COMPLEX HYPERBOLIC VOLUME AND INTERSECTION OF BOUNDARY DIVISORS
IN MODULI SPACES OF GENUS ZERO CURVES

VINCENT KOZIARZ AND DUC-MANH NGUYEN

ABsTRACT. We show that the complex hyperbolic metrics defined by Deligne-Mostow and Thurston on
M, are singular Kahler-Einstein metrics when My, is embedded in the Deligne-Mumford-Knudsen
compactification M,,,. As a consequence, we obtain a formula computing the volumes of M, with
respect to these metrics using intersection of boundary divisors of Moﬂ. In the case of rational weights,
following an idea of Y. Kawamata, we show that these metrics actually represent the first Chern class of
some line bundles on ﬂoﬂ, from which other formulas computing the same volumes are derived.

REésumE. Nous démontrons que les métriques hyperboliques complexes introduites par Deligne-Mostow
et Thurston sur I’espace de modules de surfaces de Riemann de genre zéro avec n points marqués M,
sont des métriques Kéhler-Einstein singulieres sur la compactification de Deligne-Mumford-Knudsen
M,,,,. Nous en déduisons des formules calculant le volume de M, muni de ces métriques en fonction
des nombres d’intersection des diviseurs de bord de Moﬂ. De plus, lorsque les poids sont tous rationnels,
en développant une idée de Y. Kawamata, nous montrons que ces métriques sont aussi des représentants
de la premiere classe de Chern de certains fibrés en droites sur Mo,n, ce qui nous permet d’obtenir
d’autres formules calculant les mémes volumes.

1. INTRODUCTION

Letn > 3 and My, be the moduli space of Riemann surfaces of genus 0 with n marked points. Let
u = (u,...,u,) be real weights satisfying 0 < u; < 1 and ),y = 2. Following ideas of E. Picard,
P. Deligne and G. D. Mostow [4]] constructed — for certain rational values of the y;’s satisfying some
integrality conditions — complex hyperbolic lattices which enable in particular to endow My, with
a complex hyperbolic metric €,. The volume of the corresponding orbifolds has been computed by
several authors in some special cases when n = 5 (see e.g. 24,19, (18} [12]).

A few years later, W. P. Thurston noticed [22]] that for any n-uple of real weights satisfying the
two simple conditions above, one can construct naturally a metric completion of (Mo, Q,), which
can be endowed with a cone-manifold structure. He observed in particular that (Mo, Q,) always
has finite volume (see Section [E] for our normalization of the metric and the volume element; we
will use equally the notation €, for the metric and its associated Kéhler form). In a more recent
paper [17], C. T. McMullen computed the volume of (M, €2,) using a Gauss-Bonnet theorem for
cone manifolds. Our first purpose in this paper is to compute the same volume by other methods,
using ideas coming from complex (algebraic) geometry with an approach in the spirit of Chapter 17
of [5)]. Along the way, we will show in particular that Q,, is actually a singular Kéhler-Einstein metric

on the Deligne-Mumford-Knudsen compactification M),n of Mo .
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In order to state our main results, we need a few basic facts about /Vlo,n (see e.g (6} 15 (14} [1]]).
The moduli space My, has complex dimension N := n — 3 and its complement in the smooth variety
Mo,n is the union of finitely many divisors called boundary divisors, or vital divisors, each of which
uniquely corresponds to a partition of {1,...,n} into two subsets Iy U I such that min{|/y|, |I;]} > 2,
see [14] for instance. We will denote by % the set of partitions satisfying this condition. For each
partition S := {ly, I} € P, we denote by Dg the corresponding divisor in Moﬁ. Exchanging Iy and I;
if necessary, we will always assume that ps := s/, s < 1 (in order to lighten the notation, we do
not write explicitly the dependence of the coefficients ugs on ).

For any s € {1, ..., n}, we also define the divisor class ; on Mo,n associated to the pullback of the
relative cotangent bundle of the universal curve by the section corresponding to the s-th marked point.

Finally, if D is a divisor on My, D" means as usual that we take the N-th self-intersection of D.
Our main result is the

Theorem 1.1. Let n > 4 and My, be the moduli space of Riemann surfaces of genus O with n
marked points. Let u = (uy,...,u,) be real weights satisfying 0 < uy, < 1 and Y, us = 2. Let
Dy, := Y.sep As Ds where

As=(h]-Dus-D+ 1L
Then the volume of (Mo, Q) satisfies

N
_ 1 - A NUE |
QY *f/V(O,n Q//Y - (N + I)N(KMO.n +Dﬂ) - (N + l)N [ S (|Il| 1)(#3 N+2)DS}

N
1 n
2_N [_Z,us Us + Z,USDS
s=1 S
where Q,, denotes the Kiihler form associated with the metric and Kﬂo is the canonical divisor of
Mo,

In Corollary we compare formula @) with the one obtained by McMullen in [17]. There exists
an algorithm to calculate the intersection numbers of divisors of the type D (see [16] and Appendix[A]
below), but doing the calculation by hand is rather involved. However, those computations can be
carried out efficiently by a computer program by C. Faber.

Besides providing an alternative method to compute the volume of (Mo, €,), our approach also

sheds light on the relation between Thurston’s compactification Mﬁn of My, and /T/(o,n. Recall that
Thurston identified Mo, with the space of flat surfaces homeomorphic to the sphere S? having n
conical singularities with cone angles given by 27(1 — ) up to rescaling. A stratum of Mgn consists
of flat surfaces which are the limits when some clusters of singularities collapse into points. On the
other hand, each stratum of Mo,n is encoded by a tree whose vertices are labelled by the subsets in a
partition of {1, ..., n}. Every point in such a stratum represents a stable curve with several irreducible
components. Among those components, there is a particular one that we call u-principal component
whose definition depends on u (see Section . To each stratum S of /T(g’n, we have a corresponding
stratum S of MO,,, such that, for any flat surface represented by a point in S, the underlying Riemann
surface with punctures is isomorphic to the y-principal component of the stable curves represented by
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some points in §. So in some sense, one can say that M’g,,, is obtained from Mo,n by “contracting”
every boundary stratum to its u-principal factor.

In the literature, one can find compactifications of My, which are different from the Deligne-
Mumford-Knudsen one Mo,n (see in particular the papers of B. Hasset [[11] and D. I. Smyth [21]).
These compactifications are contractions of MO,,, and are in general singular. Actually, when com-
pact, Thurston completions corresponding to weights u as above are compactifications considered by
Smyth, but for our purpose it is more convenient to work on the smooth model MO,,, and we will not
insist on this point of view (see also Remark[6.9] below).

By construction, €, is the curvature of a Hermitian metric on a holomorphic line bundle over
Mo,,. When all the weights in y are rational, Y. Kawamata [[13] observed that this line bundle admits
a natural extension to M),n. It turns out that €, can be considered as a representative in the sense
of currents of the first Chern class of this extended line bundle. It can be shown that the latter is
effective. We develop this algebro-geometric approach in Section[§] By constructing explicit sections
and determining their zero divisor, we provide other formulas for the volume which avoid metric
considerations. Even though at first glance this approach seems to work only in the case of rational
weights, by continuity argument, our formulas are actually valid for all values of u satisfying the
hypothesis of Theorem [I.T} Namely, we get the following

Theorem 1.2. For each 1 < s < s’ < n, define

0if X5 e <lor Ni-l w>1,

A(s, s') = { ) , — _
minfug, g, Yp_ pp— 1,1 - Zi:slﬂ i} otherwise

and
1if {s,s'} c I
0 otherwise

0s(s,s") = {
Then the effective R-divisor

D, = Z Z 6s(s, s)A(s, ) Ds

S 1<s<s’<n

satisfies

1
N__ ' e N _ pN
In this paper, many objects and quantities depend on the weights u. However, as we already said
for the coefficients us, this dependence will not always appear explicitly but the reader will have to
keep it in mind.

Remark 1.3. Whenever there exists a partition {/o, I1} €  such that }’ c; ps = X 5e, s = 1, the metric
completion of Thurston is not compact and our method does not provide directly a formula for the
volume of (Mo, Q). However, the formulas in Theorem remain valid by continuity arguments
(as in [L7]). For these reasons, we will assume through out this paper that the sum of the weights for
indices in any subset of {1, ..., n} is always different from 1.
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Outline. The paper is organized as follows.

(1) In Section[2] we collect the necessary background from the paper of Deligne and Mostow [4].

2

3)

Associated to any weight vector u = (u1, ..., un) € RY such that yy +- -+ + un = 2, we have a
rank one local system L on the punctured sphere Pé \{x1,...,x,} with monodromy exp(2umi)
at xg, which is equipped with a Hermitian metric. Assuming u, ¢ Z for some s € {1,...,n}, we
have dime H'(P{\{x1, ..., X}, L) = n—2. Up to a multiplicative constant, there exists a unique
section w of the bundle Q'(L) which is holomorphic on P(é \ {x1,...,x,}, and has valuation
—us at xg. This section defines a non-zero cohomology class in H 1 (Pé: \ {x1,...,x,}, ).

One can obviously move the points xi, ..., x, around, therefore H 1(Péj \ {x1,...,x,}, L)
and w give rise to a local system H of rank n — 2 and a holomorphic line bundle £ on My,
the fiber of L over the point m =~ (PL {x1,...,x,)) € Mo, is the line generated by w in
H' (Pé: \{x1,...,x,}, L). Projectivizing H, we get a flat ]P%‘3 -bundle over My, and £ provides
us with a multivalued section =, of this bundle. The pullback AE?# of Z, to Mo,n is an étale
mapping from Mo,n to P%‘3.

The Hermitian form of L gives rise to a Hermitian form ((.,.)) on H ! (IP’(]C \ {x1,...,x,}, ).
In the case 0 < p; < 1 for all s, this Hermitian form has signature (1,7 — 3) and ((w, w)) > 0.
It follows that the section Eﬂ takes values in the ball B := {{v) € P%‘3, ((v,v)) > 0} C P%‘3
(here we identify H'(PL \ {xi,...,x,},L) with C*"2). The pullback of the canonical metric

on B by E,, provides us with a complex hyperbolic metric on My, which will be denoted by
Q. By definition, €, is also the Chern form of the Hermitian line bundle (Z, ((., .))).

Our goal is to show that €, is a singular Kéhler-Einstein metric on Mo,n. For this purpose,
we first construct trivializing holomorphic sections of £ in the neighborhood of every point
m € 6%0,”. In Section [3] we recall the construction of local coordinates of /\_/(Q,,1 near m by
plumbing families. In Section ] we consider the case where m is contained in a stratum of
codimension one in M),,,, which means that m represents a stable curve having two genus
zero components, denoted by CY and C', joined at a node. In each component, we assign a
positive weight to the point corresponding to the node of m such that the weights associated
to all the marked points add up to 2. We have on C’ a rank one local system L; and a section
w; of Q'(L;) in the same way as we had L and w above. The sections wy and w; will be
used as data for the construction of a plumbing family representing a neighborhood U of m
in Mo,n- As a by-product, we get a holomorphic non-vanishing section ® of £ in U N Moy,,.
In Section [5] we generalize this construction to the case where m is contained in a stratum of
codimension r with r > 1.

Section [0] is devoted to the proof of a formula for the Hermitian norm of the section @ (see
Proposition [6.1). The idea of the proof is to use the flat metric approach of Thurston. We start
by relating the point of views of Deligne-Mostow and Thurston. Each holomorphic section
of QY(L) on Pé: \ {x1,...,x,} with valuation —u; at x; defines a flat metric on P&l,: with cone
singularities at xi, ..., x,. Its Hermitian norm with respect to ((.,.)) is precisely the area of
this flat surface. In [22]], Thurston introduced a method to compute this area by performing
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some surgeries on the flat surface, and obtained in particular an alternative proof that the sig-
nature of ((.,.)) is (1,7 — 3). We will use the same method to compute the Hermitian norm of
w’' = ®(m’), where @ is the section of £ mentioned above and m’ € U N My,. As a direct
consequence, we obtain a rather explicit formula for the metric €, near the boundary of M),n
(see Proposition [6.2).

In Section [/| we recall some basic facts about singular Kihler-Einstein metrics. It follows
immediately from Proposition @ that €, is a singular Kiahler-Einstein metric attached to the
pair (MO,,,, D). Theorem |l1.1|is then a straightforward consequence of this fact. Comparing
Q,, with the complex hyperbolic metric considered by McMullen in [17], we get Corollary[7.5]

In Section |8} following an idea of Kawamata [13]], we construct an extension Lof Lto Mo,n
in the case when all weights y are rational. This extension is the pushforward of a rank one
locally free sheaf on the universal curve ?o,n- By construction, ® extends naturally to a trivi-
alizing holomorphic section of £ on U/, and €, is arepresentative (in the sense of currents) of
the first Chern class of £. This leads to an alternative method to compute the volume of My,
with respect to ,, by using sections of L (see Theorem . Simplifying a construction by
Kawamata, we construct some explicit holomorphic global sections of Z, for which one can
easily determine the zero divisor. By the continuity of the volume with respect to u (which
can be derived from Theorem [I.T)), we obtain Theorem This approach also allows us to
calculate ¢ l(ﬁ) by the Grothendieck-Riemann-Roch formula and to recover formula (T)).

In the appendix we explain an algorithm computing the intersection numbers of boundary
divisors, which is necessary if one wants to compute the volumes explicitly. We then give the
explicit results for Mo s and a special case for My with the aim to help interested readers to
see how concrete computations can be carried out.

Acknowledgments: We thank S. Boucksom, J.-P. Demailly and P. Eyssidieux for very useful con-
versations about positive currents and singular Kdhler-Einstein metrics. We are very indebted to
D. Zvonkine for the helpful and enlightening discussions.

We would also like to thank C. Faber who shared with us his program computing intersection

numbers in M, ,,, and L. Pirio for useful comments on an earlier version of this paper.

2. BACKGROUND ON RANK ONE LOCAL SYSTEMS ON THE PUNCTURED SPHERE.

In this section, we summarize the settings and some results in [4} Sec. 2,3] relevant to our purpose.

2.1. Cohomology of a rank one local system on the punctured sphere. Let n be a positive integer
such that n > 3. Let us fix the following data

. X = (x1,X2,...,X,) is a n-uple of distinct points on the sphere §? ~ Pé:.
. 1= (ug,...,Hy,) is a n-uple of positive real numbers such that

M1+ =2,

. a; = expQmy;),i=1,...,n.
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. L is a complex rank one local system on Pé: \ £ with monodromy around x; given by «;. Note
that up to isomorphism L is unique.

Using the C*-de Rham description, we can identify H'(]P(é \ Z, L) with the cohomology of the de
Rham complex of L-valued C* differential forms on P, \ £, and H2(P{, \ £, L) with the cohomology
of the subcomplex of compactly supported forms.

Let LV be the dual local system of L. This is the local system with monodromy a/l.‘l around x;. The
Poincaré duality pairing by integration on IP(IC \ %, that is

H'PL\ZL)@H'(PL\E,LY) — C
(aeﬁ) = jl;;,\z @ /\ﬂ

is then a perfect pairing. .
Proposition 2.1 (Deligne-Mostow). If one of the ay, s € {1,...,n} is not 1, then H‘(P}C \ X,L) and
Hé(Pé \ %, L) vanish fori # 1, and

dimH'(B{ \ X, L) = dim H)(P{ \ Z,L) = n - 2.

There are several ways to describe the homology and cohomology of L and LY. For instance,
one can use a triangulation .7 of Péj \ X to construct chain complexes giving H'(]P(lc \ 2,L) and
H.(]Pé \ Z,L) as follows: an i-chain with coefficients in L is a formal sum ), e, - o, where o is an
i-simplex of the triangulation, and e, is a horizontal section of the restriction of L to 0. An L-valued
i-cochain associates to each i-simplex o of the triangulation a horizontal section of L. over . Note
that the complex of L-valued cochains is dual to the complex of chains with coefficients in L.

