

CORRIGENDUM TO “SPECTRAL ESTIMATES FOR RUELLE OPERATORS WITH TWO PARAMETERS AND SHARP LARGE DEVIATIONS” (VOLUME 39, NUMBER 11, 2019, 6391-6417)

VESSELIN PETKOV^{✉1} AND LUCHEZAR STOYANOV^{✉2}

¹Institut de Mathématiques de Bordeaux, University of Bordeaux,
351, Cours de la Libération, 33405 Talence, France

²University of Western Australia, 35 Stirling Hwy, Perth WA 6009, Australia

(Communicated by Enrique Pujals)

ABSTRACT. We correct an estimate in the proof of Lemma 7 in [10], and this leads to a modified condition for the parameter w in Theorems 1 and 3. We propose corrected statements of Theorems 1 and 3. We also correct Theorem 2 and establish a weaker version.

A certain incorrect estimate in the proof of Lemma 7 in the paper [10] led to a rather relaxed condition about the parameter w in Theorems 1 and 3, which made the corresponding statements incorrect. Here, we propose corrected statements of Theorems 1 and 3 and provide a corrected proof of Lemma 7 under a modified condition for the parameter w . For completeness, we present all details in the proof of that lemma. The proofs of the other lemmas remain the same as well as the derivations of Theorems 1 and 3 from Lemma 7 and the other lemmas. The application of the corrected statement of Theorem 1 with $0 < \delta_1 < 1$ is not sufficient to obtain Theorem 2 in [10]. We prove a weaker version of Theorem 2.

Theorem 1. *Let $\varphi_t : M \rightarrow M$ satisfy the standing assumptions (see Section 4) over the basic set Λ , and let $0 < \beta < \alpha$. Let $\mathcal{R} = \{R_i\}_{i=1}^k$ be a Markov family for φ_t over Λ as in Section 2. Then, for any real-valued functions $f, g \in C^\alpha(\widehat{U})$ and any constant $\epsilon > 0$, there exist constants $0 < \hat{\rho} < 1$, $a_0 > 0$, $b_0 \geq 1$, $0 < \delta_1 < 1$, and $C = C(\epsilon) > 0$ such that if $a, c \in \mathbb{R}$ satisfy $|a|, |c| \leq a_0$, then*

$$\|L_{f-(a+ib)\tau+(c+iw)g}^m h\|_{\beta,b} \leq C e^{Pm} \hat{\rho}^m |b|^\epsilon \|h\|_{\beta,b} \quad (1)$$

for all $h \in C^\beta(U)$, all integers $m \geq 1$, and all $b, w \in \mathbb{R}$ with $|b| \geq b_0$ and $|w| \leq \delta_1 |b|$.

As in the original paper [10], the main step in proving Theorem 1 is the following theorem.

Theorem 3. *Under the assumptions in Theorem 1, there exist constants $0 < \hat{\rho} < 1$, $a_0 > 0$, $b_0 \geq 1$, $0 < \delta_1 < 1$, $A_0 > 0$, and $C = C(\epsilon) > 0$ such that if $a, c \in \mathbb{R}$ satisfy $|a|, |c| \leq a_0$, then*

$$\|L_{f_{atc}-ib\tau+(c+iw)g_t}^m h\|_{\text{Lip},b} \leq C \hat{\rho}^m \|h\|_{\text{Lip},b}$$

for all $h \in C^{\text{Lip}}(\widehat{U})$, all integers $m \geq 1$, and all $b, w, t \in \mathbb{R}$ with $|b| \geq b_0$, $te^{A_0 t} \leq |b|$, and $|w| \leq \delta_1 |b|$.

