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Abstract. We correct an estimate in the proof of Lemma 7 in [10], and this

leads to a modified condition for the parameter w in Theorems 1 and 3. We

propose corrected statements of Theorems 1 and 3. We also correct Theorem
2 and establish a weaker version.

A certain incorrect estimate in the proof of Lemma 7 in the paper [10] led to a
rather relaxed condition about the parameter w in Theorems 1 and 3, which made
the corresponding statements incorrect. Here, we propose corrected statements of
Theorems 1 and 3 and provide a corrected proof of Lemma 7 under a modified
condition for the parameter w. For completeness, we present all details in the
proof of that lemma. The proofs of the other lemmas remain the same as well as
the derivations of Theorems 1 and 3 from Lemma 7 and the other lemmas. The
application of the corrected statement of Theorem 1 with 0 < δ1 < 1 is not sufficient
to obtain Theorem 2 in [10]. We prove a weaker version of Theorem 2.

Theorem 1. Let ϕt : M −→ M satisfy the standing assumptions (see Section 4)
over the basic set Λ, and let 0 < β < α. Let R = {Ri}ki=1 be a Markov family for

ϕt over Λ as in Section 2. Then, for any real-valued functions f, g ∈ Cα(Û) and
any constant ε > 0, there exist constants 0 < ρ̂ < 1, a0 > 0, b0 ≥ 1, 0 < δ1 < 1,
and C = C(ε) > 0 such that if a, c ∈ R satisfy |a|, |c| ≤ a0, then

‖Lmf−(a+ib)τ+(c+iw)gh‖β,b ≤ C e
Pm ρ̂m |b|ε ‖h‖β,b (1)

for all h ∈ Cβ(U), all integers m ≥ 1, and all b, w ∈ R with |b| ≥ b0 and |w| ≤ δ1 |b|.

As in the original paper [10], the main step in proving Theorem 1 is the following
theorem.

Theorem 3. Under the assumptions in Theorem 1, there exist constants 0 < ρ̂ < 1,
a0 > 0, b0 ≥ 1, 0 < δ1 < 1, A0 > 0, and C = C(ε) > 0 such that if a, c ∈ R satisfy
|a|, |c| ≤ a0, then

‖Lmfatc−ibτ+(c+iw)gt
h‖Lip,b ≤ C ρ̂m ‖h‖Lip,b

for all h ∈ CLip(Û), all integers m ≥ 1, and all b, w, t ∈ R with |b| ≥ b0, teA0t ≤ |b|,
and |w| ≤ δ1 |b|.

As in [10], we will now assume that h,H ∈ CLip
D (Û) are fixed functions such

that
H ∈ KE|b|(Û) , |h(u)| ≤ H(u) , u ∈ Û , (2)

and

|h(u)− h(u′)| ≤ E t |b|H(u′)D(u, u′) whenever u, u′ ∈ Ûi , i = 1, . . . , k . (3)
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Again, let z = c+ iw. Define the functions χ
(i)
` : Û −→ C (` = 1, . . . , j0, i = 1, 2)

as in [10] by

χ
(1)
` (u) =

∣∣∣e(fNatc−ibτN+iwgNt )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(f

N
atc−ibτ

N+iwgNt )(v
(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
(1− µ)ef

N
atc(v

(`)
1 (u))H(v

(`)
1 (u)) + ef

N
atc(v

(`)
2 (u))H(v

(`)
2 (u))

,

χ
(2)
` (u) =

∣∣∣e(fNatc−ibτN+iwgNt )(v
(`)
1 (u))h(v

(`)
1 (u)) + e(f

N
atc−ibτ

N+iwgNt )(v
(`)
2 (u))h(v

(`)
2 (u))

∣∣∣
ef

N
atc(v

(`)
1 (u))H(v

(`)
1 (u)) + (1− µ)ef

N
atc(v

(`)
2 (u))H(v

(`)
2 (u))

,

and set

γ`(b, u) = |b| [τN (v
(`)
2 (u))− τN (v

(`)
1 (u))]

for all u ∈ Û . Notice that in [10] this was denoted simply by γ`(u).

