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Abstract. We propose a definition of the Toledo invariant for representations of fundamen-
tal groups of smooth varieties of general type into semisimple Lie groups of Hermitian type.
This definition allows to generalize the results known in the classical case of representations
of complex hyperbolic lattices to this new setting: assuming that the rank of the target Lie
group is not greater than two, we prove that the Toledo invariant satisfies a Milnor-Wood
type inequality and we characterize the corresponding maximal representations.

1. Introduction

The Toledo invariant is a characteristic number naturally associated to representations
of lattices of semisimple Lie groups of Hermitian type into other semisimple Lie groups of
Hermitian type. Recall that a real semisimple Lie group G (with no compact factors) is said
to be of Hermitian type if its associated symmetric space is Hermitian symmetric. The most
general definition of this invariant can be found in Burger and Iozzi paper [BI]. It is given
there in terms of the second bounded cohomology of the involved Lie groups and lattices
but, in the case of torsion free uniform lattices, we can rephrase it as follows. Let X be an
irreducible Hermitian symmetric space of the noncompact type and let Γ be a (torsion free)
uniform lattice in the automorphism group of X . In this introduction, we loosely speak of
the “automorphism group of X ” while we actually mean “a Lie group acting transitively and
almost effectively by complex automorphisms on X ”, which could therefore be a finite cover
of the true automorphism group of X . Let ρ be a representation, i.e. a group homomorphism,
of Γ into a linear connected simple noncompact Lie group of Hermitian type G. Let also Y be
the Hermitian symmetric space associated to G, so that Y = G/K for some maximal compact
subgroup K of G. There always exists a smooth ρ-equivariant map f : X −→ Y and we can
use this map to pull-back the G-invariant Kähler form ωY of Y to a closed 2-form f?ωY on X
which by equivariance goes down to a form on X := Γ\X that will still be denoted by f?ωY .
The cohomology class defined by f?ωY depends only on ρ, not on the chosen equivariant
map f . This class can then be evaluated against the Kähler class ωX of X coming from the
invariant Kähler form ωX on X and this gives the Toledo invariant of ρ:

τ(ρ) :=
1
m!

∫
X
f?ωY ∧ ωm−1

X ,

where m is the complex dimension of X.
Burger and Iozzi proved that the Toledo invariant satisfies a Milnor-Wood type inequality,

namely that it is bounded in absolute value by a constant depending only on the ranks of the
symmetric spaces X and Y and the volume of X = Γ\X : if the invariant Kähler metrics ωX
and ωY are normalized so that the minimum of their holomorphic sectional curvatures is −1,
then

|τ(ρ)| ≤ rkY
rkX

Vol(X)
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where Vol(X) is computed w.r.t. ωX , i.e. Vol(X) = 1
m!

∫
X ω

m
X .

One of the main motivations in studying the Toledo invariant is that it allows to prove
rigidity results by singling out a special class of representations, those for which the Milnor-
Wood inequality is an equality. These so-called maximal representations have received a great
amount of attention and one expects to be able to describe them completely. In this rigidity
oriented approach, the interesting case is the case of lattices Γ in rank one Lie group (by
the rank of a semisimple Lie group we shall always mean its split rank, that is the rank of
its associated symmetric space, so that for example rkG = rkY). Indeed, lattices in higher
rank Lie groups are known to be superrigid, which is stronger than what can be proved using
the Toledo invariant. Therefore in this paper X will always be complex hyperbolic m-space,
which as a bounded symmetric domain is the unit ball Bm in Cm, and Γ will be a (torsion free)
uniform lattice in the automorphism group of Bm. Such a lattice will be called a surface group
if m = 1, that is when X = Γ\B1 is a Riemann surface, and a higher dimensional complex
hyperbolic lattice if m ≥ 2.

The Toledo invariant was first defined for representations of surface groups into G =
SU(n, 1) in 1979 Toledo’s paper [To1] and then more explicitly in [To2], where the Milnor-
Wood inequality was proved in this case. Toledo also proved that maximal representations are
faithful with discrete image, and stabilize a complex line in the complex hyperbolic n-space Y.
At approximately the same time, Corlette established in [C] the same kind of result for higher
dimensional lattices (he used a different but very similar invariant), and this was extended to
non uniform lattices in [BI] and [KM1] using the Toledo invariant. An immediate corollary is
that a lattice in SU(m, 1) can not be deformed non-trivially in SU(n, 1), n ≥ m ≥ 2, a result
first obtained in the uniform case in [GM] using different methods. Therefore the case where
the rank of the Lie group G is one is now settled. Maximal representations of surface groups
into higher rank Lie groups are also quite well understood, thanks to the work of Burger, Iozzi,
Wienhard [BIW] and Bradlow, Garcia-Prada, Gothen [BGG1, BGG2]. Concerning higher di-
mensional lattices, the case of classical target Lie groups of rank two has been (almost entirely)
treated in our previous paper [KM2], but no general proof of the expected rigidity of maximal
representations into higher rank Lie groups is known.

From a somewhat different perspective, the lattices we are considering are examples of
Kähler groups, i.e. fundamental groups of closed Kähler manifolds. Being a Kähler group is a
severe restriction and these groups share many rigidity properties with lattices in semisimple
Lie groups, the first historical example of this phenomenon being Siu’s strengthening of Mostow
strong rigidity theorem [Siu]. The aim of this paper is to show how the definition of the Toledo
invariant and the known characterizations of maximal representations can be generalized to
the case where the represented group Γ is no longer a (higher dimensional) complex hyperbolic
lattice, but merely the fundamental group of a smooth variety of general type.

This generalization is made possible by the fact that some of the results we mentioned were
(or can be) proved with complex differential geometric methods. In particular, the most recent
works use the theory of Higgs bundles, developed by Hitchin [Hi1, Hi2] and Simpson [Sim1,
Sim2] precisely for studying linear representations of Kähler groups (see [BGG1, BGG2] for
surface groups, and [KM2] for higher dimensional lattices). This approach casts a new light
on the reason why such results hold and indicates that they should be valid in a much wider
setting.

Before explaining a little the issues one has to address when trying to generalize the defini-
tion of the Toledo invariant, let us say a few words about why we think the context of varieties
of general type is the right one. First, there are many examples of interesting representations of
fundamental groups of varieties of general type into noncompact Lie groups of Hermitian type.
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For instance, this context encompasses highly non trivial representations π1(X) −→ SU(m, 1)
for some Kähler manifolds X which have negative sectional curvature, but are not covered by
the complex unit ball Bm of dimension m. We think of the so-called Mostow-Siu surfaces and
their generalizations (see the more recent work of Deraux [D1], and [D2] for a 3-dimensional
example) which by construction admit such representations. On the other hand, although
we are not dealing with general Kähler groups, a factorization theorem of Zuo [Z], generaliz-
ing [Mo], asserts that given a compact Kähler manifold X and a Zariski-dense representation
ρ : π1(X) −→ G ⊂ SL(n,R) of its fundamental group into a linear simple Lie group, there
exists a finite etale cover e : Xe −→ X, a proper modification X̂e −→ Xe, a smooth vari-
ety Xgt of general type, a surjective holomorphic map s : X̂e −→ Xgt and a representation
ρgt : π1(Xgt) −→ G such that ρ ◦ e? = ρgt ◦ s?, where π1(X̂e) is canonically identified with
π1(Xe). So, in a way, the study of representations of fundamental groups of Kähler manifolds
in linear simple Lie groups is reduced to the study of representations of fundamental groups
of smooth varieties of general type.

For the complex differential geometric viewpoint we want to adopt, it is more convenient
to consider the Toledo invariant as the degree of a line bundle over X associated to the
representation ρ : Γ = π1(X) −→ G. This interpretation is indeed the best suited for the
generalization to representations of fundamental groups of varieties of general type we are
aiming at. Even in the classical case, namely when studying representations of complex
hyperbolic lattices, it is difficult to give definitions and proofs as independent as possible of
the different types of target Lie groups G. In the end one almost always needs to resort to
the classification of Hermitian symmetric spaces. We have included in Section 2 a somehow
detailed discussion of this question and the reader more interested by varieties of general type
may read only the beginning, skip to Definition 2.1, and then to Section 3, where we define the
Toledo invariant for fundamental groups of varieties of general type. Whereas in the classical
case degrees are naturally computed using the canonical polarization of the locally symmetric
manifold Γ\Bm, there is no such obvious choice of a polarization on a smooth variety of general
type X. Examination of the existing proofs of the Milnor-Wood inequality shows in particular
that in order to get a useful definition of the Toledo invariant in the general type case, namely
one for which such an inequality holds, we need a polarization with respect to which the
tangent bundle of X is semistable. It turns out that in general it is necessary to choose what
we call a good birational model of the variety whose fundamental group we are representing,
because polarizations with the right properties do not exist on all birational models. The
existence of these good models relies on the existence of the canonical model of the variety
X, a recent and very deep result ([BCHM]). Since any two smooth birational varieties have
isomorphic fundamental groups, ρ can be considered as a representation of both those groups.
As a consequence, the represented group Γ should not be understood as the fundamental group
of a precise smooth variety of general type X but rather as the common fundamental group
of all smooth representatives of the birational class of X, and the representation ρ should be
seen as a representation of this kind-of-abstract group. The definition of the Toledo invariant
we propose indeed does not depend on X, only on its birational class.

