 O
3.2.

Lemma 4. We have the following intersection numbers.
(a) Fori=1,2,3, we have Kx - E; = 9. Moreover, fori=1,2, E;-E; =5, E;- E3=9
and E1 - E5 = 13. We also have E3 - E3 = 9.
(b) Denote by C either Cy or Cy. Then Kx-C =9,C-C=-1,FE,-C=11, E;-C =7
and E3-C =9.

Proof. The results follow immediately from Lemma 3 (here, all the involved curves are
irreducible) and the summary in §2.

First, note that since the normalizations of the curves in (a) and (b) all have genus 4,
their intersection with Kx is always 9 by Lemma 3. We leave the other computations to
the reader and just observe that:

— a curve E; can only intersect a curve F; at 7= (Py),
— two local branches of a curve C' can only intersect at 7=1(Py),
—a curve C can only intersect a curve E; at 7~ (P,) and 7~ 1(P). O

3.3. From now on, for any two divisors D and D’ on X, D = D’ will mean that D and D’
are numerically equivalent.

Lemma 5. E1, Fs and C represent numerically linearly independent elements in the Néron-
Severi group, where C' = Cy or Cs.

Proof. Assume that E;, F5 and C satisfy numerically an identity
aFE1 4+ bFEs +cC =0.
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By considering the intersection of the above identity with F;, Es and C' respectively, we
conclude that

0 = 5a+13b+1lc
0 = 13a+5b+7c
0 = 1lla+7b—c
The determinant of the above linear system is 1296 # 0. Hence a = b= ¢ = 0. O

3.4.
Corollary 1. The Picard number of X is 3.

Proof. Tt follows from the previous lemma that the Picard number is at least 3, given by
the classes of 1, F5 and C. On the other hand, hl’l(X) = 3 by Lemma 2. Since the Picard
number is bounded from above by h''!, we conclude that the Picard number is 3. O

3.5. The following fact is a corollary of the earlier discussions.

Proposition 2. The canonical line bundle Kx and E3 give rise to the same class in the
Néron-Severi group. Moreover, Kx = F3 = %El + %Eg.

Proof. From the discussions in the previous section, we know that F1, Fs and C' = C; form
a basis of the Néron-Severi group (which is torsion free since H;(X,Z) = Z? is torsion free).
Hence we may write

KX EaE1 +bE2+CC
for some rational numbers a,b and c. By pairing with E1, Es and C respectively, we arrive
at
= ba+13b+ 1lc

13a + 5b+ 7c
1la+7b —¢

Solving the above system of equations, we obtain

1 1
Kx =-F + =E».
X =5k + 52
The same computation leads to F3 = %(El + Es) since B3 - F; = Kx - E; for i = 1,2 and
Es - C=Kx-C. d

Remark 4. By the previous proposition, we also have Kx = %(%El + %Eg) + %Eg, =
%(El + Es+ E3). This fact can be recovered directly from the description of X as an orbifold
covering of R =T\B2 as in §2.

We use the notation of §1.3. Let q : Q = PZ — R = PZ/%3 be the projection. First,
we compute the canonical divisor Kr of R. We have Kg = aD s = 2aDp for some a € Q
(see [DM2, §11.4 and Proposition 11.5] for a description of Pic(R)). If we denote by L =
O(1) the positive generator of Pic(P%), we have —3L = Kp2 = ¢"Kgr + 3L = 6aL + 3L
as q branches at order 2 along D4, and D4 has three lines as a preimage in IP’(%. Hence
Kr=—-Dy=-2Dp.

Now, the orbifold canonical divisor off‘\B(Q: 18 KR+3,;31DA+%DB = (—1+%+%)DA =
iDA = %DB. In particular, as 7*Dp = 4(FE + E2 + E3), we get the result.
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4. GEOMETRY OF A GENERIC FIBER OF THE ALBANESE MAP

4.1. Let a : X — T be the Albanese map of X. From II/[II, ] & Z?  we know that T is
an elliptic curve, and in particular, o is onto. Moreover, note that since the image of « is
a curve, the fibers of o are connected (see [U, Proposition 9.19]). Let D be a curve on X.
The mapping « induces a mapping «|p : D — T'. Suppose F' is the generic fiber of a. Then
the degree of «|p is given by D - F.

Lemma 6. Let m,n,p be the degrees of Ey, Fa, and C = C1, respectively, over the Albanese
torus T of X. The generic fiber F' of the Albanese fibration of X satisfies

= E((—Z&m + 51+ 2p)Ey + (5m — Tn + 6p) B2 + 2(m + 3n — 4p)C).

Proof. From Lemma 5, we may write numerically
FEGE1+bE2+CC

for some rational numbers a, b, c. By pairing with E;, Fs and C respectively, we arrive at

m = ba+13b+ 1lc
n = 13a+5b+7c
p = 1lla+7b—c
The lemma follows from solving the above system of equations. O

4.2,

Lemma 7. The degrees of E1, Fo,C = C1 over the Albanese torus T of X are given by
m =60, n =12, p=24.
Proof. Let D represent one of the curves E1, Fo,C, v : D — D the normalization of D and
& = aov. Let w be a positive (1,1) form on T. Then the degree of D over T is given by
deg(D) = ff}# The key is to find the degree from the information of the explicit curves
T

that we have. For this purpose, we use an analogue of the Riemann bilinear relations. Let
1 be a holomorphic 1-form on the smooth Riemann surface D. Let {u;,v;} be a basis of
m1(D) as studied in §2.4. Then the Riemann bilinear relation (cf. [GH, p. 231]) states that

/D\/—ilnAn—ﬁil/mn/wn—/mn/Mn

where we use the same notation for an element of m; (D) and its image in H; (D,Z). Let us
write T' = C/(Z + Z7) where Im7 > 0. Let wp = /—1dz A dz be the standard (1,1) form
on C and hence T. The above formula gives

TWT:M(?—T). (2)

Pulling back to D, the above formula gives

/a*wT:/ & wr
D D

:/A V—=1&*dz N &*dz
D

. o N (3)
:\/?12 / d*dz/ d*dz—/ d*dz/ a*dz

i=1 Uq Vi v u;

4 [
\/12[/ dz/ dzf/ dz/ dz].
i=1 &*(ul) d*('ui) d*vi éc*ui
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In the above, &, : Hi(D,Z) — Hy(T,Z) = Hy(X,Z) = Z? refers to the map on 1-cycles
induced by &. Hence the right-hand side of the above expression in terms of the notation in
§2.4 is (up to sign)

- Vs - 4
— dz dz — dz dz| = det(f(us), f(v;i (7 —1), (4
ﬁ;[/ﬂui) ~/f(v,i) /f(vi) /f(un 1 [Z t(f (ue), £ ))] V=17 -7), (4)

i=1
where det(f(u;), f(v;)) stands for the determinant of the two by two matrix formed by the
two vectors f(u;) and f(v;) from the table in §2.4. Notice that the resulting number will
be positive if and only if the orientation on D coming from the choice of (uy,v1,...,us,v4)
as a symplectic basis of H; (ﬁ, Z), and the orientation on 7' induced by the choice of the
basis (e, e2) of Hy(T,Z) are compatible (i.e. both are the same, or the opposite, as the one
induced by the respective complex structures).

Substituting into (3) and (4) the values of f(u;) and f(v;) from the table in §2.4, we
conclude the values of —60, —12, —24 for the values of Z?Zl det(f(u;), f(v;)) in the case of
Ey, E5 and C respectively. We conclude from (2), (3) and (4) that the degrees m,n,p are
given by 60,12 and 24 respectively, and that the orientation on D and T are not compatible
(we will say more on this below, see §5.5). O

4.3.

Theorem 3. A fiber of the Albanese map o : X — T represents the same numerical class
as —FE1 4+ 5Es, and the genus of a generic fiber F is 19.

Proof. Substituting the values of m, n, p from the previous lemma into Lemma 6, we conclude
that F represents the same class as —FE7 + 5F5 in the Néron-Severi group. Hence

F.-Kx=—-E-Kx+5F - Kx = 36.
On the other hand, from the adjunction formula,
209—1)=(Kx+F)-F=Kx-F.
Hence g = 19. 0

5. GEOMETRY OF THE ALBANESE FIBRATION

5.1. Consider the Albanese fibration o : X — T. First, recall that the fibers of a are
connected (see §4.1). Let X, be the fiber of a at s € T. It is connected (see §4.1). Now
9(Xs) = 2, because X has negative holomorphic sectional curvature. Although we will not
need this in the sequel, we observe that the fibration cannot be locally holomorphically
trivial. Otherwise there is a smooth non-trivial family of holomorphic mappings from X
(where s € T is generic) to X. However, a holomorphic map is harmonic with respect to
any Kahler metric on X and the Poincaré metric on X. As the Poincaré metric on X is
strictly negative, it follows from uniqueness of harmonic maps to a negatively curved Kéhler
manifold in its homotopy class that the family is actually a singleton, a contradiction.

5.2. The result below is just a rewriting of Proposition X.10 in [Be]. As usual, if D is a (not
necessarily reduced) curve, we denote by g(D) its arithmetic genus (see [BHPV, §IL.11]).

Proposition 3. Let X (resp. C) be a smooth complex surface (resp. curve) and 7 :
X — C a surjective morphism with connected fibers. Let D = Zle m;D;, (m; > 1)
be a singular fiber of ™ and let D™ = Zle D; be the reduced divisor associated to D.

Let v : Dred — D4 be the normalization. For any x in the support of D4, we define
03P := dimg (viC 5z, /Cprea) = v~ () — 1 the number of (local) irreducible components of
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D4 at z minus 1 and 6** := dime (v.O =, /Oprea) s0 that p, = 262" — 5P is the Milnor
number of D"%at . We also set j = Y wepred Bz Then, we have

k
(D) — e(X.) = i+ (Z(mi ~1)(2(g(Dy) — 1) — D?)) (D). (5)

i=1
Proof. From Lemma VI.5 and the proof of Proposition X.10 in [Be], we immediately get
(D) = i+ 2(Oprea) = i+ (X,) + 2(X(Oprea) — X(Op)),

where we used the fact that the arithmetic genus of the fibers of a morphism from a surface
onto a curve is constant. Now, since D? = 0,

2(x(Oprea) — x(Op)) = (Kx + D) - D — (Kx + D) . pred
=Ky - (D _Dred) _ (Dred)2

k k
= Z(ml - 1)(KX + Dz) . DZ — Z(mZ — 1)D22 _ (Dred)2.

i=1
That 262" — §°P is the Milnor number of D% at z is proved in [BG, Proposition 1.2.1]. O
Remark 5. In the notation of Proposition 3, i, = 0 if and only if D**4 is smooth at x and
if 1y = 1 it is easily seen that the singularity of D' at x is nodal (see Lemmas 1.2.1 and
1.2.4 in [BG] for instance).
Corollary 2. Let I C T be the set of singular values of the Albanese fibration o. Then

(a) Zsuel(e(Xso) —e(X,)) = 3 where X, is a generic fiber,

(b) the cardinality of I is at most 3,
(¢) a has no multiple fiber, and therefore (Xs,)™ is singular for at least one so € I,
(d) the total number of singular points in the fibers is at most 3 and if equality holds,

the three singularities are nodal and the fibration is stable. More precisely,

S ) =3 (6)

so€l IGXSO

Proof. Note first that there are no rational or elliptic curves in X since the holomorphic
sectional curvature of a ball quotient is negative.

(a) From the standard formula for the Euler number of a holomorphic fibration (see [Be,
Lemma VI.4] or [BHPV, Proposition III.11.4]), we have

3=c(X)=e(T) e(Xs)+ Y ne, = > na,
so€l so€l
where ns, = e(X,,) — e(X;) for s € T, :== T — I. Here we used the fact that the Euler
characteric of T" vanishes.

(b) Tt is well known (see [BHPV, Remark II1.11.5]), and it can be easily recovered from
Proposition 3, that n,, > 0 with equality if and only if X, is a multiple fiber with (X, )¢
smooth elliptic. But as we noticed above, this is impossible in our case thus n,, > 0 for any
so € 1. Since }_, .y ns, = 3, we conclude in particular that [I| < 3 (and each n,, < 3).

(c) Assume first that a fiber D might be written D = mD™? with m > 2. Then, by (a) and
formula (5), 3 > e(D™4) —e(X,) = (m—1) Zle(g(Di) —1) and the only possibility is that
k=1, m =2 and g(D;) = 2. However, by Theorem 3, 18 = g(D) — 1 =m(g(D1) — 1) = 2,
a contradiction.

Now, assume that D = Zle m;D; with k > 2, m; > 1 and m; > 2. Recall that
by Zariski’s lemma (see [BHPV, Lemma II1.8.2]) the self intersection of any effective cycle
supported on D4 must be nonpositive, and it is equal to zero if and only if it is proportional
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to D (in particular D? < 0). Therefore by formula (5), 3 > e(D"9) — e(X,) > 3 — (D“’d)2.

But (Dmd)2 = 0 if and only if D = mD*, a case which has already been ruled out.
(d) is a consequence of the previous points, equation (5) and Remark 5. O

5.3.
Lemma 8. deg(a.wx|r) = 1.

Proof. Note that we do not know a priori that the fibration « is stable. The lemma is a
direct consequence of [X, Chapter 1], where it is shown that c.wx|r, the direct image of
the relative dualizing sheaf wx |z, is locally free of rank g = g(X,), where s € T' is a generic
point (as in the classical case of a stable fibration). As a consequence, this is also the case
of R'a,,Ox which is the dual sheaf of QLWx|T-

Then, using the Leray spectral sequence and the Riemann-Roch formula, we get

X(Ox) = x(Or) = x(R'a.0x) = — deg(R'a.O0x) + (9 = 1)(9(T) — 1) = deg aswxr
since deg a,wx|r = —deg(R'a,Ox) and g(T) = 1. As x(Ox) = 1, the result follows. [

5.4. Recall from §1.4 (see also §A.5) that the normalizer N of II in I is generated by the
element j* of order 3 and II, and the automorphism group X of X is given by the group
N/II, which has order 3. Denote by ¢ the automorphisms of B and of X induced by j*. If
€ = (21, 22) € BE, then o(€) = (wz1,wz2) where w = ¢* is a non trivial cube root of unity.

The Albanese map a: X — T = C/A can be lifted to a holomorphic map ag : B2 — C
so that ap(O) = 0 (choosing I1IO € X as base point when defining «):

-1

B%;XLT

If 7 € II, then a(m€) —ap(€) € A is independent of £ € B2, and so there is a map 6 : II — A
such that ag(m€) = ag(€) + () for all £ € B2 and 7 € II. Since 6 is a homomorphism, it
factors through our abelianization map f : II — Z2, see §1.4. So there is a homomorphism
6 : Z? — A such that

ao(m€) = ap(€) + 0(f(n)) for all ¢ € B and 7 € II. (7)

By the universal property of the Albanese map, there is an automorphism op : T — T
such that the following diagram commutes:

X257
l” o 8)

X257

If the automorphism is trivial, then ag(c(€)) — () € A for all € € BZ, and so is constant.
Since d(0) = O, ap(j*€) = ap(é) for all &, and this implies that 0(f(j*7j—*)) = 0(f (7))

for all w € II. But then (1) implies that 8 = 0, because I — <O ) is non-singular hence

1 -1
II§ — ap(€) is a holomorphic function X — C, and so is constant because X is compact,
contradicting surjectivity of .

As a consequence, ¥ acts non trivially on 7" and since o(O) = O, the action of ¥ fixes the
point o(II0) = 0+ A. From this and |X| = 3, it follows immediately that the elliptic curve
has to be T = C/(Z + wZ), and the vertical map o7 on the right in (8) is 2 + A — wiz + A
with ¢ = 1 or 2. Indeed, the automorphism o7 which fixes 0 + A is induced by a nontrivial
C-linear automorphism of C preserving A (see [Be, Proposition V.12] for instance). Since it
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has order 3, it must be multiplication by w’, where i = 1 or 2. Hence A contains 1 and w
(after renormalization of the lattice).

It follows that there are precisely 3 fixed points of ¥ on 7: a fundamental domain of
T consists of two equilateral triangles and the fixed points are given by a vertex and the
centroid of each of the two triangles i.e. are the points p, = v(2 4+ w)/3+ A, v = 0,1, -1
(notice that (1 —w)~! = (2 +w)/3). In particular, we have proved

Lemma 9. The action of ¥ descends to a non-trivial action of T. There are three fized
points in the action of X on T. The elliptic curve T is isomorphic to C/(Z + wZ).