We use the notations of Section 5 in [10]. Recall that 0 < ρ < 1 depends of
the Markov partition, c0 > 0, γ1 > γ0 > 1 are introduced in (2.1) in [10], a0, C0, T

satisfy (4.2) - (4.5) in [10] and δ̂ > 0 is defined in Lemma 3 in [10]. Then, as in [10],
fix a sufficiently large constant E > 1, a large integer N ≥ N0, and the parameter
t = t(a0, N) > 1 such that (4.6) and (4.7) in [10] hold. As in Section 4, fix an
arbitrary constant γ̂ with 1 < γ̂ < γ0. Fix integers 1 ≤ n1 ≤ N0, p0 ≥ 1 and `0 ≥ 1

and assume Et ≤ c0δ̂ργ̂
N

512γ
n1
1

. We choose the constants 0 < ε1 < 1, ε2 =
√
ε1 so that

√
ε1 = min

{ 1

32C0
, c,

1

4E
, δ̂ρp0+1,

c0r0
γn1
1

,
c20(γ0 − 1)

16Tγn1
1

}
.

The choice of ε1 is different from that in page 6407 in [10]. The following lemma
remains the same as in the original paper.

Lemma 6. Let j, j′ ∈ {1, 2, . . . , q} be such that Dj and Dj′ are contained in Cm for
some m = 1, . . . , p and are η`-separable in Cm for some ` = 1, . . . , `0. Then,

|γ`(b, u)− γ`(b, u′)| ≥ c2 ε1

for all u ∈ Ẑj and u′ ∈ Ẑj′ , where c2 = δ̂ ρ
16 < 1.

In what follows, we assume that

0 < δ1 <
c20 c2 (γ0 − 1)

16Lip(gt)γ
n1
1

. (4)

Here gt(x) is defined in (4.1) in [10] and Lip(gt) denotes the Lipschitz constant of
gt. The following lemma remains the same as in the original paper.

Lemma 7. Assume |b| ≥ b0 for some sufficiently large b0 > 0, |a|, |c| ≤ a0, and
let |w| ≤ δ1 |b|, where δ1 satisfies (4). Then, for any j = 1, . . . , q, there exist
i ∈ {1, 2}, j′ ∈ {1, . . . , q}, and ` ∈ {1, . . . , `0} such that Dj and Dj′ are adjacent

and χ
(i)
` (u) ≤ 1 for all u ∈ Ẑj′ .

The next lemma also remains the same as in the original paper.

Lemma 8. If h and H satisfy (2)-(3), then for any j = 1, . . . , q, i = 1, 2, and
` = 1, . . . , `0, we have

(a) 1
2 ≤

H(v
(`)
i (u′))

H(v
(`)
i (u′′))

≤ 2 for all u′, u′′ ∈ Ẑj ;
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(b) Either for all u ∈ Ẑj we have |h(v
(`)
i (u))| ≤ 3

4H(v
(`)
i (u)), or |h(v

(`)
i (u))| ≥

1
4H(v

(`)
i (u)) for all u ∈ Ẑj.

Proof of Lemma 7. We use a modification of the proof of Lemma 5.10 in [13]. As in
[13] (see the Remark before Lemma 5.9 there), it is easy to see that for any m and
any `, the set {γ`(b, u) : u ∈ σn1(Cm)} is contained in an interval of length < ε2/8.

More precisely, for any i = 1, 2, the set {|b| τN (v
(`)
i (u)) : u ∈ σn1(Cm)} is contained

in an interval of length < ε2
16 .

Indeed, given m, `, i = 1, 2 and u, u′ ∈ σn1(Cm), set x = v
(`)
i (u), x′ = v

(`)
i (u′).

Since d(σN (x), σN (x′)) = d(u, u′) ≤ diam(σn1(Cm)) ≤ γ
n1
1 ε1
c0 |b| , it follows that

d(σj(x), σj(x′)) ≤ 1

c0 γ
N−j
0

d(u, u′) ≤ γn1
1 ε1

c20γ
N−j
0 |b|

.