As in [10], we will now assume that $h, H \in C_D^{\text{Lip}}(\widehat{U})$ are **fixed functions such that**

$$H \in K_{E|b|}(\widehat{U}) \quad , \quad |h(u)| \leq H(u) \quad , \quad u \in \widehat{U} , \quad (2)$$

and

$$|h(u) - h(u')| \leq E t |b| H(u') D(u, u') \quad \text{whenever } u, u' \in \widehat{U}_i , \quad i = 1, \dots, k . \quad (3)$$

Again, let $z = c + iw$. Define the functions $\chi_\ell^{(i)} : \widehat{U} \rightarrow \mathbb{C}$ ($\ell = 1, \dots, j_0, i = 1, 2$) as in [10] by

$$\begin{aligned}\chi_\ell^{(1)}(u) &= \frac{\left| e^{(f_{atc}^N - i\mathbf{b}\tau^N + iw g_t^N)(v_1^{(\ell)}(u))} h(v_1^{(\ell)}(u)) + e^{(f_{atc}^N - i\mathbf{b}\tau^N + iw g_t^N)(v_2^{(\ell)}(u))} h(v_2^{(\ell)}(u)) \right|}{(1 - \mu) e^{f_{atc}^N(v_1^{(\ell)}(u))} H(v_1^{(\ell)}(u)) + e^{f_{atc}^N(v_2^{(\ell)}(u))} H(v_2^{(\ell)}(u))}, \\ \chi_\ell^{(2)}(u) &= \frac{\left| e^{(f_{atc}^N - i\mathbf{b}\tau^N + iw g_t^N)(v_1^{(\ell)}(u))} h(v_1^{(\ell)}(u)) + e^{(f_{atc}^N - i\mathbf{b}\tau^N + iw g_t^N)(v_2^{(\ell)}(u))} h(v_2^{(\ell)}(u)) \right|}{e^{f_{atc}^N(v_1^{(\ell)}(u))} H(v_1^{(\ell)}(u)) + (1 - \mu) e^{f_{atc}^N(v_2^{(\ell)}(u))} H(v_2^{(\ell)}(u))},\end{aligned}$$

and set

$$\gamma_\ell(b, u) = |b| [\tau^N(v_2^{(\ell)}(u)) - \tau^N(v_1^{(\ell)}(u))]$$

for all $u \in \widehat{U}$. Notice that in [10] this was denoted simply by $\gamma_\ell(u)$.

We use the notations of Section 5 in [10]. Recall that $0 < \rho < 1$ depends of the Markov partition, $c_0 > 0, \gamma_1 > \gamma_0 > 1$ are introduced in (2.1) in [10], a_0, C_0, T satisfy (4.2) - (4.5) in [10] and $\hat{\delta} > 0$ is defined in Lemma 3 in [10]. Then, as in [10], fix a sufficiently large constant $E > 1$, a large integer $N \geq N_0$, and the parameter $t = t(a_0, N) > 1$ such that (4.6) and (4.7) in [10] hold. As in Section 4, fix an arbitrary constant $\hat{\gamma}$ with $1 < \hat{\gamma} < \gamma_0$. Fix integers $1 \leq n_1 \leq N_0, p_0 \geq 1$ and $\ell_0 \geq 1$ and assume $Et \leq \frac{c_0 \hat{\delta} \rho \hat{\gamma}^N}{512 \gamma_1^{n_1}}$. We choose the constants $0 < \epsilon_1 < 1, \epsilon_2 = \sqrt{\epsilon_1}$ so that

$$\sqrt{\epsilon_1} = \min \left\{ \frac{1}{32C_0}, c, \frac{1}{4E}, \hat{\delta} \rho^{p_0+1}, \frac{c_0 r_0}{\gamma_1^{n_1}}, \frac{c_0^2 (\gamma_0 - 1)}{16T \gamma_1^{n_1}} \right\}.$$

The choice of ϵ_1 is different from that in page 6407 in [10]. The following lemma remains the same as in the original paper.

Lemma 6. *Let $j, j' \in \{1, 2, \dots, q\}$ be such that \mathcal{D}_j and $\mathcal{D}_{j'}$ are contained in \mathcal{C}_m for some $m = 1, \dots, p$ and are η_ℓ -separable in \mathcal{C}_m for some $\ell = 1, \dots, \ell_0$. Then,*

$$|\gamma_\ell(b, u) - \gamma_\ell(b, u')| \geq c_2 \epsilon_1$$

for all $u \in \widehat{Z}_j$ and $u' \in \widehat{Z}_{j'}$, where $c_2 = \frac{\hat{\delta} \rho}{16} < 1$.