The cohomology with compact support HC'(]P%: \ Z,L) is also the cohomology of the complex of
L-valued cochains compactly supported on 7. Its dual complex is the complex of locally finite chains
with coefficients in LY, the homology of which will be denoted by HY (P, \ =, L").

One can also use currents to define H ’(Péj \ Z,L). For any chain C with coefficients in LY, there
exists a unique LY-valued current (C) such that

fa)=f O)Nw
c PLAZ

for all L-valued C* form w. The map C — (C) provides the isomorphisms H,-(IP’&j \Z,LY) = Hg"'(Péj \
%,LY) and H'(BL\ Z,LY) =~ H*(PL\ Z,LY).

If B is a rectifiable proper map from an open, semi-open, or closed interval I to Pé: \Z,and e €
HO(1,B*LY), we let (e - B) be the LV-valued current for which

f(e-ﬁ) Aw= ﬁ(e,ﬂ*w).

Ifp:[0,1] —» Péj maps 0 and 1 to Z and (0, 1) into Pé: \ X, then for any e € H°((0, 1), 8LY), e - Bis a
cycle and hence defines an homology class in H}'(P{, \ =, L") = H'(PL \ ,LY).

Let us fix a partition of X into two subsets Xy and X;. Let Ty, T; be two trees (graphs with no
cycles) where the number of vertices of T; is |¥;, and 5 : To U T; — Péj be an embedding such that
the vertex set of T; is mapped to X;. We choose for any open edge a of Ty LI T an orientation, and a
non vanishing section e(a) € Ha,B*LY). For each edge a, e(a) - B, is then a locally finite cycle on
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Pé \ Z, with coefficients in LY. Let Iy L I; be the partition of {1, ..., n} corresponding to the partition
=2 UX.

Proposition 2.2 ([4]], Prop. 2.5.1). If [1;e;, @i # O, then the family
{e(a) - B, a is an edge of Top LI Ty}

. . If (ol

is a basis of H} (Pz \ Z,LY).

2.2. Sheaf cohomology. Another way to compute the cohomology of ]P’%j \ X with coefficients in L
is to use the sheaf cohomology. For this purpose, we will identify L with its sheaf of locally constant
sections. Let j : P(lc \Z —> ]P(lc be the natural inclusion, and let j,L be the extension of L by 0 to ]Péj.
In this setting, H;(RIC \ %,L) is the cohomology on Pé with coefficients in jiL. It is by definition,
the hypercohomology on P(lj of any complex of sheaves K* with 7#°(K®) = jiL, and 2 (K*) = 0,
for i # 0. On the other hand, if L* is a resolution of L, whose components are acyclic for j, (that is
R?j, LK = 0 for ¢ > 0), then H '(IF’JC \ 2, L) is the hypercohomology on P(lc of j.L. We have the

Proposition 2.3 ([4], Prop. 2.6.1). If a; # 1 foralli € {1,...,n), then H(P5\ =, L) ~ H*(L \ T, L).

The holomorphic L-valued de Rham complex Q*(L) : O(L) — Q!(L) is a resolution of L on
Pl \ . Hence, we can interpret H*(P, \ ,L) as the hypercohomology on P \  of Q°(L). Since
HIPL\ Z,QP(L)) = 0, for g > 0 (because PL \ X is Stein), this gives

H*(PL\ X, L) = H'T(PL \ 2, Q°(L)).
On the other hand, since we have R?j.QP(L) = 0 for g > 0, it follows that

H*(BL\ 2, L) = H' (B, j.Q"(L)).

2.3. The de Rham meromorphic description of the cohomology of L. We will describe a section
of O(L) on an open set U C ]P(lc \ X as the product of a multivalued function and a multivalued section
of L. Those objects are defined as follows: U is provided with a base point o, a multivalued section
of a sheaf .# on U is actually a section of the pullback of .% on the universal cover (U, ) of (U, 0).
A section of L at o extends to a unique horizontal multivalued section. A multivalued section of O is
uniquely determined by its germ at o.

Fix an x; € X, and let z be a local coordinate which identifies a neighborhood of x; with a disc D
in C centered at z(x;) = 0. Let D* = D\ {0}. If the monodromy of L around x; is ay = exp(2miy),
then the monodromy of z7# is the inverse of that of a horizontal section of L. Therefore, any section
of O(L) (resp. Q!(L)) on D* can be written as u = 7% - e - f (resp. u = z# - e - fdz), where e is a
non-zero (horizontal) multivalued section of L, and f is a holomorphic function on D*. We define u
to be meromorphic at x, if f is, and define its valuation at x;, to be

Vxx(u) = Vx_v(f) — Ms-

Note that these definitions are independent of the choice of the local coordinate.
Let us write j/'Q°(L) for the sheaf complex consisting of meromorphic forms in Q°*(L). The
inclusion of /'Q°*(L) into j.Q°*(L) induces an isomorphism on the cohomology sheaves. This implies

H*(BL, /"Q°(L)) ~ H* (B, j.Q°(L)) = H*(PL \ =, L).
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Since we have HY(BL, jrQr(L)) = 0 for g > 0, H*(BL, j7Q*(L)) is simply H*I'(P(,, j/7Q*(L)), that is
the cohomology of the complex of L-valued forms holomorphic on P(lj \ X and meromorphic at . To
sum up, we have

H*(PL\ Z,L) = H'T(PG, jIQ°(L)).

Proposition 2.4 ([4], Cor. 2.12). There is, up to a constant factor, a unique non-zero w € I“(Péj, J"QLL))
whose valuation at x4 is at least —u;. Actually, we have vy (w) = —u5 and w is invertible on
Péj \ Z. If oo & %, then, up to a constant factor, w = e - [[, ex(z — x5)*dz, and if co € X, then
w = e [ly20(z — x5)*dz.

Moreover, we have

Proposition 2.5 ([4]], Prop. 2.13). Assume that as # 1 for all s € {1,...,n}, that is none of the u; is
an integer, then the cohomology class of the form w in the previous proposition is not zero.

Let us assume that none of the a; is 1. Let [w] denote the cohomology class of w in H I(ch \Z,L).
Since we have H l(]Pfc \Z,L)~H Cl (Pé \ X, L) (cf. Proposition , w also gives a cohomology class,
denoted again by [w], in H}(PL\Z, L). Thus, for any locally finite cycle C in HIf(PL\E, LY), ([C], [w])
is well-defined. If C is represented by a compactly supported cycle, then

<[C],[w]>=fw-
c

If C =¢ -pisacycle where 8 : [0,1] — Pé is such that 5(0),8(1) € %, B((0,1)) c ]P(lc \ %, and
¢’ is a horizontal section of S“LY on (0, 1). We can define a finite cycle C’ with coefficients in LY
homologous to C as follows: let x5, = B(0), x5, = B(1), and D; a small disc centered at x,, such that
D;NX ={x.},and Do ND; = @. Let C;, i = 0, 1, be a circle centered at x,;, and contained in D;. Let /
denote the interval [0, 1]. Let yg = B(€) be the first intersection of S(I) and Cy, and y; = B(1 — €;) be
the last intersection of 8(I) with C;. We consider yo and y; as base points of Cy and C respectively,
and parametrize those circles counter-clockwise by the maps y; : [0,1] — C;. Let I’ := [e, 1 — €],
and B’ be the restriction of 8 to I’. Let e} := €'(y))/ (cx;il — 1). We also denote by e’ the unique
horizontal section of y;L" determined by this vector. Consider the 1-chain e/ - y; with coefficients in
LY. Since the monodromy of LY at xy, is a/;il, we get d(e - y;) = €' - {y;}. Let C" denote the 1-cycle
66 Yo +¢€ - B — e -y1. One can easily check that dC” = 0, and [C'] = [C] € H}f(P}C \ Z,LY). Since
C’ is compactly supported, we have

(€L [w]) = (C [w]) = fc o

Remark 2.6. If w = e~ ] ex(z—x5) 7 dz, where 0 < g < 1forall s € {1,...,n}, and B is a path from
Xs, to x5, without passing through any point in %, then we also have

3) ([C1. [w]) = (¢'.e) fﬂ [Te-x)"d.
XgEX

2.4. Hermitian structure. Since all the a; have modulus equal to 1, L admits a horizontal Hermitian
metric (.,.). We can use this metric to define a perfect pairing

Yo : HX(PL\ 2, L) ®c HY(PL\ Z,L) » HA(PL\ Z,C) = C
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where L is the complex conjugate local system of L. The vector space H (Péj \ ,L) is the complex
conjugate of H/ (Pé \ X,L). By setting

-1
((M, V)) = Z_lﬁo(u, ‘_))
Tl

we get a Hermitian form on HCl (]P’éj \Z,L).
A section w of j"Q!(L) is said to be of the first kind if vy (w) > —1 for all x; € X. For such a form,
we have | fPl =@ A w| < oo. We define H 1’O(P(lj \ 2, L) to be the vector space of forms of the first kind
C

in T(PL, /QN (L)), and H*'(P{ \ , L) as the complex conjugate of H'O(P} \ £, L). The latter is the
space of anti-holomorphic L-valued 1-forms, whose complex conjugate is of the first kind. As usual,

such a form w defines a cohomology class [w] € Hl(]P’éj \Z,L) = Hc1 (]P(lc \Z,L).
Proposition 2.7. [[4] Prop. 2.19] If wi and w are in H'*(P} \ £, L) U H*' (P}, \ X, L) then

2mi

-1
(([w1], [w2]) = —f w1 A w).
PL\Z

Proposition 2.8. [[4] Prop. 2.20] Assume that 0 < ug < 1 forall s € {1,...,n}, then the natural map
HYO®L\ L, L)e H*'(PL\ X, L) » H'(PL\ Z,L) ~ H (PL \ Z,L)

is an isomorphism. The Hermitian form ((.,.)) is positive definite on H'O, negative definite on H*!,
and the decomposition is orthogonal. Since dimc H'0 = 1, and dimc H*' = n — 3, the signature of

(,)is(1,n-=3).

2.5. Local system and the line bundle £ over My ,. Recall that My, is the moduli space parametriz-
ing Riemann surfaces of genus zero and » marked points (punctures). Since every Riemann surface
of genus zero is isomorphic to PL, we can also view My, as the space of configurations of n distinct
points on Péj up to action of PGL(2,C). If £ = {xy,..., x,}, n > 3, is a set of n points in P(lc, then up
to action of PGL(2,C), we can always assume that x,_» = 0, x,—; = 1,x, = co. Thus, My, can be
identified with the subset of (Pé)"‘3 consisting of (n — 3)-tuples (xy,...,x,-3) such that x; # xy if
s# s, and x; ¢ {0, 1, co}.

Over My, we have a fibration 7 : 6y, — My, whose fiber over a point m € My, is the n-
punctured sphere represented by m. Let Mo,n be the Deligne-Mumford-Knudsen compactification of
Mo,,. We also have a fibration 7 : ?O,n - MO,H extending the projection from %, to Mo,, where
?O,n is the universal curve which is a compact space containing %6; , as an open dense subset. It is well
known that 7 is a flat proper morphism, and there exist by construction n sections o ..., 0, of w such
that o-(m) is the s™ marked point on the stable curve 71 (m). Note that %O,n is actually isomorphic to
MOJ,H, and Moyn is a smooth projective variety.

Fix a vector p := (uy,...,u,) € (Rsp)" suchthat yuy +---+u, =2,and uy; ¢ Nforall s € {1,...,n}.
By [4l], Section 3.13, there exists a rank one local system L* on %j , such that, for any m € My, the
induced local system Ll on n='(m) ~ (P, (x,...,x,)) has monodromy given by a; = exp(2m;)
at each puncture x;. Since the projection 7 : 6y, — Mo, is locally topologically trivial, setting
H* := R'n, 1H* we get a local system of rank n — 2 over Mo, whose fiber over m is H' (IP’(lC \Z, L) ~
H! (ch \ Z,L%). Associated to this local system is a flat projective space bundle PH* whose fiber over
m is PH,, ~ P13,
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We have seen that for each m € M, up to a constant factor, there is a unique L/,-valued mero-
morphic 1-form w,, € I' (P(lc, jTQl(L‘,ﬁl)) such that the valuation of w,, at the puncture x; is exactly
—us. By Proposition we know that w,, represents a non-trivial cohomology class in H,. Thus w,,
provides us with a section of the flat projective space bundle PH*. Let us denote this section by Z,.

Since the pull-back of the bundle PH* to the universal cover Mo,n is isomorphic to the trivial bundle
/F\/(Vo,n X Pé‘3, the section E, gives rise to a map FEVII : Mo,n - P%‘3. We have the following crucial
result

Proposition 2.9 ([4], Lem. 3.5, Prop. 3.9). The section E, is holomorphic, and the map Eﬂ : /F\/Iyo,n -
P%‘3 is étale.

A direct consequence of Proposition is that we have a holomorphic line bundle £ over My,
whose fiber over m is the line C - [w,,] C H (Pé \ I, L),

Assume moreover that 0 < u; < 1, for all s € {1,...,n}. We have seen that in this case, the
fiber H,,, ~ H' (Péj \ Z,L%) of the local system (flat bundle) H* carries a Hermitian form of signature
(1,7 — 3). This Hermitian form then gives rise to a horizontal Hermitian metric on H*. Therefore, we
have a flat bundle over My, whose fiber over m is the ball B, C PH/,, which is defined by

B, :={C-vePH,, (v,v))n > 0}.

By Proposition the line C - [w,,] belongs to B,,. Thus, the map Eﬂ actually takes values in a fixed
ball B C P%‘3. As a consequence, we see that L is locally the pull-back by =, of the restriction of the
tautological line bundle of ]P%‘3 to B. Remark that £ carries naturally a Hermitian metric induced by
the Hermitian metric on H”. The line bundle £ and its Chern form will be our main focus in the rest
of this paper.

3. LoCAL COORDINATES AT BOUNDARY POINTS OF M ,

It is well-known that the complement of My, in Mo,n is the union of finitely many divisors called
vital divisors, each of which uniquely corresponds to a partition of {1, ..., n} into two subsets /Iy L I}
such that min{|y|, |I;|} > 2. Let ¥ be the set of partitions satisfying this condition. For each partition
S :={lp, I} € P, we denote by Dg the corresponding divisor in Mo,n. Here below, we collect some
classical facts on those divisors which are relevant for our purpose (see [14]).

(1) The family {Dg, S € P} consists of smooth divisors with normal crossings.
(ii) If S = {ly, I}, then Dy is isomorphic to Mo z,1+1 X Mo, [+1-
(iii) Let S = {lp, 11} and &’ = {Jy, J1} be two partitions in . Then Dg N Dg = @ unless one of
the following occurs:

IhclJy, IycJ, LicJdy, I1CJ.

We first need to describe a neighborhood of a point m in dMy,. Fix a partition S = {ly, I} € P.
Let ng = |lg|, and n; = |I1| = n — ng. Without loss of generality, we can assume that Iy = {1, ..., ng}
and I} = {ng + 1,...,n}. From (ii) we know that Dg is isomorphic to M),HOH X /Vo,nlﬂ. Let mbe a
point in Ds. We will only focus on the case when m € Dg is a generic point, that is the fiber C,, of
m over m is a nodal curve having two irreducible components of genus zero intersecting at a simple
node.
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The normalization of C,, consists of two Riemann surfaces of genus zero denoted by CY and
C,ln, where C,% (resp. C,ln) contains the marked points xp, ..., Xx,, (T€Sp. Xpy+1,...,%s). Let Xo :=
{x1,..., x5} and X1 := {Xpy+1, ..., X,}. There are two points $o € C,% \Xopand y; € C,L \ 2| that corre-
spond to the unique node of C,,,. The marked curves (C,%, (P0, X1, ..., Xyy)) and (C,ln, D15 Xng+15 - -5 Xn))
represent respectively two points mg € Mo ,,+1 and my € Mo, +1.