5.5. We still use the notation from §5.4. Note that by definition of the Albanese map,
o f: I — Ais onto. In other words, a + bw := 6(1,0) and ¢ + dw := 6(0,1) (where
a,b,c,d € 7) generate A over Z i.e. ad — bc = +1. We wish to determine whether or acts
on T by w or w?.

The automorphism ¢ is induced by the action of j* on B2, and recall that 44 normalizes II.

For any 7 € II, we have
a0(j'70) = ao(j'75~150) = a0 (§10) + 0(f (775 ™")) = @ (0) + 0(£ (75 ™))
since O is fixed by j*, and
ap(m0) = ao(0) 4 0(f(m)).

Clearly, o7 acts on T by w' if and only if ap(j4€) = wlag(€) for all € € B2. In particular,
for all € TI, ag(j*m0O) = wiag(7O). It follows from the above relations that for all 7 € II,

O(f(j*mi~*) = w'O(f(x)).

Since f is surjective, (1) shows that (n, —m —n) = w'0(m,n) for all m,n € Z, and taking
(m,n) = (1,0) we get —c — dw = w'(a + bw). When i = 1, this implies that ¢ = b and
d = b— a, so that ad — bc = —(a® — ab + b?), and therefore ad — bc = —1 and a + bw is a
power (—w)” of —w, and ¢+ dw = —w(a + bw). When ¢ = 2, it implies that ¢ = a — b and
d = a, so that ad — bc = a® — ab + b?, and therefore ad — bc = +1 and a + bw is again a
power (—w)? of —w, and this time ¢ + dw = —w?(a + bw).

Finally, notice that we can multiply ag by (—w) ™", and the new 6 we get satisfies 6(1,0) =
1 in both cases, but the new 6(0,1) is —w when i = 1, and —w? when i = 2. To sum up, we
have the following

Lemma 10. The action of or on T is by w (resp. w?) if and only if (6(1,0),60(0,1)) is
equal (up to a rotation) to (1,—w) (resp. (1,—w?)).

In order to decide between the two possibilities for the action of o7 on T, we will use
the restriction of the Albanese map « to the curve E; (we could have chosen any of the
other totally geodesic curves in X). Recall that in the course of the proof of Lemma 7, we
noticed that the orientation on £; and the one on T induced by (6(1,0),6(0,1)) were not
compatible. First, we will determine the orientation on E induced by the complex structure
on X. For this purpose, we compute the intersection form on Hy(FEy,Z) (where E; is the
curve associated with the mirror My such that 71 (E;) 2 Ty) in the basis (8;)1<i<s induced
by the generators g; which satisfy the relation

919293919596979s9: 95 95 97 95 91 "9 g5t =1

(see the proof of Proposition A.9).

The loops §; are the images in E of the axes of the generators g;, seen as hyperbolic
elements in SUj (see Lemmas A.20 and A.21) which are depicted in figure 2, where the
point labelled ¢ represents the attractive point at infinity of the axis of g;. The dashed
geodesics are the axes of the elements go = (g192) %, 910 = (9394) %, 911 = (9596) ! and
g12 = (grgs) ! that will also be needed.
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FIGURE 2. Axes of the generators of Il

Figure 2 was drawn with Maple, using the expression of 9y(g;) € SUg in the proof of
Proposition A.9. The matrices in SUy are unitary with respect to the diagonal form with
diagonal entries 1 and 1 — r (see Lemma A.21), and have the form

h = (‘g (”_1>b), (9)

a

where a,b € Z[¢] and |a|* — (r — 1)|b|* = 1. Conjugating them by the diagonal matrix with
diagonal entries 1 and v/r — 1, we get elements of SU(1,1). So SUg acts on the unit disc
B(C) in C and its closure B(C). Assuming b # 0, the fixed points in B(C) of the h in (9)
are

a—at/(a+a)?—4
= _ ) 10
v 2bv/r —1 (10)

These fixed points w satisfy |w| =1 when |a + a| > 2.

We find that the 1g(g;), i = 1,...,12, are the conjugates by the powers of z = <(1) 2)

of a single matrix (9), where a = (? + 3¢ + 2 and b = 3+ 2r. In fact, 1o(g;) = 2 " hz" for
(n1,...,n12) = (7,11,2,6,9,1,4,8,3,10,5,0). So the fixed points of 1y(g;) are e??¢" and
e ("= ¢ni | where § = tan~!(/(2r — 1)/11), % being the fixed point (10) for this a and b,
with the plus sign. An easy calculation shows that e’?¢" and e ("=?) (" are the attracting
and repulsing fixed points, respectively, of 1¥g(g;).

In figure 3, we drew a fundamental domain for the action of IIy, whose boundary is a
24-gon. The sides of this 24-gon are pairwise identified by the elements g; (i = 1,...,12).
We preferred to use the generators g;’s of I instead of the wu;’s and the v]s because their
axes pass closer to the origin of the disc and hence the picture is much clearer.

The 6;’s are all oriented in the same way, e.g. from the repulsive point to the attractive
point. As all the geodesics in figure 2 actually meet inside the fundamental domain of figure 3,
we deduce from the picture that the matrix of the intersection form (, ) on Hy(E1,Z) in the
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FiGURE 3. Fundamental domain for the action of Il

basis (d;) and with respect to the usual orientation of the disc is

where the entry in row ¢ and column j is (d;,d;). Now, we cut the curve E; along the loops
d; in order to obtain a 16-gon A and consider the dual basis (6}) of (d;), i.e. (d;,67) = dij5,

J

as depicted in figure 4. Actually, there are a priori two choices for the orientation of the
boundary of A and the one pictured in figure 4 is the good one since the matrix of the
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FIGURE 4. The basis (6F) in the 16-gon A

intersection form in the basis (6}) has to be the transpose of the inverse

0 1 1 1 1 1 1 1

-1 0 0 1 0 1 0 1

-1 0 o0 1 1 1 1 1

A -1 -1 -1 0 0 1 0 1
e=T"=1_1 0 -1 0 o0 1 1 1
1 -1 -1 -1 -1 0 0 1

1 0 -1 0 -1 0 o0 1

0

-1 -1 -1 -1 -1 -1 -1

of the one in the basis (;), which is indeed the case as can be checked on the figure.
Since we do not use a standard presentation of the group Ily, we need a generalized
Riemann bilinear relation, a quick proof of which we now give, following [GH, pp. 229-231].
Let pg be a base point in the interior of A and 7 a holomorphic 1-form on E1. We define
the holomorphic function h(p) = [, ;; 7 on the closure of A (which is simply connected),
so that dh = 1. Let p be a point on §; and p’ the corresponding point of (5{1. Then

f;’, n=h(p") — h(p) = >2;(6;,05) f5j 7 which is independent of p (and p’). Therefore,

/Mlhnz/&(h(p)—h(p/))n:—[Zm&p/éj ] /&n: [Zw;,én/&j ) /5 7

Now,
V-1 nAﬁ:\/—l/dh/\ﬁ:\/—l/ hﬁ:\/—IZZ@;,é;‘}/ 77/ .
B A oA i 5 /s

We shall apply this formula to n = &*dz, as in the proof of Lemma 7, using the expression
of the g;’s in terms of the generators a; of II (see the proof of Proposition A.9). We find
using Lemma 10 that

V= (/ éz*dz)_ = (144K, 4 — 5K, —2 — 5K, —5 4+ Tk, 5 — k&, —1 — 4k, —7 + 2k, 2 + 5)
&

1=1,..., 8

where k£ = —w (resp. —w?) if the action of o is by w (resp. w?), since [; &*dz = 0(f(g:)).
The coordinates of V' are easily computed using the expression of each g; in terms of a,
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as and ag as given in the first lines of the proof of Proposition A.9, and the computations
in §1.4. Let us just give one example. For instance, g5 = C3j4aga1j8a51a§a%, hence

flgs) = f(ita2i™) + f(i*ari™") — flaz) + 3f(as) + 2f(a1)
= (1,1) + (3, —4) — (=2,1) + 3(—=1,—1) + 2(1, 3)
= (57 _1)a

hence the 5-th component of V is 5 — k. B
As é is holomorphic, v/—1 fEl &*dz A 6*dz = /—1'V 1.V must be positive and we find
that it is equal to 60r (resp. —60r) if K = —w (resp. K = —w?). Therefore, we conclude

Proposition 4. The action of o on T is by w.

5.6. Let p, = v(24+w)/3+ A, v = 0,1,—1 be the fixed points of ¥ on T, as given by
Lemma 9.

Lemma 11. (a) There are altogether nine fixed points of Aut(X) on X.
(b) The points O1,0O2 and Os mentioned in §2 are fized points of 3, all lie in the same
fiber a=1(po).
(c) The other fized points are 6 of the 288 points lying in 71 (Ps) (see §2 ).
(d) Each of the fibers a='(p;) for j = 1,0,—1 contains exactly three of the nine fized
points of Aut(X).
(e) The fized points O;, i = 1,2,3 are of type %(1, 1), and the other siz fized points are
of type %(1,2).
Proof. (a) follows from Lemma A.32. This corresponds to the case of Proposition 1.2 (2)(b)
in Keum [K], the latter follows from Lefschetz fixed point formula and holomorphic Lefschetz
fixed point formula. (b), (c) and (d) follow from Proposition A.19. The type of singularities

follows from Lemma A.33, which is also stated as one of the cases in [K, Proposition 1.2],
and was observed by Igor Dolgachev as well. (]

5.7.
Lemma 12. Let O = O; fori=1,2,3. Then « is smooth at O.

Proof. By Lemma 11 and Proposition 4, there exist coordinates (x,y) centered at O € X
and a coordinate z centered at a(O) € T such that a o o(z,y) = a(wr,wy) = wa(z,y) =
or o a(z,y). In terms of our local coordinates, we write

a(z,y) =Y agz'y

4,520

E ajwtzly = E ag;wr'y’ .

4,520 4,520

and we have

Since the above is true for all z,y, we conclude that for those ¢, j with a;; # 0, we actually
have i+ j =1 (mod 3), hence we may write

o(z,y) = (a10r + aoy) + ( > az‘jxiyj) + ) ayEly
itj=4 i+tj=3n+1,n>2

The fiber through O is smooth at O if the first expression is non-zero. If a;9 = ag1 = 0
then o vanishes at order at least 4, hence o, and o, vanish at order at least 3, so that
O(z,y)/{e, ay) has length at least 6 (i.e. the Milnor number of the fiber through O is at
least 6). This violates formula (6) in Corollary 2 that the sum of the Milnor numbers at the
singularities is at most 3. Hence « is smooth at O. O
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5.8. Let @ = Q4,7 = 1,...,6 be one of the fixed points of ¢ other than O;,j = 1,2,3 so
that the local action of o is of type %(1,2) at Q;.
Lemma 13. One of the following happens

(i) « is smooth at Q,

(i) Q is a point of Milnor number 3 i.e. a tacnode.

Proof. By Lemma 11 and Proposition 4, there exist coordinates (z,y) centered at Q € X
and a coordinate z centered at a(Q) € T such that a o o(z,y) = a(wr,w?y) = wa(r,y) =
or o ax,y). As above, we write in terms of our local coordinates

afz,y) = Z aijxiyj

4,520

g aijw T ztyl = E aj;wz'y’.

1,520 1,520

and we have

We conclude that for those ¢, j with a;; # 0, we actually have i +2j =1 (mod 3), hence we
may write

a(z,y) = (a10z) + (a02y2 + a01 2%y + ar3zy® + a40;v4) + terms of order at least 5.

It is smooth at (0,0) if a1p # 0. This is case (i).
Assume now that a;p = 0. First remark that pg > 2. Indeed,

oy = 2as1xy + terms of order at least 3

oy = 2agy+ as12? + terms of order at least 3

hence 1 and x are linearly independent in O(z,y)/(os, y). However, the case pg = 2
cannot occur since in this situation there would be exactly one more singular point P on X
with Milnor number 1 by formula (6) in Corollary 2. But we saw in Lemma 12 that none
of the O;’s is singular and we have just seen that none of the ;’s can be a singularity with
Milnor number 1. Therefore, P would not be a fixed point of o and then pp = p,(py which
is a contradiction.

Finally, we recall (see [AGV, p. 183]) that a singularity with Milnor number 3 is holomor-
phically equivalent to a tacnode whose equation is (2 —y)(z2+y) = 0 (or y(y—22) = 0) and
we note for instance that both these expressions are a priori admissible in our situation. [

5.9. From the previous two lemmas we deduce the following result about the singularities
of the Albanese map a.

Proposition 5. There are three mutually exclusive possibilities for the singularities of the
Albanese map:

(i) a has exactly one singularity which is a tacnode at some @Q; (i = 1,...,6). The
unique singular fiber is then irreducible and has geometric genus 17.

(ii) « has exactly one singular fiber which is one of the three (globally) fized fibers by o,
with exactly three nodal singularities, and none of them is a fized point of o. The
unique singular fiber might be reducible and its normalization has genus 16.

(iil) « has exactly three singular fibers with exactly one nodal singularity on each of them
and the singular points are the elements of a o-orbit. In this case, each singular
fiber is irreducible and has geometric genus 18.

Proof. The fact that only one of these three possibilities can occur is a straightforward
consequence of Lemmas 12 and 13 together with formula (6). The genera are easily computed
using formula (5). O
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5.10. Ngaiming Mok has kindly drawn to our attention the following problem which was
open and is interesting to geometric study of complex ball quotient.

Question 1. Does there exists a homomorphism f : X — R from a smooth complex ball
quotient X to a Riemann surface R with a non-totally geodesic singular fiber?

There are very few explicit examples of mappings from a complex ball quotient to a
Riemann surface. The known ones described by Deligne-Mostow, Mostow, Livné, Toledo and
Deraux all have totally geodesic singular fibers, cf. [DM2], [T] or [Der2] and the references
therein.

In the following we show that the surface studied in this note provides such an example.

Theorem 4. None of the singular fibers of the Albanese fibration o : X — T is totally
geodesic.

Proof. Let E be a singular fiber of o and let E be the normalization of . Assume for the
sake of proof by contradiction that F is totally geodesic. According to Lemma 3,

E-E= %e(E) +26°(E)
and moreover, g = g(E) +0*"(F) and E - E = 0 since E is a fiber of the fibration, hence
1— g+ 36*(FE) = 0. Since we have shown that ¢ = 19 in Theorem 3, this leads to
0" (E) = 6. However, for a node 6*" = 1 and for a tacnode §** = 2. Hence the result
follows from Proposition 5. Note that we could have a priori ruled out the case of a tacnode
since totally geodesic curves have simple crossings. 0

6. A LIVNE-LIKE RATIONAL FIBRATION

In his PhD thesis [Li], R. Livné constructed two-ball quotients by taking branched cov-
erings of some generalized universal elliptic curves with level structure and by construction,
these surfaces admit a fibration onto a curve. In the case of the Cartwright-Steger surface,
the Albanese fibration does not appear in the same fashion but one can exhibit another
(rational) fibration appearing in a quite similar way to Livné’s. Our starting point is the
description by Deligne and Mostow of Livné’s fibrations in [DM2, Chapter 16] from which
one can deduce the following (which is only implicit in the book).

6.1. Let R be the surface obtained by blowing up the point P; € R = P(1,2,3), see §1.3.
Let N > 3 be an integer. We endow R with an orbifold structure: the ramification divisors
are the strict transforms of D 4, Dg that we still denote in the same way and the exceptional
curve that we denote by E with respective weights (N,d,2), and we denote this orbifold
by RN,dQ. We also endow IF’(l: with an orbifold structure: there are 3 orbifold points, say
p1, D2, P3, with respective weights (2,3, N) and we denote this orbifold by ]P’%)S, N

Then there exists an orbifold morphism @ : Ry 42 — IP%’&N such that D 4 is sent onto ps,
®(Dp) = ®(E) = Pk, and the fibers of ® above p; and p, have multiplicity 2 and 3
respectively. The generic fiber of ® meets F once and Dpg three times.

6.2. When d = 2, this fibration can be seen as the orbifold quotient of the universal gen-
eralized elliptic curve with structure of level N by the group SL(2,Zy) x (Zy)?. In this
setting, it is natural to take p; = 1728, po = 0 and p3 = 0o, ® can then be seen as the
j-invariant (the fibers of ® are rational curves which are the quotient of the corresponding
elliptic curves by +1, the image of 0 is on FE, the image of 2-torsion points on Dpg), and
C = PL\{oo} is the set of values of the j-invariant. Above the point at infinity we have a
“special curve” D4, and the ramifications 2 and 3 at 1728 and 0 respectively are due to the
fact that the corresponding elliptic curves have additional automorphisms.