This yields

|τN (x)− τN (x′)| ≤
N−1∑
j=0

|τ(σj(x))− τ(σj(x′))| ≤ T γn1
1 ε1

c20 |b| (γ0 − 1)
≤ ε2

16 |b|
.

Thus, the set {τN (v
(`)
i (u)) : u ∈ σn1(Cm)} is contained in an interval of length

≤ ε2
16|b| . Therefore, {γ`(b, u) : u ∈ σn1(Cm)} is contained in an interval of length

≤ ε2/8. Since any Zj is contained in σn1(Cm) for some m, it follows that for any j
and `, the set {γ`(b, u) : u ∈ Zj} is contained in an interval of length ε2/8.

In a similar way to the above estimate for σN , again for x = v
(`)
i (u), x′ = v

(`)
i (u′),

and u, u′ ∈ σn1(Cm), we get

|gNt (x)− gNt (x′)| ≤
N−1∑
j=0

|gt(σj(x))− gt(σj(x′))|

≤ Lip(gt)

N−1∑
j=0

d(σj(x), σj(x′))

≤ Lip(gt)

N−1∑
j=0

γn1
1 ε1

c20γ
N−j
0 |b|

≤ Lip(gt)γ
n1
1

c20 (γ0 − 1)

ε1
|b|
. (5)

Thus, if |w| ≤ δ1 |b| and δ1 satisfies (4), then the set

{|w||gNt (v
(`)
i (u))| : u ∈ σn1(Cm)}

is contained in an interval of length ≤ δ1Lip(gt)ε1γ
n1
1

c20 (γ0 − 1)
≤ c2ε1

16
.

For later use, notice that with x, x′ as above, as in the Appendix in [10], we have

|fNatc(x)− fNatc(x′)| ≤
Tt

c0(γ0 − 1)
D(u, u′) ≤ Tt

c0(γ0 − 1)

ε1
|b|
.

Given j = 1, . . . , q, let m = 1, . . . , p be such that Dj ⊂ Cm. As in [13], we find
j′, j′′ = 1, . . . , q such that Dj′ ,Dj′′ ⊂ Cm and Dj′ and Dj′′ are η`-separable in Cm.

Then, Lemma 6 applies for any u ∈ Ẑj′ and u′ ∈ Ẑj′′ .
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Fix `, j′ and j′′ with the above properties, and set Ẑ = Ẑj ∪ Ẑj′ ∪ Ẑj′′ . If there
exist t ∈ {j, j′, j′′} and i = 1, 2 such that the first alternative in Lemma 8(b) holds

for Ẑt, ` and i, then µ ≤ 1/4 implies χ
(i)
` (u) ≤ 1 for any u ∈ Ẑt.

Now assume that for every t ∈ {j, j′, j′′} and every i = 1, 2 the second alternative

in Lemma 8(b) holds for Ẑt, `, and i, i.e.

|h(v
(`)
i (u))| ≥ 1

4
H(v

(`)
i (u)), u ∈ Ẑt. (6)

Since ψ(Ẑ) = D̂j ∪ D̂j′ ∪ D̂j′′ ⊂ Cm, given u, u′ ∈ Ẑ, both σN−n1(v
(`)
i (u)) and

σN−n1(v
(`)
i (u′)) ∈ Cm. Moreover, C′ = v

(`)
i (σn1(Cm)) is a cylinder with

diam(C′) ≤ ε1

c0 γ
N−n1
0 |b|

. (7)

It follows from (5) above that

|gNt (v
(`)
i (u))− gNt (v

(`)
i (u′))| ≤ Lip(gt)γ

n1
1

c20 (γ0 − 1)

ε1
|b|
. (8)

Recall that z = c+ iw, where |w| ≤ δ1 |b|.