We will now describe how one can embed holomorphically a small disc D c C centered at 0 into
MO,,, and transversely to Dgs such that 0 is mapped to m. For this, let us fix the following data:

. U is neighborhood of j in C?n such that U N {x1,...,x,} = @, F : U — Cis a coordinate
mapping such that F(3p) = 0,
. V is neighborhood of 9; in C,ln such that V N {xp41,..., %} = @, G : V — C s a coordinate

mapping such that G(31) = 0.

Pick a constant ¢ € R, such that the disc D, := {|z| < ¢} € Cis contained in both F'(U) and G(V). For
any ¢ € C such that |¢| < ¢, set Cf,)u = Cgl \{p e U I|F(p) <l|tl/c}, and C,im = C,L \{g € V,|IG(g)| <
|#|/c}. Let A, denote the annulus {|f|/c < |z] < ¢} € D.. We then define a compact Riemann surface by
gluing CY,, and C,, , via the identification: p € F~'(A,) is identified with ¢ € G™'(A,) if and only if
F(p)G(g) = t. Let us denote the surface obtained from this construction by C, ).

It is easy to see that the marked curve (Cp), (x1, ..., X,)) represents a point in My ,. We thus have
amape : Do ={teC,lf < 2} - Mo,n, which is defined by ¢(0) = (Cy,, Z) and ¢(f) = (Cpyp), 2),
for ¢ # 0. This map is well known to be a holomorphic embedding of D, into M),n. The construction
above is called a plumbing, and the image of D2 by ¢ is called a plumbing family (see [23| Sec. 2]).

Recall that m is identified with (mg, m;) by the isomorphism between Dgs and Mo y+1 X Mo, +1-
Therefore, we can identify a neighborhood V of m in Dg with a product space Vo x V1, where V; is a
neighborhood of m; in Mo ,+1. Forany m" = (my, m}) € V, let Cm6 and Cm/1 be the curves represented
by my, and m/ respectively. On C m; we have a distinguished marked point 97 which corresponds to the
node of the curve C,, represented by m’. We can always identify C m With Pé: such that §} = 0. In
conclusion, we get the following well known result (see [23] Sec. 2], [1, Chap. 11]).

Proposition 3.1. Assume that for all m" = (my,m}) € Vo x Vi we have some plumbing data
(U,V,F,G,c) as above, where F and G depend holomorphically on m’. Then there exists a sys-
tem of holomorphic local coordinates at m which identifies a neighborhood U of m in Mo,n with
Vo X V1 X D.2. The point in /T/[O,n corresponding to (my,m|,1) represents the surface obtained by
applying the t-plumbing construction to the nodal surface represented by (my,m}). In particular,
U N My, is identified with Vo X V| X D;z in those coordinates.

4. SECTIONS OF £ NEAR THE BOUNDARY: GENERIC POINTS

In Section[2.5] we defined a holomorphic line bundle £ over My, by providing local trivializations
(see Proposition . In this section, we investigate £ near the boundary of M),,,. Our goal is to
exhibit holomorphic sections of £ in a neighborhood of every point m € 8%0,,1. Assume that m is a
generic point of a divisor Dg. Let S = {ly, I}, C?n, C,ln, >0, 21, Y0, ¥1 be as in the previous section. We
will identify CO (resp. C}) with P}c in such a way that $, = 0 and oo ¢ X (resp. $1 = 0, and co ¢ X1).
SetE =% L{p), i=0,1.
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Let flo = Xpg+1<s<n Mss 11 = D1<s<ny Ms and @; = exp(2mif1;). We assume that fip < 1. Denote by
L; the rank one local system on Cfn \ ii with monodromy «; at x;, and &; at ;. Let e; be a horizontal
multivalued section of L;. Set

woy = €y -z l_[ (z-x)™dz and w;:=e -zM n (z— x5)Hdz.
1<s<ng no+1<s<n
Observe that w; is a well defined section in I'(C fw F"QNLY)).
We are going to construct a plumbing family starting from m and a section of £ over the corre-
sponding (punctured) family. For this, we first need to fix the plumbing data.

Lemma 4.1. Let r be a real number not in {—n,n € N*}. For any holomorphic function f defined on a
disc D in C centered at 0 and satisfying f(0) # O, there exists a coordinate change z — w preserving
0 such that

7 f(2)dz = w'dw

on a neighborhood of 0 in D, with suitable determinations of 7 and w'.

Proof. Let us fix a determination of z". We will look for a coordinate change of the form w = zA(z). It
suffices to find a holomorphic function / defined on a neighborhood of 0 such that 4(0) # 0 and

Zh(2)" (Wz2) + 21 (2)) = 2 f(2) & W(2) (h(z) + 20’ (2)) = f(2)

where A(z)" is a determination defined near A(0) # 0. Setting g(z) := #'*!(z), we must have

1 ron
g8(2) + 1% (@) = f(2).

Let £(2) = Y0 c2¥, with cg # 0, be the expansion of f at 0. Assuming that g admits an expansion
8(2) = Y0 di 7", we see that the sequence (dy)r>0 must satisfy

k r+1
dill + —) = dy = ——«y.
k( +r+1) k< r+1+kck

In particular, we see that dy = ¢g # 0, and since r + 1 + k # O for any k € N, the power series
S0 dizX is well defined and has the same convergence radius as Yo cxz*. Thus g(z) is a well
defined holomorphic function on D which satisfies g(0) # 0. It follows that h(z) := 2@+ is well
defined in a neighborhood of O for any choice of a determination. Then we choose the determination
h(z)" in such a way that 4(0)"*! = g(0), and if we define w" = (zh(z))" := z'h(z)", the lemma is
proved. O

Now, choosing a determination for []<,<,,(z — x5)™ and [],,,+1<5<(z — x5)™* in a neighborhood
of 0, we then get two holomorphic functions f and g which do not vanish at 0. Applying Lemma[.1]
to the forms 777 f(z)dz and 71 g(z)dz, we see that there exist two holomorphic functions F : U — C
and G : V — C, where U and V are some neighborhoods of 0, such that F(0) = G(0) = 0, F’(0) #
0,G’(0) # 0 and

(4) 7™ f(2)dz = FM(2)dF(2), 7 Mg(2)dz = G (2)dG(z)

Let ¢ be a positive real number such that D, is contained in both F(U) and G(V). We can now use
the tuple (F, U, G, V, ¢) to construct the plumbing family associated to m. For any ¢ € D2, let C, )
be the n-punctured sphere obtained by the construction described in the previous section. Recall that
Cn,r) 1s obtained from C,?m and C,,, by the gluing rule wi = /wy in the coordinates wy = F(z) and



SINGULAR KAHLER-EINSTEIN METRICS ON Mo,,, 13

w1 = G(z). By the definition of F' and G, the expressions of wg and w; in those local coordinates are
respectively

(5) wo = €1 - W(;'uodWo, w1 =€ Wl_mdwl.

Lemma 4.2. There exists a rank one local system L on C,, s \ X whose restriction to C,"W \Z;is L.
We also have a multivalued horizontal section e of L whose restriction to Cl, , is identified with e;.

Proof. We first remark that C fn,, is biholomorphic to a disc with n; punctures, and the annulus A; is
homotopy equivalent to the boundary of Cﬁn’t. By definition, the monodromy of L; along the boundary
of C ﬁn’, (with the counterclockwise orientation) is given by exp(—2mif;). Observe that the transition
map identifies a circle homotopic to the boundary of CSM with a circle homotopic to the boundary of
C,,, with the inverse orientation. Since we have

exp(=2mij1y) = exp(=271(2 = fi9)) = exp(2riflp),

the restriction of Ly on A, is isomorphic to the restriction of L;. We can then identify Ly with L
on A, by setting ey =~ e;. Therefore, we have a well defined rank one local system L on C,, ;) with
the desired monodromies at the punctures and a multivalued horizontal section, denoted by e, whose
restriction to Cj, , is e;. |

Lemma 4.3. There exists a unique L-valued meromorphic 1-form w € I'(C(p,), j’le(L)), whose

restriction to CY,, is equal to wy. Its restriction to C),, is equal to —t' ™ w, for some determination of
o,

Proof. By definition, wj is a section of Q!(L) on C ﬁn’,, meromorphic at the punctures. All we need to
show is that
(6) wo = -t 0w, on A,

the uniqueness being clear by analytic continuation. Using the local coordinates wy and wy, we have

(see (B))

Wy =€ - WaﬂodWO and w1 = €1 - WIHIdW1

for some choices of the determinations w’g" and w‘f ". Recall that the changes of trivializations on A,
satisfy wg — t/w; and ey — e;. Thus

woy = € - W(_)'uodW() =e- (wl/t)ﬁo(—t/w%)dwl = —tl_’aoe1 . WI’uldwl = —tl_ﬁoan
where 0 is chosen in such a way that o = (t/wl)ﬁow?_” ', which is possible since Qo + i1 = 2.
Observe that as ¢ completes a turn around 0, the determination of #% is multiplied by e, O

Let Ty be an embedded tree in C,% whose vertex set consists of ng points in flo. Let T be an
embedded tree in C,l,, whose vertex set is exactly ;. Let ay,...,a,,—1 denote the edges of T¢, and
bi,...,by, -1 the edges of T;. Let €] be an fi-multivalued horizontal section on Cfn \ ﬁ,-. By Propo-
sition we know that {e} - a;, j = 1,...,n9 — 1} (resp. {€] - b;, j = 1,...,n — 1}) is a basis of
HY(CY \ 20, L) (resp. a basis of H(C}, \ £1,Ly)). Set

nj:=ley-ajl. [wol), & :=([€] - bl [wi]).
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Since [wg] and [w] are not zero (see Proposition @ we have
=0 lngo1) 20 €C Land & := (&,...,&,1) 20 C1L

Lemma 4.4. Let w be as in Lemma Then there e{cists a basis of H%f(C(m,t) \ =, L) such that the
coordinates of w in the dual basis are given by (i, —t'70¢&) € C"2.,

Proof. We first consider the case when T does not contain 5. The tree T; can always be chosen to be
contained entirely in C,, ,. It follows that {e6 -a;} and {€] - b;} can be considered as homology classes

in H'(C(ns) \ Z,L). Moreover, by Proposition the union of those classes makes up a basis of
Hllf(C(m’,) \Z, E). Since the restrictions of w to C,g)” and C,an are respectively wg and —t1 o, we get

(7 ([ey - ajl, [w])
(8) ([e] - bj], [w])

Thus the lemma is proven in this case.

Consider now the case where T contains 9. Remark that in this case, there is a point in X, say
Xny» Which is not contained in Ty. Up to a renumbering, we can assume that the set of edges containing
$oasanendis{a;, j=1,...,k}, with k < nyp — 1. We can also assume that x; is the other end of a;,
forj=1,...,k

Recall that the plumbing construction is carried out in a neighborhood U of . Let Dy be an
embedded disc in C? that contains U. For j = 1,...,k, lety ; be the first intersection of a; with dD,
and a;. be the subarc of a; from x; to y;. Let a}’ denote the boundary of Dy considered as a loop based

<[e(’).aj],[a)0]> =n,j=1,...,n0— 1,
(€] -bjl, =" Pofw ]y = =" 7og;, j=1,...,n — 1.

aty;. Since fip ¢ N, there exists a constant & such that [e(, - a;] = [e;, - a;. +ee)) - a;’] in H llf(C,?1 \ 2o, EO).
Therefore,

nj=<[e5-a;+seg-a;’],[wo]>=f(eg,wo>+sf<eg,,wo>, j=1l... .k
da’, a’l
J J

We construct a new tree T in C,, s from Ty and T; by removing ay, ..., a; from Ty, and adding the
edges c; joining x; to some vertex of Ty for j = 1,..., k. Note that the vertex set of T is X \ {x,,}. Let
e’ be an L-multivalued horizontal section on Cy) \ X. Then {[¢" - c1], ..., [€" - ], [€) - ak+1], - - -, [€) -

dng-11,[€] - 11, [€] - by 11} is a basis of Hf(Cny \ =, L) by Proposition

For j=1,...,k, since a} and a;.’ are entirely contained in C%

1 ’ ’ ’ ’7
m,» We can consider € - a’; + ge(, - a’/ as

elements of H 11f(C mn\Z, L). Since the union of {a}, a;.’, ¢j,bi1,...,b, 1} 1s homotopic to the boundary
of an open disc disjoint from X, we deduce that [e6 . a;. + se6 . a’/.’] is a linear combination of [e’ - ¢/]
and [e] - b1],...,[€] - by,-1]. Therefore, {[e} - a| + e -all,... e a, +ce,-a/], (e, ar1],...,[€;-

any-1], (€] - b1],...,[€] - by —1]} is also a basis of H%f(C(m,t) \ X,L). Since we have
(ley-da’;+eey-all [w]) = f(e(’),w)+8f (), w) = f(ef,,wo)+8f ey, wo)=1n;, j=1,... .k,
a; a}’ a; “_,,',

the coordinates of [w] in the dual basis are given by (17, —t! &), O

Remark 4.5. In the proof of Lemma[d.4] we could have chosen Ty such that the node ) is not con-
tained in Ty, and the proof would have been more direct. However, in the next section where we will
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treat the case where m belongs to several divisors D, we will be forced to deal with trees contain-
ing points corresponding to nodes and we will use a method which is similar to the one above (see

Lemmal5.6).

Remark 4.6. Let y be a small loop around O in D,... The element of the mapping class group
Mody, corresponding to y is a Dehn twist around a closed curve on Pé separating Xg and X;. It
can be shown that the monodromy of the local system H* around such a loop is given by the matrix

(Idn(())—l ezmu—ﬂg)ldnl_l ) (see [4], Prop. 9.2] for the case n; = 2).

Recall that we can write m = (mg, m;), where m; € Mo 5,11 represents (Cﬁn, ﬁi). Fix a constant ¢ > 0.
There exist some neighborhoods V; of m; in Mo ,+1 such that for any m" = (my,m}) € Vo X V|
and ¢t € D:z, we can apply the same plumbing construction with parameter ¢ as above to the curve
Cy. Let Cy 1) denote the resulting surface in Mo ,. By Proposition this construction identifies
Vo X V1 x D with a neighborhood of m in /V(o,n.

Let Cﬁn, be the component of C, containing ¥;. We define the sections Wy € F(Cfn,, FMONL)))
in the same manner as w;. Since C, ) is defined by the same plumbing construction as C,, ), by
Lemma we get an element wgy y € I'(Ci gy 7m"QNL)) constructed from Wy and W) - Since
wqw ) 1s a vector in the fiber of L over (m’, 1), the assignment @ : (m’, 1) — w4 is a section of L on
Vo XV X Diz.

Lemma 4.7. @ is a holomorphic section of L on Vo X V1 X D7,

Proof. To see that @ is holomorphic section of L, it is enough to show that the pairings of w(, ;) with
a basis of Hllf(C(m/,,) \ =,L) are holomorphic functions of (m(, m|,1). Since {n;, j = 1,...,n0 — 1}
and {¢;, j =1,...,n; — 1} are holomorphic functions of m6 and m’1 respectively, the lemma is a direct
consequence of Lemma[@ see also [4, Sec. 3]. O

5. SECTIONS OF £ NEAR THE BOUNDARY: GENERAL CASE

5.1. Principal component. Each point m in Mo,n represents a nodal curve C,, with n marked points
(X1,...,%,). Let CY ...,C" be the irreducible components of C,. The topological type of C,, is
encoded by a tree T whose vertex set is in bijection with the set of irreducible components. Each edge
of this tree corresponds to a node of Cy,.

