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Abstract. We verify that the Albanese fibration of the Cartwright-Steger
surface is stable, answering a problem left open in [CKY].

The purpose of this note is to resolve a question left open in [CKY] about the
semi-stability of the Albanese fibration of the Cartwright-Steger surface, denoted
by X. The Cartwright-Steger surface is a smooth complex two ball quotient of
Euler number 3 and first Betti number b1 = 2. It is known that 3 is the smallest
possible number achiveable as the Euler number of a smooth surface of general
type. The Cartwright-Steger surface is the only such surface with a non-trivial first
Betti number, as explained in Theorem 4.2 of [Y] and the erratum there. The other
smooth surfaces of general type with Euler number 3 are fake projective planes
classified in [PY], [CS1], which have vanishing first Betti number, and there are 100
of those. We refer the readers to [CS1], [CS2], [CKY] and [BY] for basic geometric
properties of X.

Since h1,0(X) = 1, there is a non-trivial Albanese map. Let α : X → E be the
Albanese fibration, where E is an elliptic curve and is the Albanese variety of X. It
is proved in [CKY] that the fibration is reduced and the genus of a generic fiber is
19. A natural question left open in [CKY] is whether the Albanese fibration is semi-
stable, cf. Remark 5.6 of [CKY]. Once the fibration is proved to be semi-stable, it
follows from the fact that we are considering a complex two ball quotient with a
fibration as above that the fibration is stable.

The problem turns out to be subtle, and defies conventional algebraic geometric
methods after repeated attempts. We have to combine the group theoretical results
of [CKY] and explicit equations of [BY] to achieve the purpose.

Theorem 1. The Albanese mapping α : X → E is a stable fibration in the sense
of Deligne-Mumford.

Recall the following facts about X from [CKY]. The automorphism group is
given by Aut(X) = Z3 and the fixed point set of a generator of Aut(X) consists
of 9 isolated points, three of type 1

3 (1, 1) denoted by Oi, i = 1, 2, 3, all lying in one

fiber of α, and six of type 1
3 (1, 2), denoted by Qj , j = 1, . . . , 6, distributed evenly

among two different fibers of α. The following statement is found in Remark 5.6 of
[CKY], with the details given in Proposition 5 of [CKY2].

Lemma 1. ([CKY]) Assume that α is not stable. Then there is only one singu-
lar fiber, and there is exactly one tacnode singularity on the singular fiber. The
singularity is then one of the points Qj , j = 1. . . . , 6 listed above.
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In [BY], explicit equations are found to describe X as a surface in P 9
C with

coefficients in the rational number field Q, consisting of 85 polynomial equations
of degree 2 and 3. As a result, the complex conjugation of X with respect to the
natural complex structure gives a complex surface biholomorphic to itself.

Lemma 2. ([BY]) Denote by τ the restriction of the complex conjugation of P 9
C

to X. Then τ : X → X is a diffeomorphism of X and the fixed point set is a real
subvariety of X.

Let F be the fixed point set of τ on X.

Lemma 3. The set F contains Oi, i = 1, 2, 3, but does not contain Qj , j = 1, . . . , 6.

Proof We would present two different arguments. The first one find explicit coor-
dinates of the fixed points with help from Matlab, and the second one more directly
from the computations related to [BY].

We explain first the first method. The action of Z3 on X can be described as
follows. According to Remark 5.3 of [BY], the generator g3 acts by

g3[U0 : U1 : U2 : U3 : U4 : U5 : U6 : U7 : U8 : U9]

= [U0 : U1 : U2 : U3 : aU4 : aU5 : aU6 : bU7 : bU8 : bU9],(1)

where a = ζ3 is a primitive cube root of unity, and b = a2.
It follows that the fixed points of g3 have one of the following types,

(1): [U0 : U1 : U2 : U3 : 0 : 0 : 0 : 0 : 0 : 0],
(2): [0 : 0 : 0 : 0 : U4 : U5 : U6 : 0 : 0 : 0],
(3): [0 : 0 : 0 : 0 : 0 : 0 : 0 : U7 : U8 : U9]

From Remark 5.3 of [BY], we already know that the points Oi, i = 1, 2, 3 are
given by the three points [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 0 : 0 : 0 :
0 : 0 : 1 : 0], [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1], corresponding to points of type
(3). In terms of the 85 explicit equations defining X given in [BY], the manifold
X is the set of complex solutions of the equations qk(U) = 0, k = 1, . . . , 85 for
U ∈ P 9

C. The subvariety F is the set of real solutions of the 85 equations. Trying
to find solutions of the types (1) to (3), we use Matlab and find that apart of
Oi, i = 1, 2, 3 as above, there are six other points of type (1), which correspond to
the points Qj , j = 1, . . . , 6. There is no fixed point of type (2). The coordinates
U = [U0 : U1 : U2 : U3 : U4 : U5 : U6 : U7 : U8 : U9] of Qj , j = 1, . . . , 6 are given in
terms of three conjugate pairs of algebraic numbers, with U2/U0 given by

−0.0927± 0.1987
√
−1, ±32.0785

√
−1, 0.0927± 0.1987

√
−1

in decimals respectively. Hence we may assume that

(2) Q2 = Q1, Q4 = Q3, Q6 = Q5

after renaming if necessary. The coordinates were found with the help of Ling Xu
using Matlab. Since the coordinates are not real, the points do not lie on F .