In what follows, we assume that

$$\mathbf{0} < \delta_1 < \frac{\mathbf{c}_0^2 \mathbf{c}_2 (\gamma_0 - 1)}{16 \text{Lip}(\mathbf{g}_t) \gamma_1^{n_1}}. \quad (4)$$

Here $g_t(x)$ is defined in (4.1) in [10] and $\text{Lip}(g_t)$ denotes the Lipschitz constant of g_t . The following lemma remains the same as in the original paper.

Lemma 7. *Assume $|b| \geq b_0$ for some sufficiently large $b_0 > 0$, $|a|, |c| \leq a_0$, and let $|w| \leq \delta_1 |b|$, where δ_1 satisfies (4). Then, for any $j = 1, \dots, q$, there exist $i \in \{1, 2\}$, $j' \in \{1, \dots, q\}$, and $\ell \in \{1, \dots, \ell_0\}$ such that \mathcal{D}_j and $\mathcal{D}_{j'}$ are adjacent and $\chi_\ell^{(i)}(u) \leq 1$ for all $u \in \widehat{Z}_{j'}$.*

The next lemma also remains the same as in the original paper.

Lemma 8. *If h and H satisfy (2)-(3), then for any $j = 1, \dots, q$, $i = 1, 2$, and $\ell = 1, \dots, \ell_0$, we have*

$$(a) \frac{1}{2} \leq \frac{H(v_i^{(\ell)}(u'))}{H(v_i^{(\ell)}(u''))} \leq 2 \text{ for all } u', u'' \in \widehat{Z}_j;$$

(b) Either for all $u \in \widehat{Z}_j$ we have $|h(v_i^{(\ell)}(u))| \leq \frac{3}{4}H(v_i^{(\ell)}(u))$, or $|h(v_i^{(\ell)}(u))| \geq \frac{1}{4}H(v_i^{(\ell)}(u))$ for all $u \in \widehat{Z}_j$.

Proof of Lemma 7. We use a modification of the proof of Lemma 5.10 in [13]. As in [13] (see the Remark before Lemma 5.9 there), it is easy to see that for any m and any ℓ , the set $\{\gamma_\ell(b, u) : u \in \sigma^{n_1}(\mathcal{C}_m)\}$ is contained in an interval of length $< \epsilon_2/8$. More precisely, for any $i = 1, 2$, the set $\{|b| \tau_N(v_i^{(\ell)}(u)) : u \in \sigma^{n_1}(\mathcal{C}_m)\}$ is contained in an interval of length $< \frac{\epsilon_2}{16}$.

Indeed, given $m, \ell, i = 1, 2$ and $u, u' \in \sigma^{n_1}(\mathcal{C}_m)$, set $x = v_i^{(\ell)}(u), x' = v_i^{(\ell)}(u')$. Since $d(\sigma^N(x), \sigma^N(x')) = d(u, u') \leq \text{diam}(\sigma^{n_1}(\mathcal{C}_m)) \leq \frac{\gamma_1^{n_1} \epsilon_1}{c_0 |b|}$, it follows that

$$d(\sigma^j(x), \sigma^j(x')) \leq \frac{1}{c_0 \gamma_0^{N-j}} d(u, u') \leq \frac{\gamma_1^{n_1} \epsilon_1}{c_0^2 \gamma_0^{N-j} |b|}.$$

This yields

$$|\tau_N(x) - \tau_N(x')| \leq \sum_{j=0}^{N-1} |\tau(\sigma^j(x)) - \tau(\sigma^j(x'))| \leq \frac{T \gamma_1^{n_1} \epsilon_1}{c_0^2 |b| (\gamma_0 - 1)} \leq \frac{\epsilon_2}{16 |b|}.$$

Thus, the set $\{\tau_N(v_i^{(\ell)}(u)) : u \in \sigma^{n_1}(\mathcal{C}_m)\}$ is contained in an interval of length $\leq \frac{\epsilon_2}{16 |b|}$. Therefore, $\{\gamma_\ell(b, u) : u \in \sigma^{n_1}(\mathcal{C}_m)\}$ is contained in an interval of length $\leq \epsilon_2/8$. Since any Z_j is contained in $\sigma^{n_1}(\mathcal{C}_m)$ for some m , it follows that for any j and ℓ , the set $\{\gamma_\ell(b, u) : u \in Z_j\}$ is contained in an interval of length $\epsilon_2/8$.