The point m belongs to the intersection of r boundary divisors, each of them being associated with

one of the r nodes pi, ..., p, as follows: splitting a node p; into two points, we get two connected
components C,(,g)pj and C,(,i)pj from C,,. Fori = 0,1, we define the set Il.] c {l1,...,n} as follows:

s € Il.j if and only if x; € Cf,lzp,.. Exchanging Cf,(l),)p,. and C,(nl,)pj if necessary, we will always assume that
st{ ps < 1. Set S; = {I], I{}, we have m € N, Ds;-

0’1
Let £ := {x1,...,x,}. For each component C,f,;, setX; ;= XN C,j;l. Note that X; can be empty.
We also have on CJ, some other marked points denoted by {yi,..., ysj} that correspond to nodes of

Cp. Set ﬁj = X; U{y1,...,ys;}. We now assign to every point y in ﬁj a weight fi(y) as follows: if
y = x5 € Zjthen f(y) = ps. If y € {y1,...,ys,;}, we have a corresponding node of Cy,. Splitting this

node into two points, we get two connected components of C,,. Let ¢ ,’;,,y denote the component that
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does not contain C,{q. The weight associated to y is then

©) AG) = ) ms

x5€C,

Since y corresponds to a node, there exists another marked point y’ that is identified with y. Let C,{;
be the irreducible component that contains y’. Since the genus of C,, is zero, we must have j* # j. As
a consequence, we get

(10) A =2 = ).
Let /i/ be the vector recording the weights of the points in £ je

Lemma 5.1.

a) The sum of the weights in [/ is 2. .
b) There exists a unique component C3, such that all the weights in i/ are smaller than 1.

Proof. The first assertion follows immediately from the definition of the weights at the points corre-
sponding to nodes of C,,. We will prove the second assertion by induction on the number of vertices
of T.

If T has only one vertex, then b) is trivially true. Suppose that T has r + 1 vertices, with r > 1.
Pick a component C,j,.i corresponding to a leaf of T, that is a vertex which is connected to the rest of T
by only one edge. Suppose that C,ﬁ; satisfies the property of the lemma (i.e. all the weights in ji/ are
smaller than oneA). Let us show that C ,J,, is the unique component satisfying this condition. Let y be the
unique point in X; that corresponds to a node in Cy,. Since the weight fi(y) is less than 1, from a) we
have Zxxec,f;l g > 1.

Consider another irreducible component C% of C,,. There is a point y; € CX, which corresponds to
the node separating C¥, from C,],;. Let Co',’;,yk be the component containing C{;l which is obtained after

splitting y; into two points. By definition, the weight of yy is

Aalyx) = Z Hs > Z,us>1.

x€Chiy, xs€Chy
Therefore, C¥, cannot satisfy the condition in b). We can then conclude that C}, is the unique compo-
nent that satisfies this condition.
Assume now that C;, does not satisfy the condition of the lemma, which means that fi(y) > 1. Let
Ck be the unique component of C,, that is adjacent to C;,, and y’ be the point in C¥ that is identified
with y. Note that the weight of y’ is given by

AOY = Y pe=2-A0) < 1.
xSEC,],-,
Set X' := (X \ X;) U {y"}. We see that each point in X’ has a weight strictly smaller than 1, and the

total weight of the points in X’ is 2. Let C,, be the stable curve obtained by removing C ,J,, from C,,.
Since the tree corresponding to C;, has a vertex less than T, we can apply the induction hypothesis to
conclude that there is a unique component of C;, that satisfies the desired condition. O
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Definition 5.2. We call the unique component C,L that satisfies the condition that all the weights in i/
are smaller than 1 the u-principal component of C,,.

In what follows, we will always assume that C? is the principal component of C,,. Let v ; be the
vertex of T corresponding to C,Z We consider vq as the root of T, and set the length of every edge
of T to be one. We define the level L; of the component Cﬁ;, to be the distance in T from v; to vo.
Observe that we can always choose a numbering of the components of Cy, such that L; < L;;; for
j=0,...,r—1.

IfC ,@ is not the principal component of Cy,, then there is a unique point ; € ) ; which corresponds
to the node separating C,{1 from CY. Remark that we have fi($ j) > 1, and 9; is the unique point in ) i

whose weight is greater than 1. We will call §; the principal node of C J . and define the weight of C},

to be v; = i(9;) — 1. The following lemma provides some basic properties of the weights v;. Its proof
is straightforward from the definition of i and the fact that T is a tree.

Lemma 5.3. Let C/ be an irreducible component of C,, which is not the principal one. Then we have
a) O<vy; <L
b) Let C), be the component containing cl, which is obtained by splitting Cy, at the principal

node of C,, that is the node separating Cj, from CO. Then we have

vi=1- Z,us

x;eCl
¢) If vy is a vertex in the path from Vo to vj and k # j, then vy <.

Remark 5.4. Every node of C,, is the principal node of a unique component. This is because each
node of C,, corresponds to a pair of points {y,y’} that are contained in two different components, and

we have (y) + 2(y") = 2 (cf. (10)).

5.2. Construction of sections of £ in a neighborhood of m. Set k; := )3 jl, 7 =0,...,r. For each
J €10,...,r}, let L; be a rank one local system on C,J;, \ 2 ; with monodromy exp(2mifi(y)) at any
point y € X;. We will fix an L ;-multivalued horizontal section e;, and a meromorphic section w; of
T(CJ,, j"Q!(Lj)) with valuation —{(y) at every point y € 3.

Let {p, g} be a pair of points in the normalization of C,, that correspond to a node, and C ,L and C ,Jn be

respectively the components that contain p and g. Using Lemmal4.1} we can find some neighborhoods
U of p, and V of g, together with local coordinates F on U, G on V such that

a)j:ej-F_ﬂ(p)dF, wp =ej .G 4.

Choose a constant ¢ > 0 small enough such that for any + = (#,...,t) € (D.)", the plumbing
construction with plumbing data (F, U, G, V) and parameter #; as above can be carried out at all the
nodes simultaneously. For any j € {1,...,r}, we can assume that 7; is the plumbing parameter at the

principal node of CJ,.
Let C(,) denote the resulting surface in My ,. On C,, ;) we have n marked points (xp, ..., x,) with

associated weights (u1, .. .,u,), we will also denote by X this finite subset of C,. Let Up, be an
open subset of C;, containing all the points in £ j C X and disjoint from the regions affected by the
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plumbing construction. We can consider U,{l as an open subset of C(,, ;). As usual, let L be a rank one
local system on C,, » \ Z, with monodromy exp(2miu) at x,.

Lemma 5.5. Let j be the natural embedding of C,n \ X into Cy ). Then there exists a unique element
w of T(Cm.py, J"Q (L)) such that
e the restriction of w to U° is equal to wy,
o for j = 1,...,r, the restriction of w to U,];, is equal to Pj(t)w;, where P;(t) is a function of t
which is defined as follows: let 0 < iy < --- <y, = j be the indices of the vertices of T that
are contained in the unique path from vy to vj, and v;_is the weight of Ci,; then

Lj
Pitti,..t) = (M [
s=1

Proof. Let C’,’;, be the subsurface of C,, which is the union of the components C ..., Cf;l. Given

t = (t1,...,t), we define C‘(Jm Host) from C‘,ﬁ; by applying successively the plumbing constructions

with parameter #; at the principal node of C!, fori = 1,...,j. Note that (:’(m noty = Conn- By
induction, this lemma is a direct consequence of Lemma[.3] O

Let us denote by W, the L-valued meromorphic one form given by Lemma5.5} By construction,
wW(m, has valuation —p at xg, thus it is an element of the fiber of L over C,, ). We would like now to
show that the assignment (m, ) = Wy, is a holomorphic section of L on U N My ,, where U is a

neighborhood of m in Mo,n.

We first specify an appropriate basis of Hllf(C(mJ) \ Z,L). Let Ty be an embedded topological tree
in C%, whose vertex set is ¥, minus one point. For j = 1,...,r,let T ; be a an embedded topological
tree in C,J;l whose vertex set is 3 ; minus the principal node. Let a{ ,i=1,...,kj — 2, denote the

edges of T;. Fix an fj-multivalued horizontal. section e;. on C,j;l \ 2 ;- By Proposition the family
{[e;-al,i=1,....k; =2} is a basis of H}'(C}, \ 2, L)). Set
é”ﬂWﬂﬁMD=ow)ﬁl kj—2
i jo i) it R A
Let .f(j) denote the vector (f(j), e, ](cj)_z) We have

Lemma 5.6. Let w and Pj, j=1,...,r, be as in Lemma Then there exists a basis of Hllf(C(mJ) \

Z,E) such that the coordinates of w] in the dual basis are given by (f(o), Pl(t)f(l), L P()ED) €
cn2,

Prgof. Let €}, and C‘f@lwtﬂ.be as in the prqof of Lemma Recall that Cgny = Cy,, ., and

Clousr..., is obtained from € ltl ., and Cy, by the plumbing construction at the principal node of
M1t ot

C/,. The lemma then follows from Lemma 4.4{and Lemma|5.5|by induction. O

Each pair (C f;,, ) j) represents a point m; in Mox,. Hence the point m is contained in a stratum of

MO’,, which is isomorphic to Moy, X -+ X Mox,. Let V; be a neighborhood of m; in Mo,kj and set
V = Vyx---xV,.. Let L;denote the line bundle over Mo,k., whose fiber over m; is C - [w;] C



SINGULAR KAHLER-EINSTEIN METRICS ON Mo,,, 19

H'(C)\ £ j»L;j). We extend w; to a holomorphic section of £; on V;. Since the plumbing data
(F,U,G,V) depend analytically on (my, ...,m,), the plumbing construction (m, t) = C, identifies
a neighborhood of m in Mo,n with V x (D).

Let w(n,y denote the L-valued meromorphic one form on Cy,;) defined in Lemma(5.5] The assign-
ment @ : (m, 1) = w(n,y provides us with a section of £ on V x (D;z)r. Since w; is a holomorphic
section of .L;, &9 depends analytically on m j- It follows that the coordinates of wy,,) in a basis of
H 1(C(m,,) \ X, L) are given by holomorphic functions of (my,...,m,,t,...,t,). Thus we have shown

Proposition 5.7. The section @ is holomorphic.

6. FLAT METRICS ON PUNCTURED SPHERES AND HERMITIAN METRIC ON THE LINE BUNDLE .E

6.1. Hermitian norm of the section ®. Let m be now a point in a stratum M := Mo, X --- X Moy,
of codimension r in mO,n- Let (C;, %) be the stable curve represented by m, and C?,,, ..., Croits
irreducible components. In what follows we will use the notations of Section [5] Our goal in this
section is to prove a formula (cf. (T1))) for the Hermitian norm of ®(m, ) in H 1(C(m,t) \Z,L), where ®
is the section in Proposition

On each irreducible component C,J;1 of C,,, we have a finite subset & ;j consisting of points in XN C, ,ﬁ
and the nodes of C,{T The pair (C,ﬁ;, ) j) represents a point m; € Moy, where k; = I . We identified
a neighborhood of m in M),n with Vo X -+ XV, x (D2)", where V; C Mo,kj is a neighborhood of

mj = (C ,];,, ) ), and c is a positive real constant small enough.

Let z/ € Cki—3, J=0,...,r, be the coordinates on V;, and 7 = (71, ..., t,) the coordinates on (D2)".
In these local coordinates, m is identified with the point (°(mg), ...,7"(m,),0...,0), and we have
YV x (D:z)’ =Vx D) N Mou, where V =Vo XXV,

Remark that foreach j € {1, ..., r}, the subset of Vx(D2)" defined by {t; = 0} is the intersection of

Vx(D.2)" with a boundary divisor Ds; in Mo,.. This divisor corresponds to the partition S j =101}
of {1,...,n} that is induced by the splitting of the j-th node of C,, into two points. Thus, we see that
the stratum M of m is precisely the intersection Ny <<, Ds;-

Recall that /i’ is the vector recording the weights of marked points in C7,, and the component
CY of C,, is characterized by the property that all the weights in 2° are strictly smaller than 1 (see
Lemma . Thus the Hermitian form on H 1(C9n \ £0,Lo) has signature (1, ko — 3). Let us denote
this Hermitian form by ((.,.))o. Recall that we have defined a section @ : (m,t) = wW(ny of L on

V % (D?,)" (see Proposition . We will prove the following

Proposition 6.1. For j=1,...,r, let P;(t) be as in Lemma and €9 e Cki72 be as in Lemma
For each j = 1,...,r, there exists a positive definite Hermitian form ((.,.)); on Cki=2 depending only
on u such that the norm of (W] in H! (Conp \ Z,L) is given by

(10 (@) [0 D) = (E?, P00 = D IPOPED, £y,
=1

J

Here we identify ((,.))o with a Hermitian form on Ck0=2,

As a consequence of Proposition[6.1] we get



20 VINCENT KOZIARZ AND DUC-MANH NGUYEN

Proposition 6.2. There exist some neighborhood ‘V; of m; and holomorphic local coordinates 7

V- Cki=3 such that ifm= (ZO, eos2,0,...,0), and t = (t1,...,t,) € (DY), then we have
~—_— c
r
r .
(12) 100, DI = (Wl [wono)) = 1= 102 = > 1POFA + I1P),
=1

and the Chern form of L on V X (DZ2) is given by

(13) Q= dd log| 1= |12 = Y IP;OR(1 + /1) |.

j=1
In other words, locally at m, £, is the pullback of the complex hyperbolic metric dd°log(1 — [Iwl?) on
C"=3 by the multivalued map

@Ot tn D) w =GP, .. P, PL(1)Z .. PA1)D)

(note that even if the map is multivalued, the metric is well defined).

Remark 6.3. Recall from Lemma|5.5|that we have P;(7) = (=D Hfi 1 t;”' , where the family of indices

{is, s =1,..., L;} records the components of C,, between the principal one, i.e. C,%, and C,L. Since all
the exponents v; are positive, the function |P;(#)| extends by continuity to (D,2)". Thus, the function
r
i (.20 =IO = ) 1P + 1P
j=1
is a continuous function on V x (D).

As we will see in the sequel, the Hermitian norm (([w(n, ], [wim,n]1)) can be interpreted as the area
of the flat surface defined by w, s). From this viewpoint, the continuity of ¢ on (D )" reflects the fact
that as f converges to 0 € (D_2)", the metric defined by w,, s “converges” to the metric defined by wq
on the principal component of C,,. This convergence in the space of flat metrics is the key point in the
construction of the (metric) completion of M, introduced by Thurston [22].

Proof of Prop.[6.2| assuming Prop. Recall that we have a rank one local system L; on ci\ % j
whose monodromy at the points in 3 are given by /. This local system gives rise to a local system
H; of rank k; — 2 and a holomorphic line bundle .£; on Mo,kj. Let E,lj denote the section of the
bundle PH; defined in Proposition @} By construction, w; is a vector in the line E,;(m;). Let

&9 = (gij), e ](CJ/)_Z) be the coordinates of w; in some basis of HY(CI'\ ﬁj, L;). We can choose the

basis of HI(C,{1 \ flj, L) such that

ko—3
0) Oy, — _ (0)2 ) 12
(2,0 = Z;If,- P +1e 1,
=

and
k-2

(@.69); = 3 P, forj=1....r
i=1
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Recall that w; € H i\ j»Lj) is not trivial so that we can normalize our coordinates in such a

way that f,((i)_z = 1. Hence (f(j) s ,({J:)_3) are the coordinates of =, (m;) is some local chart of
. Aj J . -

PH'(C;, \ £;,L;). Since E,, is étale by Proposition wecanuse z) = &7, i = 1,...,kj -3, to

define local coordinates in a neighborhood of ;. The proposition then follows from (TT). O

We will spend the rest of this section to prove Proposition [6.1] For this purpose, we will make use
of the flat metric approach introduced by Thurston [22].