—

The case we are interested in is ]%473,2 = f\Bé, i.e. we have N =3 and d = 4 (it can be
checked that indeed, F has weight —2, the minus sign meaning that it can be contracted,
see [DM2, §17.9]) and P} 5 v = P} 5 5 is the orbifold attached to the tetrahedron group.



22 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

6.3. Let us consider I, (see §1.5): we saw that it is a subgroup of index 3 of T'. We define
Y :=II,\BZ and Y its blow up at the prelmage of P; by the natural morphism Y — R so
that we have a ramified covering ¥ — R whose branch locus is D (of order 3). Then Y
has a natural orbifold structure. The ramification divisors are the preimage D of Dp with
weight d = 4 and the preimage E’ of E with weight —2. Both D’; and E’ are irreducible.

The orbifold IP’§7373 also admits an orbifold covering P , , — 1P%7373 of order 3 whose branch
locus consists of the two points of weight 3 in P 3 3 and where Pj , , is the quotient of Pf
by the subgroup of the tetrahedron group isomorphic to Zy x Zs. The 3 orbifold points in
PP} 5 5 have weight 2 and are the points above the orbifold point of weight 2 in P} 5 5.

The fibration ® then lifts to an orbifold fibration ® : ¥ — IP} 5 5 such that the divisor E’
is a section of @’ and D; has order 3 over the base. In other words, the generic fiber of @' is
an orbifold Pl with 4 orbifold points of weights (2,4,4,4). There is one special fiber which
is the preimage D’y of D4 and which is an orbifold of type (2,4,12) and there are also 3
multiple fibers of order 2 (above the 3 orbifold points of P§ , ,).

6.4. Finally, there exists an orbifold cover X of Y of order 288 with 36 = 864 /24 exceptional
curves (where 24 is the order of the isotropy group in I' of a point 2 € P) and once these
curves are contracted, we obtain the surface X = II\B2 = (I, N I13)\ B2.

We thus have the following diagram

Alb(X) = T<—X X

(288: 1 /J(gss 1)
< 3:1) A

1 JEOR
HD222 ]P)233

We see in particular that the elhptlc curve Alb(X) should be the rigid part of the Jacobian
of the curves of the fibration & : X — PP} 5, which are ramified coverings of P(. of type
(2,4,4,4).

This point of view is also confirmed by the computation of the genus of the curves of
type A. Indeed, the general fiber of d’ is a ramified covering of P} of order 288 and type
(2,4,4,4) so that by the Riemann-Hurwitz formula its genus is
288 2-1 -1

- (2+ 5 +3- 4 )4—1-109.
On the other hand, the arithmetic genus is constant on the fibration of a smooth surface
onto a curve. Let us compute the arithmetic genus of the fiber of type A using the same
method as in the proof of Lemma 3. Recall from §2.2 that the fiber has four irreducible
components, two have genus 4 and two have genus 10, and moreover there are exactly three
singular points, each of the same type, namely eight local branches crossing transversally.
Then this curve has arithmetic genus

8.7
1+2(4—1)+2(10—1)+3(7) =109
which is the expected number.

7. LEFSCHETZ TYPE QUESTION

7.1. The goal of this section is to show that the Cartwright-Steger surface X provides
examples for some natural questions related to Lefschetz properties of ample hypersurfaces
in projective algebraic manifolds. In studying Lefschetz properties, Nori posted in [N] the
following problem.
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Question 2. Let D be an effective divisor on a surface X with D - D > 0. Let N be the
normal subgroup of w1 (X) generated by the images of the fundamental group of the non
singular models of all the curves in D. Is [m1(X) : N] finite?

The N defined above is the normal closure of the images of the fundamental group of the
non singular models of all the curves in D.

Nori in [N] answered the above question affirmatively in the special case that D has only
nodal singularities and satisfies the assumption that D - D > 2r(D), where r(D) is the
number of nodes. Some special cases of hyperellitpic fibrations have also been confirmed
by Gurjar-Paul-Purnaprajna [GPP]. The question has attracted a lot of attention from
studies of properties of fundamental groups of algebraic surfaces and function properties of
their universal coverings, such as Lefschetz type properties or holomorphic convexity of the
universal coverings.

7.2. We show that the Cartwright-Steger surface provides an interesting example to illus-
trate the problem.

Proposition 6. Let X be the Cartwright-Steger surface. Let D = Fy be the genus 4 curve
of type B having multiplicities (3,1,2) at the points O; defined in §2.1. Leti : D — X
be the inclusion map, p : D — D the normalization of D, and N the normal closure of
(i 0 p)umi(D) in 71 (X). Then

(a) D-D >0, R

(b) [m1(X) : (i 0 p)omy(D)] = o0,
(c) [m(X): N] =21,

(d) m(X) =i (D).

Proof. (a) follows from Lemma 4 where we computed D - D =5 > 0.

(b). We recall results and use notation of §A.2. The curve D is irreducible by construction
and the universal covering of D is a totally geodesic curve My on the universal covering Bé
of the Cartwright-Steger surface X. The stabilizer Iy < II of M as a set in B2 is then a
Fuchsian group of My = A, the unit disk. Since I is torsion-free, so is the action of IIy on
My. However, the image of ITp\ My in X has self-intersection singularities on X since there
are elements g € I — IIg such that g - My N My # (.

In our situation, a smooth model of D is a normalization D of D and is simply given by
TIo\ My. Hence from construction, the fundamental group of a smooth model of D is Iy. In
fact, it suffices for us to know that the fundamental group is commensurable to ITy. Clearly,
the fundamental group Wl(ﬁ) = Il has infinite index in II, since the cohomology dimension
of Iy is 2 and the corresponding one for II is 4.

Part (c) follows from Lemma A.28.

Part (d) follows from Corollary A.3. O

APPENDIX A. CALCULATIONS IN THE GROUP I’

A.1. The action of I on B%. The elements u and v of I are complex reflections of order 3
and 4, respectively. For a € C, define

M, = {(z,w) € B%: z = aw}.

We also let Mo, = {(z,w) € B : w = 0}. Setting ¢ = (r — 1)(¢> —1)/2 = ¢* — ¢, one can
check that u fixes each point of M., and v fixes each point of My. Let M4 = {g(M.) : g € T}
and Mp = {g(My) : g € T'}. We refer to these sets as mirrors of types A and B, respectively,
since g(M.) and g(My) are the sets of points of B2 fixed by the complex reflection gug™!,
and gug~', respectively.

Note that the powers of ((715), v = 1,..., 11, are complex reflections, but in their action
on B2 they fix only the origin O = (0,0).
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Proposition 7. The non-trivial elements of finite order in T are all conjugate to one of the
elements in the following table, or the inverse of one of these.

Representatives of elements of order d
v?, j° (bu™t)?

d
2
3 w, 5%, ujt, buv
4
6
8

-3 -3 2.3 —1
v, j°, v37, v3°, bu

j2, v2j2, v2uj, v2uj5, bvgu_lj, bv?

wj, ¢ by, ((71bj)°
1

—1,6

24 wv, vuj>

The elements v and v? fix each point of My, while u fizes each point of M,. The remaining
elements in the table each fix just one point of B2.

Proof. Elements gZ € I' which fix points of BZ must have finite order, because I' acts
discontinuously on B2. Conversely (see [CS2, Lemma 3.3]) any element of finite order in T
fixes at least one point of B2, and is conjugate to an element of K UbK Ubu~'bK. One
can easily list the nontrivial elements of finite order in this last set (there are 408 of them,
76 in bK and 45 in bu~'bK), all having order dividing 24. Routine calculations show that
any such element (and hence each nontrivial element of finite order in ') has a matrix
representative g conjugate to one of the elements in the above table, or its inverse. One may
verify that, with the exception of the elements conjugate to buwv or its inverse, each element
gZ of order d in I has a matrix representative g such that g¢ = I. Note that (buv)® = (~11.

To check that the elements in the table other than u, v and v? fix only one point of B2,
note that gZ € T fixes (z,w) € B2 if and only if (z,w,1/v/r —1)T is an eigenvector
of g. In each case, we find that there is only one eigenvalue A of g having an eigenvector
(v1,v2,v3)T satisfying |vq|? + |v2|? < (r — 1)|vs|?, corresponding to a fixed point (z,w) with
z =w1/(vsv/r — 1) and w = vy /(v3y/r — 1). See also the proof of Proposition 8 below. [

For a € CU {00} and for £ € BZ, let
Fop={9€l:g(M,)=M,} and T'¢={gel:gf=¢}

denote the stabilizer of M, and &, respectively. We next describe the ¢ for which T'¢ # {1}.
Two points are particularly important: the origin O, and

co(¢—-1) ¢-1
p=(25—"2/ . 11

<\/r—1 \/r—l) (11)
As observed in [CS2, Lemma 3.1], [p = K. For P we have the following:

Lemma 14. The subgroup I'p of T has order 24, and centre of order 2. It is generated by
elements f, = (bu™1)2, fo = bu™!, f3 = jbv='j and fi = u, and has a presentation

3
f22 = fZa f:? = la .fé = 1a f22 = 17 féf3f2 = la [f27f2] = [f3af2} = [fé?fz] =1
The subgroup T'p NT.. equals (f., f}), and has order 6. Let vy = 1, 7o = fo, r3 = f3 and
ra = f4fa. Then P € r,(M.) forv=1,2,3,4, and the r,(M.) are distinct.
We can find 36 elements k1, ..., kss of K such that

36

r= U Ik, Tp, a disjoint union. (12)
i=1

Proof. Suppose that g € T and g.P = P. Then

1+||P
d(g.0,0) < d(g.0,¢.P) + d(g.P, P) + d(P,0) = 2d(P,0) = log(l_HPH).
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Here ||P||* = |c|*(2 = r)|/(r — 1) + (2 = 7)/(r — 1) = 2r — 3. Since the squared Hilbert-
Schmidt norm ||g||%¢ of any g € U(2,1) is 3 + 4sinh?(d(g.0,0)) ([CS2, Lemma 3.2]), this
gives ||g]|%s < 8 + 15. Now the g € T such that ||g[|%g < 8 + 15 consist of the three
double cosets K, KbK and Kbu~'bK ([CS2, §3]). So it is enough to run through the
elements g of these double cosets (48672 in all) checking the condition g.P = P. This search
found 24 elements with this property. In particular it found the elements f,, f2, f3 and f§
above. One may check that they satisfy the given relations. The abstract group generated
by elements f., fo, f3 and f4 satisfying these relations has order 24. So the stabilizer of P
in T has order 24, and has the presentation given above.
The statements about I'p N T and 71,...,rs are easily verified.
Magma verifies that the 36 elements k/,, k/,j*, k! j8, for the following 12 elements k/, of K,
is a set of representatives for the distinct double cosets IIgI'p in T':
v, v*, vuv™t, vum %, v we?, g, 5% 1, 53, wo, u et (13)
The order of the k], has be chosen to make the tables in the proof of Proposition 16 tidier. O

Routine calculations show that the fixed points of 73 = buv, vs = (~1bj and 12 = bv are

1 c — 2sin(m 3 -
§3 = (ﬁ» \/%)» £s = (0, (1 2\/7%12))C ) and &2 = (0, Cf _11>7 (14)
mi/18

respectively, where for A = e~
=== CHIH(E = CHDA+H(=CHE =DA%, and = = (C- 1A
Lemma 15. Ford =3, 8 and 12, the group f&d is cyclic of order d, generated by ~q4.

Proof. By the method used in the proof of Lemma 14, we see that in each of these three
cases, I'e C K U KbK, and then search this set for the elements fixing &. O

For ¢ € B2, let M4(€), respectively Mp(€) denote the set of distinct mirrors M, of
type A and B, respectively, containing &.

Lemma 16. The groups I'. and Ty are the commutators in T of u and v, respectively.
For each & € B2, |Ma(§)|, respectively |Mp(€)|, is equal to the number of elements of T'¢
conjugate to u, respectively v.

Proof. Suppose that g € T' commutes with u. If & € M., then u.(g.£) = g.(u.£) = g.£, so
that g.€ is one of the points of B2 fixed by u, and so is in M.. Thus g € I'.. Conversely,
if g € T, then gug™' fixes each point of M,. A simple calculation shows that the h € T
fixing each point of M, are just the powers of u. Considering traces and determinants, we
find that w is not conjugate to its inverse. Hence gug~' = u. The proof for v is similar.
If ¢ € g(M,), then g71.& € M., and so u.g~*.{ = g~ 1.& Hence gug™! € T If
g.¢ € T and gug™! = g'ug ™' € [¢, then g7 !¢’ commutes with u, and so is in T, so
that g(M.) = ¢'(M.). So |[M4(&)] is the number of distinct conjugates of u belonging to I's.
The calculation of |[Mpg(€)| is the same. O

Lemma 17. The orbit under the finite group K of M. consists of the eight mirrors M, for
a=cyy = ()i £1)/2 (so that for example ¢ = c.__), and M 4(O) is the set of
these M, ’s. The 8 elements ko, € K in the proof below form a set of representatives of the
cosets gK,. in K, for K. = KNT. = (u,j).

Proof. We know that u fixes each point of M.. Also, j.(aw,w) = (afw,w) for any w
and a, and so j(M,) = M, for any a. So the 36 elements of the subgroup K. = (u, j) of K
fix the set M.. Fora =c,__, c._,, c.__ and c,_,, let k, = 1,v,v? and v3, respectively,
and then ks.(cw,w) = (aw’,w") € M, for v =w. Fora =c_, ., c_,_, ¢,y and ¢, _,
let ko = u'v%u, vu~1v%u, v2u"1v?u and v3u~1v?u, respectively, and then k,.(cw,w) =
(aw',w'") € M, for w' = —cw. So the eight elements k, lie in distinct cosets gK,.. To see
that M 4(O) consists just of these M,’s, we apply Lemma 16. Let k € K be a conjugate
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gug~! of u for some g € T'. Then k fixes each point of g(M,). But the 8 elements k,uk;*
are the only elements of order 3 in K fixing more than one point of BZ. O

Lemma 18. The orbit under the finite group K of My consists of the siz mirrors M, for
a€{0,1,~1,i,—i,00}, and Mp(O) is the set of these My ’s. The 6 elements k, € K in the
proof below form a set of representatives of the cosets gKgy in K, for Ko = KNTy = (v, j).

Proof. We know that v fixes each point of My and that j(My) = My. So the 48 elements
of the subgroup Ky = (v, j) of K fix the set My. For kg = 1 and k., = v~ v?uj%, we have
ko.(0,w) = (0,w) € My and keo.(0,w) = (w,0) € My. For a = i,—1,—i,1, let ky = uj,
vuj, v2uj and v3uj, respectively, and then kq.(0,w) = (aw’,w’) € M, for w' = (i + 1)w/2.
The last statement is now clear. The proof that M p(O) consists of these M, ’s is similar to
that of the corresponding statement in Lemma 17. O

By a generic element of M., respectively, My, we mean a point § € M., respectively Mo,
which is not in the I'-orbit of O, P, £ or £12. We shall see that no point in the I'-orbit of &3
belongs to M. or M.

Proposition 8. The ¢ EﬁB(% for which fg # {1} are either in the T-orbit of a generic point
of M. or My, or in the T'-orbit of one of O, P, &3, £s or &12. With notation as above, we
record the following data for these points:

3 T Tel | [Ma©] | IMB(S)]
0 K 288 8 6
P (fz) f5, f3) | 24 4 0
£s {73) 0 0
£s (7s) 0 1
12 (712) 12 1 1
generic M, (u) 1 0
generic My (v) 4 0 1

Proof. By assumption, there is a non-trivial element of I' fixing &, and this element must
be of finite order, and so is conjugate to one of the elements in the table of Proposition 7.
So we may assume that £ is fixed by one of the elements in that table. If £ is fixed by one
of the elements in the table belonging to K, other than u, v and v?, then £ = O. There are
9 elements in the table which do not belong to K. By Lemma 15, if £ is fixed by buv, then
& =¢&3. If € is fixed by (71bj or ((71bj)3, then & = &. If £ is fixed by bu~! or (bu~1)?2, then
¢ = P, by Lemma 14. If ¢ is fixed by bv?u~1j, then it is fixed by (bv?u=1j)® = v=1f,v,
where f, is as in Lemma 14, and so £ is in the K-orbit of P. Since b and v commute,
bv? = (bv)~2, and so the points fixed by (bv)~®, bv and bv? are all the same, and equal
to &19. If € is fixed by one of the elements u, v and v?, but is not fixed by any other element
in the table, then £ is a generic point of either M. or M.