With this in mind, we can extend the results of [KM2] to our new setting. We consider
representations into Lie groups whose associated symmetric spaces are the classical Hermitian
symmetric spaces of noncompact type of rank one or two (with the exception of the symmetric
space associated to SO?(10)). This condition on the rank of the target Lie group comes from
the fact that, already in the classical case of representations of higher dimensional complex
hyperbolic lattices, the Milnor-Wood type inequality of Burger-Iozzi has not yet been proved
within the complex geometric framework under more general assumptions. Such restrictions,
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on the ranks of the groups, or on the ranks of Higgs bundles, or on the complexity of variations
of Hodge structures, appear for similar reasons when dealing with numerous related questions,
see for example [Kl], [R], or [VZ, MVZ]. These last two papers concern the generalization of
Arakelov inequalities known for VHS over curves to VHS over higher dimensional basis and
the rigidity that can be deduced from the equality case. The same kind of difficulties arises
in this setting and one needs to restrict to VHS of weight 1 (we refer to [V] for a survey on
Arakelov inequalities and a discussion of their relations with our work).

Coming back to the Milnor-Wood inequality, the good side of things is that the known com-
plex differential geometric proofs give more information on the equality case than Burger and
Iozzi general proof, and indeed they allow to completely characterize maximal representations.
Here, because of the nature of the Toledo invariant, the characterization we obtain concerns
both the representation and the variety whose fundamental groups is maximally represented,
or more precisely its birational class, through its canonical model.

Theorem. Let X be a smooth variety of general type and of complex dimension m ≥ 2 and
let Xcan be its canonical model. Let G be either SU(p, q) with 1 ≤ q ≤ 2 ≤ p, Spin(p, 2) with
p ≥ 3, or Sp(2,R). Finally let ρ : π1(X) −→ G be a representation.

Then the Toledo invariant of ρ satisfies the Milnor-Wood type inequality

|τ(ρ)| ≤ rkG
Km
Xcan

m+ 1
,

where KXcan is the canonical divisor of Xcan.
Equality holds if and only if G = SU(p, q) with p ≥ qm and there exists a ρ-equivariant holo-

morphic or antiholomorphic proper embedding from the universal cover of Xcan onto a totally
geodesic copy of complex hyperbolic m-space Bm, of induced holomorphic sectional curvature
−1/q, in the symmetric space associated to G. In particular, the canonical model of X is then
smooth and uniformized by Bm, and the representation ρ is discrete and faithful.

As we said, this result covers representations in all classical Hermitian Lie groups G of rank
1 or 2, except the rank 2 group SO?(10). Whereas it may be possible to give an ad hoc proof
for SO?(10), we did not try to figure it out since, because of the inclusion SO?(10) ⊂ SU(5, 5),
this case should follow from a general proof where the restriction on the rank of the target Lie
group has been removed.

The statement is given in terms of groups G whose complexification is simply connected
because it is easier in this case to define the Toledo invariant as the degree of a line bundle,
see Section 2 for details about this point. If the representation ρ takes values in the quotient
of such a group G by a finite normal subgroup (for example in PU(p, q) instead of SU(p, q),
in SO0(p, 2) instead of Spin(p, 2), or in SO?(8) instead of Spin(6, 2)), the result still holds
since there exists a normal subgroup of finite index in π1(X) on which the representation
lifts to G (see the end of Section 2). This subgroup is the fundamental group of a finite
étale cover X ′ of X, and so we have a representation ρ′ : π1(X ′) −→ G. With the right
definitions, τ(ρ′) = d τ(ρ), where d is the degree of the cover X ′ −→ X, so that the theorem
for ρ′ : π1(X ′) −→ G implies the result for the initial representation ρ.

The proof of the theorem is given in Section 4. In Subsection 4.1 we prove the Milnor-
Wood type inequality. We begin by reviewing the stability properties, for vector bundles as
well as for Higgs bundles, that were already needed in the classical case of representations of
complex hyperbolic lattices, and we check that they still hold for the polarization chosen to
define the Toledo invariant in the general type case, the crucial point being the semistability
of the tangent bundle of the variety. Once these properties are established, the proof of the
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Milnor-Wood inequality goes exactly like in the classical case. Maximal representations are
discussed in Subsection 4.2. Their characterization is noticeably more difficult than in the
classical case, because the Ahlfors-Schwarz-Pick lemma is not available anymore, and because
we need to work on the possibly singular canonical model of the variety.

Acknowledgments. We would like to thank Frédéric Campana for sharing with us his knowl-
edge and experience in the course of numerous discussions. We are grateful to Stéphane Druel
for his explanations about the paper [BCHM]. We also benefited from useful conversations
with Jean-Louis Clerc and with Ngaiming Mok, who we particularly thank for drawing our
attention to his joint paper [EM] with Philippe Eyssidieux.

2. The Toledo invariant as the degree of a line bundle

Given a nef Q-line bundle L (a polarization) on a variety X, the L-degree of any coherent
sheaf F on X is given by:

degLF := c1(F) · c1(L)m−1 =
∫
X
c1(F) ∧ c1(L)m−1

where c1(F) ∈ H2(X,R) is the first Chern class of F (see for example [Ko] for the definition)
and c1(L) ∈ H2(X,R) denotes the first Chern class of L. In the same way, we can compute the
L-degree of any smooth complex line bundle F and we will use freely the notations degL F =
F · Lm−1. If moreover F is associated to a divisor D, we will also write D · Lm−1 for degL F .

When X is a closed Hermitian locally symmetric space of the noncompact type and ρ
a representation of its fundamental group into a Lie group of Hermitian type, the Toledo
invariant of ρ can be interpreted as the degree of some line bundle on X computed with the
polarization coming from the canonical bundle KX of X. There is a certain degree of freedom
in the choice of this line bundle and this is what we want to focus on in this section. Later,
when dealing with fundamental groups of varieties of general type, it is the polarization used
to compute degrees that we shall discuss.

What follows is valid with the obvious modifications for lattices in the automorphism group
of any Hermitian symmetric space of the noncompact type but for the reasons given in the
introduction we will stick here to complex hyperbolic lattices. So let Γ be a (torsion free)
uniform lattice in the automorphism group of complex hyperbolic m-space Bm, and let X =
Γ\Bm be the quotient complex hyperbolic manifold. Let G be a linear connected simple
noncompact Lie group of Hermitian type. Remember that rkG is the split rank of G, namely
the rank of its associated symmetric space Y, and that ωY and ωX are respectively the G-
invariant Kähler form on Y and the Kähler form on X coming from the invariant Kähler form
on Bm, both normalized so that the minimum of their holomorphic sectional curvatures is −1.
Let finally ρ be a representation of Γ in G.

Hermitian symmetric spaces of the noncompact type are Kähler-Einstein manifolds with
negative first Chern form, hence the first Chern form of their canonical bundle is their Kähler
form up to a positive multiplicative constant. Therefore, if cY is such that c1(KY) = cY

4π ωY
and since cBm = m+ 1,

τ(ρ) =
1
m!

(4π)m

cY (m+ 1)m−1

∫
X
c1(f?KY) ∧ c1(KX)m−1 =:

1
m!

(4π)m

cY (m+ 1)m−1
deg (f?KY),

where degrees are computed w.r.t. the canonical polarization of X, f : Bm −→ Y is any
smooth ρ-equivariant map and f?KY is the vector bundle on X obtained by first pulling-back
the canonical bundle KY of Y to Bm by f and then pushing it down to X. Note that the
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isomorphism class of f?KY depends only on ρ, not on f , since any two such equivariant maps
are equivariantly homotopic.