6.2. Thurston’s coordinates. Let us first recall Thurston’s coordinates on the moduli space of flat
metrics on the sphere with prescribed cone angles at singularities (see [22, Prop. 3.2]). Fix a vector
01,...,0,), with 0 < 6; < 2m, such that 6; + --- + 6, = 2n(n — 2). Let M denote a flat surface
homeomorphic to $? with conical singularities denoted by xi,.. ., x,, and the cone angle at x, being
0s. Let T be a tree whose vertex set consists of n — 1 points in {xy,..., x,} and all the edges are
geodesics (it is not difficult to show that such a tree always exists). Choosing an orientation for every
edge of T, then using a developing map, one can associate to each edge of T a complex number
(see [22l pp. 525-526]). We then get a vector Z(M) in C"2 associated to M.

For any flat metric (with the same prescribed cone angles at the singularities) close to M, one can
also find a geodesic tree isomorphic to T. Hence, we also get an associated vector in C"~2 in the
same way. It turns out that this correspondence defines a local chart for the space of flat metrics
(with prescribed cone angles) on the sphere. Up to homothety, this space can be identified with My ,.
Therefore, this construction also yields a local coordinate system for M.

Letm = (PL, {x1,....x,}) € Mo, be the point corresponding to the homothety class of M. Assume
that all the cone angles at the singularities are smaller than 2n. In [22], it was proved that the area of
M can be expressed as a Hermitian form A of signature (1,7 — 3) in the coordinates of Z(M), that is

Area(M) ='Z(M) - A - Z(M).

Consequently, the induced local chart on M, identifies a neighborhood of m with an open in the ball
B := {(v), WAV > 0} C ]P’é‘3. By a classical construction, A induces a complex hyperbolic metric on
B. Since the area is an invariant of the flat metric, this complex hyperbolic metric is invariant by the
coordinate changes. Therefore, we get a well defined complex hyperbolic metric structure on My .

Set yug :=1-65/(2n), and u = (uy,...,H,). By definition, M is isometric to (P(lc \ Z,g), where
2 = {x1,...,Xx,}, and g is a flat metric on Pé: \ X such that each x; has a neighborhood isometric
to an Euclidean cone of angle ;. Without loss of generality, we can assume that co ¢ X. Remark
that [T <s<n Iz — x5|7%#|dz]? is a flat metric with the same singularities and the same cone angles as g.
Therefore, we must have g(z) = A% [11<,<y |z — x5/ 7%#5|dz|?, where A is a positive real number.

Let L be the rank one local system on Palc \Z with monodromy exp(27miu;) at x;. Choose a horizontal
Hermitian metric for L, and let e be an L-multivalued horizontal section such that the norm of e is 1.
Let

w=Ae- 1—[ (z — x5)Mdz.

1<s<n
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Then g(z) is the metric associated to the (1, 1)-form w A w. Recall that we have a Hermitian form
(()) on HI(PL\ %, L) = H'(PL \ ,L) of signature (1,n - 3). By Proposition[2.7 we have

(14) (([w], [w]) = f w A w = Area(M).
PLAZ

Fix a base point p € P(]c \ X and consider the universal cover (A, p) of (Pg,: \%,p). Let f bea
determination of the multivalued function A(z — x;)™! ... (z — x,) ™" in a neighborhood U of p. We
also denote by f its pullback to a neighborhood U of . Let ¢ be a holomorphic function on U such
that f = ¢’. Let z be the coordinate on A, and set w = ¢(z). Observe that we have

¢"dw = f(2)dz, and ¢*ldwl* = |f@)I*|dz*,

which means that ¢ realizes an isometry between a neighborhood of p (with the metric g) and an open
subset of C with the standard Euclidean metric |[dw|*>. In other words, ¢ is a developing map for g.
Therefore, we can extend ¢ to a locally isometric map from (A, g) to (C, ldw?).

Now let a be an oriented edge of the tree T. The complex number associated to a is given by
L @ dw = fa f(2)dz, where a is a component of the pre-image of a in A. We can consider e - a as an

element of H; (IP’(Ij \ Z, L), therefore, we can write

ff(z)dz = ([e-al,[e- f(z)dz]).

From Proposition we know that the set {[e-a], a is an edge of T} is a basis of H| (Péj \Z,L). Since
the pairing Hllf(IP’éj \Z,L)y® H! (Pé: \ Z,L) — Cis perfect, it follows that the cohomology class of w is
(locally) uniquely determined by the vector Z(M) € C"2.

By definition, the hyperbolic metric on My, is the pullback of the complex hyperbolic metric on
the ball B C P%"”. This metric is defined by the Chern form of the tautological line bundle over
BcC Pfé‘3. Recall that C- [w] is the fiber of L over m, and L is actually the pullback of the tautological
bundle on B by the map Z,, (see Proposition [2.9). Thus we have proved the following

Proposition 6.4. The Thurston local coordinates on My, are defined by the section Z,, and the
Hermitian form A on C"2 js induced by the Hermitian form ((.,.)) on H 1(Péj \ Z,L). Moreover, the
complex hyperbolic metric on My, is the one induced by the Chern form of (L, ((.,.))).

6.3. Thurston’s surgery on flat surfaces. We now describe the cone adding construction introduced
in [22] pp. 520-521], which is the key idea of the proof that the signature of A is (1,n — 3). Let M be
a flat surface homeomorphic to the sphere which has n conical singular points as above. Recall that
U 1s the curvature at the cone point x;. Suppose now that we are given a geodesic arc e on M joining
X; to x; and y; +uj < 1.

We first construct an Euclidean cone whose apex angle is 2m(1 — u; — ;) as follows: Let (ABC) be a
triangle in R> whose interior angles at A, B, C are given by ((1—u;—u D, pim, g m) respectively, and the
length of BC is equal to the length of e. Let (A’B’'C’) be the image of (ABC) by the mirror symmetry.
We now glue AC to A’C’, and AB to A’B’ by identifications respecting the order of endpoints. We
then obtain a flat surface homeomorphic to a disc, which has a singular point X with cone angle
2n(1 — p; — p;) in the interior. The boundary of this disc is the union of two geodesic segments
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corresponding to BC and B'C’. Let y; (resp. y ;) denote the identification of B and B’ (resp. of C and
C’). The interior angles at y; and y; are respectively 27mu;, 2mu;.

We now slit open M along e and glue the cone constructed above to this surface in such a way that
yi (resp. y;) is identified with x; (resp. with x;). Since e and BC have the same length, the gluings
are realized by isometries. We thus have a flat surface M homeomorphic to S2. By construction, the
cone angles at x; and x; in M are now equal to 2, which means that x; and x ; are regular points in M.
Therefore, M has exactly n — 1 singularities: x; with s ¢ {i, j}, and X. Remark that e corresponds to a
loop on M consisting of two geodesic arcs, we will call e and the corresponding loop the base of the
added cone. We record here below some key properties of this construction.

e The triangle (ABC) is uniquely determined up to isometry, since its angles are determined by
w4 and u, and the length of BC is equal to the length of e. It follows that there exists a positive
constant (u;, i ;) such that Area((ABC)) = «(u;, 1 j)|e|2, where |e| is the length of e.

e We have

Area(M) — Area(M) = 2Area((ABC)) = 2k, j)|e|2.

e The sides of (ABC) can be considered as geodesic segments in M. Thus, given a developing
map of M, we can associate to those segments the complex numbers z(BC), z(CA), z(AB).
There exist some complex numbers ¢y, ¢, depending only on (i, () such that

2(AB) = ¢12(BC), and z(AC) = c2z(BC).

e We can apply similar constructions to M to get other surfaces with less singularities as long
as there are two singular points such that the sum of the corresponding curvatures is less than
1.

6.4. Flat surfaces with convex boundary. For our purpose, we will need to consider flat surfaces
with boundary. In what follows, by a flat surface with convex boundary we will mean a topological
surface with boundary M equipped with a flat metric structure with conical singularities satisfying the
following property: for any point x € dM, there is a neighborhood of x which is isometric to a convex
domain in R?. For such a surface, any path of minimal length (in a fixed homotopy class) joining two
points in the interior does not intersect the boundary.

Let X denote the set of cone singularities in int(M). We will also need a generalized notion of
homotopy on M. A pair of arcs yp,y; : [0,1] — M are said to be homotopic in M \ X with fixed
endpoints if we have y(0) = v1(0) = x,vo(1) = y1(1) = y, and there exists a continuous map
H : [0,1] x [0,1] — M such that H(.,0) = yo,H(.,1) = vy, HQ,.) = {x},H(1,.) = {y}, and
H((0,1)x(0,1)) c M\ X. With this definition, a path with two endpoints in X not passing through any
other point in ¥ may be homotopic to the union of some arcs with endpoints in X. Remark that given
any developing map for the flat metric, the complex numbers associated to two homotopic paths (that
is the difference in C of the two endpoints) must be the same.

We now suppose that M is a flat surface with convex boundary. Let X = {xi, ..., x,} denote the set
of cone points of M, and assume that X is contained in the interior of M. All the cone angles 6, at x;
are supposed to be smaller than 27, and

(15) Z 2r - 8,) < 2.

1<s<n
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Set us = 1 — 65/(2n). The condition (I3) is equivalent to ; + --- + s < 1. Let e be the path
of minimal length from x; to x;. Note that e is contained in the interior of M (since M has convex
boundary), and e does not pass through any other point in £. Let M’ be the flat surface obtained by
slitting open M along e. One of the boundary component of M’ consists of two copies of e, which
will be denoted by e; and e,. Since y; + up < 1, we can glue an Euclidean cone C of apex curvature
1 — y; — po to M’ along this boundary component. Let M denote the new surface. Remark that M
also has convex boundary. We consider M’ as a subsurface of M. The singular points x1, x, of M now
correspond to two regular points in M, we denote those points by the same notation. Let £ be the apex
of C, and set £ = {x3,...,x,} U {&}. It is worth noticing that given a path in M which does not cross
e, then its image by a developing map for M is also the image of a developing map for M. In view of
the proof of Proposition [6.1] we will need the following lemma.

Lemma 6.5. Let a be a geodesic segment in M with endpoints in ¥. We assume that the two endpoints
of a are distinct, and a does not contain any point in 3 in its interior. Then there exist a piecewise
geodesic path b in M’ connecting two points in ¥, and a constant k € C such that, for a fixed choice
of the developing map on the universal cover of M, we have

z(a) = kz(ey) + z(b),
where z(a), z(e1), z2(b) are the complex numbers associated to a, e, b respectively.

Proof. We have two cases:

e Case 1: a does not contain £. Since C \ {&} is homeomorphic to a punctured disc, M’ is a
deformation retract of M \ {£}. Let b be the image of a by this retraction, then b is homotopic
in M to a. Thus we have z(a) = z(b).

e Case 2: a contains X. By assumption, we can consider a as a ray starting from x and ending at
a point x; € X. Let y be the first intersection of a with dC = e U e,. Denote by ag (resp. a)
the subsegment of a between % and y (resp. between y and x;). Let €| be the geodesic segment
in 9C from x; to y. Set by = €| * ap and by := a; = €|. Observe that a is homotopic (in M) to
the path b, * bg. Since b; does not contain X, from Case 1, we know that it is homotopic to a
piecewise geodesic path b from x; to x;. We thus have z(a) = z(bo) + z(b). But we have seen
that z(bg) = kz(e1), where « is a complex number determined by (u, 12). Hence the lemma is
proved for this case.

O

6.5. Infinite flat metric structures. Let k > 1 and fix a vector u = (4o, ..., ) € RE! such that
po + -+ ur =2, where uyg > 1, but y; < 1,fori =1,...,k. LetX = {xp,...,x;} be asetof k + 1
points in ]P’éj and L be the rank one local system on Pé: \ £ whose monodromy at x; is exp(2mius).
Fix a horizontal multivalued section e of L with Hermitian norm equal to 1. Let w be a meromorphic
section of Q! (L) with valuation —Ug at xg. We can write

w=e- l_[ (z — x5)Mdz
0<s<k
with A € C*. Note that since ug > 1, we have fpl =@ A w = o0, so w 1s not of the first kind.
C

Let T be an embedded tree in Pé: whose vertex set is g = {x,...,x}. Leta;, j=1,...,k—1,
denote the edges of T. From Proposition we know that the family {[e-a;], j=1,...,k—1}isa
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basis of Hll(PL, \ £, L). Recall that w represents a cohomology class in H'(PL \ £,L) =~ H!(PL\ Z,L).
Setzj:=([e-aj],[w]),and Z := (z1,...,2k-1) € C*-1. Since the valuations of w at the endpoints of a;
are all greater than —1, we can write

Zj= /lf(z = x0) ... (z — xp)Mdz.
aj

Observe that the (1, 1)-form w A w defines a flat metric structure on Pé \ £, with conical singularity
at x; for s = 1,...,k. The cone angle at x; is 6; = 27(1 — u,). Note that this is an infinite metric
structure since any geodesic ray cannot reach xg in finite time. Let M denote the corresponding flat
surface.

Let e; be a path of minimal length in M joining x; and x;, such a path must be a geodesic segment
which does not contain any singularity in its interior. By assumption, we have u; + up < 1. Thus we
can add a cone C; over e; to get a surface with k— 1 singularities. By construction, the curvature at the
new singularity is y; + p2. One can continue adding k — 2 cones C, ..., Ci_1 to obtain successively
the surfaces M, ..., M;_1, where M; has a cone singularity with curvature u; + --- + y;41 at some
point denoted by %;, and M, is obtained from M; by adding the cone C;,; whose base is a geodesic
arc, denoted by e;;1, joining %; and x;;;. Note that there exists a positive real constant ¢; depending
only on (uy, ..., ) such that Area(C;) = cilei*. Remark also that M, has k — i singularities, and Mj_;
is an infinite Euclidean cone with apex angle equal to 27(1 — (i1 + - - - + ).

Choosing a developing map for My = M, we get a complex number wy associated to e;. We can
extend the developing map of My to get a developing map of C;. By construction, e; is a geodesic
ray starting from x| (the apex of C;), therefore we can extend this developing map to get a complex
number w, associated to e;. Continuing this process, we get a vector W = (wy,...,Wg_1) € ck-1,
where w; is the complex number associated to e;. We have the following lemma, which is implicit in
the proof of [22| Prop. 3.3].

Lemma 6.6. The complex number w; is a linear function of Z fori=1,...,k— 1.

Proof. We will prove this lemma by induction. Recall that w is the complex number associated to the
geodesic arc e; on My = M. But this number can be interpreted as the pairing of the homology class
[e - e1] with [w], hence it is a linear function of Z. Note also that by the same argument, the complex

number associated to any path in My with endpoints in {x, ..., x¢} is a linear function of Z.
Consider the flat surface M. As a Riemann surface, M; can be identified with Pé. Set X; =
{x0, X1, x3, ..., x¢}. Let Lj be the rank one local system on Péj \ £, with monodromy exp(2imu,) at x;,

for s =0,3,...,k, and exp(2ur(u; + pp)) at X;. The flat metric of M, is thus induced by a L;-valued
meromorphic 1-form w; € I“(Pé:, JTQ(Ly)) with valuation —u; at xg, for s = 0,3, ..., k, and —(u; + o)
at Xq.

