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ABSTRACT. We correct an estimate in the proof of Lemma 7 in [10], and this
leads to a modified condition for the parameter w in Theorems 1 and 3. We
propose corrected statements of Theorems 1 and 3. We also correct Theorem
2 and establish a weaker version.

A certain incorrect estimate in the proof of Lemma 7 in the paper [10] led to a
rather relaxed condition about the parameter w in Theorems 1 and 3, which made
the corresponding statements incorrect. Here, we propose corrected statements of
Theorems 1 and 3 and provide a corrected proof of Lemma 7 under a modified
condition for the parameter w. For completeness, we present all details in the
proof of that lemma. The proofs of the other lemmas remain the same as well as
the derivations of Theorems 1 and 3 from Lemma 7 and the other lemmas. The
application of the corrected statement of Theorem 1 with 0 < d; < 1 is not sufficient
to obtain Theorem 2 in [10]. We prove a weaker version of Theorem 2.

Theorem 1. Let ¢, : M — M satisfy the standing assumptions (see Section 4)
over the basic set A, and let 0 < 3 < a. Let R = {R;}¥_, be a Markov family for
py over A as in Section 2. Then, for any real-valued functions f,g € C’O‘(U) and
any constant € > 0, there exist constants 0 < p <1, ag >0, bg > 1,0 < § < 1,
and C = C(e) > 0 such that if a,c € R satisfy |a|, |c| < ag, then

||L;nf(a+ib)r+(c+iw)gh”ﬂ7b < Cepm ﬁm ‘b|€ ||h’| B,b (1)
for all h € CP(U), all integers m > 1, and all b,w € R with |b| > by and |w| < &1 |b|.

As in the original paper [10], the main step in proving Theorem 1 is the following
theorem.

Theorem 3. Under the assumptions in Theorem 1, there exist constants 0 < p < 1,
ag>0,bp>1,0<8 <1, Ay >0, and C = C(¢) > 0 such that if a,c € R satisfy
lal, |c| < ag, then

||L?Z,,C—ib7'+(c+iw)gthHLip,b < Cﬁm ||hHLip,b

for all h € CYP(U), all integers m > 1, and all b,w,t € R with [b| > by, teAot < |b],
and |w| < 41 |b].

As in [10], we will now assume that h, H € Cglp(ﬁ) are fixed functions such
that R 1 R
He Kgp(U) , |h(u)| <H(u) , velU, (2)
and

\h(u) — h(u)| < Et|b|H(u') D(u,u’) whenever u,u’ €U, i=1,....k. (3)
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Again, let z = ¢+ iw. Define the functions Xéi) U —C (t=1,...,50,1=1,2)
as in [10] by

M () eUemibr ™ 4twg) (7 () (0 (1)) 4 eltke =107 Hiwg ) @7 () 00 (u))‘
Xp W) = © (£)
(1 o M)efé\;c(vl (u))H(ng) (U)) + ef(i\ic(UQ (“))H(Uy) (U))
) (y) eUdie i Fiwg?) 17 () ({0 (1)) 4 eUtemibr ™ Hwg ) @57 W)y ({0 (U))‘
Xg \U) = ’
TECTD D ) + (1= e BT 1 (o)
and set

Ye(b,u) = [b] [7N (08 (u)) — 7V (87 ()]
for all u € U. Notice that in [10] this was denoted simply by e (u).

We use the notations of Section 5 in [10]. Recall that 0 < p < 1 depends of
the Markov partition, ¢g > 0,71 > o > 1 are introduced in (2.1) in [10], ag, Co, T
satisfy (4.2) - (4.5) in [10] and § > 0 is defined in Lemma 3 in [10]. Then, as in [10],
fix a sufficiently large constant E > 1, a large integer N > Ny, and the parameter
t = t(ag, N) > 1 such that (4.6) and (4.7) in [10] hold. As in Section 4, fix an
arbitrary constant 4 with 1 < 4 < vg. Fix integers 1 <n; < Ng,po > 1 and £y > 1

T ~N
and assume Et < 20162?%1 . We choose the constants 0 < €1 < 1,63 = /€1 so that

1 1. coro ¢§(y0 —1)
—mind _— o = §pot1 SO0 07}
va mm{:azco’c’ Py AN T v

The choice of € is different from that in page 6407 in [10]. The following lemma
remains the same as in the original paper.