We will now compare the lengths and the arguments of the complex numbers

ρ1(u) = e(f
N
atc−ibτN )(v

(`)
1 (u))ezg

N
t (v

(`)
1 (u))h(v

(`)
1 (u))

= e(f
N
atc+cg

N
t )(v

(`)
1 (u)) e−ibτN (v

(`)
1 (u)) eiwg

N
t (v

(`)
1 (u)) h(v

(`)
1 (u)),

and

ρ2(u) = e(f
N
atc−ibτN )(v

(`)
2 (u))ezg

N
t (v

(`)
2 (u))h(v

(`)
2 (u))

= e(f
N
atc+cg

N
t )(v

(`)
2 (u)) e−ibτN (v

(`)
2 (u)) eiwg

N
t (v

(`)
2 (u)) h(v

(`)
2 (u)).

First, given i = 1, 2 and u, u′ ∈ Ẑ, we look at

eiwg
N
t (v

(`)
i (u)) h(v

(`)
i (u)) and eiwg

N
t (v

(`)
i (u′)) h(v

(`)
i (u′)).

Assume for example that

|h(v
(`)
i (u))| ≥ |h(v

(`)
i (u′))|.

Then, using (3), (7), and (5), we get

|eiwgNt (v
(`)
i (u)) h(v

(`)
i (u))− eiwgNt (v

(`)
i (u′)) h(v

(`)
i (u′))|

min{|h(v
(`)
i (u))|, |h(v

(`)
i (u′))|}

=
|eiwgNt (v

(`)
i (u)) h(v

(`)
i (u))− eiwgNt (v

(`)
i (u′)) h(v

(`)
i (u′))|

|h(v
(`)
i (u′))|

≤ |eiwgNt (v
(`)
i (u)) h(v

(`)
i (u))− eiwgNt (v

(`)
i (u)) h(v

(`)
i (u′))|

|h(v
(`)
i (u′))|

+
|eiwgNt (v

(`)
i (u)) h(v

(`)
i (u′))− eiwgNt (v

(`)
i (u′)) h(v

(`)
i (u′))|

|h(v
(`)
i (u′))|

≤ |h(v
(`)
i (u))− h(v

(`)
i (u′))|

|h(v
(`)
i (u′))|

+ |eiwg
N
t (v

(`)
i (u)) − eiwg

N
t (v

(`)
i (u′))|
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≤ Et|b|H(v
(`)
i (u′))

|h(v
(`)
i (u′))|

D(v
(`)
i (u), v

(`)
i (u′)) + |w| ‖gNt (v

(`)
i (u))− gNt (v

(`)
i (u′))‖

≤ 4Et|b|diam(C′) + δ1 |b|
Lip(gt)γ

n1
1

c20 (γ0 − 1)

ε1
|b|

≤ 4Et|b|
c0γ

N−n1
0

· ε1
|b|

+ δ1
Lip(gt)ε1γ

n1
1

c20 (γ0 − 1)

≤ c2ε1
8

+
c2ε1
16

<
c2ε1

4
<
π

3
,

where we have used the estimate for Et above. Thus, the angle between the complex
numbers

eiwg
N
t (v

(`)
i (u)) h(v

(`)
i (u)) and eiwg

N
t (v

(`)
i (u′)) h(v

(`)
i (u′))

(regarded as vectors in R2) is less than π/3. In particular, for each i = 1, 2, we

can choose a real continuous function θi(u), u ∈ Ẑ, with values in [0, π/3] and a
constant λi such that

eiwg
N
t (v

(`)
i (u)) h(v

(`)
i (u)) = ei(λi+θi(u))|h(v

(`)
i (u))|, u ∈ Ẑ .

Fix an arbitrary u0 ∈ Ẑ and set λ = γ`(b, u0). Replacing e.g. λ2 by λ2 + 2mπ for
some integer m, we may assume that |λ2 − λ1 + λ| ≤ π.