We have already seen in Lemmas 17 and 18 that |[M4(O)| = 8 and |[Mp(O)| = 6.

We calculated I'p in Lemma 14. It is easy to verify that it contains eight elements of
order 3, namely r,u™'r; 1 v =1,...,4, for r, as in Lemma 14. So |[M4(P)| = 4. Also, T'p
contains six elements of order 4, but all are conjugate to bu~"! or its inverse. So I'g contains
no conjugates of v, so that [Mp(P)| = 0.

Since v3 = buv is not conjugate to ut!, T¢, = (73) contains no conjugates of u, and
clearly none of v, and so |[M4(&)| = [Mp(&3)] = 0.

Now (¢~1bj) contains two elements of order 4, namely (¢~'bj)? = (~3v and its inverse.
As v is not conjugate to v—!, we see that ((~1bj) contains just one conjugate of v, so that
|IMp(&s)| = 1. Since T¢, contains no elements of order 3, we have |[M4(&s)| = 0.
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The elements of order 3 and 4 in (bv) are (bv)** = b*! and (bv)*3 = vF!, respectively.
Using b = (ub)u(ub)~1, we see that (bv) contains just one conjugate of each of u and v. So

IMa(&12)] = Mp(&2)| = 1. O
We next want to describe the groups I'. and Ty of elements fixing M, and My, respectively.

Lemma 19. For any o € C, a 3 x 3 matriz g = (g;;) with complex entries which is unitary
with respect to F satisfies g(My) = My, if and only if

(a) 913 = agas3, and
(b) g12 = a(aga1 — g11 + g22)-

Proof. This is straightforward. O

Lemma 20. If gZ €T, then gZ € Ty if and only if we can write

1 0 0 1 0 0
g=010 1 0] [0 a (r—1) (15)
0 0 6 0 b a
where a,b € Z[(], 0,0’ € {¢¥ : k=0,...,11}, [a]> = (r = D[p> =1, and a — 1 € (r — 1)Z[(].
This expression for g is unique, with 0 = g11 and >0 = det(g).

Proof. Suppose that ¢Z € T'y. Applying Lemma 19 for a = 0 to g and to

g1 g21 —(r—1)gs
g t=Fl¢'F = J12 22 —(r—1)gs2 |, (16)
—g13/(r —=1) —gag/(r —1) J33

we see that g1 = g13 = g21 = g31 = 0. The condition that valgyo has entries in Z[(] tells
us that gi11, 922, 933, gs2, (911 — ggg)/(’l‘ — 1) and ggg/(’l‘ — 1) are in Z[C]

Now ¢g*Fg = F implies that |g11|> = 1. This and g11 € Z[¢] implies that g11 is a power of (,
and so replacing g by g1;'g, we may suppose that g1 = 1. Also, a = ggo and b = go3/(r — 1)
are in Z[¢]. Now det(g) = det(yy "gv0) € Z[¢], and g*Fg = F implies that |det(g)| = 1. So
6§ = det(g) is also a power of (. Using the fact that F~1g*F equals §~'Adj(g), we see that
g33 = adet(g) and g3» = bdet(g), and then that |a|? — (r — 1)|b|?> = 1. Finally, it is easy to
check that ; 'g7o has entries in Z[(] if and only if a — 1 € (r — 1)Z[¢]. O

Let Uy denote the group of matrices with entries in Z[(] which are unitary with respect

(0 12,):

If SUy is the subgroup of Uy consisting of its elements of determinant 1, then Uy is the

to

semidirect product of SUy and the group of order 12 generated by the matrix z = ((1) 2)

We define an embedding of 'y into Uy as follows. If gZ € Ty, write g as in (15), and set

wen = (g o) (3 ) a7)

Lemma 21. The group SUy is generated by
_(¢ 0 _(CH -1 -1
d_<0 Cfl and = <3+C2_1 _C3_<2 ’
and has the following presentation with respect to these generators:
(d,z | d*? =23 =1,(d2?)? = d°, d°x = xd°).

We get a presentation of Uy by adding the generator z and the relations z'?2 =1, zdz~! =d
and zrxz=t = dSz~td. The subgroup Hy = {xd,dx,d®) of SUqy has index 5.
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Proof. Given a field F not of characteristic 2, and «, 8 € F*, the quaternion algebra (a, 8)r
consists of elements £ = zg + x17 + x2j + w3k, where xg,...,z3 € F, with an associative
multiplication satisfying ij = k = —ji and i? = a, 52 = 3. The reduced norm N (&) = Na(£)
of £ is 23 — ax? — B+ aBa3. If £,¢ € A, then N(£€') = N(E)N(¢'). Writing a = xg + x1i
and b = x9 434, we can think of («, 8)F as consisting of elements a+bj, where a,b € F(y/a),
j2 = B, and ja = @j for the automorphism ~ : xg + 217 — zo — 217 of F(y/a). The classical
Hamiltonian quaternion algebra is H = (=1, —1)g. We have Ny(a + bj) = |a|? + |b|? for
a,beR(y/~1)=C.

Let A= (—=1,r — 1)g(). Identifying i € A with ¢* € £ = Q(¢), we see that A = {a + bj :
a,b € £}, and that N(a + bj) = |a|*> — (r — 1)[b]®. Let O = {a+bj € A:a,b e Z[¢(]}. Then
O is a subring of A, closed under (left) multiplication by Z[r], and so is an order in A. In
fact, it is a mazimal order. Clearly SUj is isomorphic to the group O! of elements of O
having reduced norm 1. The group Z[r]* of units in Z[r] consists of the elements m + nr,
where m,n € Z and m? — 3n? = +£1. Now m? — 3n?2 = —1 never holds, and m? — 3n? =1
if and only if m + nr = (2 + r)* for some k € Z (see [NZM, §7.8], for example). So Z[r]*
is generated by —1 and 2 +r. If £ € O*, then N(§) € Z[r]*. In fact, N(§) is never equal
to —1, for if € : Q(r) — R is the field embedding mapping r to —/3, then

f:mo+ 1+ 20f + w3k > e(20) + €(21) i + e(x2)\/ V3 + 17 +e(zs)\/V3+1k
is an embedding of A into H satisfying €(Na(§)) = Nu(f(£)). Now O! c O*. Since
247 = N((+1),if ¢ € O* and N (&) = (2+7)¥, then £/(¢+1)* € O. Since ((+1)2 = ((2+7),
we see that O!/{1, —1} embeds as an index 2 subgroup of O /Z[r]*. Magma has routines
for finding a presentation of O* /Z[r]*. As these may be less familiar to the reader, we give
some details. We set up Q(¢), Q(r) and A with the commands

L(z) := CyclotomicField(12);

K(r) :=sub(L | z+ 1/z);

A(i,j,k) := QuaternionAlgebra(K | — 1, r — 1);

As ¢ = (r+¢%)/2, we set zz := (r +i)/2; and 0 := Order([1, zz, j, zz+j]);. Now the commands
G := FuchsianGroup(0); and u,m := Group(G); and u; give a presentation for O* /Z[r]*. The com-
mand [A!lQuaternion(m(U.1i)) : i in [1..2]]; makes the generators ui, us explicit. We find that u; =
(24 7r—i)/2 and uz = —(r + 2)(i + k). These satisfy ui> = u3 = (u1u2)® = 1 (mod Z[r]*).
Note that N(u1) = N(u2) = 2 + r. Magma verifies that the subgroup of the abstract group
(u1,us | ui? = u3 = (u1u2)® = 1) has a single index 2 subgroup, and it is generated by g1 = uguy*
and go = u?, and the relations g% = (g1g2)® = g5 = 1 give a presentation. For the given concrete
ui,uz € A, we set g1 = ugufl and g2 = (2 — r)u%. Then g1,g92 € o! generate 01/{71,1} and
satisfy g3 = 1, (g1g2)® = —1 = ¢5. The given elements d and z are just g; ' and g5 °g1g5 >. So they
and the given relations form a presentation of SUg.

The remaining assertions are routine to verify. g

Lemma 22. The image under v of L'y is (z)Hp.

Proof. The elements xd, dx, d® and z are all in 9y(T), being respectively the images of the
elements gZ of 'y for the following g¢’s:
¢, TR, (TPl and GG
Now d & ¢o(To) since ¢ — 1 & (r — 1)Z[¢]. So we have (z)Hy C ¢o(To) & Up. Since Hy has
index 3 in SU() we have <Z>H() = 1/1()(].—‘(]). O
We now describe I'.. Recall that ¢ = (r — 1)(¢3 —1)/2 = ¢% - (.

Lemma 23. If gZ €T, then gZ € T if and only if we can write

0 0 (a2-7r)+1)/3—=7) cla—1)/(B3—-7r) be
2 (a—1)e/(3—r) (a+2—-7)/(3—71) E (18)

1
g=6010 - 2
0 Be/(r — 1) 5/(r— 1)

1
0
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where a,b € Z[¢], 0,0’ € {¢*¥ 1 k=0,...,11}, |a]? —r[b> =1, and a — 1 € (¢* —1)Z[(]. This
expression for g is unique, with 8’ = g11 — cga1 and 0"°0 = det(g).

Proof. Suppose that gZ € I'y. Applying Lemma 19 for & = ¢ to g and to g~!, we have

913 = €923, g12 = c(cg21 — g11 + g22), G31 = ¢G33, and Ga1 = ¢(cgiz — 911 + §22). From the
second and fourth of these equations, we find that ¢g12 = cgo1.

Using Lemma 19 again, we see that the map g — ¢11 — cge1 is multiplicative on the group
of matrices satisfying g(M.) = M.. So we get 1 = (911 — ngl)(ﬁ — cgE) = |g11 — cg21]?
by applying this to g and g~!, and so @ = g11 — cg2; has modulus 1. The condition that
yo_lgfyo has entries in Z[¢] implies in particular that g11, go1 € T%lZ[Q], so that 0’ € Til [€].
This and |¢’| = 1 imply that 6 € {¢¥ : k=0,...,11}. So replacing g by '~ 'g, if necessary,
we may suppose that g1; — cgo1 = 1. We can now express g11, gi2 and go1 in terms of gos.
Now let N = F~'¢g*F — Adj(g)/0 = (n;;), where 6§ = det(g). By (16), this is zero. We
solve cniy + ni2 = 0 for goo, obtaining goo = (|c|? + 60733)/(|c|?> + 1). Now solving nz; = 0,
we get gs2 = gaz/((r — 1)0) = 0ga3/(r — 1), using |0] = 1. Write a = 033 and b = go3.
Then (18) holds. There is just one remaining condition on a and b to ensure that N = 0,
namely |a|? —7|b|?> = 1. This equation is also the condition that the determinant of the last
matrix on the right in (18) is 1. So taking determinants, we see that det(g) = 6’°6. As in
Lemma 20, det(g) € Z[¢], and so 6 € {¢¥: k =0,...,11} too. Finally, by considering g — I,
it is routine to check that 7, 'gvyo has entries in Z[¢] if and only if a — 1 € (¢* — 1)Z[¢]. O

Let U, be the group of matrices with entries in Z[¢] which are unitary with respect to

b %)

If SU, is the subgroup of U, consisting of its elements of determinant 1, then U, is the
semidirect product of SU. and the group of order 12 generated by the above matrix z. We
define an embedding of T'. into U, as follows. If gZ € T, write g as in (18), and set

w2y =y 9) (5 7)- (19)

Then ), is an injective homomorphism I, — U,..

Lemma 24. The group SU. has generators

d= (g 401> A (TJcl rZCl) ) and 5= (CB(I/t K C*SZ{i 1)) ’

and has the following presentation with respect to these generators:
SUC = <d7Q7S ‘ d12 = 1,52 = (qd3)2 = (qd25d2)2 = d6>

A presentation for U, is obtained to adding to the above presentation of SU. the generator
z and the relations 2’2 = 1, zd = dz, zsz~ " = dqd? and zgz~' = d"2sd™'. The subgroup

H. = (sd,ds,q) has indez 4 in SU,.

Proof. The proof is similar to that of Lemma 21. We use the quaternion algebra A =
(—1,7)g(r) and the maximal order O = {a+bj : a,b € Z[(]}. Since N(a+bj) = |a|* —r|b?,
we have SU. = O!. Again O'/{—1,1} embeds as a subgroup of index 2 in O*/Z[r]*
(we exclude N(£) = —1 in the same way, with 3'/* in place of v/v/3 + 1 in the definition
of the embedding A — H). This time we get a presentation for O* /Z[r]* with generators
up = (r+2—1i)/2 and ug = (r+1—(3r+5)i—2(r+2)k)/2 satisfying ul? = u3 = (uyu2)? =1
(mod Z[r]*). The elements g; = uguy ', go = u? and g3 = ujup generate one of the three
index 2 subgroups of the abstract group (uy,us | ui? = u3 = (ujuz)? = 1), and this subgroup
has presentation (g192)? = (g193)? = g5 = g5 = 1. For the given concrete u;,us € A, we
set g1 = uzufl and g = (2 — 7)u? and g3 = (2 — r)ujug. Then g1, 92,93 € O generate
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O'/{—1,1} and satisfy (g192)*> = (9193)> = g3 = 95 = —1. We have g1 = —ds, go = d™"
and g3 = —d2qd. The result follows. O

Lemma 25. The image of T, in U, is (z)H..
Proof. Now H, C 9.(T.), since for the following elements g of I':
Y butouy ", b g, b w5,
we have det(g) =1, g11 — cg21 = 1, g13 = cga3 and g12 = c(cga1 — g11 + ga2), while ¢.(9Z)
equals sd, ds and g, respectively. Also, z = 1.(gZ) for g = (j~'. Hence (2)H. C .(T,).

Now d,d?,d® ¢ 1.(T.), since ¢* —1 & (¢* — 1)Z[(] for i = 1,2,3, and so the index of Y. (T.)
in U, is at least 4. Since [SU, : H.] = 4, we must have ¢.(I'.) = (z)H,. O

The subgroup II of T is torsion-free, and so the set X = H\Bé is a smooth compact
complex surface. Let ¢ : B2 — X be the natural map. If M is a mirror of type A or B, let INY;
denote the stabilizer of M (so T'y, = s, ) The group Iy = {r € Il : 7(M) = M} = INT )y,
acts on M, and is the fundamental group of C}, := II)/\M. We denote by ¢y the map
€ = TIE from C3; to X, and write I, and ¢, instead of I1js, and ¢y, , respectively.

A.2. The groups II; when M is a mirror of type B. As at the end of the last section,
Iy = HMO = {’/T ell: 7T(M0) = Mo} =IINTy.

Proposition 9. The group Iy has a presentation
(Uty .oy ua, 01,500 0 [un, vr][ug, vl [us, vs][ug, va] = 1), (20)

with explicit generators w;, v;, giwen below, and so g\My is a curve of genus 4. The
image under ¥o of Iy is a normal subgroup of SUqy which is an index 24 subgroup of Hy =
(xd, dx,d®).

Proof. Using the fact that j* normalizes II, we can define gi,...,gs € II by setting g; =
C5a§3a1_1a2a1, gs = 474(12&1_2&:5_3&1_1, gs = §3j4a2a1j8a;1a§a%, and g7 = j4a1_1a2_1j4a2a1j4,
and then go, = j*go,_17 7% for v = 1,2,3,4. With the given scalar factors, each g; has de-
terminant 1 and (1,1)-entry 1. They satisfy the relation:

919293919596979891 95 95 97 95 91 "95 95 ' = 1. (21)

The g; were found by a search amongst the short words in the generators of II. We show
that g1,...,gs generate Ilp. Each g; has determinant 1, and has the form

1 0 0
0 a b,
0 ¢ d

where a, b, c,d € Z[¢]. Hence G = (g1,...,gs) is contained in Iy, and 1y embeds G in SUj.
With hy = zd, hy = dx and hs = d> the generators of Hy, we find that

Yo(g1) = hahohs'hi",  wo(ga) = by hohiha,  to(gr) = hshy 'hy'ha,
Pol(g2) = hihshihs',  wbo(gs) = hy'hy 'hshy",  tho(gs) = hy 'hshy 'hy ™.
Yo(gs) = hahi2h3%h3 Y, bolge) = hahshi*h3?,

Magma tells us that ¢o(G) is normal in SUy and has index 24 in Hp, which has index 12
in (2)Hp = 1o(Tp). So G has index 288 in Ty. The group Ko = K NTy = (u,j) has
order 48, and acts freely on any transversal of G in [y, since G is torsion-free. So we can
find 6 = 288/48 elements t1,...,ts in [y so that

6
Ty = U Gt; K. (22)
i=1
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For example, if 71, 72 and 73 are the elements of 'y given in the proof of Lemma 22 satisfying
Yo(7;) = h; for i = 1,2,3, then we can take tq,...,ts to be

- -2 -3 -1
17 T1, J71, J T1, ] T1, and T1T2 .