Let T be an embedded tree in M| whose vertex set is equal to {X1, x3, ..., x¢}, and whose edges are
geodesic segments in M. One can construct such a tree by seeking for instance the paths of minimal
length joining *; to the other cone points xs, ..., x;. Let a}, e, a}c_z denote the edges of T;. Fix a
multivalued horizontal section e; of L;. Then {[e; - a}], ... er - a,i_z]} is a basis of Hllf(P(é \ fl, L)) =
H\(PL\E,Ly),

Set z} = ([e - a}.], [wi]), for j = 1,...,k — 2. Since the complex number associated to any path

with endpoints in fll \ {xo} can be also interpreted as the pairing of [w;] with a homology class in
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HY(PL \ £, L)), it follows that such a number is a linear function of Z' := (z},...,z} ,). From
Lemma we deduce that the z}’s are linear functions of the vector Z. Therefore, the complex

number associated to any path in M with endpoints in il \ {xo} is a linear function of Z. In particular
w» is a linear function of Z. The rest of the proof follows from an induction argument. O

Lemmaimplies that the correspondence ¥ : ck1 5 ck-1 1, z—) > (Wi, ,wi_p) is a
linear map. Our goal now is to show the following.

Proposition 6.7. The linear map ¥ is an isomorphism.

Proof. Let L be the holomorphic line bundle over Mo+ associated to the weight vector u (see
Section[2.3)). To show that ¥ is an isomorphism, we will show that ¥ is injective in a neighborhood
of Z. For this, we consider w as an element in the fiber of the line bundle £ over the point m =
(Pé, {x0, X1, ..., xk}) € Mox+1, and identify a neighborhood V of Z in Ck1 with a neighborhood of w
in the total space of L.

We can always assume that xp = co, x; = 0, x2 = 1. A point m” in Mo x+; close to m corresponds to
a tuple (PL, {c0,0,1, x’3, e, x,’(}), with xl’. close to x;. Hence an element of L close to w can be written

as
k

W =e- Z_“I(Z _ 1)—,112 l_l(z _ xl{)—mdz
i=3
where 1’ € C s close to A, and e is considered as a horizontal section of L on m’.

Assume that we have Z’" and Z” in V such that ¥(Z') = Y(Z”) = W' = (w},...,w,_)). Let o
and «"” be the points in £ corresponding to Z’ and Z”. The projections of «’ and w”’ in M4+ are
denoted by m’ and m"’.

Let M’ and M" denote the flat surfaces defined by «’ and «"’. By definition, the vector W’ records
the complex numbers associated to the bases of k — 1 cones added to M’ (resp. to M”’) to obtain a
flat surface M;_, (resp. M}’ ) with a single singularity. Observe that the surfaces M;_, and M’ | are
both isometric to a standard infinite Euclidian cone C with apex angle 2x(1 — (u; + - - - + ). For the
sake of concreteness, C is defined by the flat metric |z|72Wi++10)|dz]? on C. Note also that C is also
isometric to Mj_;.

Given C ~ M;_;, we can recover M from W = (wy,...,wy—1) as follows: since Cy_; is a neighbor-
hood of the apex of M;_;, we can choose a developing map for M;_; such that the complex number
associated to one of the geodesic segments in the base of Cy_; is wy—;. Cut off the cone Cy_;, and
glue the two geodesic segments in the base of Cy_1, we obtain the flat surface M;_, having two singu-
larities. By construction, the cone C_; is a neighborhood of one of these singularities. The complex
number wy_p determines the embedding of C;_, into My_,. Therefore, we can then continue the
cutting-regluing operation to remove the remaining k — 2 cones and get back to the surface M’. Note
that along this process, one needs to keep track of the developing map chosen for C ~ Mj_;.

Clearly, we can recover M” and M” from W’ and W” in the same way. Since M;_, and M;’ | are
isometric, and W’ = W”, we can conclude that M’ and M"" are isometric. The isometry between M’
and M”’ induces an isomorphism between m’ and m"’. Therefore, we have m’ = m’’, which means that
w’ and w” belong to the same fiber of L. Hence, there is a complex number A such that w’ = Aw”, or
equivalently Z" = AZ”. Since ¥ is a linear map, we have W¥(Z') = A¥Y(Z") & W’ = AW’. Recall that
by construction, all the coordinates of W’ are non-zero, thus we must have A = 1, and Z’ = Z”’. The
proposition is then proved. O
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6.6. Proof of Proposition [6.1}: case of codimension one. We now give the proof of Proposition [6.1]
in the case r = 1, that is m is a generic point in a divisor Dg, where S = {ly, I} € P (see Section .
We can assume that Iy = {1,...,np} and I} = {ng + 1,...,n}. Let CSI,C,L be the corresponding
irreducible components of C,,. Fori = 0, 1, let {;, ;, fli, L;, w;, T; be as in Section
Let ((.,.))o be the Hermitian form on H 1(CS1 \ 20, Lo). By Proposition , we know that ((.,.))o has
signature (1,ng - 2). Let £ = (¢”,...,& ) e €1 (resp. €1 = (¢",..., & ) € C"~1) be the
vector recording the pairings of [wq] (resp. [w1]) with the basis of H{f(Cf)n \ ﬁo,fo) associated to T

(resp. the basis of H{f(C}n \ £;,L,) associated to T). Let Cn,r) be the stable curve obtained from the
plumbing construction in Section 4] where 7 € D 2. We need to show the following

Proposition 6.8. There exists a positive definite Hermitian form ((.,.)); on C"~! depending only on
(Ung+15 - - - » M) Such that, if wgny is the element of H I’O(C(m,,) \ %, L) defined in Lemma then we
have

(16) (@) [@emn]) = (P, EMo = IPHO(ED, £V
Proof. Let M be the flat surface defined by wp on CY, M the surface defined by —¢!*w; on C}, and

m>
M the flat surface defined by W, on Ciyp. Let (F, U, G, V, c) be the plumbing data as in Section Ef}
Choose a constant 7 € (|t|/c, c), and let y, be the curve in C, ) which corresponds to the set {p €
U |F(p) = 1} = {q € V,|G(g)| = |t|/T}. Since the metric defined by wq in U is the pullback of

rl-Ho I
I-fio *

|F (z)l‘zﬁOIdF (z)lz, we deduce that y; is the set of points whose distance in My to 3 is R(7) :=

particular, y; has constant curvature 1/R(7) and length equal to 277!,

The curve y, cuts M into two subsurfaces, the one that contains X; is denoted by M;. The obser-
vation above implies that IM7 is convex. Remark that M can be viewed as a subsurface of M;. By
definition, M{ contains n; cone singularities corresponding to the points in X; in its interior. Since the

sum of the curvatures at those points is smaller than 27, one can add ny — 1 cones Cy, ..., C, -1 to M7
to get a flat surface Mf having a single singularity with cone angle 27(1 — fip).
Let W = (wq,...,wy,—1) be the vector recording the complex numbers associated to the bases

of the cones Cj,...,C,_1. By Proposition there is a linear isomorphism ¥ of C"'~! such that
W = _tl—ﬁo\y(é:(l)).

Recall that the total area of the added cones is equal to Z?:‘II cilwil”, where the c¢;’s are real posi-
tive constants determined by the weight vector (up,+1, ..., u,). Therefore, there is a positive definite
Hermitian form ((.,.)); on C"~! such that

|2

ni—1

D Area(C)) = [ (ED, €D,
i=1

We now remark that MIT is isometric to a subset of the Euclidean cone C defined by the metric
lzI72%|dz|* on C. Since BM{ ~ vy, has constant curvature 1/R(t), y, corresponds to the set of
points in C whose distance to the apex is R(7). Hence M{ is isometric to the flat surface defined
by |z]7%9|dz|? on the disc D;. It follows that M{ is isometric to the flat metric defined by wq on the set

{peU|F(p)l <7} .
Let M" be the flat surface obtained by gluing M| to M along y;. From the argument above, we

conclude that M7 is isometric to M. Since Area(M) = Area(M") — 3 <i<,, -1 Area(C;) = Area(My) —
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21<i<n, Area(C;), we have

(([Wnp] [0 D) = (([wol, [wol)) — 1P (ED, D))y = (€, €))g — [P (D, D)y
O

Remark 6.9. In [22], Thurston introduced a completion /T/(g’n of My, with respect to the complex

hyperbolic metric induced by L. The space M&n is equipped with a cone-manifold structure. In this
setting, m corresponds to a point in a stratum of codimension n; — 1 representing the flat surfaces on
which all the cone points in X; collide. The quantity 1 — fip can be interpreted as the scalar cone
angle at m (see [22| Sec. 3]). Note also that if m = (mg, m;) with m; € Mo, +1, then the flat surface
corresponding to m is uniquely determined (up to a rescaling) by mg. Thus for all m| € Mo, +1, the

the point m" = (mg, m}) represents the same element of /Vgn
6.7. Proof of Proposition [6.1: general case.
Proof. Let ¢/ 0 be as in the proof of Lemma where C” .y = Cany- Recall that ¢/l

(m,ty,...s (Mt 5eety (myty,..ntje)

is obtained from C‘gm o) and C{,,H by a plumbing construction at the principal node of C,],,H. There-
Al

fore Proposition [6.1] follows from Proposition [6.8] and Lemma 5.5 by induction. i

7. SINGULAR KAHLER-EINSTEIN METRICS

Our aim now is to explain that the metric constructed in the previous section on My, is actually a
singular Kéhler-Einstein metric on My ,, and that this fact will enable us to compute the volume of
My, endowed with this metric.

7.1. General setting. We recall some basic facts about singular Kéhler-Einstein metrics on projective
varieties in a simplified setting as we will not need a very high degree of generality (for instance,
see [3] and [[10] and the references therein for a more general exposition).

In general, we will identify a Hermitian metric on a complex manifold with its associated (1, 1)-
form. Given a divisor D, we will often use the same notation for the (1, 1)-cohomology class it defines.
The support of D will be denoted by |D|. By a slight abuse of notation, when D is a Z-divisor, we will
denote both the associated holomorphic line bundle and the rank 1 locally free sheaf of holomorphic
sections by O(D).

7.1.1. Singular metrics on R-line bundles. Let X be a complex projective manifold of dimension
N and D = Zf.‘zl A;D; an R-divisor, i.e. for each i, D; is an irreducible and reduced subvariety of
codimension 1 and A; € R*. As in the case of a Z-divisor, we can attach to D an “R-line bundle” O(D).
The latter can be endowed with a “metric” which writes locally on a suitable covering (V) of X as
e~%i, where the real functions ¢; satisfy compatibility properties analogous to the case of a line bundle
in the usual sense (see [8], §19.A). The regularity of ¢; will be discussed later on, but let us say that
they are in LIIOC. In general, abusing notation, we write ip = e~?? for this metric. The “curvature”
of hp is the globally defined closed (1, 1)-current :®(hp) = ﬁ@(%l) = dd°¢p and is a representative
of the cohomology class {D} € H LI(X,R). Here d = 0 + d and d¢ = ﬁ(& — 0) which are both real
operators.

For instance, if we have some section of O(D;) whose zero divisor is D; given by a holomorphic
function f; in local coordinates, then we can take ¢p = Zle A;log|fi>. By the Lelong-Poincaré
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formula we have 1®(hp) = Zf:] A;ID;] = [D] where [D;] is the current of integration over D;. It will
be more convenient to choose an arbitrary smooth metric iy on O(D) and to write the previous metric
hp = e ¥Phg for some function ¢p : X — [—co, +00) which is smooth on X\|D|. If we let ®y be the
curvature of /g then [D] = @¢ + dd pp. In particular, we have ®g = —dd“pp on X\|D|.

7.1.2. Singular Kdhler-Einstein metrics and their volume. From now on, we will assume that D is a
R-divisor with simple normal crossings and that the pair (X, D) is kit (for Kawamata log terminal),
which will just mean for us that 4; < 1, in particular D is not necessarily effective.

Let us fix a smooth volume form dV on X which is the same as a smooth metric on the anti-
canonical line bundle —Ky := ANTy. The opposite of the (1, 1)-form associated to the curvature of
this metric, that we will denote in a standard way by Ok, := ddlog(dV), is a representative of the
first Chern class ¢1(Kx).

The following proposition will be our main tool for the proof of Theorem [I.1]

Proposition 7.1. Assume moreover that we have a smooth Kdihler metric Q on the restriction of the
tangent bundle Tx to X\|D| which satisfies
(1) Ric(Q) = —cQ on X\|D|, where Ric(QQ) = —dd° log(QN) is the Ricci form of Q and c is a
positive real number;
(ii) there exists a continuous function ¢ on X and smooth on X\|D| such that QN = ¢#~¢2dV on
X\|D|, where @p is as above.

Then the extension Q of Q by 0 satisfies
Ric(Q) = —cQ + [D]

in the sense of currents, namely Q is a singular Kihler-Einstein metric attached to the pair (X, D) and

in particular we have c{Q} = c¢;(Kx + D). Moreover,
1
(17) f QN = —(Kx + D)".
X\ID| c

Condition (i) means that Q is a Kéhler-Einstein metric on X\|D| with negative Einstein constant —c
and condition (ii) imposes some control on the behavior of QV at infinity i.e. near the support |D| of
the boundary divisor. Remark that (X, D) being klt precisely implies that QV is integrable near the
boundary.

In order to prove Proposition [7.1|we will need the following simple

Lemma 7.2. Let Q be a smooth closed positive (1, 1)-form on X\|D| and assume that Q has continuous
local potentials on X, i.e. for any x € X, there exists a neighborhood U of x in X and a function
wu : U — R which is continuous on U and smooth on U\|D| such that Q = dd°¢py on X\U. Then
the extension Q by 0 of Q to X is a well defined closed positive current on X, and for any x and U,
Qu = ddpy in the sense of currents.

Proof. By assumption, ¢y is psh on U\|D| and by standard arguments (see [9]] for instance), it is
known that ¢\ p can be extended in a unique way as a psh function on the whole of U. In particular,
the extension belongs to Llloc(U ). But as ¢y is continuous, this extension is actually ¢y. Moreover,

still as ¢y is continuous, its Lelong numbers along D vanish hence Q is well defined and coincides
with dd“¢y on U. O
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Proof of Proposition[7.1] Set® := O, +0y. Note that ® is a smooth form on X. Since @y = —dd“¢p
on X\|D|, (i) and (ii) imply that ¢ Q = ®+dd p on X\|D| and in particular ® +dd ¢ is a positive current
on X\|D| (we also say that ¢ is ®-psh). By the previous lemma (applied locally to ¥y + ¢y where Yy
is a local potential of the smooth form ©), the equality ¢ Q = @ + dd“y is valid on X i.e. ¢Q and ©
both are representatives of c{(Kx + D). We now obtain from (ii) that

Ric(Q) = —ddp + dd°op + Oy — ©® = —cQ + [D].

In general, if T is a closed positive (1, 1)-current on X, it is not always possible to define 7V in a
reasonable way. However, if T = ® + dd“p with ® smooth and ¢ locally bounded then, following the
work of Bedford-Taylor [2], one can define a closed (p, p)-current 77 for any p > 1 and moreover
{TP} ={T}" (7], Cor. 9.3).

In our case where T = Q as above, we hence have {QV} = clN(KX + D)N. Finally, as the wedge
product in the sense of Bedford-Taylor puts no mass on pluripolar sets (as a consequence of the Chern-
Levine-Nirenberg inequality, see the comment following Proposition A.6.3 in [20]), we conclude that
the volume of X\|D| endowed with the smooth metric Q satisfies equality (T7). O

7.2. Singular Kihler-Einstein metrics on Mo,n. We shall apply now the formalism of the previous
section to the situation where X = Mo,n, and X\|D| = My, (here N = n — 3). Recall that we defined
D, := )5 As Ds where

As = (L] - Dus -1 +1
if § = {Io, I} and, exchanging Iy and I; if necessary, us := > s;, 45 < 1 (us = flp in the notation of
Section ). Observe that each As is smaller than 1. Here and in the sequel, the sums are always taken
over all the (unordered) partitions S € P i.e. satisfying min{|ly|, |1;]} > 2.