The difference between the arguments of the complex numbers

e−i b τ
N (v

(`)
1 (u)) eiw g

N
t (v

(`)
1 (u)) h(v

(`)
1 (u))

and e−i b τ
N (v

(`)
2 (u)) eiw g

N
t (v

(`)
2 (u)) h(v

(`)
2 (u))

is given by the function

Γ(`)(b, u) = [−b τN (v
(`)
1 (u)) + θ1(u) + λ1]− [−b τN (v

(`)
2 (u)) + θ2(u) + λ2]

= b
[
τN (v

(`)
2 (u))− τN (v

(`)
1 (u))

]
+ (λ1 − λ2) + (θ1(u)− θ2(u)).

It follows from the observation in the beginning of the proof of the lemma that

|γ`(b, u)− γ`(b, u0)| ≤ 2 ε2
8 for any u ∈ Ẑ. Thus, for any such u, using λ = γ`(b, u0),

we get

|Γ(`)(b, u)| ≤ |γ`(b, u)− γ`(b, u0)|+ |λ2 − λ1 + λ|+ |θ2(u)− θ1(u)|

≤ 2
ε2
8

+ π +
π

3
<

3π

2
.

Thus, |Γ(`)(b, u)| < 3π
2 for all u ∈ Ẑ.

Given u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ , since D̂j′ and D̂j′′ are contained in Cm and are
η`-separable in Cm, it follows from Lemma 6 and the above that

|Γ(`)(b, u′)− Γ(`)(b, u′′)|
≥ |γ`(b, u′)− γ`(b, u′′)| − |θ1(u′)− θ1(u′′)| − |θ2(u′)− θ2(u′′)|

≥ c2ε1 − 2
c2ε1

4
≥ c2ε1

2
.

Thus, |Γ(`)(b, u′) − Γ(`)(b, u′′)| ≥ c2
2 ε1 for all u′ ∈ Ẑj′ and u′′ ∈ Ẑj′′ . Hence, either

|Γ(`)(b, u′)| ≥ c2
4 ε1 for all u′ ∈ Ẑj′ or |Γ(`)(b, u′′)| ≥ c2

4 ε1 for all u′′ ∈ Ẑj′′ .
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Assume for example that |Γ(`)(b, u)| ≥ c2
4 ε1 for all u ∈ Ẑj′ . As observed above,

for any u ∈ Ẑ, we have |Γ(`)(b, u)| < 3π
2 . Thus,

c2
4
ε1 ≤ |Γ(`)(b, u)| < 3π

2

for all u ∈ Ẑj′ .
Now, as in [4] (see also [13]), one derives that χ

(1)
` (u) ≤ 1 and χ

(2)
` (u) ≤ 1 for all

u ∈ Ẑj′ . This proves the lemma.

Remark 1. The statement of Theorem 5.1(c) in [9] must be corrected, changing
the condition |w| ≤ B|b| by |w| ≤ δ1|b| with 0 < δ1 < 1 as we have done in Theorem
1 above. Notice that Theorem 5.1(c) is a particular case of Theorem 1 since one

assumes that the functions f, g are in CLip(Û). Similar corrections must be done
in Theorem 6.1 in [9], replacing the condition |b| ≤ B|w| by |b| ≤ δ2|w| with a
suitable small constant 0 < δ2 < 1 and in Theorem 7.3 in [9] replacing η0 ≤ |w| by
η0 ≤ |w| ≤ δ1| Im s|.

We pass to a corrected version of Theorem 2 in [10] and we use the notations of
[10]. Recall that F : Λ → R, G : Λ → (0,∞) are Hölder continuous functions. By
adding a constant, we may assume that Prστ (F ) = 0, and this does not change the
equilibrium state mF+tG. Therefore, Prσ(f − Prστ (F )τ) = 0 yields Prσ(f) = 0.
Given p ∈ IG =

{ ∫
Rτ GdmF+tG : t ∈ R

}
, we have

dPrστ (F + tG)

dt

∣∣∣
t=ξ(p)

=

∫
Rτ

GdmF+ξ(p)G = p

and ξ(p) ∈ R is uniquely determined by the above equality. Set gp(x) := g(x)−pτ(x)
and

gnp (x) = gn(x)− pτn(x) =

∫ τn(x)

0

(G(π(x, t))− p)dt.