If G were strictly contained in Ily, then there would be a transversal element t;k # 1,
where ¢ € {1,...,6} and k € Ky, such that t;k € II,. But Magma verifies that if t;k # 1,
then (a1, as,as,t;k) has index less than 864 in ' , so that t;k ¢ II. So Ily is generated
by g1,...,9s, and Magma’s Rewrite command shows that these generators and the single
relation (21) form a presentation of IIj.

We now replace g1,...,gs by generators uq,...,vs satisfying (20). Our thanks go to
Jonathan Hillman for showing us this method. The word W on the left in (21) is a product
of 16 letters gfl, with exactly one of each letter. Moreover, W has the form AdeBd~'Ce™!
where d and e are letters, and A, B and C are words not involving the letters d,d~!,e,e"!.
Notice that

AdeBd™'Ce™ = [Dy, Ey]- EyACBE;" for D; = Ad and E; = ¢B. (23)
The word W/ = ACB, which is a product of 12 letters giﬂ, i =1,...,6, with exactly one

of each letter, again has the form A'd'eB'd C'¢'™", and so we can repeat this manoevre,
obtaining

AdeBd ¢l = [Dy, Ey] - B A'C'B'Ey " for Dy = A'd’ and Ey = ¢'B'.
Once again, W” = A’C’ B’ has the form of the word on the left in (23), and we can repeat

the manoevre, and then once more. In this way we obtain words D1,..., Dy and Fy, ..., Ey
so that W = [uq, v1][ug, va][us, v3][ug, v4] for
up = Dlv U1 = Ela
uy = By Do By, vy = ByEy Bt
i and 1 (24)
us :E1E2D3E2 El , VU3 :E1E2E3E2 E1 ,
uy = EyEsF3DyE; ' ES VB! vy = E1FByE3E By 'Ey VBT
The words D; and E; are easily read off from the original word W. Explicitly:
Dy = §1929394959697, Er = 989195 95
Dy = g1929391, By = 2
D and 2 g5969271 (25)
3= 91 E3 = 929395
-1
Dy =yg;5, E4 = gs.
This procedure can easily be reversed, by first expressing the g;’s in terms of the D;’s and
E;’s, and then these in terms of uy,v1,...,u4,v4. We give the results of these calculations
explicitly:
g1 = vy 'vy ugvauy, g5 = v7 'vaugv) twsvuy,
g2 = vflv§1v4u4v3vgvl, ge = UI1U§1U§104U3U2U1,
g3 = Uflvglvgluzlvgvgvl, gr = vflvglvglullvlluglvlul,

-1, -1, -1, -1, -1 -1, —1
g4 = U1 Uy Vg Uy Uz V2U2V1, g8 = U4U4Vy Uy V3U3V2V].

Hence IIp has the presentation (20) for the u;’s and v;’s given in (24). O

We now consider II,; for the other mirrors M of type B.

Proposition 10. If g € T and M = g(My) is a mirror of type B, then
(a) There is a w € II such that w(M) = My, My or M.
(b) Correspondingly, Ty is conjugate in I1 to either Ty, I} or Tl.
(c) Ty = gTlog™".
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(d) h(Har)h™" = Hpar) for any h €T
In particular, it follows from (c) that for any mirror M of type B, IIp\M = I1o\ My

Proof. (a) Since the elements bk, 1 = 0,1, —1 and k € K, form a set of coset representatives
of Il in I'; and since, by Lemma 18, the ko, o € {0,1,—1,4, —i,00}, form a set of coset
representatives of Ko = K NTy in K, we may assume that M = b*(M,) for some p €

{0,1,-1} and a € {0,1,—1,4,—i,00}. For the cases with u = 0, we have
aytay ' (M_ 1) = ajtay tay (M) = My, and  ay'(M_;) = M.
Here is a table of elements 7 € II such that 7(bMy) = Mg € {My, M1, M }:

0] 1 -1 { —i 00
-2 392 —1[ -1 -3[ —1[ -1~ —1
m|1l]ay” |agajay” | a] az” | ay | ay aia,

gl10| 1 1 1 1 00

Here is a table of elements 7 € II such that m(b='M,) = Mg € { My, M1, Moo }:

0 1 -1 1 —1 00
-1 -1 1| -1 -1 -2 —2[ —2[ -2 -3
m|1llaz a; ay” |aga; ay” | az3” | ay” | a;“a;s
610 00 00 1 o0 0

This proves (a), and (b) follows immediately, since if M’ = w(M) with = € II, we have
= 7THM7T71.

(c) We first show that hIlph~! C II for each h € I'. We may assume that h = b*k for
some g € {0,1,—1} and some k € K, and for such h, we must check that hgjh_1 € 1II for
each of the 8 generators g; of Il given in the proof of Proposition 9. We do this as usual by
having Magma check that (a1, as, as, hgjh_1> has index 864 in I'. Tt follows, in particular,
that hIIph~! =TIl for each h € Ty.

We next prove (c) in the cases g = kg, 3 = 1,00. Now gllpg~! C II and so k:BHOk[;I CIlg
for both 8 = 1, 00. To see that kgHokﬁ_l = Il, note that by Proposition 9, Iy C k‘ﬂ_lﬂﬁk‘ﬁ C
Ty. We saw in the proof of Proposition 9 that the elements t;k, i =1,...,6, k € Kj, form a
transversal of ITy in T'g. We show that Iy = l{:glﬂgk‘g by checking that t;k ¢ k;lﬂgkg unless
t;k = 1, and this is done by Magma checking that the index in T of (a1, a2, a3, kg (tzk)kﬁ_1>
is less than 864.

Now we know that kﬂﬂokﬁ_l =1IIg for = 0,1, 00, we use (a) to see that for our given g,
there is a 7 € II so that g(My) = m(Mp) for one of these f’s. Then h = k/glwflg is in T,
so that hllgh™! = IIp. Then (7~'g)Ilo(r~'g)~! = Iz by the case g = kg of (c) we have
already proved. Finally gIlog™" = m(Iaz, )n " = Iy (pr,) = .

Part (d) follows immediately from (c). O

It is a consequence of Proposition 11 below that the three possibilities in (a) are mutually
exclusive.

For any mirror M, the embedding M — B(% induces an immersion ¢pr : My \M — X.
Whenever M is of type B, it follows from Proposition 10(c) and (a) that Iy, \M =TI\ My,
and that the image of ¢ is equal to the image of either ¢z, Yar, or ar., -

We want to find out how the curves ¢y (IIp/\M) = (M) self-intersect.

Lemma 26. Suppose that x € X 1is the image under @y of two or more distinct ele-
ments of Iy \M. If M is of type B, then x must be one of the three points I1(O), I1(b.O)
and TI(b=1.0). If M is of type A, then x is either one of these three points or one of the
36 points I1(k;.P), where the k; are as in (12). If £ € M, then op(pr€) is one of the three
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points IL(b".0), p = 0,1,—1, if and only if § is in the [-orbit of O, and it is one of the
36 points T(k;.P) if and only if £ is in the T'-orbit of P.

Proof. Suppose that £, € M and that op(I1n€) = oar(Uprg’) = x, with M€ # Mg
Then &' = w€ for some 7w € 1. If M = g(My) is of type B, then both £, 7€ € M are fixed
by gvg~!, so that both gug~! and 7~1gvg~1m are in ['¢, and so either 7~ lgvg~lm = gvg~!
or [Mp(£)] > 2, by Lemma 16. Now 7 'gvg~!m = gvg~! means that g~ 'mg commutes
with v, and so is in Ty by the same lemma, and so 7 € gT'og~" = ['s;. But then 7 € IINT s,
so that IT,&" = &, contrary to hypothesis. Hence |[Mp(€)| > 2, and so £ is in the T-orbit
of O, by Proposition 8. Since the elements b*k, = 0,1,—1 and k € K, form a set of coset
representatives of IT in T', we can write ¢ = 7b*.0 for some 7 € I and pu € {0,1,—1}. So
xr = QOM(HMf) = H§ = H(b#O)

If M = g(M,) is of type A, and &,& € M satisfy o (I1p€) = opar(Up€') = x, with
Mp€ # M€, we similarly show that |[M4(€)| > 2, but now Proposition 8 shows that £ is
in the T-orbit of either O or P. The last statement, in the case when ¢ is in the I-orbit
of P, follows from (12). O

It is a consequence of Proposition 16 below that when M is of type A, the 12 points
TI(k;.P) for i = 25,...,36, are each the image under ¢y of just one element of I\ M.

Lemma 27. For each mirror M of type B, there are exactly siz distinct & € M \M
such that & € M 1is in the T'-orbit of O.

Proof. Write M = g(My). If £ € M is in the [-orbit of O, then g.£ € M is in the -orbit
of O, and conversely. Also, if £,&" € My, then I1o¢ = ¢’ if and only if s (g.£) = Har(g.87),
by Proposition 10(c). So we may assume that M = Mj. So suppose that £ € My is in the
[-orbit of O. Writing ¢ = ¢.0, we have O € g~!(Mj). By Lemma 18, the distinct mirrors
of type B containing O are the kg(My), B € {0,1,—1,4,—i,00}. So g~ (My) = k(Mp), for
some k € K. Hence ¢ = 9.0 = (gk).O = h.O for some h € Ty. Since G in (22) equals Iy,
(22) implies that £ = mot;.O for some 7y € Iy and some ¢ € {1,...,6}. So IIx¢ is one of the
six elements IIy(¢;.0), i = 1,...,6, and these are evidently distinct. So there are exactly 6
distinet Ip&’s in I1o\ My with £ € My in the T-orbit of O. ]

For any mirror M, and any g € {0,1,—1}, let
n, (M) = g{IIy € € Ty \M = on (ITy§) = I1(0".0) }.
By the last lemma, ng(M) 4+ ny (M) + n_1(M) = 6 if M is of type B.

Proposition 11. If M is a mirror of type B, then according to the three possibilities in
Proposition 10(a), (no(M),ni(M),n_1(M)) is either (3,1,2), (1,4,1) or (2,1,3), respec-
tively.

Proof. For any mirror M, n, (M) equals
ﬂ{H}V[ﬂ' S HM\H : W(bMO) € M}, (26)

for if £ € M, pp (I E) = II(b*.0) if and only if there is a 7 € II such that wb*.0 = &.
If 70*.0 = € and 7#'0*.0 = ¢, with 7,7’ € II and &,& € M, then II);€ = I & if and
only if 7/b*.0 = mpmb*.O for some 7y € Iy, or equivalently, (mamb?)~1(7'b") € K.
Since II is torsion-free, this holds if and only if 7’ = mpm. So I € = & if and only if
HMT(' = HMTI',.

If M' = n(M) for some 7 € II, then clearly n,(M’') =n, (M) for p = 0,1, —1, so we need
only calculate n,(M,) for & =0,1,00. A search amongst the short words in the generators
ay, az and ag of II, looking for = € II such that =.(b*.0O) € M, found the elements in the
following table:
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II,, coset representatives of 7 € II such that 7.(b*.0) € M,
o pnw=20 p=1 pn=-1
0|1, aflagl, aflaglal 1 1, afzagg
1 1 a;l, a2_2, al_lag?’, a%a%a;l a:;?
00 1, a2_1 a;lalagl (12_27 aglaflagl, a;lal_laz_2

It is easy to check that distinct elements 71, 2 in the same cell of this table satisfy mom L

T, and so belong to different I1,-cosets. Since there are six elements given in each row of the

table, it follows from Lemma 26 that the table gives a complete list of coset representatives.
O

Corollary 3. The subgroup of 11 generated by {m € Il : 7.0 € My} equals 1.

Proof. Denote the subgroup by S. From the a = 0, 4 = 0 cell in the table in the proof
of Proposition 11, we see that aj,as € S. As jayj™* = C‘lozgl7 and S is closed under
conjugation by j4, we have a3 € S too. So S =1II. O

The fact that no(Mpy), no(M7) and ng(Ms) are different shows that if a, 8 € {0,1, 00}
are distinct, then there is no 7 € II such that w(M,) = Mg. Equivalently, it shows that the
images of par,, war, and @pr, are distinct. So the cases in Proposition 10(a) are mutually
exclusive.

Lemma 28. The normal closure No of Iy in II has index 21 in II and is normal in T'. For
any mirror M of type B, the normal closure Ny; of Ilas in IT is equal to Ny.

Proof. Let g1,...,gs be the eight generators of Iy used in the proof of Proposition 9. Then
Ny contains, as well as the g,’s, all conjugates of the g,’s by elements of II. Magma verifies
that the g,’s and their conjugates aig,,a;1 and a;lg,,ai, i = 1,2,3, generate a normal
subgroup N of T' of index 21 x 864, and so Ny = N.

To prove the second statement, by Proposition 10(a) and (b), it is enough to check this
when M = M, a = 1,00. Now I, = k,Ilgk;! C koNok;' = Ny because Ny is normal
in T'. Because Ny C II, we have N, C Ny. Magma verifies that the 24 elements kag,,k,;l and
a%lkaguk;1a2¢17 v=1,...,8, generate a subgroup in I' of index 21 x 864. This subgroup is
contained in N,, and so N, = Ny. O

We conclude this section with some calculations involving the abelianization map f : II —
II/[I, ] = Z? (see just after Theorem 1), which are needed in Section 2.4.

Proposition 12. The images under the abelianization map f of the generators u; and v;
of Iy are as follows:

f(ul) = (_57 _Z)a f<u2> = <_2a 1)7 f(US) = (174), f(U4) = (275>7
f('Ul) = (_277)’ f(v2) = (O’O)v f(’Ug) = (3’ _6)7 f(’U4) = (_17 _4)'

Presentations (20) of the groups I1; and I, and calculations of the corresponding f(u;)
and f(v;) are given below. The image under f of s for any mirror of type B is equal to
{(m,n) € Z> : m —n is divisible by 3}.

Proof. In the notation of the proof of Proposition 9, f(u;) = f(D;) and f(v;) = f(E;) for

i =1,...,4, and so it is routine to calculate these from the given expressions (25) for D;
and E;, and from this we read off f(Ily).
Next we consider II; and Il,. If g1,..., gsg are the generators of Iy given in the proof of

Proposition 9, then II; and II,, have generators ¢} = ki1g;k; " and g7 = koogik!, respec-

tively, which satisfy the same relation (21) as do the g;’s. So we get generators u; and v;
for these groups by using (24), and by using (25) with the g;’s replaced by ¢i’s and g.'’s,
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respectively. To calculate the f(u;) and f(v;)’s, we need to express the g.’s and g’

;s in terms
of the generators of II. One may verify that:

g = Cayajaazarazaraz, gt = 38 (a7taz taradar tay tarazas) i,
g5 = (*j*(ay%ar tag tanaday tay )i, gr = (05 ay Pagay ey )R,
and
gi =¢ M ar ag ) tar gt g8 = ¢ ag ey )i,
95 = (%% (azarazai taz "), g¢ = ¢ %% (araza; taz ) 8,

and g5, = jgbh,_1j % and ¢§, = jgY,_,57* for v = 1,2,3,4. So in the case IT; we get

f(ul) = <_3a0)7 f(u2) = (27 _1)’ f(U3) = (174)’ f(U4) = (0’3)5
f(vl) - (Oa 3)7 f(UQ) = (747 2)3 f(US) = (77 78)’ f(’l)4) = (*33 0)7
while in the case Il,, we get

f(u1> = (_L 2)7 f(u2) = (_27 1)’ f(u3) = (_3’0)’ f(U4) = (_Qa 1)7
f(vl) = (2’ _1)7 f(UQ) = (an)v f(l/g) = (_1’2)5 f(U4) = (3’0)

For any mirror M of type B, the image under f of IIj; is the image of the normal closure
of ITps, and so is the same as that of ITj. O

A.3. The groups Il when M is a mirror of type A. Recall that ¢ = (r— 1)(¢3-1)/2,
and that by Lemma 25 we have an injective homomorphism 1. : T'. — U, with image (z) H..