The Milnor-Wood inequality can then be written∣∣∣∣deg f?KY
cY rkY

∣∣∣∣ ≤ degKX

m+ 1
.

We would like to get rid of the normalizing constant cY in order to make our forthcoming
statements as independent as possible of the different types of target Lie groups or symmetric
spaces. For this, we embed Y into its compact dual Yc, and we use the fact that the canonical
bundleKYc of the Hermitian symmetric space of the compact type Yc admits a cYth-root. This
is probably well-known to experts but we give some details because there are some subtleties
we wish to discuss. A good general reference for what follows is [Kn], see also [GS].

Group theoretically, Yc = GC/Q, where Q is a maximal parabolic subgroup of the com-
plexification GC of G such that Q ∩ G = K, the maximal compact subgroup of G. If U is a
maximal compact subgroup of GC containing K, then also Yc = U/K. Note that GC is a con-
nected simple complex Lie group. If GC is not simply connected, let G̃C be its universal cover,
and call Q̃, Ũ , K̃ the preimages of Q, U , K in G̃C. Then Q̃, Ũ and K̃ are connected, Q̃ is a
maximal parabolic subgroup of G̃C, Ũ a maximal compact subgroup, and Yc = G̃C/Q̃ = Ũ/K̃.

By a result of Murakami [Mu], the Picard group H1(Yc,O?) of Yc is isomorphic to the
character group Hom(Q̃,C?) of Q̃. This can be seen as follows. First, every line bundle on
Yc is homogeneous, meaning that its automorphism group acts transitively on the base Yc.
Indeed, the Picard group H1(Yc,O?) of Yc sits in the long exact sequence

· · · −→ H1(Yc,O) −→ H1(Yc,O?)
c−→ H2(Yc,Z) −→ H2(Yc,O) −→ · · ·

where the connecting homomorphism c assigns to the isomorphism class of a line bundle its
first Chern class. By Kodaira vanishing theorem, because of the negativity of the canonical
bundle of Yc, both H1(Yc,O) and H2(Yc,O) are reduced to zero, so H1(Yc,O?) and H2(Yc,Z)
are isomorphic. Now let g be an element of GC (or G̃C) and let L be any line bundle on Yc.
Since GC (or G̃C) is connected and the Chern classes are integral classes, c1(g?L) = c1(L) and
hence g?L and L are isomorphic. Hence there is an automorphism of L which acts by g on Yc
and the transitivity is proved. In other words, the image ḠC of G̃C in Aut(Yc) is in the image
of the natural morphism from Aut(L) to Aut(Yc). At the Lie algebra level, we hence have a
surjective morphism aut(L) −→ ḡ. Since ḡ is simple, this map has a right inverse by Levi’s
theorem and, by simple connectedness, this gives a morphism from G̃C to Aut(L). Restricted
to Q̃, this morphism lands in the automorphism group of the fiber of L above eQ̃ ∈ Yc, and
thus defines a character χ of Q̃. Moreover, the line bundle L is just the bundle associated to
the Q̃-principal bundle G̃C −→ Yc via the action of Q̃ on C by χ.

Denote by g, q, u, g0 and k0 the Lie algebras of GC, Q, U , G and K. The complexification k
of k0 has a unique adk-invariant complement p in g. If we set p0 = g0∩p then u = k0⊕ ip0 and
g0 = k0⊕p0 is a Cartan decomposition of g0. Moreover, if h0 is a maximal Abelian subalgebra
of k0, then it is a Cartan subalgebra of g0 and its complexification h is a Cartan subalgebra
of g. This follows from the fact that, Y being Hermitian symmetric, k0 has a 1-dimensional
center z0 which must be contained in h0 and whose elements do not commute with non zero
elements of p0. Let Z be the element of z0 giving the complex structure of p0 and hence of Y.
The complexification z of z0 satisfies z ⊂ h ⊂ k ⊂ q and q = z⊕ [q, q].

Because of this last fact, the weight dχ|h ∈ h? associated to a character χ of Q or Q̃ is
entirely determined by its value on Z. In particular, Hom(Q̃,C?) and hence H1(Yc,O?) are
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isomorphic to Z. So let L be the negative generator of H1(Yc,O?) and consider the integer
n such that KYc = L⊗n. We want to prove that n = cY . Call λ and κ the weights in h?

corresponding to L and KYc , so that κ = nλ.
Let ∆ ⊂ h? be the set of roots of g relative to the Cartan subalgebra h and let Π be a basis

of ∆. A root β ∈ ∆ is said to be compact if β(Z) = 0, noncompact otherwise. Let ∆k be
the set of compact roots, and ∆+

p the set of positive noncompact roots. For each root β ∈ ∆,
let hβ be the element of h determined by β(Y ) = B(hβ, Y ) for all Y ∈ h, where B is the
Killing form of g. Since u is a compact real form of g, the roots are purely imaginary on h0

and hβ ∈ ih0 for all β ∈ ∆. The root space decomposition of g is

g = h⊕
∑
β∈∆k

gβ ⊕
∑
β∈∆+

p

g−β ⊕
∑
β∈∆+

p

gβ.

Then k = h⊕
∑

β∈∆k
gβ , p± :=

∑
β∈∆+

p
g±β is the (±i)-eigenspace of ad(Z) on p (in particular,

β(Z) = ±i if β ∈ ±∆+
p ), and q = k⊕ p−.

Setting d = dimYc = |∆+
p |, the canonical bundle of Yc corresponds to the representation of

Q̃ on Λdp− coming from the representation of Q̃ on p− induced by the adjoint representation
of K̃ on p−. By choosing a basis of p− adapted to the root space decomposition, we see that
the action of ad(Y ) on Λdp− for Y ∈ h is simply given by κ(Y ) = −

∑
β∈∆+

p
β(Y ). Therefore,

κ(Z) = −
∑

β∈∆+
p
β(Z) = −i d.

On the other hand, the weight λ ∈ h? given by the generator L of H1(Yc,O?) is minus the
fundamental weight corresponding to the unique noncompact root ζ in the set of simple roots
Π. More precisely, λ is the weight defined by the relations B(λ, α) = λ(hα) = −1

2‖α‖
2δα,ζ for

all α ∈ Π (here δ is the Kronecker delta and ‖α‖2 := B(α, α) := B(hα, hα) ≥ 0). Using the
root space decomposition of g, it is clear that for all Y ∈ h, B(Z, Y ) = tr (ad(Z) ◦ ad(Y )) =
2i
∑

β∈∆+
p
β(Z) so that Z = 2i

∑
β∈∆+

p
hβ . Therefore,

λ(Z) = 2i
∑
β∈∆+

p

λ(hβ) = 2i
∑
β∈∆+

p

λ(hζ) = −i d ‖ζ‖2

because if a root β =
∑

α∈Π nαα belongs to ∆+
p , then necessarily nζ = 1 since as we said

ad(Z) acts by multiplication by i on gβ for β ∈ ∆+
p . We conclude that KYc = L⊗‖ζ‖−2 .

We claim that ‖ζ‖−2 = cY . To prove this, we compare the G-invariant Kähler metric ωB
on Y = G/K whose restriction to TeKY ' p0 is given by the Killing form B and the initial
Kähler metric ωY normalized so that its minimal holomorphic sectional curvature is −1. A
classical computation shows that c1(KY) = 1

4πωB, hence ωB = cY ωY and we are left with
proving that the minimum of the holomorphic sectional curvature of ωB on Y is −‖ζ‖2.

We may choose a set Φ of rkY strongly orthogonal noncompact positive roots, meaning
that for α, β ∈ Φ, neither α+ β nor α− β is a root, so that B(α, β) = 0 for α 6= β. Moreover
we can find vectors eα ∈ gα for α ∈ ±Φ such that ēα = e−α (where complex conjugacy is
w.r.t. the noncompact real form g0 of g), B(eα, eβ) = δα,−β and [eα, eβ] = δα,−β hα. Since
any vector of p+ can be sent to an element in

∑
α∈Φ Ceα by the adjoint action of K, it is

enough to compute the holomorphic sectional curvature of a line spanned by such an element
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Y =
∑

α∈Φ yα eα, which is

B
(
−
[
[Y, Ȳ ], Y

]
, Ȳ
)

= −B
(
[Y, Ȳ ], [Y, Ȳ ]

)
= −B

(∑
α∈Φ

|yα|2 hα,
∑
β∈Φ

|yβ|2 hβ
)

= −
∑
α,β∈Φ

|yα|2|yβ|2B(hα, hβ)

= −
∑
α∈Φ

|yα|4 ‖α‖2.