We have

0 =

∫
Rτ

(G− p)dmF+ξ(p)G

=

∫
Rτ

(G− p)dmF+ξ(p)(G−p)

=
(∫
R
τdµf+ξ(p)gp

)−1 ∫
R

(∫ τ(x)

0

(
G(π(x, t)− p

)
dt
)
dµf+ξ(p)gp ,

which implies
dPrσ(f + tgp)

dt

∣∣∣
t=ξ(p)

=

∫
R
gpdµf+ξ(p)gp = 0. (9)

Following [11, 12], we say that the function gp(x) satisfies the Diophantine condition
if there exist three periodic orbits τnk(xk) = xk, nk ∈ N, k = 1, 2, 3, issued from
xk, so that

α =
gn3
p (x3)− gn1

p (x1)

gn2
p (x2)− gn1

p (x1)

is a Diophantine number, that is, there exist d > 0 and ν > 1 such that∣∣α− m

q

∣∣ ≥ dq−1−ν , ∀q ∈ N, ∀m ∈ Z.

Under this condition, we have the following Dolgopyat type estimate for the Ruelle
operator Lf+(ξ(p)+iu)gp .
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Proposition 1 (Prop. 2.2 in [12]). Assume that gp(x) satisfies the Diophantine
condition. Then, there exist b0 > 1, γ > 0, c2 > 0, C > 0, and D > 0 such that
for |u| ≥ b0, we have

‖L2Nm
f+(ξ(p)+iu)gp

1‖∞ ≤ Ce2NmPrσ(f+ξ(p)gp)
(

1− c2
|u|γ

)m
, ∀m ∈ N, (10)

where N = [D log |u|].

Below we assume that G is not cohomologous to a constant. Then, gp is not
cohomologous to 0, and the set IG has a non-empty interior Int IG. From (9), it
follows that gp(x) is not cohomologous to a constant b 6= 0. Obviously, the same
holds if gp(x) satisfies the Diophantine condition. Thus, gp is not cohomologous to
a constant and according to the results in [6], one obtains

d2Prσ(f + tgp)

dt2

∣∣∣
t=ξ(p)

= ω(p) > 0.

Moreover, equality (9) shows that gp(x) cannot be everywhere on R a non-negative
or a non-positive function. The change of sign of gp(x) leads to difficulties when we
study the Dolgopyat type estimate of Lf+(ξ(p)+iu)gg .

The function gp(x) is called non-lattice if tgp(x) cohomologous to b+ F (x) with
t ∈ R, b ∈ R, F ∈ C(R;Z), implies t = b = 0. The sharp deviation results concern
the estimate of the measure

Gn = µ
{
x ∈ R :

1

τn(x)

∫ τn(x)

0

G(π(x, t))dt− p ∈ (−δn, δn)
}
, n→∞,

where µ = µf is the equilibrium state of f . Let

0 < τ0 = min
x∈R

τ(x), τ1 = max
x∈R

τ(x).

Then, τ0n ≤ τn(x) ≤ τ1n, and we set

νn = τ0nδn, εn = τ1nδn, n ∈ N.

Clearly, if δn = 1
n1+κ , κ > 0, then νn = O(n−κ), εn = O(n−κ), and

µ{x : gn(x)− pτn(x) ∈ (−νn, νn)} ≤ Gn ≤ µ{x : gn(x)− pτn(x) ∈ (−εn, εn)}.

We prove a weaker version of Theorem 2 in [10], where the sequence δn =
e−δn, δ > 0, is replaced by εn = O(n−κ). κ > 0.

Theorem 2. Assume that G : Λ → (0,∞) is a Hölder continuous function which
is not cohomologous to a constant function, and there exists a Markov family R =
{Ri}ki=1 of the flow ϕt on Λ such that G is constant on the stable leaves of all
rectangular boxes

Bi = {ϕt(x) : x ∈ Ri, 0 ≤ t ≤ τ(x)}, i = 1, ..., k.