Alternatively, Cartwright explained to us that we may argue without using Mat-
lab but with symbolic computation as follows. It follows from setting U0 = 1 and
Ui = 0 for i = 4, . . . , 9 as in (1) above in the set of 85 explicit equations given in
[BY] and [B] that U2

3 satisfies the equation z3 + (15597z2)/32 + (641385z)/4096 +
884547/4096 = 0, from which one easily sees that U3

U0
cannot be real. �

Recall that the Albanese map α : X → E is defined by α(ξ) =
∫ ξ
xo
ω (mod Λ),

where ω is the holomorphic one form on X, xo ∈ X is a fixed point on X, the
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integration is taken over any path on X and Λ is the lattice generated by
∫
γ
ω

as γ varies over loops of X generated by π1(X). The lattice Λ takes care of the
ambiguity in the choice of path of integration in the definition above. Choose xo
to be a fixed point on X with real coordinates, taken to be Oj for some j = 1, 2, 3.

Recall also that the Albanese variety α(X) = E is given by C/(Z + ζ3Z), where
ζ3 is a primitive cube root of unity. This follows from the discussions in [CKY].
From the classification of finite automorphism groups of elliptic curves, E has a
Weierstrass form given by z22 = z31 + 1, cf. [H], page 34 and [S], Theorem III.10.1,
which is the unique elliptic curve with automorphism group containing Z3. In this
case, Aut(E) = Z6 = 〈ζ6〉, which acts on E by ζ6 · (z1, z2) = (ζ26z1, ζ

3
6z2).

In the following, we realize X as a subvariety of P 9
C as given in [BY], and E

with the Weierstrass representation in P 2
C as above. Then both X and E are

invariant by the complex conjugation on the respective projective spaces and the
Albanese mapping α will be discussed in terms of the realizations. We let U =
[Uj ] and Z = [Zβ ] be the homogeneous coordinates on the ambient manifolds P 9

C
and P 2

C respectively. P 9
C is covered by coordinate charts Ui = {U |Ui 6= 0} with

inhomogeneous coordinates ξi,j = Uj/Ui for 0 6 j 6= i 6 9. Let Ui,jk be the set of
points p ∈ X so that the Jacobian matrix of the defining equations of X with respect
to (ξi,j , ξi,k) at p has complex rank 2. Then the set of (Ui,jk, ξi,j , ξi,k) for 0 6 i 6 9,
0 6 j < k 6 9, j 6= i, k 6= i, forms a coordinate system on X. For simplicity of
notation, we would suppress i and simply denote ξi,j by ξj . The same convention
is used for E. Let Vγ = {Z|Zγ 6= 0} and zγ,β = Zβ/Zγ for 0 6 β 6= γ 6 2.
The set of (Vγ,β , zγ,β) for 0 6 γ, β 6 2, β 6= γ forms a coordinate system on E.
Again, we suppress γ for notational simplicity. In affine coordinates of E, we
may use z = z1 or z2 as coordinate functions in the Weierstrass representation
of E. Writing ξj = uj + ivj and zβ = xβ + iyβ , the Albanese map α is given by
α(ξ) = z(ξ) = x(u, v) + iy(u, v), regarding x, y as functions of u and v. Although
the construction of these explicit coordinates is elementary, we explain it in details
since we have to use them in the proof below.

Lemma 4. In terms of the realization above, the Albanese map α satisfies the fol-
lowing.
(a). ᾱ(ξ̄) = σ(α(ξ)) for some σ ∈ Z6 in the automorphism group of E fixing the
origin.
(b). Let p ∈ E. Then the complex conjugate of a fiber of α at p is the fiber at
σ−1(p̄) for some σ ∈ Z6.

Proof We describe the Albanese map in terms of the coordinates above. From
the fact that α is holomorphic, we know that xuj

= yvj , xvj = −yuj
from Cauchy-

Riemann equations, where j = 1, 2. It follows that xuj
= (−y)(−vj), x(−vj) =

−(−y)uj
. This implies that ᾱ(ξ̄) is holomorphic in ξ and hence is a non-trivial

holomorphic map of X to its Albanese torus E. From the functorial properties
of the Albanese map, such a holomorphic map is unique up to a biholomorphism
of E. Hence once the based point xo = Oi is fixed, α is unique up to σ ∈ Z6. Hence
ᾱ(ξ̄) = σ ◦ α(ξ).

(a) leads to σ ◦ α(ξ̄) = ᾱ(ξ) or ξ̄ ∈ α−1(σ−1(ᾱ(ξ))). Hence by considering the

set of ξ with α(ξ) = p, the complex conjugate α−1(p) of the fiber at a point p ∈ E
is actually the fiber of α at σ−1(p̄) ∈ E. Hence (b) follows. �
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Proof of Theorem 1
Assume on the contrary that the Albanese fibration is not semi-stable, so that

according to Lemma 1, there is a tacnode singularity at Qj on the fiber L = α−1(p)
(with p one of the fixed points of the Z3 action on E). From Lemma 4 (b), τ(L)
is a fiber of α and hence, τ(Qj) which is different from Qj by Lemma 3 is another
singularity. Note that the fibration map π has singularity at a point Q if and only
if the same happens at τ(Q), where τ is a diffeomorphism. This contradicts Lemma
1. �

We remark that at the finishing touch of the paper, it is drawn to our attention
that there is another proposed independent proof of the stability of the Albanese
fibration by Carlos Rito [R], which also relies on the work of [CKY] and [BY], but
in a different manner.
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