It follows from the classification of irreducible symmetric spaces that the root ζ coming from
the complex structure on a Hermitian symmetric space is long (see [Kn, p. 414]). Thus

B
(
−
[
[Y, Ȳ ], Y

]
, Ȳ
)
≥ −‖ζ‖2 ‖Y ‖4.

Hence the minimum of the holomorphic sectional curvature of the Killing form is indeed −‖ζ‖2
and cY = ‖ζ‖−2 as claimed. Therefore KYc = L⊗cY .

Coming back to the definition of the Toledo invariant of the representation ρ : Γ −→ G and
to the Milnor-Wood inequality, we denote by LY the restriction to Y of the negative generator
of H1(Yc,O?). The canonical bundle KY of Y is simply the restriction to Y ⊂ Yc of the
canonical bundle of Yc, so that KY = (LY)⊗cY . Given a ρ-equivariant map f : Bm −→ Y, we
may pull-back LY to a line bundle f?LY on Bm. Our discussion so far shows that, when the
complexification GC of G is simply connected, G acts by automorphisms on LY and hence Γ
acts by automorphisms on f?LY which therefore descends to a line bundle on X. As before,
the isomorphism class of this bundle is independent of the chosen equivariant map. The Toledo
invariant of ρ : Γ −→ G is defined to be the degree of this bundle:

Proposition-definition 2.1. Let Γ be a (torsion free) uniform lattice in the automorphism
group of complex hyperbolic m-space Bm. Let ρ be a homomorphism of Γ into a linear connected
simple noncompact Lie group of Hermitian type G whose complexification is simply connected.
Let Y be the Hermitian symmetric space of the noncompact type associated to G and let Yc
be its compact dual. Then the pull-back of the restriction to Y of the negative generator of
the Picard group of Yc by any ρ-equivariant map f : Bm −→ Y descends to a line bundle on
X = Γ\Bm whose isomorphism class depends only on ρ and which is denoted by Lρ.

The Toledo invariant of ρ is defined to be the KX-degree of the bundle Lρ:

τ(ρ) := degLρ = Lρ ·Km−1
X .

With this definition, τ(ρ) = 1
cY

deg f?KY is a constant multiple of the Toledo invariant
defined by Burger-Iozzi and their Milnor-Wood type inequality may be written:

|degLρ| ≤ rkG
degKX

m+ 1
.

We end this section by discussing the additional condition on the group G given in the
definition, namely that its complexification GC should be simply connected. In general, GC is
a finite cover of the group of automorphisms of the compact dual Yc of the symmetric space
associated to G. Here we have chosen the universal cover since this gives the nicest picture
of the Toledo invariant as the degree of a line bundle. However, one often prefers to work
with groups which admit faithful linear representations in dimension as small as possible. The
classification of symmetric spaces for example is generally given in terms of those groups. Here
is E. Cartan’s list of classical Hermitian symmetric spaces G/K of the noncompact type as
found in [He], where we inserted the value of the constant cG/K :
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type G K GC rkG dimCG/K cG/K
A III SU(p, q) S(U(p)×U(q)) SL(p+ q,C) min(p, q) pq p+ q
BD I SO0(p, 2) SO(p)× SO(2) SO(p+ 2,C) 2 p p
C I Sp(n,R) U(n) Sp(n,C) n n(n+ 1)/2 n+ 1
D III SO?(2n) U(n) SO(2n,C) [n/2] n(n− 1)/2 2(n− 1)

For our definition of the Toledo invariant, we asked for the line bundle f?LY to descend on
X. When GC is not simply connected, this is not always possible because G might not act
on LY . More precisely, this is not true if some characters of the preimage Q̃ of the maximal
parabolic Q < GC in G̃C do not come from characters of Q. The character groups of Q and K
(resp. Q̃ and K̃) are isomorphic, so, in case GC is not simply connected, it is enough to check
whether all characters of K̃ are lifts of characters of K. Going through the list of classical
Hermitian symmetric spaces we just gave, we obtain:

– type A III: the complexification of G = SU(p, q) is SL(p+q,C) which is simply connected.
– type BD I: the complexification of G = SO0(p, 2) is SO(p+ 2,C) whose universal cover is

G̃C = Spin(p+ 2,C). The maximal compact subgroup K of G is SO(p)× SO(2), its preimage
in G̃C is K̃ = Spinc(p) = Spin(p) ×Z2 Spin(2). If SO(2) and Spin(2) are identified with
U(1), and if π denotes the covering map Spin(p) −→ SO(p), then the 2-sheeted covering map
K̃ −→ K is given by (s, z)(= (−s,−z)) 7−→ (π(s), z2). Since the characters of K̃ are trivial
when restricted to its derived subgroup Spin(p)×{1}, they all come from characters of K: G
acts on LY and the bundle f?LY goes down to X.

– type C I: the complexification of G = Sp(n,R) is Sp(n,C) which is simply connected.
– type D III: the complexification of G = SO?(2n) is SO(2n,C) whose universal cover is

G̃C = Spin(2n,C). The maximal compact subgroup K of G is U(n) = SU(n) o U(1), its
preimage K̃ in G̃C is also isomorphic to a semidirect product SU(n) o U(1) and the 2-sheeted
covering map K̃ −→ K is given by (A, z) 7−→ (A, z2). In this case the triviality of the
restrictions of the characters of K̃ to its derived subgroup SU(n) × {1} is not enough: if the
character group of K̃ is identified with Z, only the characters belonging to 2Z are lifts of
characters of K. Therefore G does not act on LY , only on L⊗2

Y , so that only f?L⊗2
Y descends

to a bundle L2
ρ on X. Remark that f?KY , seen as a line bundle on X, is nevertheless a power

of L2
ρ, since in this case cY = 2(n− 1) is always even. The Toledo invariant could be defined

as 1
2deg L2

ρ.

In any case, if the representation ρ takes values in a group G = Ĝ/H, where Ĝ is a Hermitian
Lie group whose complexification is simply connected and H is a finite normal subgroup of
Ĝ, then as above there exists a power L⊗rY which descends to a bundle Lrρ on X and we define
the Toledo invariant of ρ as 1

r deg Lrρ.
Moreover, the representation almost lifts to a representation with values in Ĝ:

Lemma 2.2. Let Γ be a finitely generated group, Ĝ a linear group defined over a field of
characteristic zero, a surjective homomorphism π : Ĝ −→ G with finite kernel and ρ a homo-
morphism from Γ to G. Then there exists a normal subgroup Γ′ of finite index in Γ on which
the homomorphism ρ lifts to a homomorphism ρ′ : Γ′ −→ Ĝ.

Proof. Consider the subgroup Γ̂ = π−1(ρ(Γ)) of Ĝ. It is finitely generated since Γ is and the
kernel of π is finite. By Selberg’s lemma, it admits a torsion free normal subgroup of finite
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index Γ̂′. Again because the kernel of π finite, the restriction of π to Γ̂′ is injective. Therefore
the subgroup Γ′ = ρ−1(π(Γ̂′)) of Γ is as wanted. �

Now, if Γ = π1(X) for X a closed complex hyperbolic manifold (or later a smooth variety
of general type), the subgroup Γ′ given by the lemma is the fundamental group of a finite
étale cover X ′ of X, which is also a closed complex hyperbolic manifold (or a smooth variety
of general type). The Toledo invariant of the representation ρ′ : Γ′ −→ Ĝ is [Γ : Γ′] times the
Toledo invariant of the representation ρ : Γ −→ G. This implies that all the results obtained
in this paper for representations in a Hermitian Lie group whose complexification is simply
connected are still true for representation in a quotient of such a group by a finite normal
subgroup.

3. The Toledo invariant: fundamental groups of varieties of general type

The reader will need some rudiments about the Minimal Model Program for which a good
reference is [KMM]. We only quote results which are useful for our purpose.

Let X be a smooth projective variety of general type and of dimension m ≥ 2. Recall that
this means that the canonical bundle KX of X is big, namely that

lim supk→∞
log(dimH0(X, kKX))

log k
= m .

Let ρ : π1(X) −→ G ⊂ GL(n,C) be a representation of π1(X) in a connected simple
noncompact Lie group of Hermitian type G whose complexification is simply connected. Let
f : X̃ −→ Y be a ρ-equivariant map from the universal cover of X to the symmetric space
associated to G, and Lρ −→ X be (the isomorphism class of) the line bundle associated to
ρ we constructed in the previous section. As explained there, when X is a ball quotient, the
classical Toledo invariant of ρ can be interpreted as the degree of Lρ, computed with respect to
the polarization defined by the canonical class on X: τ(ρ) = Lρ · (KX)m−1. As a consequence,
the Toledo invariant could be defined in the same way for representations of the fundamental
group of any smooth variety with negative first Chern class.