Lemma 6. Let j,5' € {1,2,...,q} be such that D; and Dj: are contained in Cy, for
somem =1,...,p and are ng-separable in C,, for some L =1,...,4y. Then,

[ve(b,u) — ye(b,u')| > ca €1

for allu € 2j and u' € 2]-/, where ¢y = % < 1.

In what follows, we assume that
C(2) C2 (70 - 1) (4)
16Lip(gt )77

Here g;(x) is defined in (4.1) in [10] and Lip(g;) denotes the Lipschitz constant of
g¢. The following lemma remains the same as in the original paper.

0<d1 <

Lemma 7. Assume |b| > by for some sufficiently large by > 0, |a|, |c| < ag, and
let |w| < 011b|, where 61 satisfies (4). Then, for any j = 1,...,q, there exist
ie{1,2}, 5/ e{1,...,q}, and £ € {1,...,4y} such that D; and Dj; are adjacent
and Xy)(u) <1 for allu e Zj/.

The next lemma also remains the same as in the original paper.

Lemma 8. If h and H satisfy (2)-(3), then for any j = 1,...,q, i = 1,2, and
{=1,...,4, we have

Hw" (u)) 5 .
(a) % < W(Z”)) <2 for allu', v € Zj;
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(b) FEither for all u € Zj we have |h(v1@)(u))| < %H(vzm (w)), or |h(vi(€)(u))| >
H(v(e (w)) for allu € Zj.

1
4 1

Proof of Lemma 7. We use a modification of the proof of Lemma 5.10 in [13]. As in
[13] (see the Remark before Lemma 5.9 there), it is easy to see that for any m and
any ¢, the set {y(b,u) : u € 0™ (Cp,)} is contained in an interval of length < e2/8.
More precisely, for any ¢ = 1,2, the set {|b| 7a (v, (¢ )( ) :u € 0™ (Cp)} is contained
in an interval of length < 7.

Indeed, given m, ¢, i = 1,2 and u,u’ € 0™ (Cyp,), set z = vz@ (u),z’ = v(z)( .
Since d(oN (z), 0N () = d(u,v’) < diam(c™ (Cp,)) < 70101“;17 it follows that

j i 1 / "/{Llel
d(o?(z),07(2)) £ —Fx= d(u,v') < —F—— .
€0 Yo v 10l
This yields
= T~ e €
™~ (z) —mn (2] < 7(6(x)) = 7(c? ()| < Lt o2
ovte) (e £ X (0 0) 0 < S < 55

Thus, the set {TN(UZ@)(U)) cu € 0" (Cp)} is contained in an interval of length
< 16f5;- Therefore, {ve(b,u) : uw € ™ (Cp,)} is contained in an interval of length
< €3/8. Since any Z; is contained in 0™ (C,,) for some m, it follows that for any j

and ¢, the set {v,(b,u) : u € Z;} is contained in an interval of length €5 /8.

In a similar way to the above estimate for oV, again for x = v( )( ), 2’ = vy) (u'),
and u,u’ € 6™ (Cp,), we get

N—
g (x) — g (2")] < Z |g¢ (07 () — ge(0? ()]
7=0
N-—1
< Lip(g:) Zd ("))
< Lip(g:) Z E }V
% bl

Llp(gt)’hl €1
< ZPm & 5
< R00-D )

Thus, if |w| < 61 |b] and &, satisfies (4), then the set

{[wllg (v} ()] : u € ™ (C)}

01 Li e
is contained in an interval of length < uLip(ge)enr™ <24

Go-1) = 16~
For later use, notice that with z, 2’ as above, as in the Appendix in [10], we have
Tt Tt €
N / ’ 1
(@) = fore(@)] < ——— D(u,u') £ ———~ —.
feiol®) = faaoe)| < S0 =gy PO ) < STy

Given j =1,...,q, let m = 1,...,p be such that D; C C,,,. As in [13], we find
j', 3" =1,...,q such that Dj,,D;» C C,, and D and D;» are n-separable in Cp,.
Then, Lemma 6 applies for any u € Zj; and v’ € Z;».
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Fix ¢, j/ and j” with the above properties, and set Z= Ej U Ej/ U Ej// . If there
exist t € {j,7’,7"} and i = 1,2 such that the first alternative in Lemma 8(b) holds

for Z\h £ and i, then p < 1/4 implies Xgi) (u) <1 for any u € Z,.