Proposition 13. The group Il. has a presentation
(Ui, .., u10,01,...,010 : [u1,v1][uz,va] - - [ug, vel[ui0,vi0] = 1), (27)

with explicit generators u;, v;, given below, and so II.\M, is a curve of genus 10. The image
under . of Il is a normal subgroup of SU. which is an index 27 subgroup of H. = {sd, ds, q).

Proof. The proof is very similar to that of Proposition 9. We recall that j* normalizes II,
and define 20 elements ¢, ..., gog of II by setting

g1 = j%ay tasaraza; jtazan, 912 = (—1)ay 'araza; 'az  jazara3a; tay 5P,
g3 = (jtasaray *ay tazjtais?, 915 = (a1 azaza; 5,

g5 = (*5%ar  jtasarjtazay faraza 58, gir = (%5%ar %ay itazaiazas,

g7 = (PjPazarjtaz  jrazar fay tas 58, gio = (Tlay tavazai ey jtarazgtal ey g,

2 1

go = <4j8a1—1a2— al_lagljsal_ ag_ljs,

and also g,41 = jtg,j~* for v € {1,3,5,7,9,10,12,13,15,17,19}. Each h = g; satisfies
his = chag and hia = ¢(cha; — hi1 + ha22), and so is in II., by Lemma 19. With the given
scalar factors, each has determinant 1 and satisfies h11 — che; = 1 (cf. Lemma 23). The g;’s

satisfy

94914 95 917 9991992091497 910 95 ' 916 95 ' 91o 919275 910919 912

g L _ _ _ (28)
X g5 911 96 " 91591691 * 913 91 917918911950 913979895 9596915 g3 = 1.

The elements g; were found by a search for elements of II. amongst the short words in the
generators of II. The conjugates by j* and by j® of the elements found were added to the
output, and then products of pairs of all these elements were formed, retaining those of
small Hilbert-Schmidt norm (cf. [CS2, Lemma 3.2]).
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Hence G = (g1,...,9g20) is contained in II., and ¢. embeds G in SU.. With hy = sd,
ho = ds and hg = ¢ the generators of H,, we find that

wc(gl)—hllhglhs hohihs, e(gi1) = hi'hy 'hi*haha,

wc(QQ) = 1h1h3h2h17 wc(gm) hg 1h3 1h2 1h3 1h1 lh:;lhl_lv
Ve(g3) = hihahahy  hahy, Ve(g13) = hy 'hahihg 'hahihy ' hahy,
Ve(ga) = hahihghohst, Ve(g1a) = hahihg *hahihy *hohihg
Ve(gs) = hy thahihy ', Ve(g15) = hihshahy *hohihy *hy thohy,
Ve(gs) = h3hihshy, Ye(gi6) = hy "hy "hah3hihs 'hy !,
Ve(gr) = hahih3hy, Ye(g17) = hi*hy 'hy ' hihs,
Ve(gs) = hy thy 'hyihg, Ve(g18) = hohithy 1h Yhihshiths
1/]6(99) - hl ’ 1/’c(919) h2 1h3 1h§h1h3a
Ve(g10) = hah?hs !, Ve(g20) = hahihy *hg *hihahohy Thoh,.

Magma tells us that 1.(G) is normal in SU, and has index 27 in H,., which has index 12 in
(z)H. = .(T.). So G has index 324 in T'.. The group K, = KNI, = (v, j) has order 36, and
acts freely on any transversal of G in I, since G is torsion-free. So we can find 9 = 324/36
elements t1,...,t9 in I'x so that

9
. =|JGtK.. (29)

For example, if 71, 75 and 73 are the elements of T, given in the proof of Lemma 25 satisfying
Ye(1;) = h; for i = 1,2, 3, then we can take 1, ...,t9 to be

. .2 .3 . ) .3
la T1, JT1, J T1, J T1, T173, JT173, ] T173, al’ldj T173.

If G were strictly contained in Il., then there would be a transversal element t;k # 1,
where ¢ € {1,...,9} and k € K,, such that t;k € II.. But Magma verifies that if t;k # 1,
then (a1, as,as,t;k) has index less than 864 in I , so that t;k ¢ II. So Il. is generated
by g1, ..., 920, and Magma’s Rewrite command shows that these generators and the single
relation (28) form a presentation of II..

We now replace this presentation by a presentation (27). The method used in the proof of
Proposition 9 extends to this case, and we can write the word on the left in (28) as a product
[u1,v1][ua, va] - - - [ug, vo][u10, v10], Where for each i, we have u; = Ey --- F;_D;E; " --- By
and v = E1 s Ei—lEiEi__ll cee El_l, where

D1 = 94914 95 917 9991992091497 ' 91095 " 976

Dy = 94914 95 917 9991092091497 910 95 ' 9a G1s 91 917918911920 913979895 9596
D3 = 91914 95 ' 917 9991992091497 91095 91 913 91 ' 917918,

Ds = 997 ' 91095 ' 91 915 91 ' 917910910 91295

and

Dy = gagit, D7 =091391 ‘017910979 91295 . Do = 915 910919 »
D¢ = g4, Ds = g1397 ", Dig = gi3,
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and also

B\ = g3 912 9192975 910919 91295 911 96 915 Eg = g7 g0 g5 ",

—1 -1 —1 —1 -1 -1 _ _
E2 = 915 912 9192918 910919 91295 911 > E7 = 5913 91917
-1 -1 -1 _ 1

E3 = 911920 913979899 95912 9192, Eg = 9179109191g12g19g1391019121,

Ey = g3 ' 917 99919920, Ey = g12,

Es = 959 91397, E10 = g10-
The generators g1, ..., goo can be expressed in terms of uq, vy, ..., u1g, v19 by first expressing
them in terms of the D;’s and E;’s, as in the proof of Proposition 9. Hence II. has the
presentation (27) for the given u;’s and v;’s. O

We now consider 11y, for the other mirrors M of type A. Aswellasc = (r—1)(z>—1)/2 =
c,__, the parameter —c = c___ is important in the next result.

Proposition 14. If g € T and M = g(M.) is a mirror of type A, then
(a) There is a m € I such that 7(M) = M', where M’ € {M.,, M_.,b(M.),b=1(M.)}.
(b) If M’ is as in (a), then s is conjugate in I1 to Tpy.
(c) My = gll.g™! in the first two cases of (a), and in particular if g = ko for any
a€{Ciysy. o e __}, so that I, = k I1 k1 for all these a’s.
(d) In the other two cases of (a), gll.g~! has index 3 in Il;.

Proof. (a) Since the elements b*k, u = 0,1, —1 and k € K, form a set of coset representatives

of Il in I, and since the ko, a € {ciiy,...,c.__}, form a set of coset representatives
of K. = KNI, in K, by Lemma 17, we may assume that M = b*(M,,) for some u € {0,1,—1}
and o € {e iy ., c___}.

The next three tables list elements 7 € IT and M’ € {M., M_.,b(M.),b=*(M.)} such
that 7(b"(M,)) = M’ for each of these a’s, and for y = 0, 1 and —1, respectively.

Citt | Ct— C+—+ Cy—— Cott Cot— C——+ C———
a% a1a3_1 aglalag 1 a1a3_1a1a3 a%aflagl af1a2_2a1_1 1
M | M_. M. M_. M. M. M_. M. M_.
Ctt+ | CH4- C+—+ C+—— C—++ C—+— C——+ C———
a§3 7 agaflags 1 a;laglalagagl agalagl azaflagl aflagz
M | M. | M_. M_. b(M.) M. b~ (M) M_. M.
Coyt Cys- Cyr—+ Cy—— Ctt Cy— C—4 C——
-2 -3 -2 -3 -1 2 3 —1 1 -1 _-3 -1 -1
T | a2a; “ag ay “as”aq a3a1a3 1 aza10y s ap Qg aq " Qy
/ —1 -1
M| M, M_, bU(M,) | bH(M,) | b(M,) | b(M.) | M, M,

w _ =1 —1 -2 3 — -2 1 1 1 2 . .
where 7 = a; 'a; 'az?aay " and 71 = asaj*az'aiaz 'a;tay?. This proves (a), and (b)

follows immediately, since Il = 71l pmm ! for any 7 € I

(c) We first show that hIl.h~1 C II for each h € I'. We may assume that h = bk for
some p € {0,1,—1} and some k € K, and for such h, we must check that hgjff1 € 1II for
each of the 20 generators g; of II. given in Proposition 13. We do this as usual by having
Magma check that <a1,a2,a3,hgjh_1> has index 864 in I'. It follows, in particular, that
W k! =11, for each h € T,.

We next prove (c) in the case g = k_., and (d) in the cases g = b and g = b~1. Now
gll.g~! CII and so gll.g~! C Il for M = g(M,). So

1

II. C g_lﬂMg cT..



38 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

We saw in the proof of Proposition 13 that the elements t;k, ¢ = 1,...,9, k € K., form
a transversal of II, in T'.. Now t;k € g Il if and only if gt;kg~! € II, and so if and
only if the index in ' of (ay,as,as, gt;kg™!) equals 864. We find that if g = k_., then
tik € g 'y g only if t;k = 1. Tt follows that II. = g ‘Il g if ¢ = k_., proving (c) in
that case. However when g = b, we find that, as well as t;k = 1, also tgu?j® and tgu?;° are
in g~ 'I,g, and that when g = b1, as well as t;k = 1, also tzu?j” and t55° are in g ' IIpg.
Explicitly,
3

brimsu?j®ht = a3a1a§j8a2_2a§a1j4, b Yimu?ib = —jgalaglal_lagzjsagaljg, 20

bj2rmu?if! = C3a§af1a§1j8a§2aflj4, b= 1i375% = (3]4(11 1a2 1a3 3a1 Lagay 58, (30)

are in II. Magma checks that no other gt;kg~! # 1 are in II. So for both g = band g = b!,
gll.g~! has index 3 in IIp, proving (d) in these cases.

Now we know that kgl_[ckgl = I for B = ¢, —c, suppose that g € T, and write M =
g(M,). Suppose there is a 7w € II so that (M) = Mgz for one of these 5’s. Then h = kglﬂg
is in T, so that hIl.h~! = II.. Then (mg)Il.(mg)~! = Iz by the case g = ks of (c) we
have already proved. Finally gIl.¢g~! = w‘l(HMﬁ)W = lz-1(ar5) = Har. This completes the
proof of (c).

To prove (d), suppose that M = g(M,.) and that there is a # € II such that n(M) =
b*(M.), for p = 1 or —1. Then h = b~Hmg € I, and so hll.h~! = II., and therefore
(mg)e(mg)~* = b*IIb~#, which has index 3 in IIyu(ps,), by the cases g = b and b~! of (d).
So gHCg_l has index 3 in W_l(HbM(MC))TF = Hﬂ'*l(b#(Mc)) =1I,,. ]

It is a consequence of Proposition 16 below that the four possibilities in Proposition 14(a)
are mutually exclusive. If M is a mirror of type A, then by Proposition 14(a), the image of
the immersion pps : I \M — X is equal to the image of o for M/ = M., M_., b(M.,)
or b=1(M,). By Proposition 16 again, these images are distinct.

If there is a m € II such that #(M) = M, or M_. (in particular if M = M, for some
a € {¢ciit, . c___}), Proposition 14(c) shows that Il \M = II.\M,, so that I\ M is
a surface of genus 10. For the other two possibilities in Proposition 14(a), things are very
different, as we now see.

Proposition 15. If M is a mirror of type A, and if there is a w € I such that w(M) = b(M,.)
or b=1(M.,), then Iy \M is a surface of genus 4.

Proof. We may assume that M = b*(M,.) for p = 1 or —1. As we saw in the proof of
Proposition 14, b=#II,b* is the union of three cosets Il.t;k of I, in T.. Recall that we have
an injective homomorphism .. : T, — U, and 9.(Il.) has index 27 in H. = (hy, ha, h3) C
U.. We find that

Ve(Tim3u?§®) = hihahy 'hy Ye(jmiu?j7) = hohihs,
9 9.6y g ,-1,-1,-1 and I (31)
Ye(j TiT3u"j") = hohy “hy “hy ™, Ye(5°m177) = hg hy hy .

So .(Il;) C (b~ HIpb*) C He, and (b IIpsb*) has index 9 in H,, and is generated
by ¢(Il.) and two more elements, which are given in (31) (cf. (30)). We find that in both
cases, U (b~HIIb*) is generated by eight elements satisfying a single relation, and have

abelianization Z8. So the same is true of IIps.
Let us record here generators of IIN &L~ (= Iy, for M = b(M..)):

_ 1,3 —2 —1.4 -1.8 2 3
p1=( aza a3 ] a a j, C asala?,] ay jazaiag
3.2 -2 —1,_-3 -3
p2 = ajmaiasarjtay jPaz et ay®,  pe = (fajarasaragas”,
4.8 —1 -3 2.4 -1 -3 3.8 2 _1 2.4
p3=C"jay ag a2] a3 a1 as -, pr = (—laza1j ara; “ay "azj”,

43 2 —2:4_—2:8 -2
=0 2010y a1 Y a3a1a2 ] ps =( “j az"j azaraza1a;y ",
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the scalar factors arranged so that each h = b~ !p, b satisfies h1; —cho; = 1 = det(h). These
satisfy the relation

5 'pa 'pspipsps 'papy 7 PG ' prpaps 'pspy 'pe = 1.
Here are the images under 1, of the b=1p,b’s in H,:
Pe(b™'p1b) = hohy 'hy 'hy !, ahe(bT ' psb) = hihshahy hs,
$e(b™ pab) = hohg 'hihyt, he(bT peb) = hahThohihs,
Ye(b" pab) = hohihg thi?, Ve (b prb) = hohihy thy thy
Ve(b7 pab) = by hy thahoh?,  the(b” ' pgb) = hi'hy thahoh .

Following the same procedure as in the proof of Proposition 9, we obtain a presentation (20)
for TNV b1, withw; = By --- B D;E;Y - By and v, = By -+ B, E;E; Y, - E; " for

D1 = p5'p; 'pspipsps papy o7t B =pg',
Dy = p5 'py ' pspipaps g P2 P peps
D3 = p; 'p; 'pspa, E3 = ps,
D4 = p5_1, E4 - 1-
Let us also record here generators of IINb~1T.b (= [y, for M = b~1(M,)):
m1 = (2j8araz al ay 2 Pazars®, ms = C4j4a72a73j4a71a51j4a51a§a1,
ma =C73j8a1a§j4, me = ¢y a a2 a1a§a1a2 J a1 Yay 2a§]4,
ms = C_5j4a2_2a1_1a§1j8a1a52a1—1a2_2, my = Casaiasjtasar j°,
my = —j8a1aglaflagafla;1j4a2_2a§a1, mg = —j4a1_1a;1a1a§a1j8a2a§1a1—1a2_2,

the scalar factors arranged so that each h = bm, b~ ! satisfies hi1 —cho; = 1 = det(h). These
satisfy the relation

-1 -1 -1 -1 -1, -1 -1, -1
m3mg MgMmsMy “TN2Mg TNy TNy~ MMMy Mg mgzl.

Here are the images under v of the bm,b~'’s in H.:

Ye(bmib™t) = hohyha, Ye(bmsb™ ') = hahyhg *hi thohyhas,
Ye(bmab™b) = h hy thshi hyt,  e(bmgb™t) = h3h2hahy,
Ye(bmzb™) = hithy thyt, Ye(bmzb™) = hi hy *hahohihih, s,
Ye(bmab™) = hoh2h5 ", Ye(bmgb™) = hoh'hy 'hy.

In the same way, we obtain a presentation (20) for II N b~!T'.b, with generators u; =
Ey---E;\D;E7Y---Ey'andv; = E,---E;_E;E ", --- E;* for
D1 =mg, E; =mg m4m5m7 Yo,
Dy = mymgz 'memytmy tmg, By =my
D3 = m1m5_1, E3 =mymy ml_lm4,
D4:m13 E4:m21.
O
We want to find out how these curves vy (ITp/\M) = (M) self-intersect. See Lemma 26.

Lemma 29. Suppose that M is a mirror of type A, and that there is a m € Il such that
(M) = M. or M_.., respectively such that m(M) = b(M.) or b=1(M,). There are exactly 9
(respectively 3) distinct TIyr€ € p \M such that € € M is in the T-orbit of O. There are
exactly 54 (respectively 18) distinct Ty & € Ty \M such that € € M is in the T-orbit of P.
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Proof. Write M = g(M.). Suppose first that there is a = € II such that (M) = Mgz for
B = c or —c. Then by Proposition 14, we have II;; = gIl.g~! and so the number of distinct
€, with € € M in the T-orbit of O (respectively of P) is the same as the number of distinct
I1.£, with € € M, in the ['-orbit of O (respectively of P). So we may suppose that M = M..
If £ € M, is in the T-orbit of O then writing ¢ = g.0, we have O € g~!(M,.). By Lemma 17,
the distinct mirrors of type A containing O are the ko(M.), o € {ciqq,...,c___}. So
g Y (M,) = k(M,) for some k € K. Hence ¢ = g.0 = (gk).O = h.O for some h € T\.
By (29) (where now G =11..) II.£ is one of the 9 elements II.(¢;.0), i = 1,...,9, and these
are evidently distinct.