When the canonical bundleKX ofX is big but not nef, although we cannot consider the class
c1(KX) as a polarization, the number

∫
X c1(Lρ)∧ c1(KX)m−1 makes sense and a first attempt

would be to take it as a definition of the Toledo invariant. The following simple example shows
that this is too naive. Let Y be a compact ball quotient of dimension 3, C a smooth curve
in Y , and let f : X −→ Y be the blow-up of Y along C. Let ρ : π1(X) −→ SU(3, 1) be the
isomorphism f? : π1(X) −→ π1(Y ) induced by f . We want to compute the intersection number
Lρ ·K2

X = 1
4f

?KY ·K2
X , where KY is the canonical bundle of Y . We have KX = f?KY + E,

where E is the exceptional divisor. Therefore,

f?KY ·K2
X = (f?KY )3 + f?KY · E2 + 2(f?KY )2 · E = K3

Y + f?KY · E2.

Now, f?KY · E2 = (f?KY )|E · E|E and, E being isomorphic to the projectivization P(NC/Y )
of the normal bundle NC/Y of C in Y , E|E is the first Chern class of the tautological bundle
T over E. Moreover, if KY |C =

∑
ni pi, then (f?KY )|E =

∑
niEpi where Epi is the fiber of

E −→ C over pi ∈ C. Hence

f?KY · E2 =
∑

ni

∫
Epi

c1(T )|Epi
= (
∑

ni)
∫

P1

c1(O(−1)) = −KY · C.

If now we choose C to be given by the zeros of two general sections of Kd
Y for some d, we get

KY ·C = d2K3
Y , so that f?KY ·K2

X = (1− d2)K3
Y is unbounded in d and we cannot hope for

a Milnor-Wood inequality.
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The generalization of the Toledo invariant to the case of smooth varieties of general type
is therefore not straightforward. The previous example shows that we have to “remove the
negative part” of KX in order to compute an invariant with good properties. In more precise
terms, we need a Zariski decomposition of the canonical bundle of X, namely a decomposition
KX = L + N , where L and N are Q-divisors, L being nef and N being effective, such that
the natural map

H0(X,OX(kKX − dkNe)) −→ H0(X,OX(kKX))

is bijective for any k ≥ 1 (where dkNe denotes the round up of the Q-divisor kN). In
particular, this implies that we will have to work on special birational models of our given
variety of general type, whose existence follows from the following deep result:

Theorem (Birkar, Cascini, Hacon, McKernan [BCHM]). Let X be a smooth variety of general
type. Then, X has a minimal model, which implies that the canonical ring R(X,KX) =
⊕k∈NH

0(X,O(kKX)) is finitely generated.

Therefore the so-called canonical model Xcan := Proj(R(X,KX)) of a smooth variety of
general type X is well defined. The variety X is birational to its canonical model Xcan but
there is maybe no morphism X −→ Xcan. However, if ϕ : X ′ −→ Xcan is a resolution
of singularities of Xcan, then X ′ is a birational model of X of the type we are looking for.
Indeed, the canonical model Xcan has canonical singularities, meaning that it is a normal
variety, its canonical divisor KXcan is a Q-Cartier divisor, and if ϕ : X ′ −→ Xcan is as above,
KX′ = ϕ?KXcan +N with N effective and supported in the exceptional divisor. Moreover, the
canonical divisor KXcan is ample, so that ϕ?KXcan is indeed nef. Conversely, by the base-point-
free theorem in its generalized form [Ka], if KX′ admits a Zariski decomposition KX′ = L+N
for some birational model X ′ of X, then L is semi-ample which implies that there exists a
proper modification ϕ : X ′ −→ Xcan and that L = ϕ?KXcan as above. We call such a smooth
model of X a good model. Even if varieties of general type are not necessarily projective, a
good model is always projective.

As is well known, two smooth birational varieties have isomorphic fundamental groups.
Therefore, if ρ is a representation of the fundamental group of a smooth variety of general
type and if X is a good model of this variety, we can consider ρ as a representation of π1(X).
This allows us to give the following

Definition 3.1. Let Γ be the fundamental group of a smooth variety of general type and
dimension m ≥ 2 and let Xcan and X ϕ−→ Xcan be respectively the canonical model and a good
model of this variety. Let ρ be a representation of Γ in a linear connected simple noncompact
Lie group of Hermitian type G whose complexification is simply connected.

The Toledo invariant of ρ is the (ϕ?KXcan)-degree of the line bundle Lρ −→ X associated
to ρ as in Section 2:

τ(ρ) = deg ϕ?KXcan
(Lρ) = Lρ · (ϕ?KXcan)m−1 =

∫
X
c1(Lρ) ∧ c1(ϕ?KXcan)m−1.

It is easy to see that the invariant is well-defined, namely that it does not depend on the
choice of the good model. Indeed, let X and X ′ be two good models of the same variety
of general type. Then, by a theorem of Hironaka, there exists a manifold X0 and proper
modifications ν : X0 −→ X and ν ′ : X0 −→ X ′ (X0 is automatically a good model), such that
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the following diagram commutes:

X0

ν

||zz
zz

zz
zz ν′

""EE
EE

EE
EE

X

ϕ ""DD
DD

DD
DD

//________ X ′

ϕ′||yy
yy

yy
yy

Xcan

If f : X̃ −→ Y and f ′ : X̃ ′ −→ Y are smooth ρ-equivariant maps (keeping in mind that the
fundamental groups of X, X ′ and X0 are naturally isomorphic) then f ◦ ν̃ and f ′ ◦ ν̃ ′ are
ρ-equivariant maps on X̃0 (where ν̃ and ν̃ ′ denote lifts of ν and ν ′ on the respective universal
covers). Then, it is immediate that

c1(Lρ) · c1(ϕ?KXcan)m−1 = c1(ν?Lρ) · c1(ν?ϕ?KXcan)m−1

= c1(ν ′?L′ρ) · c1(ν ′?ϕ′?KXcan)m−1

= c1(L′ρ) · c1(ϕ′?KXcan)m−1 .

We remark also that degϕ?KXcan
(KX) = KX · ϕ?Km−1

Xcan
is independent of the good model

X of the variety we are considering and that its value is Km
Xcan

.

4. Proof of the main result

We recall the statement of our main theorem:

Theorem 4.1. Let X be a smooth variety of general type and of complex dimension m ≥ 2,
and let Xcan be its canonical model. Let G be either SU(p, q) with 1 ≤ q ≤ 2 ≤ p, Spin(p, 2)
with p ≥ 3, or Sp(2,R). Finally let ρ : π1(X) −→ G be a representation.

Then the Toledo invariant of ρ satisfies the Milnor-Wood type inequality

|τ(ρ)| ≤ rkG
Km
Xcan

m+ 1
,

where KXcan is the canonical divisor of Xcan.
Equality holds if and only if G = SU(p, q) with p ≥ qm and there exists a ρ-equivariant

(anti)holomorphic proper embedding from the universal cover of Xcan onto a totally geodesic
copy of complex hyperbolic m-space Bm, of induced holomorphic sectional curvature −1/q, in
the symmetric space associated to G. In particular, Xcan is then smooth and uniformized by
Bm, and the representation ρ is discrete and faithful.

We will first prove the inequality, and then study the equality case. In what follows, the
smooth variety of general type X that appears in the theorem will be assumed to be a good
model, i.e. to be such that the pluricanonical map ϕ : X −→ Xcan is a morphism. As explained
before, there is no loss of generality in doing so. Unless otherwise specified, all degrees on X
will be computed with respect to the polarization ϕ?KXcan and we will abbreviate deg ϕ?KXcan

to deg .