In a similar way to the above estimate for σ^N , again for $x = v_i^{(\ell)}(u), x' = v_i^{(\ell)}(u')$, and $u, u' \in \sigma^{n_1}(\mathcal{C}_m)$, we get

$$\begin{aligned} |g_t^N(x) - g_t^N(x')| &\leq \sum_{j=0}^{N-1} |g_t(\sigma^j(x)) - g_t(\sigma^j(x'))| \\ &\leq \text{Lip}(g_t) \sum_{j=0}^{N-1} d(\sigma^j(x), \sigma^j(x')) \\ &\leq \text{Lip}(g_t) \sum_{j=0}^{N-1} \frac{\gamma_1^{n_1} \epsilon_1}{c_0^2 \gamma_0^{N-j} |b|} \\ &\leq \frac{\text{Lip}(g_t) \gamma_1^{n_1} \epsilon_1}{c_0^2 (\gamma_0 - 1) |b|}. \end{aligned} \tag{5}$$

Thus, if $|w| \leq \delta_1 |b|$ and δ_1 satisfies (4), then the set

$$\{|w| |g_t^N(v_i^{(\ell)}(u))| : u \in \sigma^{n_1}(\mathcal{C}_m)\}$$

is contained in an interval of length $\leq \frac{\delta_1 \text{Lip}(g_t) \epsilon_1 \gamma_1^{n_1}}{c_0^2 (\gamma_0 - 1)} \leq \frac{c_2 \epsilon_1}{16}$.

For later use, notice that with x, x' as above, as in the Appendix in [10], we have

$$|f_{atc}^N(x) - f_{atc}^N(x')| \leq \frac{Tt}{c_0 (\gamma_0 - 1)} D(u, u') \leq \frac{Tt}{c_0 (\gamma_0 - 1)} \frac{\epsilon_1}{|b|}.$$

Given $j = 1, \dots, q$, let $m = 1, \dots, p$ be such that $\mathcal{D}_j \subset \mathcal{C}_m$. As in [13], we find $j', j'' = 1, \dots, q$ such that $\mathcal{D}_{j'}, \mathcal{D}_{j''} \subset \mathcal{C}_m$ and $\mathcal{D}_{j'}$ and $\mathcal{D}_{j''}$ are η_ℓ -separable in \mathcal{C}_m . Then, Lemma 6 applies for any $u \in \widehat{Z}_{j'}$ and $u' \in \widehat{Z}_{j''}$.

Fix ℓ , j' and j'' with the above properties, and set $\widehat{Z} = \widehat{Z}_j \cup \widehat{Z}_{j'} \cup \widehat{Z}_{j''}$. If there exist $t \in \{j, j', j''\}$ and $i = 1, 2$ such that the first alternative in Lemma 8(b) holds for \widehat{Z}_t , ℓ and i , then $\mu \leq 1/4$ implies $\chi_\ell^{(i)}(u) \leq 1$ for any $u \in \widehat{Z}_t$.

Now assume that for every $t \in \{j, j', j''\}$ and every $i = 1, 2$ the second alternative in Lemma 8(b) holds for \widehat{Z}_t , ℓ , and i , i.e.

$$|h(v_i^{(\ell)}(u))| \geq \frac{1}{4} H(v_i^{(\ell)}(u)), \quad u \in \widehat{Z}_t. \quad (6)$$

Since $\psi(\widehat{Z}) = \widehat{D}_j \cup \widehat{D}_{j'} \cup \widehat{D}_{j''} \subset \mathcal{C}_m$, given $u, u' \in \widehat{Z}$, both $\sigma^{N-n_1}(v_i^{(\ell)}(u))$ and $\sigma^{N-n_1}(v_i^{(\ell)}(u')) \in \mathcal{C}_m$. Moreover, $\mathcal{C}' = v_i^{(\ell)}(\sigma^{n_1}(\mathcal{C}_m))$ is a cylinder with

$$\text{diam}(\mathcal{C}') \leq \frac{\epsilon_1}{c_0 \gamma_0^{N-n_1} |b|}. \quad (7)$$