Now assume that for every ¢t € {j, ', 7"} and every i = 1, 2 the second alternative
in Lemma 8(b) holds for Z;, ¢, and i, i.e.

e W) > B W), ez, (©)

Since (Z) = 73 u ﬁ u 73'// C Cp, given u,u’ € Z, both UN_"l(UZ(e) (u)) and
oN=mi(y (e)( ")) € Cy,. Moreover, C' = U(Z)( 1(Cm)) is a cylinder with

. €1
diam(C') < —x—. (7)
cory ™[l
It follows from (5) above that
Li ™ o€
o (0)) — g o )] < SR ©

c§ (0 — 1) [b]
Recall that z = ¢ + iw, where |w| < d71 |b].
We will now compare the lengths and the arguments of the complex numbers
pr(n) = eUaemibrm)@i? @) gza 017 )y (O ()
= eUdietea) @7 (W) gmibr (01 () ehwg” 017 (W) by 0 (y)),
and
pa(n) = eUatemibrm)(s? (W) gza’ (037 )y (1O (1))

= Udietea) s (W) g=ibr (0] () giwgy’ w57 (W) by (y)).

First, given i = 1,2 and u, v’ € Z, we look at
etwa @7 @) O (y)) and  elwsr @7 @) pO ().
Assume for example that
(o ()] = Al ().
Then, using (3), (7), and (5), we get
(

leiwsr’ @i @) (v (u)) — eiwal @7 @) pu® ()]
min{|A(v{” ()], [h(v{” (w))[}

[ehua ") p(uf? () — et 070D n(of) (u))|
Ih(w? (u))]

R ) IR R )]
|h(v” (u))|

|etwor’ (v () h(ol® (W) — eiwal v

|n(u? (u))]
|h(v§5)(u)) _ h(vz(f) (u))] L [t N (W) _ giwg? (v (@)(u/))‘
Ih(w? (w))]

(2)

) (o ()|

+

IN
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Et|b| H( )

4 4 4 4
< —— Do (), 0" () + ] g (v (w)) = g (v ()|
(v ()]
< 4B dia(C') + 8y ] RO
cg (0 — 1) 10|

< 4E]\f|bT|L e s ng)(gt)el'yl

A B T CTEY
S Qj + CZj < C2£ < f

8 16 4 37

where we have used the estimate for Et above. Thus, the angle between the complex
numbers

etwol’ 0@ O () and s ¢ (O ()

(regarded as vectors in R?) is less than 7/3. In particular, for each i = 1,2, we

can choose a real continuous function 6;(u), u € Z, with values in [0,7/3] and a
constant \; such that

~

o ) (o () = OO @), we 7

Fix an arbitrary ug € Z and set A = ~ve(b,ug). Replacing e.g. Ay by A2 + 2mr for
some integer m, we may assume that [Ag — A\ + A| < 7.
The difference between the arguments of the complex numbers

e 16T @17 (W) ghw gl 017 @) (O ()
and e 107V (087 W) Glw gl (080 (@) (0 ()
is given by the function
TO0Bu) = [=brN W) + 61(u) + M) — [=b7N (W (1)) + 02 (w) + Ao
= b [P @) = (07 @)] + 1 = Ao+ (B () - Ba(w)).

It follows from the observation in the beginning of the proof of the lemma that
Ve (b w) = ve(b,uo)| < 2% for any u € Z. Thus, for any such u, using A = (b, ug),
we get

PO D, u)| < |yelb,u) —~elb,uo)| + | Ao — AL + A + |02 (u) — 61 (u)]
< 224,42
- 78 3 2

Thus, [T (b, u )| <3 forallu € Z.