4.1. Proof of the Milnor-Wood type inequality. We recall briefly the notions of semista-
bility that we will need: let L be a nef Q-line bundle on a complex manifold X and let F
be a coherent (saturated) sheaf of positive rank on X. We already defined the L-degree
degLF = c1(F) · c1(L)m−1 of F . Its L-slope is defined by µL(F) = degLF

rkF . We have the
corresponding notion of L-semistability of a holomorphic vector bundle E on X: this means
that for any coherent subsheaf F of OX(E), µL(F) ≤ µL(E) if rk (F) > 0.
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Similarly, a Higgs bundle (E, θ) on X (that is a holomorphic vector bundle E together
with a holomorphic map θ : E −→ E ⊗ Ω1

X such that θ ∧ θ = 0) is called L-semistable if
the inequality µL(F) ≤ µL(E) holds for any coherent Higgs subsheaf of positive rank F of
OX(E), namely for any subsheaf of positive rank F of OX(E) such that θ(F) ⊂ F ⊗Ω1

X . The
Higgs bundle is said to be L-stable if the inequality is strict when rk (F) < rk (E). Finally, we
say that (E, θ) is L-polystable if it is a direct sum of stable Higgs bundles of the same slope.

The following result will be crucial for the proof of Theorem 4.1:

Theorem (Enoki [E]). Let X ϕ−→ Xcan be a good model of a variety of general type. Then
the tangent bundle TX of X is (ϕ?KXcan)-semistable.

Let now ρ : π1(X) −→ GL(n,C) be a reductive representation. By a result of Corlette [C],
there exists a harmonic ρ-equivariant map f : X̃ −→ Y, where Y = GL(n,C)/U(n). This
map allows to construct a Higgs bundle E of rank n and degree 0 on X (through the standard
representation of GL(n,C) on Cn) which is polystable with respect to any polarization coming
from an ample divisor, see [Sim1]. Although the divisor ϕ?KXcan is not necessarily ample, we
have the

Lemma 4.2. Let X ϕ−→ Xcan be a good model of a smooth variety of general type. Let
ρ : π1(X) −→ GL(n,C) be a reductive representation. Then, the associated Higgs bundle
(E, θ) is (ϕ?KXcan)-polystable.

Proof . As in [Sim1], this is a consequence of the Chern-Weil formula, together with the fact
that, thanks to the ampleness of KXcan , ϕ?KXcan can be endowed with a smooth metric whose
curvature is semi-positive, and strictly positive outside the exceptional set Ex(ϕ) of ϕ. We
give details of the proof of the lemma for the sake of completeness.

The flat connection DE on E can be written DE = DH +θ+θ? where DH is the component
preserving the harmonic metricH defined by f . Let F ⊂ OX(E) be a saturated Higgs subsheaf
and let Y ⊂ X be an analytic subset of X of codimension at least 2 such that F is a vector
subbundle of E outside of Y . On X\Y , we can decompose the flat connection DE with respect
to the orthogonal decomposition E = F⊕F⊥ where the background metric is H, and denoting
by σ ∈ C∞1,0(X,Hom(F ,F⊥)) the second fundamental form of F :

DE =
(
DF −σ?
σ DF⊥

)
+
(
θ1 + θ?1 θ2

θ?2 θ3 + θ?3

)
.

Since D2
E = 0, we have (DF + θ1 + θ?1)2 = −(θ2 − σ?) ∧ (θ?2 + σ). In order to compute the

degree of F , we can use the connection DF + θ1 + θ?1 and we obtain

degF =
i

2π

∫
X\Y

tr (−θ2 ∧ θ?2 + σ? ∧ σ) ∧ c1(ϕ?KXcan)m−1 ≤ 0 .

If moreover degF = 0, then θ2 and σ vanish identically on X\(Y ∪ Ex(ϕ)) (because
c1(ϕ?KXcan) is strictly positive on X\Ex(ϕ)) and hence they vanish on X\Y by continu-
ity. Therefore E splits holomorphically as a direct sum of two Higgs subbundles on X\Y . A
classical argument due to Lübke (see [Ko], p. 179) shows that this splitting extends to X. �

When the representation ρ takes values in a Lie group of Hermitian type, the associated
Higgs bundle E has some extra-structure, see for example [KM2]. Since representations ρ :
π1(X) −→ G = SU(p, q) ⊂ SL(p + q,C), p ≥ q ≥ 1 will be of particular importance for us,
we give some more details in this case. The symmetric space Y associated to G = SU(p, q)
has rank q and is an open subset in the Grassmannian Yc of q-planes in E = Cp+q. If
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W ∈ Y is a q-plane and if V = E/W, the holomorphic tangent bundle of Y at W is identified
with Hom(W,V), which we see as the space of q × p complex matrices. With respect to
this identification, the Hermitian product h coming from the Kähler metric ωY is given by
h(A,B) = 4 tr tB̄A, so that the holomorphic sectional curvature of the complex line spanned
by A equals −tr (tĀA)2/(tr tĀA)2, which is indeed pinched between −1 and −1

q . The trivial
bundle E = Yc × E over Yc and its tautological subbundle S restrict to vector bundles on Y,
denoted by the same letters. The bundle S, resp. the quotient bundle E/S, pulls back to a
rank q, resp. p, holomorphic bundle W , resp. V , on X. The Higgs bundle E, which as a
smooth bundle is the flat bundle obtained by pulling back E to X, splits holomorphically as
the sum V ⊕W . The Higgs field θ ∈ Ω1(X,EndE) is in fact a holomorphic 1-form with values
in Hom (W,V )⊕Hom (V,W ). We shall denote by β (resp. γ) the projection of θ on the first
(resp. second) summand of this decomposition. The decomposition V ⊕W is orthogonal for
the harmonic metric of E. The curvature forms of V and W w.r.t. this metric are given by

RV = −β ∧ β? − γ? ∧ γ and RW = −β? ∧ β − γ ∧ γ?.

Moreover, the bundle f?TY which goes down on X is isomorphic to Hom(W,V ) so that
deg (f?KY) = −deg (Hom (W,V )) = p degW − q deg V = (p + q) degW . The line bundle Lρ
is the pull-back of the determinant bundle of the tautological bundle on the Grassmannian,
i.e. Lρ = detW .

We are now ready to prove the

Proposition 4.3. Let X be a smooth projective variety of general type of dimension m and
let Xcan be its canonical model. Let G be either SU(p, q) with 1 ≤ q ≤ 2 ≤ p, Spin(p, 2) with
p ≥ 3 or Sp(2,R). Finally let ρ : π1(X) −→ G be a representation. Then the Milnor-Wood
type inequality

|τ(ρ)| ≤ rkG
Km
Xcan

m+ 1
holds.

Proof. In fact the proof is exactly the same as in the classical case where X is a compact quo-
tient of Bm, the key ingredients being only the semistability of the Higgs bundle E associated
to ρ (Lemma 4.2) and the classical semistability of TX (Enoki’s theorem) with respect to the
polarization chosen to define the Toledo invariant. Let us first illustrate the importance of the
stability properties by treating the case G = SU(p, 1).

If ρ is not reductive, there exists a 1-form ς on Y = Bp which is invariant by the action
of ρ(π1(X)) and such that dς = 1

4π ωY , see for example [KM1]. Therefore, τ(ρ) =
∫
X df?ς ∧

c1(ϕ?KXcan)m−1 = 0.
We suppose now that ρ : π1(X) −→ SU(p, 1) is reductive and we call E = V ⊕W the Higgs

bundle associated to ρ defined above.
Since TX is a semistable vector bundle, its twist by the line bundle W is semistable too and

the image Imβ of the morphism β : W ⊗ TX −→ V thus satisfies µ(W ) + µ(TX) ≤ µ(Imβ)
(remark that if β ≡ 0, W is a Higgs subsheaf of E and we immediately get degW ≤ 0).
Combining this inequality with the fact that W ⊕ Imβ is a Higgs subsheaf of E, we obtain:

degW +
deg TX
m

≤ deg Imβ

r
≤ −degW

r

where r is the generic rank of β. Therefore, we get the desired bound

degW ≤ r

r + 1
deg Ω1

X

m
≤

deg Ω1
X

m+ 1
=
Km
Xcan

m+ 1
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because r ≤ m.
The proof of the lower bound goes exactly the same way by considering the dual of the

Higgs bundle E.

The proof for rank 2 G’s is much more involved, indeed one needs to make use of the C?-
action on the moduli space of polystable Higgs bundles. We say a few word about the case G =
SU(p, 2), from which the case Sp(2,R) follows because of the inclusion Sp(2,R) ⊂ SU(2, 2),
but we refer the reader to [KM2] for details and for the case of Spin(p, 2). As explained
there, the C?-action allows to deform the Higgs bundle associated to the representation to a
so-called system of Hodge bundles. In the case of a reductive representation in SU(p, q), this
means that the Higgs bundle (for a new holomorphic structure) splits holomorphically as a
sum E = E1⊕E2⊕· · ·Er, and the Higgs field decomposes as a sum of θi : Ei −→ Ei+1⊗Ω1

X ,
the Ei being alternatively in V or W . We abuse notation and we denote by

E1
θ1−→ E2

θ2−→ · · · θr−1−→ Er
θr−→ 0

such system of Hodge bundles (be careful that this just means that θi sends Ei to Ei+1⊗Ω1
X).