It follows from (5) above that

$$|g_t^N(v_i^{(\ell)}(u)) - g_t^N(v_i^{(\ell)}(u'))| \leq \frac{\text{Lip}(g_t) \gamma_1^{n_1}}{c_0^2 (\gamma_0 - 1)} \frac{\epsilon_1}{|b|}. \quad (8)$$

Recall that $z = c + \mathbf{i}w$, where $|w| \leq \delta_1 |b|$.

We will now compare the lengths and the arguments of the complex numbers

$$\begin{aligned} \rho_1(u) &= e^{(f_{atc}^N - \mathbf{i}b\tau_N)(v_1^{(\ell)}(u))} e^{zg_t^N(v_1^{(\ell)}(u))} h(v_1^{(\ell)}(u)) \\ &= e^{(f_{atc}^N + cg_t^N)(v_1^{(\ell)}(u))} e^{-\mathbf{i}b\tau_N(v_1^{(\ell)}(u))} e^{\mathbf{i}wg_t^N(v_1^{(\ell)}(u))} h(v_1^{(\ell)}(u)), \end{aligned}$$

and

$$\begin{aligned} \rho_2(u) &= e^{(f_{atc}^N - \mathbf{i}b\tau_N)(v_2^{(\ell)}(u))} e^{zg_t^N(v_2^{(\ell)}(u))} h(v_2^{(\ell)}(u)) \\ &= e^{(f_{atc}^N + cg_t^N)(v_2^{(\ell)}(u))} e^{-\mathbf{i}b\tau_N(v_2^{(\ell)}(u))} e^{\mathbf{i}wg_t^N(v_2^{(\ell)}(u))} h(v_2^{(\ell)}(u)). \end{aligned}$$

First, given $i = 1, 2$ and $u, u' \in \widehat{Z}$, we look at

$$e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) \quad \text{and} \quad e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u'))} h(v_i^{(\ell)}(u')).$$

Assume for example that

$$|h(v_i^{(\ell)}(u))| \geq |h(v_i^{(\ell)}(u'))|.$$

Then, using (3), (7), and (5), we get

$$\begin{aligned} &\frac{|e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) - e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u'))} h(v_i^{(\ell)}(u'))|}{\min\{|h(v_i^{(\ell)}(u))|, |h(v_i^{(\ell)}(u'))|\}} \\ &= \frac{|e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) - e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u'))} h(v_i^{(\ell)}(u'))|}{|h(v_i^{(\ell)}(u'))|} \\ &\leq \frac{|e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) - e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u'))|}{|h(v_i^{(\ell)}(u'))|} \\ &\quad + \frac{|e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u')) - e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u'))} h(v_i^{(\ell)}(u'))|}{|h(v_i^{(\ell)}(u'))|} \\ &\leq \frac{|h(v_i^{(\ell)}(u)) - h(v_i^{(\ell)}(u'))|}{|h(v_i^{(\ell)}(u'))|} + |e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u))} - e^{\mathbf{i}wg_t^N(v_i^{(\ell)}(u'))}| \end{aligned}$$

$$\begin{aligned}
&\leq \frac{Et|b| H(v_i^{(\ell)}(u'))}{|h(v_i^{(\ell)}(u'))|} D(v_i^{(\ell)}(u), v_i^{(\ell)}(u')) + |w| \|g_t^N(v_i^{(\ell)}(u)) - g_t^N(v_i^{(\ell)}(u'))\| \\
&\leq 4Et|b| \operatorname{diam}(\mathcal{C}') + \delta_1 |b| \frac{\operatorname{Lip}(g_t) \gamma_1^{n_1} \epsilon_1}{c_0^2 (\gamma_0 - 1) |b|} \\
&\leq \frac{4Et|b|}{c_0 \gamma_0^{N-n_1}} \cdot \frac{\epsilon_1}{|b|} + \delta_1 \frac{\operatorname{Lip}(g_t) \epsilon_1 \gamma_1^{n_1}}{c_0^2 (\gamma_0 - 1)} \\
&\leq \frac{c_2 \epsilon_1}{8} + \frac{c_2 \epsilon_1}{16} < \frac{c_2 \epsilon_1}{4} < \frac{\pi}{3},
\end{aligned}$$

where we have used the estimate for Et above. Thus, the angle between the complex numbers

$$e^{iwg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) \quad \text{and} \quad e^{iwg_t^N(v_i^{(\ell)}(u'))} h(v_i^{(\ell)}(u'))$$