Given v’ € Z]/ and u' e Zju, since ﬁj/ and 73j~ are contained in C,, and are
ne-separable in C,,, it follows from Lemma 6 and the above that

PO, 0') =T (b, ")
> |ye(b, u') = ye(by u”)| = |62 (w') = 01 (u”)] = [2(') — O2(u”)]
1

c
> c2€1 — 2 2 L > e

4 2
Thus, [T (b,u') — T® (b, u")| > Ze; for all v’ € er and v € Eju. Hence, either
ITO (b, u')| > e for all u' € ZJ/ or [T (b, u")| > 2e; for all u” € Eju.
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Assume for example that [ (b, u)\ > 2e forall u € Zj/. As observed above,
for any u € Z, we have [T (b, u)| < 3% Thus,

c 3m
fq < PO (b,u)| < 5

for all u € ’Z\j/.
Now, as in [4] (see also [13]), one derives that X(l)( ) <1and XEQ)(u) <1 for all
U € éj/. This proves the lemma. O

Remark 1. The statement of Theorem 5.1(c) in [9] must be corrected, changing
the condition |w| < B|b| by |w| < §1|b] with 0 < §; < 1 as we have done in Theorem
1 above. Notice that Theorem 5.1(c) is a particular case of Theorem 1 since one
assumes that the functions f, g are in C*(U). Similar corrections must be done
in Theorem 6.1 in [9], replacing the condition |b| < Blw| by |b] < d2|w| with a
suitable small constant 0 < d2 < 1 and in Theorem 7.3 in [9] replacing ny < |w| by
1o < Jw| < 61| Im s|.

We pass to a corrected version of Theorem 2 in [10] and we use the notations of
[10]. Recall that F: A - R, G : A — (0,00) are Holder continuous functions. By
adding a constant, we may assume that Pr, (F') = 0, and this does not change the
equilibrium state mpiiq. Therefore, Pr,(f — Pr, (F)7) = 0 yields Pr,(f) = 0.
Given p € Ig = {fR, Gdmpyic : t € R}, we have

dPTo-T (F —+ tG) ‘
_ = Gdm =
dt t=£(p) R F+¢(p)G p
and £(p) € R is uniquely determined by the above equality. Set g,(z) := g(z)—p7(x)
and

n

7" ()
G (2) = g"(z) — pr(a) = / (Gla(. ) — p)t.
We have

pldmriep)a

-

1= J G-
/R (G =p)dmpe)G-p)
(/RTd,LLerg )I/R(/OT(I)(G(TF(JJJ)—p)dt)duf+g(p>gpv

which implies
dPro(f +tgp) /
—_ d =0. 9
dt t=£(p) - IpOHf+&(p)gyp (9)
Following [11, 12], we say that the function g, (z) satisfies the Diophantine condition

if there exist three periodic orbits 7™ (xy) = xx, nk € N, k = 1,2,3, issued from
Tr, so that

9p° (3) — g5 (1)

= no ny
9p* (x2) — gp* (21)
is a Diophantine number, that is, there exist d > 0 and v > 1 such that

= %\ >dg 1", Vg e N, VYm € Z.

Under this condition, we have the following Dolgopyat type estimate for the Ruelle
operator Ly (g(p)+iu)g,-
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Proposition 1 (Prop. 2.2 in [12]). Assume that g,(x) satisfies the Diophantine
condition. Then, there exist bg > 1, v > 0, co > 0, C > 0, and D > 0 such that
for |u| > by, we have

I3 Lo < OV (1= )" ymen, (10

where N = [Dlog |ul].

Below we assume that G is not cohomologous to a constant. Then, g, is not
cohomologous to 0, and the set Z¢ has a non-empty interior Int Zg. From (9), it
follows that g,(x) is not cohomologous to a constant b # 0. Obviously, the same
holds if g, (z) satisfies the Diophantine condition. Thus, g, is not cohomologous to
a constant and according to the results in [6], one obtains

dQPTg(f—i—tgp)

A e w(p) > 0.
Moreover, equality (9) shows that g,(x) cannot be everywhere on R a non-negative
or a non-positive function. The change of sign of g,(x) leads to difficulties when we
study the Dolgopyat type estimate of Ly (¢(p)+iu)g, -

The function g,(x) is called non-lattice if ¢tg,(x) cohomologous to b+ F(z) with

teR, beR, FeC(R;Z), implies t = b = 0. The sharp deviation results concern
the estimate of the measure

1

" (x)
s / Gn(, £))dt — p € (=6, 80) }, 1 — 00,
z) Jo

G’n:u{IER: i

where ;1 = pi5 is the equilibrium state of f. Let

0<7y= glelgr(x), T = r;leal%(T(x).