If £ € M, is in the [-orbit of P, then using the fact that the four distinct mirrors of
type A containing P are the r,(M.), v = 1,2, 3,4, where r, € I'p are given in Lemma 14,
we similarly find that & = h(P) for some h € ['.. This time the group I'» NT. has order 6,
and acts freely on any transversal of II. in T'.. So there are 54 = 324/6 elements s1,. .., 54
of T, such that T'. is the disjoint union of the double cosets II.s;(I'p N T,). So & = h.P,
with h € T, implies that I1.¢ is one of the 54 elements II.(s;.P) of TI.\ M., and these are
evidently distinct.

If instead there is a 7w € II such that 7(M) = b*(M,) for p =1 or —1, we may suppose
that M = b*(M.). Then II. C b~*IIp;b* C T, and I, is of index 3 in II. = b~ *IIb*. So
II, has index 108 in T.. Since II. is torsion-free, the group K, = K N T, acts freely on any
transversal of I, in I, and so we can find 3 = 108/36 elements u;,us,us € I'. such that

3
I, = U ﬁcuiKc, a disjoint union.
i=1

So if £ € M is in the T-orbit of O, we find that ¢ = b*h.O for some h € T, and then that
ITps€ is one of the three elements Ty, (b*u,;.0). Similarly, we can write II. as the union of
18 = 108/6 double cosets I.v;(Cp N K,), and if £ € M is in the T-orbit of P, then we can
write & = (b*h).P for some h € I, and IIj/€ is one of the points Iy (b*v;.P). O

We now calculate for mirrors M of type A, the numbers n, (M), v = 0,1, —1, as well as
the numbers

for i = 1,...,36. Here the k; € K are as in (12) and (13). If M and M’ are two such
mirrors, and if M’ = 7 (M) for some 7« € II, then n,(M’') = n, (M) and m;(M’) = m;(M)
for each v and i, and so by Proposition 14(a), we need only do the calculation for the four
mirrors M., M_., b(M,) and b= (M.,).

Proposition 16. For mirrors M of type A, the numbers n,(M) are as follows:

M no(M) | ny(M) | n_1(M)
. i 3 2
M_, 4 3 2
b(3L,) 0 1 2
b I(M) | 0 1 2

The numbers m; = m;(M) are as follows:

M My1...,M1 | M13,-..,M18 | M19,..., Mg | M5, ..., M36
M, 2 0 3 1
M_. 2 3 0 1
b(M.) 0 0 1 1
b—1(M,) 0 1 0 1
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Proof. Using (26), we read off the numbers n, (M) by counting the elements in cells of the
next three tables: It is easy to check that distinct elements 71, 7o in the same cell of this
table satisfy 71'27r1_1 ¢ T'57, and so belong to different II,;-cosets.

The next three tables list, for 4 = 0, 1 and —1, respectively, II);-coset representatives
7 € I such that 7(b*.0) € M’ for each M’ € {M., M_.,b(M.),b=1(M.)}.

M, 1, alagl, alaglalag, afla;Qafl
M_. 1, af, dda;'az', a3'aiad
b(Mc) *
b= (M) | —
M, aflaEZ, agg, aflaglalagagl
M_. azal_lagl, agal_la;?’, al_laglagza%agl
b(M:) |1
b= (M.) agalagl

-1 -1 -1 -3
M. ajy ay, ai G

-2 —3 -1 —2_—3
M_. a; “az’ag ", aa; “ag

1 2

3, —1 2 11—
b(M.) | ajaiay", azay “a; aias; aj
bil(Mc) 17 a%alaﬂ

ay

For these three tables, there are in total 9 elements given in the first row, 9 in the second
row, 3 in the third row and 3 in the fourth row. So it follows from Lemma 29 that the tables
give complete lists of coset representatives.

Fori=1,...,36, m;(M) = f§{IIp;m € p\II : (wk;).P € M}, which is proved as was (26).
If k;j = kij%, then m;(M) = m;(M) for each M € {M., M_.,b(M.),b=(M.)}. For if
M = M. or M_. and (7k;).P € M, then ((jimj=*)(k;5*)).P = (j*rk;).P € j4(M) = M.
If also (7'k;).P € M, then n'w~! € Il if and only if (j4n'j=4)(j4mj=*)~! € Uy because
j* normalizes I, in these cases. To see that m;(M) = m;(M) when k; = k;j* and
M = b*(M,) for u = 1,—1, notice first that for p = 0,1, —1,

2 -3

e e €11, for mg =1, m = (74a2a1_ as al_1 and 7_; = a%alagafl. (32)

If (mk;).P € b*(M,), then
(g 7= (kig")-P = mu5* (ki) P)) € muj* (B (Me)) = b5 (Me) = b (Me.).

If also (n'k;).P € M = b*(M,), then n'7~1 € Il if and only if (m,j47'j~4)(mjimj=4) 1
is in ITps, because we see from bt j* = 7r,Lj4b“ that 7T#j4 normalizes I1y;. So 7 +— W/Lj47rj*
induces a bijection between the two sets we are counting.

So writing k; = k/,j4, with the k!, as in (13), the numbers m;(M) depend only on v, and
can be read off by counting the elements 7 in the cells of the following tables:
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k., M. M_.
v aflaEQafl, aflagg agaflagl, aflagg’ag
v? atayt, aytay? 1, a1—1a3—3a2
vuv ™! alaglalag, afla;3 aflaglalag, aflaglalagaflagl
vu” v u aflag, alaglagl azaflagl, a%aflagl
vt — a;lalag, al_la§3a2, agaf1a2_3
uv? — a;l, a3, aflaglagg’
J L, aj'ay’, ay’aj —
3° 1, aiaz aiaza;’, ay‘ay’ay’ay’ —
1 1 al_la;?’ag
3 1 a; oy
uv alaglaglamgl aglalag
u ot al_la2_2a1_1 al_laglala%
K, | b(M.) | b (M.) K, b(M.) b (M)
v — — J a3ay —
v? — — 42 asaia’ —
vup ™! — — 1 1 1
vu” v — — 7° agafzaglalaglaflagl as
vt — a%alag uv agal 1
uv? — 1 uw ty! 1 asza

Notice that writing k; = k/j“, the numbers of coset representatives given are 2 (for
v=1,...,4),0 (for v =5,6), 3 (for v =7,8), and 1 for v = 9,...,12, adding up to 18 for
each given « € {0, 1,2}, and thus adding up to 54 in total. So by Lemma 29, the table is
complete. Similarly for M = M_., the numbers given add up to 54. On the other hand, for

M = b(M.), the numbers of coset representatives given are 0 (for v = 1,...,6) and 1 (for
v="7,...,12), adding up to 6 for each given o € {0,1,2}, and thus adding up to 18 in total.
Again by Lemma 29, the table is complete. Similarly for M = b=1(M,.). O

Let us make a few remarks about the above numbers n, (M) and m;(M):

(a) From ng(M) = 0 for M = b(M,.) and b= (M,), we see that the mirrors M of type A for
which ITp;\ M is a surface of genus 10 are just the M for which the point IIO is in the image
of .

(b) The numbers n, (M) alone are not sufficient to distinguish the cases for which there is a
7 € II such that 7(M) = M, and w(M) = M__, nor between the cases 7(M) = b(M,) and
(M) = b=1(M,.). The numbers m;(M) do make these distinctions.

(c) We can refine Lemma 26 as follows: For ¢ = 25,...,36, we have m;(M) = 1 for each
mirror of type A and so these points © = II(k;.P) of X are all in the image of ¢, but
there is no self-intersecting of the curves there. For the M for which there is a 7(M) = M,
or m(M) = M_., only 30 of the points « = II(k;.P) are in the image of ¢y, and self-
intersecting happens at only 18 of them. For the M for which there is a 7(M) = b(M.)
or (M) = b=*(M,), only 18 of the points z = II(k;.P) are in the image of ¢y, and self-
intersecting happens at none of them. In fact, for these M, self-intersections happen only
at z = II(b~1.0).

Lemma 30. The normal closure N, of Il. in II has index 84 in 11, and is normal in T. For
any mirror M such that there is a w € 11 so that w(M) = M. or M_., the normal closure
Ny of Iy in 11 is equal to N,.
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Proof. Consider the generators g1, ..., goo of Il. given in Proposition 13. The 140 elements
Gjs aigjai_l, and ai_lgja,», for j=1,...,20 and ¢ = 1,2, 3, must lie in any normal subgroup
of IT containing Il.. If L is the subgroup that they generate, then the Magma Index command
shows that L has index 72576 = 84 x 864 in I, and the IsNormal command shows that L
is normal in T'. It is then clear that this L must equal N,.

By Proposition 14, in proving the second statement, we may assume that M = M_..
Magma verifies that k,cgjk:i, aik,cgjkiiafl and a;lk,cgjk:iai, for j = 1,...,20 and

i=1,2,3, generate a normal subgroup of I of index 84 x 864. The result follows. O

Lemma 31. If M is a mirror and if there is a w € I such that 7(M) = b(M,.) or b= (M..),
then the mnormal closure in 11 of Ilnr is of index 4 in 11, and is independent of M. It is not
normal in I'.

Proof. We need only consider the cases M = b(M.) and M = b~ (M..).
(a) For M = b(M,), consider the following 8 elements z; of II. Magma verifies that

(x1,...,28) is a normal subgroup of II of index 4.
T = a%a?a;lagalagal_lag1j8a2a1_1a3_1j4, T5 = azajay a3,
To = agal_la;?’a%alagzal_lagalag_1, Tg = al_la2_2a§af,
T3 = a1a2‘2a§, Ty = jgafla;1j4af1,
Ty = a;Qagal, Ty = a3a2_2a§a1a3_1.

For the following 8 elements y; of 1I, one may verify using Lemma 19 that each b=ty Yoy
is in ..

1 1 3

-1 -2 _ -2 —
al CL2 ,y7fa1a2 a3a2 ,

—1 -3 2 -1 -1 -2 2 -1 -1 -2 -1 -1 -3 2
Y2 = a3a1G49 G309 , Y4 = 1030103 A1 Ay , Y = Q30103 Ay Uy Ys = az a; Gz 0ag.

-1 -3 2 2 -1 -1 -2 2 2 —
Y1 = ai1ay aszay -, Y3 = aja3a1a3 A Ay , Y5 = 43071030103

So each y;lxiyi isin Iy = I NbLCbY, so that each z; is in the normal closure of II,,.
This proves the result for M = b(M,.).

(b) For M = b=%(M,), consider the following 7 elements z; of II. Magma verifies that
(x1,...,27) is a normal subgroup of II of index 4, and equals the normal closure calculated
in (a):

-1,-1 -1 -1 -1 -3 8 4 —3
T1 =03 Q] 203 Q] G207 G3°, T5=j asaij as”,

-1 -1 -1 -4 -1 -8 -4 -2 -1
T2 = Ag A7 A2G7 G5 G7 G2, Te =) azaij aias a; -,

_ ,—1,4 3 -1 —1.8 _ ;8 -1 —1.8 —1:4_3 24
T3 =ay; )] agas ay J-, T7 =] ai1azay a3aq J ay ] Q31057 .

_ 43 —1 —1.8 —1
x4 =j azaz aj joaj,
For the following 7 elements y; of II, one may verify using Lemma 19 that each by, Leyib™!
is in T'..
-1, -3 -1, -1 -1 -3 -1 _—1 -1 -1 _ -1 _-1_-1_3 2
Y1 =a; az°aj Gz , Y3=a] a3°G] 43 , Ys=0a] Q3 , Yr=aiG; aj a5 G3ai.

3 1 1

_ —3 2 _ -3 -1 — _ -1
Y2 = aiazay "as, Ys =as a; as -, Ys = ag -,

So each y{lxiyi is in Iy = I N b 'T.b, so that each z; is in the normal closure of II;;.
This proves the result for M = b=1(M,). O

We conclude this section with some calculations involving the abelianization map which
will are needed in Section 2.4.

Proposition 17. If M is a mirror of type A, and Uy \M has genus 10, then the image
under f of Iys is {(m,n) € Z> : m—n is divisible by 6 and n is divisible by 2}. If T \M
has genus 4, the image of Iy is {(m,n) € Z* : m, n are divisible by 2}. The images
under f of the generators u; and v; for M = M., M_., b(M.) and b=1(M.) are given below.
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Proof. For M = M, in the notation of the proof of Proposition 13, f(u;) = f(D;) and
flv) = f(E;) for i = 1,...,10, and so it is routine to calculate these from the given
expressions for D; and E;, and from this we read off f(II.). We find that

f(U1) = (4’ _2)’ f(uQ) = (27 _4>7 f(U3) = (2’ _4)? f(U4) = (2’ _4)? f(u5) = (_6’6)7
,f('Ul) = (47 _2)’ f(UZ) = (_676)7 f(’l)g) = (_2’ _2)7 f(’U4) = (27 _4)7 f(’U5) = (272)7
and that
f(u(i) = (_2a _2)7 f(u7) = (_472)7 f(U’S) = (_874)7 f(u9) = (_670)7 f(ulo) = (_2 4)
flue) = (=4,2),  [fluv7) = (=2,-2), f(vs) = (8,2), [f(vg) =(2,2), f(vi0) = (6,—6).
For M = M,C, II5; has generators g; = k_ ik} ., which satisfy the same relation (28)
as do the g;’s. So we get generators u; and v; for these groups by defining elements D;
and E; as in the proof of Proposition 13, with the g;’s there replaced by g}’s, then defining
w = By B D;E7Y - Byt and v, = By B BB - Byt for i =1,...,10. To
calculate these f(u;) and f(v;)’s, we need to express the g’s in terms of the generators of II.
We find that

/a4 —1 -3 2.4 —2 3 .4 -1 -2 —1.8 —2 —1.8
g1 =) a1 a3 Q3] ay-azaij-, = J a’l a2 as al J a2 ay ],
/I 2.8 2 2.4 _ -1 -3 2.8 -8
g3 = ("jazazj”, 912—] a, asg aj a1 J a2a1 G3J )
/' —4.8 -1 —1_ 2.8 —1 —3.8 /o 48 -1 -3 -2 -3
g5 = C "jay ay arazjtay agz”jcagan, g15 = ¢ j-azaiaza; J a1 asz ap ag -,

/I __ —3:8 2 -1 —-1.8 —1 _ —1 —1.8 ! _ »—2:8 -1 —-1.4 —1 —3:8 -1 _3 -4
g7 = (¢ °jarazay tay joaz ay tasaiay o, g1 =C “joay ay jay azjoaiay azaij”,

and
dho = (i arazay Pag % azay tay P aday tay By
and g, = jtg,j % for v € {1,3,5,7,9,10,12,13,15,17,19}.
It is then routine to calculate the f(u;) and f(v;), and we obtain
f(ul) = (743 8)7 f(uQ) = (7874)3 f(u ) = (76 6) f(u ) = (7472); f(u5) = (7874)7
f('Ul) = (87 _4)7 f(U2) = (272)7 f( ) (4 8) f( ) = (272)7 f(US) = (2a2)7
and
f(uﬁ) = (_670)7 f(U7) = (_4’ _4)7 f(US) = (_6’0)7 f(u9) = (_47 _4)a f(ulo) = (_4’ 2)7
f(UG) = (7676)7 f(U7) = (27 74)7 f(US) = (670)’ f(UQ) = (7274% f(Ulo) = (47 72)'

For M = b(M,) and M = b~1(M,), generators u; and v; were given in the proof of Propo-
sition 15. For M = b(M,) we read off

flur) =(0,=2),  fluz) = (=4,0), [flus) =(=4,2), [f(us)=(2,0),

fo1) =(=2,0), f(v2) =(0,2),  flvs) =(4,0),  flva) =(0,-2),
and for M = b=1(M,), we read off

flur) =(2,0),  fluz) =(4,0),  fluz) =(0,0),  f(us)=(0,2),

fo1) =(=2,4), flv2) =(-22), flvs)=(2,-2), f(va)=(-42).