Proposition 7.3. The extension by 0 of the Chern form €, defined in Proposition is a singular
Kdihler-Einstein metric attached to the pair (Mo, D,). More precisely, Ric(Q,) = —=(N+1) Q, +[D,]

and
N

1
QN = —— k- + As D,
fM g <N+1>N[ Mo ; STs

Proof. We will check that assumptions (i) and (ii) of Proposition are satisfied.
Let us first recall a few basic facts about complex hyperbolic N-space: it can be seen as the unit
ball BY ¢ C¥ c PY and we can identify its group of biholomorphisms with PU(1, N). We restrict to

B" the exact sequence of vector bundles
O—>L—>QNJrl - 0 -0,

where L is the tautological line subbundle of the trivial bundle CV = Pg xCN*! and Q is the quotient
bundle. The group U(1, N) acts on this exact sequence and preserves the constant Hermitian metric
of signature (1, N) on QN *1. In restriction to L, this metric is positive definite and hence defines a
Hermitian metric on the line bundle L. The Chern form c;(L) associated with this metric is a positive
(1, 1)-form on B", and the corresponding metric has constant holomorphic sectional curvature: it is
Kéhler-Einstein and Ric(c;(L)) = —(N + 1) c1(L). That the Einstein constant —c is equal to —(N + 1)
is due to the fact that on BY, the tangent bundle is naturally isomorphic to Hom(L, Q) hence the
canonical bundle can be identified with LV*!. As £ is the pullback of L by an immersion, this proves
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that €, defines a metric on Mo, and that Ric(€,) = —(N + 1), on My, i.e. assumption (i) is
satisfied with c = N + 1.
Proposition [6.2] gives the expression of the metric €, in local coordinates centered at a point m of

Mo.,. More precisely, recall that locally it is the pullback of the complex hyperbolic metric on BY by
the multivalued map

@ttsentn s ) o @ PIO, L PO, PIZ L P
where r is the number of vital divisors crossing at m, z/eCki-3and P (1) is described in Lemma

As the volume form associated with the complex hyperbolic metric on BY is

1 \N 1
(%) W(IWl /\dWl A "'/\dWN/\dWN
a straightforward computation shows that in the above coordinates
o ( . )N dz’ AdZ’ A Ny vilGIRIP O dr; A dip A Ny 1P O dz) A dZ
2 (1= 101 = X5y IPOPA + lZP)™
(L)N [Ty (IR OP%2) Ny d2d AdZl A Ny dt A d
21 (1= 1O = £y 1P R+ Iz

where forany j = O0,...,r, dz/ A dz/ stands for /\iz ;3 dz{ A lej )
If r = 0,1ie. if m € Mo,, then Q, is smooth in a neighborhood of m. Assume now that r > 1.
The divisors Dg; passing through m are given by 7; = 0, 1 < j < r, and they correspond to partitions

S = {Ié, I{ } (see Section . We have to determine the power of |t jl2 in the numerator of Qﬁ’ . From
the combinatorial description in Section 5, we see that Itjlz"f' appears (II{ | — 1) times (which is the

dimension of the stratum MO el plus 1) in total in the product of the |P;|*%i=2) 5o that the power of
|

112 s (F] = Dyv; — 1 = =] = 1)(us, - 1) — 1 = —As, hence
)N [Ty vi Ny dtj Adija Nigddd AdZ

= ¥ udV
Ty 2511 = 101 = X0y 1P 0RA + [l P!

1

o = (5

K 2

where, up to the multiplication by smooth functions, ¢ = —log(1 - 112°11% - Z;zl IPj(t)Iz(l + ||zj||2))N+l,
¢, = X'y As;loglel* and dV = Ny dij Adiy A N_gdz! Adz.

Finally, by Remark [6.3] ¢ is continuous and hence assumption (ii) of Proposition [7.1]is also satis-

fied, which completes the proof. O

7.3. Proof of Theorem [I.1} Having proved Proposition we just need to explain how we obtain
alternative expressions of Kﬂo + Y s AsDs. We first notice that the canonical divisor Kﬂo can be
expressed in terms of the vital divisors Dg. Indeed,

Kﬂo,n ~—20
where ¢ = 3, ¥, is the y-divisor class (see [1} p. 335]), 6 = } s Dg is the boundary divisor, and ~

stands for the linear equivalence of divisors (see [[L, p. 386]; here we use that Moﬂ is a fine moduli
space and that the Hodge bundle is trivial on My ,).
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For pairwise distinct i, j, k € {1,...,n}, denote by ¢, the divisor in Mo,,, corresponding to curves
with a node separating the i-th marked point from the j-th and k-th marked points. It is well-known
(see [25] or [I} Chap. 17]) that for any such choice of 7, j, kK we have y; ~ ¢, ;x hence

(n= 1) =20 ~ > S = ) (ol (KT = 1) + L] Holfol = D)Ds = (n=2) > ol 1| Ds
i.jk S S
and substituting ¢ in the above expression of Kmo we get

-2 -2)=-2
~QZ(|IO| )L =2) D

n—1

Kﬂ(),n

S

where ~q stands for the Q-linear equivalence of divisors. Thus, we obtain

18) Ky, + D AsDs ~a O (111 = 1){s = oz Ds.
S N

Now, recall that N = n — 3 and notice that

2n = (111 = 1){s = 5 ) = 2041~ 1~ yas = )
= (=24 I - o) — Dyas — 201151 — 1)
= (1= 2)(n - Vs + (11~ WD+ Vol = D = 211111~ 1)
= (1=2)n - D + (111071 = 1) = ol(ol = 1)) = 2411011 - 1)
= (1= 2)n— Vs — Hol(lol — Dpas — 2 — )N 111 - 1)

By a similar computation as above we gelﬂ

(=1 =2) ) it~ Y Hidi

i jk
= (01001 =1) )" i+ Uol(hol = 1) > pi)Ds
S i€ly iel)
= > (1001 = D)@ = ) + Uol(ol = Dps)Dss
S
and therefore
2
19 (K— + ) AsD ) ~Q — + Ds.
(19) N+ D\, Zs: sDs|~a Zslﬂslﬁs Zslﬂs S
Remark 7.4. If we define #’ to be the set of unordered partitions of {1, ...,n} into two non-empty
subsets Ip LI /; then with the convention Dyy) (5 = =5, we get the expression
1
() =3 > usDs.

Sep’
Finally, formula and together with Proposition[7.3]imply Theorem 1.1

e are grateful to D. Zvonkine for explaining this trick to us
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7.4. Comparison with McMullen’s formula. In [17]], C. McMullen proves a Gauss-Bonnet formula
for cone manifolds. Using in particular the fact that on the unit N-ball there exists a PU(1, N)-invariant
metric with constant holomorphic sectional curvature, the formula enables him to calculate the volume
of My, endowed with the metric ,, by computing the orbifold Euler characteristic of Mo,n (here,
“orbifold” has to be taken in a very general sense). From this point of view, our strategy is somewhat
similar to this approach, since we can interpret cl(K + D,,) as an orbifold first Chern class. If X is
a smooth N-ball quotient then by the Hirzebruch proportlonahty theorem, the total Chern class of X
is given by

N+1 N+1
K
0 =1+ c1(X) _ (- a&x)
N+1 N+1
hence we have the following equality
o} (Kx) = (=D + DY x(X)

(where y(X) = cny(X) is the Euler characteristic of X). In general, the above equalities make sense at
the level of the PU(1, N)-invariant forms on B which represent the respective cohomology classes.
As the metric g, of McMullen is normalized in order to have constant holomorphic sectional curvature

—1, we have Ric(g,) = 2171' N2+ 1 gy hence, if w,, is the Kéhler form associated with g, ¢1(X) = —I%wﬂ

and cy(X) = (=N (NJr)}V)wN , as pullback of PU(1, N)-invariant forms on BY. Asa consequence, the
volume we compute and the one computed by McMullen are related by

I N -DY
fM % :(4n)NfM W = G VOl Moa 8) = )

where P(u) is the orbifold associated with the weights y considered by McMullen. In summary, we
get the

Corollary 7.5.
- - IQl+1 _ lBl 1
( Zus;bﬁZust (N 1) Z( D@ - 3! | [ max(0,1- > w)
§ S BeQ i€B
where Q ranges over all partitions of the indices {1, ..., n} into blocks B.

8. A MORE ALGEBRO-GEOMETRIC APPROACH

8.1. Kawamata’s extension. Through out this section, we will assume that all the weights (i) are
rational numbers. If d € N* is such that dy € N for all s, then the local system L®¢ on P[. \ Z is trivial.

Y. Kawamata proves in [[13]] that the line bundle £?4 has a natural extension to M),n that we denote
abusively by 2% (ie. Lis only a Q-divisor). This extension is constructed in the following way: it
follows immediately from the description in Section that £#4 is isomorphic to 1. 0(d(Ke,,, Mo, +
2sMsT5)), where Iy is the divisor given by the s-th section of the universal curve, and K¢, /pm,, =
Kg, ® K/\\//lo is the relative canonical bundle of the fibration 7, : 60, — Mo,. Observe that

for any m € My, deg(choyn I Mot (m)) = deg(KP}C ) = —2 and since )}, u, = 2, the restriction of
O(d(K%,,,/ My, + 25 s T's)) to any fiber of 7y, , is trivial. Therefore, 7.0(d(K¢,,/mo, + 25 HsTs)) is
indeed a rank 1 invertible sheaf on Mo,,.
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The first task is to extend O(d(K«,,,/m,, + 25 45 s)) to a line bundle on €., Whose restriction to
each fiber of m over My, is still trivial. Kawamata remarks that a natural such extension is given by

the divisor dA where
._ 1
A=Kz 3, + D kL= D (1= ps)F
N S

and the effective divisor ) g(1 — us)F é is defined in the following way: for any S € P, nY(Dg)is a

divisor in %O,n with two irreducible components F g and F }9 Over a generic point of Dg, these two
components correspond respectively to the two irreducible components of the nodal curve associated
with the partition S = {Io, I} (recall that by definition, us := 3y, s < 1).

It is easy to see that the restriction to each fiber xl(m) c ?O,n of the line bundle associated with

the above divisor is indeed trivial for any m € MO,,,. It is sufficient to check that its degree is O in

restriction to each irreducible component of any stable curve C,, = C% U --- U C’. First remark
—1 _ 0 1 : .« . . . . . 1 _ 0

that 77 (Dg) = Fg+ Fgis trivial in restriction to C,, and so, for any j, FS|C{;1 = _FS|C£,' As a

first consequence, if Fg N C,J,, = @ or F}S N C,J,, = @, then F}S‘ o = 0. Moreover, noticing that

I —ps =1=Yep Us = Xisery Ms — 1 for any S, we have (using the notation of Section |5.1)

i

Sj
(RO YIEVRT REVISED A WD YL
s S i=1

S€T; i=1
whose degree is indeed equal to 0. Finally, one defines £8¢ := m,0(dA).

Remark 8.1. In fact, we also have £%¢ = n*O(d(Kgo’” WMo

natural, even if less obvious at first glance; for instance, one has O(dA) = L%,

+ X s Ty)), but the divisor dA is more

8.2. Trivializations of Kawamata’s extension. In Sections 4| and |5} for each point m € Mo,n we
found a neighborhood U of m in Mo,n and we constructed a holomorphic section of £ on U N My,
that we denote by ®q, or simply by ®. We can regard ®®¢ as a holomorphic section of O(d(K«,,/m,, +
> usTy)) on N Un Mo,,). From the description in Section 4] we see immediately that as such,

®®? extends as a section of ()(d(l{?0 Mo, T > usTs)) on the whole of n~!(U) if m is a generic

point of Ds. Moreover, it vanishes exactly on F 39 up to the order d(1 — ug), i.e. it is a non-vanishing
holomorphic section of the extension O(dA) on 7~ (U), hence providing a local trivialization of the
line bundle O(dA) and so a trivialization of £%¢ on U. In the same way, it can be proven that ®®¢
provides a local trivialization of £®? near any point m of M),n but we omit the proof since we only
need to consider trivializations near generic points of aﬂo,n.

Recall that the line bundle £ is equipped with a metric coming from the Hermitian form ((.,.))
defined in Section [2.4] It is important to note that by Proposition [6.2] and Remark @], the induced
metric on £%¢, whose curvature on Mo, is d€,, extends as a continuous metric on £®4. Thus, by
Lemma the extension by 0 of €, is a representative of ci(L) = écl(.f@d). Summing up, we get
the

Proposition 8.2. Assume that 0 < ug; < l,uy; € Q forall s € {1,...,n}. Let d € N be a positive
integer such that du, € N for all s. Then the push-forward L% of the Kawamata line bundle O(dN\)

is an extension of L3¢ over Mo If m € My, is contained in a stratum of codimension r, with a
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neighborhood identified with V X (D,2)", then the section % on V x (D:z)’ defined in Section

extends naturally to a nowhere vanishing section of L8 in Y x (D). Moreover, the extension by 0
of Q,, is a representative of c1(L).

Remark 8.3. One can also prove that the restriction of £ to the stratum of m is the pull-back of
the d-tensor power of the induced line bundle on the u—principal factor Mo, (see Section |5|for the
definition of u-principal component/factor).

Actually, the above extension of ®®“ can be described in more concrete terms. For this, let us give
an alternative description of a plumbing family. Let m be a generic point of some divisor Dg with
S = {Iy, I}, and let CY = (PL, (0, (xy)sez,) and C} = (PL, (0, (v5)ser,) (here we denote the marked

points on C!, by y, rather than x,) where we use the conventions of Section |4, Consider the family C
of rational curves above a disc D centered at 0 which is described (in inhomogenous coordinates) by
@:C= {(x,y,0) € Pé: X Pé: x D, xy =t} — D, (x,y,1) — t (note that the fibers are all smooth except
the one above 0 which is a nodal curve with (0, 0) as only node). In this setting, I'y = {x} xPé: xDNC,
for s € Iy, and I'y = Pé: X {ys;} xDnN C,forsel 1. Remark however that in general, this family is
not isomorphic to the one described in the course of Section 4], where we used additional changes of
coordinates F' and G. Let p; : P%f X ]P(}j xD — Péj, i = 0, 1, be the natural projection onto the (i + 1)-th
factor PL. Define on P{, two sections

(dz)®d(2—us)

wy = eT(PL, d((2 — us)Kpt +2 ) sxs)
[Tyes, (2 — x) ks ( c Fe ;) o )
and
(dz)®ks |
w1 = EFP,d(ﬂsK1+2 /ly‘).
[yer, (2 = sy (Fe 42 o)

selq

+3 . u,Ts)) on C. Near the point (0,0,0) € C,

@_ﬂ)_d_x
X vy)  x

Then w = pywo® pjw; induces a section of O(Zd(KEm D

in the coordinates (x, y), a trivialization of K7 p, is provided by « = % (
have

d )
= _?y. Since we

(dx)®d(2—us) ® (dy)®dus
w= 2d 2di,
Hse[o(x — Xg)=Hs erll(y — yg)“Hs
the section induced by w (in restriction to C) is given by
xd(z—ﬂs)yd#s
K
nsel()(x - xS)ZdﬂS Hs€1| (y - Ys)Zd”S

If we factorize by (—xy)%#s = (=f)%™s and take the “square root”, we find

®2d

(_l)d#s

d(1-us)
X HS @d

Tm -

= K
l—lselo(x - xs)dll‘g erll - ys)dﬂs

Since 7,, does not vanish outside of the nodal curve C,, = @ !(0), _and vanishes to order d(1 — ug)
on the component C!, we conclude that as a section of O(dA) on C,,, T,, is equal to ®*¢ up to the
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multiplication by an invertible function on D. It will be more convenient below to use the coordinates
(x, 1) (even if those are only coordinates away from x = 0) in which

_ Hse[l (_xs)dlls
Hse[o(x - xs)dm Hseh (x - txs)d’uS

and where we used the notation x; := 1/ysif s € I;.