If q = 2, W has rank 2, and we see that by regrouping and renaming the subbundles if
necessary, we can write our system of Hodge bundles either as a polystable Higgs bundle of
the form

V1
γ1−→W

β−→ V2
γ2−→ 0

with V1 ⊕ V2 = V , or as a polystable Higgs bundle of the form

V1
γ1−→W1

β1−→ V2
γ2−→W2

β2−→ V3
γ3−→ 0

where W1 and W2 are line bundles, W1 ⊕W2 = W and V1 ⊕ V2 ⊕ V3 = V .
In the first case, the desired bound on the degree of W is not difficult to get. Let F be

the maximal destabilizing subsheaf of W , that is, the first term in the Harder-Narasimhan
filtration of W . By definition, F has maximal slope among the subsheaves of W , hence is
semistable. Consider the restriction βF : F ⊗ TX −→ V2. Since θ vanishes on V2, F ⊕ ImβF
is a Higgs subsheaf and hence by stability, deg ImβF ≤ −degF . Now, the tensor product of
two semistable sheaves is again semistable and hence F ⊗TX is semistable. Therefore we have
µ(F) + µ(TX) = µ(F ⊗ TX) ≤ µ(ImβF ) which implies (rkβF + rkF)µ(F) ≤ rkβFµ(Ω1

X).
Thus,

degW ≤ qµ(F) ≤ q rkβF
rkβF + rkF

deg Ω1
X

m
≤ q

m+ 1
deg Ω1

X

where the first inequality follows from the fact that F is of maximal slope among the subsheaves
in W , and the last from rkβF ≤ mrkF .

Again, the lower bound is obtained by considering the dual Higgs bundle.
The second case is more complicated, see [KM2]. �

4.2. Maximal representations. In this section all representations will be assumed to have
a positive Toledo invariant. This is not a loss of generality since if a representation is maximal
with negative Toledo invariant, we may change the complex structure of X for its opposite to
get our result.

If we look back at the proof of the Milnor-Wood inequality we just gave in some special
cases, we see that if τ(ρ) is maximal, then β : W ⊗ TX −→ V is generically injective and
degW + deg Imβ = 0. This will be a crucial information and it follows from [KM2] that
the same kind of conclusion holds for maximal representations in the Lie groups listed in
Theorem 4.1. To be more precise, if ρ is a maximal representation of the fundamental group



16 VINCENT KOZIARZ AND JULIEN MAUBON

of a variety of general type and dimension m ≥ 2 in such a Lie group G, then necessarily ρ is
reductive, G is SU(p, q) with q = 1, 2 and p ≥ qm, and moreover if (E = V ⊕W, θ = β ⊕ γ)
is the Higgs bundle associated to ρ on a good model X, then degW + deg Imβ = 0 and
β : W ⊗ TX −→ V is generically injective.

We believe that this is still true in the general case where no restriction is made on the rank
of the target Lie group G. Therefore, since the rest of our arguments are valid in this more
general setting, we formulate the following proposition, which implies our main theorem.

Proposition 4.4. Let ρ be a reductive representation of the fundamental group of a variety
of general type and dimension m ≥ 2 in the group G = SU(p, q) with p ≥ qm and q ≥ 1. Let
Xcan and X ϕ−→ Xcan be respectively the canonical model and a good model of this variety,
and let E = V ⊕ W −→ X be the (ϕ?KXcan)-polystable G-Higgs bundle associated to the
ρ-equivariant harmonic map f from the universal cover X̃ of X to the Hermitian symmetric
space Y associated to G.

Assume that ρ is maximal, i.e. degW = q
Km

Xcan
m+1 , and assume moreover that degW +

deg Imβ = 0 and that β : W ⊗ TX −→ V is generically injective.
Then f : X̃ −→ Y factors through a ρ-equivariant holomorphic proper embedding of the

universal cover of Xcan into a totally geodesic copy of complex hyperbolic m-space Bm in Y,
of induced holomorphic sectional curvature −1

q . In particular, the canonical model Xcan is
smooth and uniformized by Bm, and the representation ρ is faithful and discrete.

Proof . The fact that β : W ⊗ TX −→ V is generically injective implies of course that the
morphism df : TX −→W ?⊗V ' f?TY is generically injective, namely that the ρ-equivariant
harmonic map f : X̃ −→ Y is a generic immersion. But it has much stronger consequences.

The first one is that γ ≡ 0, which is equivalent to the holomorphicity of f . We give a
short proof of that point: let x ∈ X be such that βx is injective and let ξ, η ∈ T 1

x be two
linearly independent tangent vectors (recall that m ≥ 2). The relation θ ∧ θ = 0 implies that
βx(ξ)γx(η)v = βx(η)γx(ξ)v for any v ∈ Vx. Since βx is injective, we must have (γx(η)v)⊗ ξ =
(γx(ξ)v) ⊗ η hence γx(η)v = γx(ξ)v = 0 and this is true for any ξ, η and v as above, thus
γx ≡ 0. As a consequence, γ vanishes generically on X hence identically.

At this point it is already possible to deduce that f : X̃ −→ Y factors through the universal
cover X̃can of the canonical model of X. This follows from the

Theorem (Takayama [Ta]). Let X be a smooth variety of general type and Xcan its canonical
model. Then the fundamental groups π1(X) and π1(Xcan) are naturally isomorphic (meaning
that the isomorphism is induced by the map between the varieties).

Indeed, let A ⊂ Xcan be a subvariety of codimension ≥ 2 such that Xcan\A is biholomorphic
to X\B where B = ϕ−1(A). Let us denote by Ã resp. B̃ the lift of A resp. B in X̃can resp.
X̃ and ϕ̃ a lift of ϕ to the universal covers. Since π1(X) and π1(Xcan) are isomorphic, the
restriction ϕ̃| eX\ eB : X̃\B̃ −→ X̃can\Ã is a biholomorphism too. Finally, the holomorphic map

f ◦ (ϕ̃| eX\ eB)−1 : X̃can\Ã −→ Y ⊂ Cpq can be extended to a ρ-equivariant holomorphic map

g : X̃can −→ Y by normality of X̃can, and f = g ◦ ϕ̃.
The degree of the Higgs subsheaf W ⊕ Imβ of E being zero, if we call V ′ the saturation

of Imβ in V , we get by polystability of E that V ′ is a holomorphic subbundle of V of rank
qm and that there exists a holomorphic subbundle V ′′ of V such that E splits as the sum
(W ⊕ V ′)⊕ V ′′ of two Higgs subbundles. The Higgs field of E is reduced to β, which we now
see as a morphism from W ⊗ TX to V ′. From the curvature formulas given in Subsection 4.1,
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we have RV ′ = −β∧β? and RW = −β?∧β, whereas V ′′ is a flat unitary bundle. In particular,
c1(V ′) = −c1(W ) = tr(β? ∧ β) = − 1

4πf
?ωY .

The Higgs field β : W ⊗ TX −→ V ′ is generically injective, and so is detβ : (detW )m ⊗
K−qX −→ detV ′. Hence there exists an effective divisor D on X such that the line bundles
(detW )m ⊗K−qX ⊗ [D] and detV ′ are isomorphic outside codimension 2. The maximality of
the Toledo invariant says that the line bundles (detW )m ⊗ K−qX and detV ′ have the same
degree, so that necessarily deg [D] = 0, i.e.

∫
D c1(ϕ?KXcan)m−1 = 0. Since KXcan is ample,

the support of D is included in the exceptional set Ex(ϕ) of ϕ. In particular, f : X̃ −→ Y is
an immersion outside of the union of the lift of Ex(ϕ) to X̃ with a codimension 2 subset of X̃.

We now want to prove that the image of f lies in a totally geodesic copy of the ball Bm
in the symmetric space Y associated to SU(p, q). As indicated to us by Mok, if ρ is discrete
and f is an embedding, this follows from Theorem 3 in his joint paper [EM] with Eyssidieux.
Here we extend their arguments, although in a somewhat different manner, to the generality
we need. The key idea is to use again the injectivity of β, this time in computing degrees with
respect to the polarization f?ωY .