A.4. The points of X coming from the I'-orbit of ;5. Recall that the point {15 € X
was defined in (14). It is the point of B2 fixed by 712 = bv. By Proposition 8, it belongs to
exactly one mirror of type A (namely g(M..) for g = bu, since (ub)u(ub)~! = b = (bv)* = v,
fixes £12), and exactly one mirror of type B (namely My).

Proposition 18. There are exactly 72 distinct points II¢ in X such that & is in the T-orbit
of £12. The set of these points may be partitioned into three subsets of size 24, consisting of
the points in the images of My, M1 and My, respectively. For a = 0,1,00, the set of 2/
points belonging to the image of M, is partitioned into sets of ni, ns, ng and ng points in
the images of M., M_., b(M.) and b=1(M.), respectively, where
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(a) fO’f’ o = 07 (nlanQan3an4) = (67676a6);
(b) for a =1, (n1,n2,n3,n4) = (9,9,3,3),
(¢) for a =00, (n1,n9,n3,n4) = (12,12,0,0)

Proof. Recall that T = {b*k : p € {0,1,—1} and k € K} is a set of representatives for the set
of 864 distinct cosets Ilg, g € I'. Since II is torsion-free, the group (712) acts freely on 7', and
so we can find 72 = 864/12 elements s1, ..., s79 of T such that I = UZil IIs;{y12), a disjoint
union. Because ['¢,, = (712), as we saw in Lemma 15, the points I1(s;.£12) € X are distinct,
and consist of the II¢ in X such that ¢ is in the T-orbit of £15. Magma verifies that we can
take s1,..., 872 to be the elements s/, s,j* and s,j®, where s/, ..., sh, are the elements in
the first column of the table below. Since [M4(&12)] =1 = |[Mp(&12)] by Proposition 8, each
I1(s;.£12) belongs to the image of exactly one of My, My and M., and to the image of exactly
one of M., M_., b(M,.) and b=1(M.,). For each i, we can find 7, 7" € II so that ms;&10 € M
and 7's;€12 € M, where M € {My, My, My} and M’ € {M., M_.,b(M.),b=1(M,)}.

If # € I, s; = bk, and 7s;&12 € M,, where p € {0,1,—-1}, k € K, and a €
{0,1, 00, ¢, —c}, then with 7, € II as in (32),

sij1612 = B kErn = w0 k€ = mu T (b k) € mugtn T (Ma) = mutn TN (M),

so that 7s;j1€12 € My, for ©# = jmj~*m 1. Similarly, if 7s;&12 € b”(M.), then

7ruj47r71(77b“k£12) IS 7ruj47r71(b”(Mc)) = 7Tuj47T71ij74(Mc) = 7T,Lj477717r_1,j74b”(Mc)

shows that 7s;j4¢12 € b¥(M,) for 7@ = j47r:,£7rj_477;1.

So it is enough to find, for v = 1,...,24, 7, 7' € Il so that 7s’,&15 € M and 7's/, &1 € M/,
where M € {Moy, My, My} and M’ € {M., M_.,b(M.),b=*(M.)}. Suitable 7, 7" are listed
in the next table.
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s, T M m’ M’
I 1 Mo | aytay’ay?ay! M.
uj ay ay ai My a2_3a3 M.
1 1 My af1a3 as M_.
uj ay ay a1 | Mo a;tay? M_.
j 1 My aza; b(M.)
ug? ay ay ax My azaiaj b(M.)
3 1 Mo as bil(Mc)
n ay ay a1 My 1 b_l(Mc)
viluj 1 M, alaglaz_lalagl M.
U_luj3 1 M, alaglalagagagl M.
bu aflag‘q’ M, 1 M.
vty 1 M, az’ M_.
buj a;taz® M,y artay taiad M_.
bvuyj agalaz_l My as M_.
bu~tug ay? M, asaztartaz? b(M.)
v iy 1 My a3a1a3 b~ (M)
vu ) ay* Mo aytayt M.
vu” 52 ay’ Mo | a;'a;’a;'as M.
uviluj 1 M a3a2_3a§a1 M.
b~ loui® | azlartay? | Moo | aiaz‘aiazay’ M.
vu ! a;l Moo agaflagl M_.
Uu_1j3 a;l Moo a%aflag(u M_.
uv 1 Moo alagal_Qa;sagm M_.
boutvuj | aytarayt | Moo azaytay’? M_.

For each pair (M, M’) we can read off from this table the ¢ such that ws;£12 € M and
w's;&10 € M’ for some 7,7’ € II. O

A.5. The fixed points of the automorphisms of X. As we saw in §1, the normalizer
of I in T contains IT as a subgroup of index 3, and is generated by II and j*. Denote by o the
automorphisms of BZ and of X induced by j*. If ¢ = (z1,22) € B2, then () = (wz1,w22).

Lemma 32. The automorphism o of X has exactly 9 fized points. These are the three
points IIFO, p = 0,1, —1, and siz points ITh;&s, i = 1,...,6, where &3, as in (14), is the
fixed point of v3 = buv.

Proof. If TI¢ is fixed by o, then IIj4¢ = II¢, and so 7j4¢ = ¢ for some 7 € II. This implies
that 754 has finite order. It cannot be trivial, since II is torsion free. So there is an element ¢,
in the list of representative nontrivial elements of finite order in T' given in Proposition 7,
or the inverse of one of these, such that 7j* = gtg~! for some g € I'. Thus gtg~'j~* € II.
Since the elements b*k, p = 0,1,—1 and k € K, form a set of coset representatives for II
in ', and since j* normalizes II, we can assume that g = b*k for some u and k.

So we search through the finite set of elements b*ktk~'b~#j~* checking which are in IT
(by the remark below, we need only consider the cases t = j%, t = buv and t = (buv)™1).
We find that b*ktk—'b~#j~* € II only happens for ¢t = j* and t = buv. When t = j*, we
have btktk—1b=#j=4 = b*j*b—#;j~4, independent of k. We find that these three elements
are in II. Explicitly, b*j*b=#j=* = 7, for 7, given in (32). and these equations mean that
the three points II(b*.0) are fixed by o.

For t = buv, we find that b*ktk=1b=#;j=* € II for only 18 pairs (u, k). This means that
o fixes TI(b"k.&3) for these 18 (u, k)’s. If (u, k) satisfies b*ktk=1b=#j=* € I, then so does
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(u, kj), since we can write b*j* = 7ruj4b“ for some 7, € 11, as we have just seen. Moreover,
H(b"kj*.&3) = TI(b k.£3), since kj* = j4k and so
TI(b"kj* &3) = T(m,j b k.€3) = TI(j 'k &3) = o (TL(0"k-&3)) = TL(B'k.E3).
So we need only consider six of the (u, k)’s, and correspondingly setting
hy = b touj®,  he =u"'vj, hs = buv?j?,
hy = b 0%ug®,  hs = vj?, he = bvu~ 1,
we have hi(lnw)h;lj_‘1 =m, €Il for i =1,...,6; explicitly,
) = Ctadarad, = jPayj?, 7y = (?j8a1aditazaray layt.
= (Pa3aial, 7 =("titar eyt g®, wh = Casalt
These six points I1h;&3 are distinct, as we see by checking that (% k') (buv)€(b#k) ! is not
in II for e = 0,1,2 when (¢/, k") and (u, k) are distinct pairs in the above list. O

Remark 6. If 7 € I, then @' = (7j*)? = (7)(j*73®)(587j*) is also in 1. Since the
possible orders of the elements of T' are the divisors of 24, if ©j* has finite order, then
1 = (7jH)** = (7')8, so 7’ must be 1, so that (mj*)> must be 1. Obviously, mj* # 1, and
so mj* must have order 8. Write mj* = gtg~! for some g € T', where t*> =1 and t or t~*
is in the table in Proposition 7. We know from (32) that for each p € {0,1,—1}, there is
a 7, € II such that b*j*b=+j=* = m,. Using this and writing g = n'b"k, where 7’ € 1I,
we{0,1,-1}, and k € K, we get

7t = 7 ktk T bR T = btk (T
= ' (k) (15O R) T (gt

So (b"k)(tj=*)(b*k)~1 is in 11, and therefore either t = j* or tj=* has infinite order. In
particular, apart from t = j*, our t cannot be in K, and so must be buv or (buv)~!.

1—1

Lemma 33. In the notation of Lemma 32, the six points I1h;&s are of type %(172), while
the three points IIb*O are of type %(1, 1).

Proof. 1f v € T, then writing .(21, z2) = (w1, ws), a routine calculation shows that
Ow;  dws
021 621
w1y Ows )
< 822 (922 >
evaluated at £ = (21, 22), equals

¢/r=1) ( K23 + (1 —1) ¥y  —(K22V13+ (r — 1)712))
(va1k21 + Y32k22 +933)%2 \—(K21Y2s + (r = 1)721)  k2iVs+(r =17y )7
where k = /r — 1. Taking v = h;y3h; " and & = & = (¢1/k, ca/k) as given in (14), we find
that this matrix has eigenvalues e=27/3_ If instead we take v = b*j4b~#, and & = b"O, for
pu=0,1,—1, we find that the matrix is e2™*/3]. O

Proposition 19. With the notation of §5.4, three of the nine fized points of o are mapped
by a to each of po, p1 and p_1. Moreover, a(IIbO) = a(IIb~10) = a(110), a(Ilhi&3) =
Oé(thfg) = a(thfg) and a(Hh4§3) = a(Hh5§3) = Oé(Hhﬁfg,).

Proof. Writing «(II€) = ao(§) + A, as before, where ap(O) = 0, we proved in Lemma 10
that
ao(54€) = wag(&)  for all & € BE.
Now bj*b~1 = w154 for m as in (32), and f(m) = (=2, —5), so by Lemma 10 and Proposi-
tion 4,
ao(bj*071€) = ao(m15'€) = ao(j%€) — 2 + bw = wag(§) — 2 + 5w.
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In particular, taking & = bO, we have ag(bO) = wag(bO) — 2 + 5w, so that

2
ao(b0) = %(—2 4 5w) = w—3 €A

Hence a(I10.0) = a(T1O) = py
Similarly, b=1j%b = 7_,j* for 7_; as in (32), and f(7_;) = (—5,1), so that
ag(b™"j10€) = ao(m—1j"€) = ao(j€) + 0(f(7-1)) = wao(§) =5 —w.
So taking ¢ = b=10, we have ap(b~10) = way(b~10) — 5 — w, so that

24w
3

ap(b™t0) = (-5 —w)=-3—2weA.

Hence a(IIb=1.0) = a(I1IO) = py too.
Recall now that hi(buv)hi—lj’4 =m e€llfori=1,...,6, and so
ao(hi(buv)hi 1€) = ag(m}j*€) = ao(j1€) + 0(f(x})) = wao(€) + 0(f(x})).
In particular, taking & = h;&3, we get ag(hi&3) = wag(hi&s) + 0(f(w})), so that
24w ,

ao(hi&s) = 3 0(f(m3))
Calculating
f(m) = (=6,2), f(my) =(=4,1), f(m)=(1,-6),
f(my) = (=4,0), f(m5) = (=4,3), f(mg) = (=3,-2),
we have
O(f(m))=—6—-2w =1~ (1 -w) O(f(my)) = —4 =-1
B(f(h) = —4—w =1+(1-w) and O(f(nh) = —4—3w =1
0(f(m3) =1+6w =1 O(f(r}) = -3+ 2w = —1+ (1 —w),
where the congruences are modulo 3. Hence «a(Ilh;&3) = 2+“ + A for i = 1,2,3 and
a(Tlh;&s) = =22 + A for i = 4,5,6. O

REFERENCES

[AGV] Arnold, V.I, Gusein-Zade, S.M., Varchenko, A.N., Singularities of differentiable maps. Vol-
ume 1. Classification of critical points, caustics and wave fronts. Modern Birkh&user Classics.
Birkhauser/Springer, New York, 2012

[BHPV] Barth, W. P., Hulek, K., Peters, Chris A. M., Van de Ven, A., Compact complex surfaces. Second
edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics 4. Springer-Verlag, Berlin, 2004.

[Be] Beauville, A., Complex algebraic surfaces. Translated from the 1978 French original by R. Barlow,
with assistance from N. I. Shepherd-Barron and M. Reid. Second edition. London Mathematical
Society Student Texts, 34. Cambridge University Press, Cambridge, 1996.

[BG] Buchweitz, R.-O., Greuel, G.-M., The Milnor number and deformations of complex curve singular-
ities, Invent. Math. 58 (1980), 241-281.

[CS1] Cartwright, D., Steger, T., Enumeration of the 50 fake projective planes, C.
R. Acad. Sci. Paris, Ser. 1, 348 (2010), 11-13, see also weblink provided,
http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/.

[CS2]  Cartwright, D., Steger, T., Finding generators and relations for groups acting on the hyperbolic
ball, preprint.

[DM1] Deligne, P., Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral mon-
odromy, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986), 5-89.

[DM2] Deligne, P., Mostow, G. D., Commensurabilities among lattices in PU(1,n). Annals of Mathematics
Studies, 132. Princeton University Press, Princeton, NJ, 1993.

[Derl] Deraux, M., A negatively curved Kahler threefold not covered by the ball, Invent. Math. 160 (2005),
501-525.

[Der2] Deraux, M., Forgetful maps between Deligne-Mostow ball quotients, Geom. Dedicata 150 (2011),
377-389

[GH]  Griffiths, P., Harris, J., Principles of algebraic geometry, John Wiley & Sons, Inc., 1978.



SOME ALGEBRAIC GEOMETRIC FACTS ABOUT THE CARTWRIGHT-STEGER SURFACE 49

[GPP] Gurjar, R., Paul, S., Purnaprajna, B. P., On the fundamental group of hyperelliptic fibrations and
some applications. Invent. Math. 186 (2011), 237-254.

K] Keum, J., Toward a geometric construction of fake projective planes, Rend. Lincei Mat. Appl. 23
(2012), 137-155.
[Li] Livné, R., On certain covers of the universal elliptic curve, Ph. D. Thesis, Harvard University, 1981

[Mol] Mostow, G. D, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math.
86 (1980), 171-276.

[Mo2] Mostow, G. D, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Etudes
Sci. Publ. Math. 63 (1986), 91-106.

[NZM] Niven, I., Zuckermann H. S., Montgomery, H. L, An Introduction to the Theory of Numbers, (Fifth
Edition), Wiley, 1991.

[N] Nori, M., Zariski’s conjecture and related problems, Ann. Sci. Ec. Norm. Super. 4 (1983), 305-344.

[Pa] Parker, J. R., Complex hyperbolic lattices, Contemp. Math. 501 (2009), 1-42.

[PY] Prasad, G., Yeung, S-K., Fake projective planes, Inv. Math. 168 (2007), 321-370; Addendum, Invent.
Math. 182 (2010), 213-227.

[R] Rémy, B., Covolume des groupes S-arithémiques et faux plans projectifs, [d’aprés Mumford, Prasad,
Klingler, Yeung, Prasad-Yeung], Séminaire Bourbaki, 60éme année, 2007-2008, n® 984.
[Sa] Sauter, J. K., Jr, Isomorphisms among monodromy groups and applications to lattices in PU(1, 2),

Pacific J. Math. 146 (1990), 331-384.
[ST] Shephard, G. C., Todd, J. A., Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.

[T] Toledo, D., Maps between complex hyperbolic surfaces, Special volume dedicated to the memory of
Hanna Miriam Sandler (1960-1999), Geom. Dedicata 97 (2003), 115-128.

U] Ueno, K., Classification theory of algebraic varieties and compact complex surfaces, Lecture Notes
in Mathematics, 439, Springer-Verlag, Berlin, 1975.

X] Xiao, G., Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, 1137, Springer-

Verlag, Berlin, 1985.

[Y1] Yeung, S.-K., Classification of fake projective planes, Handbook of Geometric Analysis, Vol II,
Higher Education Press, Beijing, 2010, 391-431.

[Y2] Yeung, S.-K., Classification of surfaces of general type with Euler number 3, Journ. fiir die reine
und ang. math., 679(2013), 1-22, corrected version, http://www.math.purdue.edu/~yeung/.

(Donald I. Cartwright) UNIVERSITY OF SYDNEY, SYDNEY NSW 2006 AUSTRALIA
E-mail address: donald.cartwright@sydney.edu.au

(Vincent Koziarz) UNIv. BORDEAUX, IMB, UMR 5251, F-33400 TALENCE, FRANCE
E-mail address: vkoziarz@math.u-bordeauxl.fr

(Sai-Kee Yeung) PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA
E-mail address: yeung@math.purdue.edu