Then, on < 7"(z) < Tin, and we set
Vp = ToN0n, €n = TNy, n € N.
Clearly, if 8, = —, £ > 0, then v,, = O(n™"), ¢, = O(n™"), and
pla g™ (x) —pr"(x) € (=, vn)} < Gn < pfa s g"(x) —pT"(2) € (—€n, n)}-

We prove a weaker version of Theorem 2 in [10], where the sequence ¢, =
e~9" § >0, is replaced by €, = O(n™%). k > 0.

Theorem 2. Assume that G : A — (0,00) is a Hélder continuous function which
is not cohomologous to a constant function, and there exists a Markov family R =
{R;}F_, of the flow ¢y on A such that G is constant on the stable leaves of all
rectangular bozes

Bi={¢i(x): z€ R;,0<t<7(2)}, i=1,...,k

Assume that the suspended flow ot is topologically weak mizing. Letp € IntZg, gp(x)
be non-lattice and let g,(x) satisfy the Diophantine condition. Then, there exists
k> 0 such that if €, = O(n™"), we have

2€,

plr e R: g"(x) —pr™(z) € (—€pn,€n)} ~ e n 0. (11)

2rw(p)n

Here, J(p) = Pro(f 4+ &(p)gp) < 0 and J(p) = 0 if and only if p = [ Gdmp and
§(p) = 0.
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Remark 2. To satisfy some of the assumptions in the above theorem, we may
assume that the functions 7 and g are c—independent. This means that if t;7 4 t2g
with t; € R,t5 € R, is cohomologous to a function in C(R;Z), then t; = t5 = 0. The
o—independence of 7 and ¢ implies that the flow ol is topologically weak mixing
and G is not cohomologous to a constant.

If f15 1 e(p)g, (Ri) € Qfori=1,...,k and g, () satisfies the Diophantine condition,
then g,(x) is non-lattice. Indeed, assuming tg,(z) ~ b+ F(z) with t € R\ {0},b €
R, F(z) € C(R;Z), and applying (9), one deduces

k
b+ Z Miflf+£(p)gp (R:) =0,

i=1

where m; = F(x)|gr, € Z, i = 1,...,k. This implies b € Q, and one obtains a
contradiction with the Diophantine condition for g,. In general, the Diophantine
condition for g, does not imply that g, is non-lattice.

The only point in the proof of Theorem 2 in [10] that must change is the analysis
of the term

B =55 [ ([ Lt iun 10)dn(a) ) tlenlu — €))du

2m lu|>a

where a > 0 is large. By using estimate (10), we obtain

o0 n
Ln) = e"J@)O(e};k/ (1 - %) Apioe] u_kdu), k> 1,
a u

The purpose is to show that the term O(...) goes to 0 as n — oo faster than
enn~'/2. To prove this, we repeat the argument of subsection 4.2 in [12]. For
reader’s convenience we present some details.

Write
> C2 2[D;L T "
_ ogu] _
/ el k(l——) ¢ ukdu:/
a U’Y

a

5!

() + /oo(...) — L +1,

’
nod

with 0 < kK < § < 1/v. Since §'y < 1, it is easy to see that for every r > 1 and
n > No(r, k) sufficiently large, we have

j— l -_— c (S/”O n 1
I <a kyy 5+ (k 1)n(1_ % )D logn - 1
— né’ vy —nr

Next,
I, < n=R+Ek=Dr _ p(k=1)(x=0")

Since k — ¢ < 0, choosing k large, we obtain Iy = O(n™"), n > Ni(r). This
completes the proof. O
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that the statement (c) of Theorem 5.1 in [9] with |w| < B|b| and any B > 0 is false.
This led to the corrections of the corresponding results in [9] and [10].
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