Consider the morphism df : TX −→ W ? ⊗ V ′ and call I the saturation of its image in
W ? ⊗ V ′. The sheaf I is a subbundle of W ? ⊗ V ′ outside codimension 2 and df : TX −→ I is
generically an isomorphism. As before, there exists an effective divisor D′ such that det df :
K−1
X ⊗ [D′] −→ det I is an isomorphism outside codimension 2. This implies that

c1(I) · (f?ωY)m−1 = c1(K−1
X ⊗ [D′]) · (f?ωY)m−1.

Note that the support of D′ is included in the support of D, hence in Ex(ϕ), so that

c1(K−1
X ⊗ [D′]) · (f?ωY)m−1 = c1(K−1

X ) · (f?ωY)m−1 =
1
q
c1(K−qX ⊗ [D]) · (f?ωY)m−1,

for f = g ◦ ϕ̃. Now,

c1(K−qX ⊗ [D]) · (f?ωY)m−1 = c1(detV ′ ⊗ (detW )−m) · (f?ωY)m−1 = −m+ 1
4π

∫
X

(f?ωY)m

because K−qX ⊗ [D] and detV ′ ⊗ (detW )−m are isomorphic outside codimension 2. Hence

c1(I) · (f?ωY)m−1 = − 1
2π

m+ 1
2q

∫
X

(f?ωY)m.

On the other hand, c1(I) · (f?ωY)m−1 can be computed using the fact that I is a subbundle
of W ?⊗V ′ (outside codimension 2). If σ is its second fundamental form in W ?⊗V ′, then the
first Chern form of I is

i

2π
tr (RI) =

i

2π

(
tr (RW

?⊗V ′
|I )− tr (σ ∧ σ?)

)
.

Around a point x in the dense open subset of X where df : TX −→ I ⊂W ?⊗V ′ is injective we
choose local coordinates {zk} such that βk := df( ∂

∂zk
) is an orthonormal basis of the fiber of I

at x with respect to the metric f?ωY . We identify the fiber ofW ?⊗V ′ with the space of q×qm
complex matrices endowed with the pull-back of the Hermitian scalar product h on TY , see
Subsection 4.1. Then, f?ωY = i

2

∑
k dzk∧dz̄k and RW

?⊗V ′ξ = −
∑

j,k(βj
tβ̄kξ+ξtβ̄kβj)dzj∧dz̄k,

so that
tr (RW

?⊗V ′
|I ) = −4

∑
j,k,l

tr (tβ̄lβjtβ̄kβl + tβ̄lβl
tβ̄kβj)dzj ∧ dz̄k.
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Hence,

itr (RW
?⊗V ′

|I ) ∧ (f?ωY)m−1 = − 8
m

(∑
k,l

tr (tβ̄lβktβ̄kβl + tβ̄lβl
tβ̄kβk)

)
(f?ωY)m

≤ − 8
m

(∑
k

tr (tβ̄kβk)2 + tr
(∑

k

tβ̄kβk
)2)(f?ωY)m

≤ − 8
qm

(∑
k

(tr tβ̄kβk)2 +
(∑

k

tr tβ̄kβk
)2)(f?ωY)m

= −m+ 1
2q

(f?ωY)m.

By continuity, this inequality holds at the points where both sides are defined, namely outside
a codimension 2 subset of X.

Summing up, we have

−m+ 1
2q

∫
X

(f?ωY)m = (2π) c1(I) · (f?ωY)m−1

≤ −m+ 1
2q

∫
X

(f?ωY)m −
∫
X
itr (σ ∧ σ?) ∧ (f?ωY)m−1.

Therefore the semipositive form itr (σ ∧ σ?) ∧ (f?ωY)m−1 vanishes, and equality holds in the
inequality itr (RW

?⊗V ′
|I )∧(f?ωY)m−1 ≤ −m+1

2q (f?ωY)m. The first point means that the second
fundamental form of I is zero on the dense open set where it is defined and f?ωY is positive
definite, so that f maps X̃ into a totally geodesic m-dimensional submanifold Z of Y. The
second one implies that for all k 6= l, all the column vectors of βk are orthogonal to all the
column vectors of βl, and that for all k the column vectors of βk are pairwise orthogonal and
have the same norm (w.r.t. the standard Hermitian scalar product on Cqm). Using the formula
for the holomorphic sectional curvature in Y, we see that the holomorphic sectional curvature
of every complex line in df(T eX) ⊂ TY equals −1

q . Hence the totally geodesic submanifold Z
is indeed a ball Bm of maximal possible holomorphic sectional curvature in Y.

We are ready to prove that Xcan is smooth. We may consider that the target of the maps f
and g is Z, and that they are equivariant with respect to the induced representation of π1(X)
in the automorphism group Aut(Z) of Z, which will be still denoted by ρ. Note that this new
representation is still maximal as a representation in the rank one Lie group Aut(Z). Indeed,
the maximality of the initial representation means that∫

X
f?ωY ∧ c1(ϕ?KXcan)m−1 =

q

m+ 1

∫
X
c1(ϕ?KXcan)m,

but if ωZ denotes the complex hyperbolic metric on Z normalized to have constant holomor-
phic sectional curvature −1, ωZ = 1

q ωY |Z , so that∫
X
f?ωZ ∧ c1(ϕ?KXcan)m−1 =

1
m+ 1

∫
X
c1(ϕ?KXcan)m,

which is exactly the maximality of ρ : π1(X) −→ Aut(Z).
If Xcan were indeed smooth and ρ(Γ) discrete and torsion free, the adjunction formula would

immediately implies that KXcan = g?KZ + R where Z = ρ(Γ)\Z and R is the ramification
divisor. In fact, neither the (possible) singularities of Xcan nor the non discreteness of ρ(Γ)
are an obstruction for such a formula to hold. Indeed, the line bundle g?KZ goes down on
Xcan where it defines a Cartier divisor. On the smooth part X0

can of Xcan, thanks to its
equivariance, the Jacobian of g defines a (nonzero) section of KX0

can
⊗ g?K−1

Z and we denote
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by R0 its zero divisor. Then, on X0
can, we have the relation KX0

can
= (g?KZ)|X0

can
+R0. Recall

that Xcan\X0
can is at least 2-codimensional, and since KXcan and g?KZ are Q-Cartier, if R

denotes the compactification of the divisor R0, we have KXcan = g?KZ +R.
By the maximality of the Toledo invariant,

Km
Xcan

= f?KZ · (ϕ?KXcan)m−1 = g?KZ ·Km−1
Xcan

= Km
Xcan
−R ·Km−1

Xcan

and the ampleness of KXcan implies that R = 0 because R is effective. We conclude that in
fact KXcan = g?KZ and g is a local biholomorphism on X̃can\Ã.

We then remark that each point x ∈ Xcan is isolated in the fiber g−1(g(x)). Again, if ρ(Γ)
is discrete and torsion free we are done because a positive dimensional irreducible component
of g−1(g(x)) then defines a s-dimensional subvariety S ⊂ Xcan (for some s > 0) on which
g?KZ is trivial and Ks

Xcan
· S = (g?KZ)s · S = 0 contradicts the ampleness of KXcan . In

the general case, we consider the set {x ∈ X̃can , dimxg
−1(g(x)) > 0}. This set is analytic

(see [F], Theorem 3.6) and π1(Xcan)-invariant thus it defines an analytic subset of Xcan. If it
is nonempty and S is a s-dimensional irreducible component of it, we also have Ks

Xcan
·S = 0.

Now, we can apply Proposition 3.1.2 in [GR]: for any x ∈ X̃can, there exists open neigh-
borhoods U of x in X̃can and V of g(x) in Z with g(U) ⊂ V , such that the induced map
gU,V : U −→ V is a (proper) finite holomorphic map (that is a finite branched covering) and
such that g−1

U,V (gU,V (x)) = {x}. In fact, it follows from the purity of ramification locus (see
the very beginning of [N]) that for any x′ ∈ U , Og(x′),V and Ox′,U are isomorphic. Indeed,
the ramification locus of g, if non empty, should be of pure codimension one and hence would
intersect the smooth part of U . But we saw above that g is a local biholomorphism on X̃can\Ã.
Therefore, U is (maybe only locally) biholomorphic to V , and Xcan is smooth.

Finally, the map g : X̃can −→ Bm is a local biholomorphism and thus Xcan can be endowed
with a metric of constant holomorphic sectional curvature −1, so that it is indeed uniformized
by the ball Bm. It follows immediately that g is proper and that ρ is discrete and faithful. �
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