( d X)®d

Tm

8.3. Other formulas for the volume and proof of Theorem [I.2} As a direct consequence of the
discussion in Section[8.1] we get

Theorem 8.4. Under the assumptions of Proposition let o be a global section of £2¢ over Mo,n
and let us define D, := édiv(o-) where div(o) is the divisor of o. Then

1
Q) = ——(Ky; +Dy)" =DJ.
j/;((m M (N+1)N( Mon ﬂ) o

In what follows, we will construct explicitly a holomorphic section o of £® and determine the
corresponding divisor D,,. Our goal is to prove Theorem 1.2}

In [13]], Y. Kawamata constructs global sections of £® over Mo,n. For our purpose, we present
here a slight variation of those sections: define J = (ji, j{, ..., ja» J)) € N% by

s—1 s
Ji=sifd) p<i<d) m,
k=1 k=1

for all 1 <i < d, where by convention 2221 i = 0. The only two important points in the definition of
J are that (1) each s appears du, times in J, and (2) for any i, j; # j..
Foreach 1 < s < ¢’ < n, we define

’ 1 . P ’
A(s, s') = 3#{17 (i J7) = (5,5}

that is the number of times the pair (s, s”) occurs as (j;, j;) divided by d. Alternatively, with our choice
of J,

: s’ < s'—1 >
(20) Als, s') = { 0 I e i S 1OF s Mk 2 1 .
minfug, prg, Yp_ px — 1,1 =23 ", ux} otherwise.
Let {xi,..., x,} be n distinct points on Péj. For any pair (j, j/) of distinct elements of {1,...,n}, we
denote by w; y the unique non-vanishing rational 1-form on P&l,: with simple poles at x; and x;, and
satisfying resy; = 1, resy, = —1. If the points x;, x are in Pé.:\{oo} then
dz

wj,j, = (.Xj - Xj/)—(z — XJ')(Z — Xjr)'

Finally, let us define

d n
wy = l_[wfi*jf € F(Pé,d(KPé + Z/Jsxs))'
i=1 s=1
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Remark that w; is invariant by the action of PGL(2,C), thus it gives rise to a well-defined non-
vanishing section of £®¢ on My,,. This section extends to the whole MO,n as a section o of £%¢. We
are now going to determine its zero divisor div(c), whose support must be contained in the boundary
divisor of Mo,n, by using the above trivializations 7,,. Let us fix S = {ly, I} as before. In the notation
of Section[8.2] and using the coordinates (x, t) for the universal family above a small disc D transverse
to Dg at a generic point m, the section w; writes

" [T ety Xji = xj) Tiery jren (%5 = 1) T jeny jreny (0 = X0 T jreny #(xj; = xj2) (o
J =
Hselo(x - xs)d#‘r Hse]l ()C - txs)dﬂ‘Y

ie.
w;y = t#{i, j,-,j;e[l}f(t),rm — d Y 1<s<s’ <n 53(&,5’)/1(3,5’)}"([)7-”1

lif {s, s’} c L

. . As a consequence, we
0 otherwise q ’

where f is an invertible function on D and ds(s, s’) = {

obtain the

Proposition 8.5. The section w; extends as a global section o of £2¢ so that

1) £~y Dy = clldiv(a) = Z Z 5s(s, $)A(s, s') Ds.

S I<s<s’<n

Notice that o and D, depend on the multi-indices J. By choosing other multi-indices J satisfying
conditions (1) and (2) above, we would obtain other divisors to which £ is Q-linearly equivalent.

Proof of Theorem

Proof. Applying Theorem[8.4|with D, given by (21]), we see that Theorem [I.2]is proved if the weights
in u are all rational. If not, one can approximate them by rational numbers in such a way that the
numbers Js(s, s”) remain unchanged. From (20) we see that A(s, ") depends continuously on u. Thus
D, depends continuously on . On the other hand, from Theorem|[I.1] we know that the total volume
of My,, with respect to €, depends also continuously on u. Thus by continuity with respect to p,
Theorem[I.2]is shown in full generality, that is for all u satisfying the hypothesis of Theorem|[I.T] O

8.4. Another look at Theorem[I.1} As a final remark, we would like to show now that the point of
view adopted in this section also provides an alternative way to find the expression of {€2,} obtained
in the proof of the main theorem.

Here, as before, we have to assume the weights u; to be rational, multiply them by a positive
integer d in such a way that the numbers du; are integers, and consider £®¢. The general case of
real weights then follows again by continuity arguments. However, as the reader can easily check, the
computations can be made directly as if £ was actually a line bundle.

In Section we exhibited sections of £ whose zero divisor provides representatives of ¢;(£)
which is equal to {€,}. As £ is the pushforward of a line bundle on the universal curve, it is also
natural to use the Grothendieck-Riemann-Roch formula to compute ¢ 1(£).

Again, we refer to [[]] or [25] for the basic material. Let us define A as the codimension 2 subvariety
of ?O,H consisting of the nodes of the singular fibers of the projection = : %O,n — Mo,n and K =
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K%O,n /MO,VL(ZS I'y). The Todd class of « is given by

_ 1 1 2 2
td(m) =1 - E(K‘ZFS)J“ E(K +Zs:rs +A)+..
and recall that £ = 7,0(A) where
— 1
A=Kz i+ D iD= ) (1 pg)F.
s S

Notice that R'7.O(A) = 0 as O(A) is trivial along the fibers of 7, hence by the Grothendieck-Riemann-
Roch formula, a representative of ¢1(L) is

%n* {(K + (= DTy + > (s = 1)F§)(Z uls+ ) (us - 1>F§)}
s S s S

because %n*(Kz +3, 2+ A) represents the first Chern class of the Hodge bundle, which is trivial on

M),,,. Now, it is well known that for any s and any 5" # s,
K-Ty=0, Ij-Ty =0, m.(l?)=—y,

and straightforward computations show that

n.(K-F5) = (|- 1)Ds, m.(FL-FL)= { —?)s gg ’ g and 7. (F-T,) = { 123 e 2
for any s, S and §’. Therefore,
ad =3 [— Z}usws - D+ ;usws - 1)03}-
Finally, by a slight variation of the computation in Section [/.3| we obtain
(=2 > Q- = D i+ i
i i jk
~ iﬂi(ﬂj + Mi) i) jk
i jk
= 00 =0 D i+ (ol = D) Dy Y mi)Ds

S j€[| iely jGI() iel}
= (1-2) ) ps2-ps)Ds
S

which implies

ad) = % = Y ks + > usDs
K S

as expected.
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APPENDIX A. INTERSECTION THEORY ON M,

In this section we describe an algorithm to compute the intersection numbers of vital divisors in
MO,,,. This algorithm is well known to experts in the field and can be found in [16]]. We include it
here only for the sake of completeness. We are grateful to D. Zvonkine for having explained it to us.

Intersections of vital divisors in /7(0,,1 will produce formal sums of trees whose vertices are labelled
by subsets in a partition of {1,...,n}. At every vertex, the sum of the cardinal of the corresponding
subset and the number of edges containing it must be at least 3. Such a tree corresponds to a stratum
of /T/(O’n. Note that we allow @ to be part of a partition. A vital divisor Dg, where S = {ly, I} is a
partition of {1,...,n} such that min{|ly|, |/;|} > 2, corresponds to a tree with two vertices labelled by
I() and / 1.

Here below we will give the rule to compute the intersection of a divisor Ds with a tree T as above.
Recursively, this allows us to compute any product Dg, - --- - Dgs, ,. We first color the vertices of
T with respect to the partition {/o, I;} as follows: the vertices labelled by subsets contained in Iy are
given the red color, those labelled by subsets contained in /; are given the blue color. The vertices
corresponding to subsets which are not contained in /y nor in /; are given the black color. Finally, the
vertices corresponding to the empty set are given the white color. We have three cases:

e Case 1: there is more than one black vertex. In this case the intersection is empty, we get 0.

o Case 2: there is exactly one black vertex. If there is an edge in T which connects a red vertex
and a blue one then we get 0. Otherwise the black vertex separates the red vertices from the
blue ones. We subdivide the subset corresponding to the black vertex into two subsets: one is
contained in /Iy, the other in ;. We then replace this vertex of T by an edge whose ends are
labelled by the two subsets above. We color the new vertices using the same rule. There is
a unique configuration such that the new edge separates the red vertices from the blue ones.
The intersection is then given by this new tree.

e Case 3: there are no black vertices. We will say that a vertex or an edge of T separates the red
vertices from the blues ones if it is contained in any path joining a red vertex to a blue one.
We have several subcases:

(a) There are no edges and no vertices that separate the red vertices from the blue ones. In
this case the intersection is 0.

(b) There are no edges that separate the red vertices from the blue ones, but there is a vertex

A that satisfies this property. Note that A is then unique. We first notice that all the leaves
of T must be either red or blue. Thus we can subdivide the set of edges incident to A into
two subsets: E’ is the set of edges that are contained in some paths joining A to a red
leaf, E” is the set of edges that are contained in some paths joining A to a blue leaf. That
{E’, E"} is a partition of the set of edges incident to A is a consequence of the hypothesis
that A separates the red vertices from the blue ones.
We form a new tree by splitting A into two vertices A’, A” connected by an edge, where
A’ is attached to all the edges in E’, and A” is attached to all the edges in E”. We
associate to A’ the subset A N I, and to A”” the subset A N [;. In more concrete terms, if A
isredthen A’ = A,A” = @,if Aisbluethen A’ = @,A” = A,if A = @thenA’ = A" = @.
This new tree is the intersection of Dg and T. Notice that it is necessary stable because
otherwise, there would exist an edge separating the red vertices from the blue ones.
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(c) There is an edge e that separates the red vertices from the blue ones. In this case this
edge must be unique. Let A and B denote the ends of e. By a slight abuse of notation we
will also denote by A and B the corresponding subsets of {1,...,n}. Note that A and B
can be empty.
Let A be the union of the indices contained in A and the edges incident to A. We pick a
pair {a;,a} in A such that e ¢ {a1, a»}. Consider all the partitions of A into two subsets
{A;,A,)} such that e € Ay, {a;, a2} C Ay, and min{|A;|,|A,|} > 2. For any such partition,
we remove the vertex A from T and construct a new tree from T as follows: form two
new vertices A; and A, attach A; to all the edges in A; and add a new edge connecting
A; and A,. The new vertex A; is associated with the set of indices in {1, ...,n} N A;. Let
24 denote the formal sum of all the trees obtained this way.
We apply the same to B, and let £ denote the corresponding formal sum. The intersec-
tion of Dg with T is then equal to —(£4 + Xp).
The intersection number Dg, - - - - - Dg, , is then the sum of all the coefficients of the trees in the final
formal sum obtained from this algorithm.

Using this algorithm, we can compute the intersection numbers of vital divisors in MO,S and M()ﬁ.
As S = {Ip, I} is of course determined by either Iy or /1, we denote below Dgs by Dy, or Dy, .

Casemoj.
Dij-Dij=-1, Djj-Dy=0, Djj-Die=1.

Case /T/(()ﬁ. Recall that D; - D; = 0 if neither of J and J€ is contained in / or in /¢. The intersections
which do not vanish due to this simple rule are recorded here below.

D,’j'D,’j'D,’jZ 1, D,’j-Dij'DiijO, D,’j'D,’j'Dk,gZ—l,

Dij- Djjx - Dijx = =1, Djj- Djjx - Dyp =1,

Diji - Dijc - Dijx = 2,

Djj - Dy - Dy = 1.

ApPENDIX B. COMPUTATION OF THE VOLUME IN M 5

Here we compute the volume of My s with respect to Q,, using the results of Section (8l We may
assume that 1 > yy > pp > 3 > pa > ps > 0. Note that in any case, gy + pq < 1 since ), u; = 2. As a
consequence, only the following can happen:

® ur+pu3z<1and
LM+ pus > 1
Dy = (1 —u)Di3 + (1 — p1)D1s + (1 = uy1)Dos and

f Q =1-m)
Mos

CHrt ez Ly +ps < L
Dy = (1 —u1)Dy3 + usDyg + (1 — uy — pus)Dog + usDos and

[ @=a-mp-a-m-psp
Mos
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T T S TV &
Dy = (1 —u)Di3+ (1 —po — u3)D14 + (1 — uy — pus)Dog + usDos and

fQﬁ=<1—m>2—<1—u1—u4>2—<1—u1—u5>2
Mos

> L 3 <1
Dy = u3Di3 + (1 — po — u3)D1g + (1 — uy — pus)Dog + usDos and

f QZ =2uzps — (1 =y — pa)* = (1 = pp — pa)?
Mos

LM+ < 1
Dy = (1 —pg —ps)D13 + (1 —pup —u3)Dig + (1 — pry — pus)Dog + (1 — p3 — pa)Dos + (1 — uy — p2)D3s

5

5
and [ 03 =230 = =1 = o) = D (1 == e’
0,5

i=1 i=1
o (i +uz>1and up +uy < 1:

Dy = (ug + ps)Dy3 + paDog + psDops and

f Q) =2p4ps.
Mos

All the formulas are obtained as a straightforward application of Theorem [8.4] However, one can
prove after some more (tedious) computations that if gy + u3 < 1 and yy + ps—1 > 1, g + py < 1 for
some 2 < s < 6 (which happens for all but the last exceptional case) then

5
[ o= = Y

i=s

ApPPENDIX C. AN EXAMPLE IN My ¢

The fact that €, is a representative of the first Chern class of the Kawamata line bundle £ can
be exploited to simplify the evaluation of f Mon QZ‘3 in certain cases, especially when the weight
vector u has some symmetry. To illustrate this observation, let us consider the family of weights
u=(o,aap,pB,pB),wthO < <aand a + 8 = 2/3. Assume that o and § are both rational, we can
find d € N* such that de € 2N and dB € 2N. Define a section o of the Kawamata line bundle by

a a a B B B
_ (=) = x3)®2 (a3 — )% (g — x5) 72 (x5 — x6) 2 (w6 — x4) " Y
(z = x1)%(z = x2)%(z — x3)4(z — x4)%B(z — x5)%(z — x6)B

; 3
We will use the following equality (which is a consequence of Theorem f Mos Qi = (%) to
compute the volume of Mo with respect to €. ’
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In what follows, for any subset I C {1,...,6} such that 2 < |I| < 4, Dy is the boundary divisor of

M% corresponding to the partition {/, [°}. In particular, any boundary divisor of MO’G can be written
as Dy with |I] < 3. Set

A=D1, A= Z Z Dijr, B = Z D;j, C= Z D;;.

1<i<3 4<j<k<6 1<i<j<3 4<i<j<6
Applying the algorithm described in Appendix [A] we get the following

A3=2, A}=18, B’=3, (°=3,
A1A2 = 0,

AIB=AIC=-3, AB*=AC?=0,
A%B = A%C =-9, AB?=AC? =0,
B*C = BC? = -9,

A|BC = A,BC =9,

We have two cases
o Case 1 0<f<leoa>l Wehave 242 = ¥4, 1 24, + LB+ £C. Therefore
53
8
Bay+8A, + 2B+ EC. Tt follows

div(o)

3
) —(3A1+A2+3B+C)3(’8) _a8x P =6,

e CaseII: % B < % <a< % We have d1v(o-)

W=

( W(")) = S -3 + 1689 = 66" ~ 308~ 1)

d

To sum up, we have

| 1
f O3 = 68 - 3(max{28 - -, 0})%, forall f € (0, <.
Mog 3 3
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