Assume that the suspended flow σtτ is topologically weak mixing. Let p ∈ IntIG, gp(x)
be non-lattice and let gp(x) satisfy the Diophantine condition. Then, there exists
κ > 0 such that if εn = O(n−κ), we have

µ{x ∈ R : gn(x)− pτn(x) ∈ (−εn, εn)} ∼ 2εn√
2πω(p)n

enJ(p), n→∞. (11)

Here, J(p) = Prσ(f + ξ(p)gp) ≤ 0 and J(p) = 0 if and only if p =
∫
GdmF and

ξ(p) = 0.
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Remark 2. To satisfy some of the assumptions in the above theorem, we may
assume that the functions τ and g are σ−independent. This means that if t1τ + t2g
with t1 ∈ R, t2 ∈ R, is cohomologous to a function in C(R;Z), then t1 = t2 = 0. The
σ−independence of τ and g implies that the flow σtτ is topologically weak mixing
and G is not cohomologous to a constant.

If µf+ξ(p)gp(Ri) ∈ Q for i = 1, ..., k and gp(x) satisfies the Diophantine condition,
then gp(x) is non-lattice. Indeed, assuming tgp(x) ∼ b+ F (x) with t ∈ R \ {0}, b ∈
R, F (x) ∈ C(R;Z), and applying (9), one deduces

b+

k∑
i=1

miµf+ξ(p)gp(Ri) = 0,

where mi = F (x)|Ri ∈ Z, i = 1, ..., k. This implies b ∈ Q, and one obtains a
contradiction with the Diophantine condition for gp. In general, the Diophantine
condition for gp does not imply that gp is non-lattice.

The only point in the proof of Theorem 2 in [10] that must change is the analysis
of the term

I3(n) =
εn
2π

∫
|u|>a

(∫
Lnf+(ξ(p)+iugp)

1(x)dµ(x)
)
χ̂(εn(u− iξ(p))du

where a > 0 is large. By using estimate (10), we obtain

I3(n) = enJ(p)O
(
ε1−kn

∫ ∞
a

(
1− c2

uγ

) n
2[D log u]

u−kdu
)
, k � 1,

The purpose is to show that the term O(...) goes to 0 as n → ∞ faster than
εnn
−1/2. To prove this, we repeat the argument of subsection 4.2 in [12]. For

reader’s convenience we present some details.
Write ∫ ∞

a

ε1−kn

(
1− c2

uγ

) n
2[D log u]

u−kdu =

∫ nδ
′

a

(...) +

∫ ∞
nδ′

(...) = I1 + I2

with 0 < κ < δ′ < 1/γ. Since δ′γ < 1, it is easy to see that for every r ≥ 1 and
n ≥ N0(r, k) sufficiently large, we have

I1 ≤ a−kn
1
γ+(k−1)κ

(
1− c2

nδ′γ

) n
Dδ′ logn ≤ 1

nr
.

Next,

I2 ≤ n(1−k)δ
′+(k−1)κ = n(k−1)(κ−δ

′).

Since κ − δ′ < 0, choosing k large, we obtain I2 = O(n−r), n ≥ N1(r). This
completes the proof.
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that the statement (c) of Theorem 5.1 in [9] with |w| ≤ B|b| and any B > 0 is false.
This led to the corrections of the corresponding results in [9] and [10].



CORRIGENDUM TO “SPECTRAL ESTIMATES AND SHARP LARGE DEVIATIONS” 9

REFERENCES

[1] R. Bowen, Equilibrium states and the ergodic theory of anosov diffeomorphisms, Lect. Notes
in Math., Springer-Verlag, Berlin, 470 (1975).

[2] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.

[3] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975),
181-202.

[4] D. Dolgopyat, Decay of correlations in Anosov flows, Ann. Math., 147 (1998), 357-390.

[5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,
Cambridge Univ. Press, Cambridge, 1995.

[6] S. P. Lalley, Distribution of period orbits of symbolic and Axiom A flows, Adv. Appl. Math.,

8 (1987), 154-193.
[7] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic
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