(regarded as vectors in \mathbb{R}^2) is less than $\pi/3$. In particular, for each $i = 1, 2$, we can choose a real continuous function $\theta_i(u)$, $u \in \widehat{Z}$, with values in $[0, \pi/3]$ and a constant λ_i such that

$$e^{iwg_t^N(v_i^{(\ell)}(u))} h(v_i^{(\ell)}(u)) = e^{i(\lambda_i + \theta_i(u))} |h(v_i^{(\ell)}(u))|, \quad u \in \widehat{Z}.$$

Fix an arbitrary $u_0 \in \widehat{Z}$ and set $\lambda = \gamma_\ell(b, u_0)$. Replacing e.g. λ_2 by $\lambda_2 + 2m\pi$ for some integer m , we may assume that $|\lambda_2 - \lambda_1 + \lambda| \leq \pi$.

The difference between the arguments of the complex numbers

$$\begin{aligned}
&e^{-ib\tau^N(v_1^{(\ell)}(u))} e^{iwg_t^N(v_1^{(\ell)}(u))} h(v_1^{(\ell)}(u)) \\
\text{and} \quad &e^{-ib\tau^N(v_2^{(\ell)}(u))} e^{iwg_t^N(v_2^{(\ell)}(u))} h(v_2^{(\ell)}(u))
\end{aligned}$$

is given by the function

$$\begin{aligned}
\Gamma^{(\ell)}(b, u) &= [-b\tau^N(v_1^{(\ell)}(u)) + \theta_1(u) + \lambda_1] - [-b\tau^N(v_2^{(\ell)}(u)) + \theta_2(u) + \lambda_2] \\
&= b [\tau^N(v_2^{(\ell)}(u)) - \tau^N(v_1^{(\ell)}(u))] + (\lambda_1 - \lambda_2) + (\theta_1(u) - \theta_2(u)).
\end{aligned}$$

It follows from the observation in the beginning of the proof of the lemma that $|\gamma_\ell(b, u) - \gamma_\ell(b, u_0)| \leq 2 \frac{\epsilon_2}{8}$ for any $u \in \widehat{Z}$. Thus, for any such u , using $\lambda = \gamma_\ell(b, u_0)$, we get

$$\begin{aligned}
|\Gamma^{(\ell)}(b, u)| &\leq |\gamma_\ell(b, u) - \gamma_\ell(b, u_0)| + |\lambda_2 - \lambda_1 + \lambda| + |\theta_2(u) - \theta_1(u)| \\
&\leq 2 \frac{\epsilon_2}{8} + \pi + \frac{\pi}{3} < \frac{3\pi}{2}.
\end{aligned}$$

Thus, $|\Gamma^{(\ell)}(b, u)| < \frac{3\pi}{2}$ for all $u \in \widehat{Z}$.

Given $u' \in \widehat{Z}_{j'}$ and $u'' \in \widehat{Z}_{j''}$, since $\widehat{\mathcal{D}}_{j'}$ and $\widehat{\mathcal{D}}_{j''}$ are contained in \mathcal{C}_m and are η_ℓ -separable in \mathcal{C}_m , it follows from Lemma 6 and the above that

$$\begin{aligned}
&|\Gamma^{(\ell)}(b, u') - \Gamma^{(\ell)}(b, u'')| \\
&\geq |\gamma_\ell(b, u') - \gamma_\ell(b, u'')| - |\theta_1(u') - \theta_1(u'')| - |\theta_2(u') - \theta_2(u'')| \\
&\geq c_2 \epsilon_1 - 2 \frac{c_2 \epsilon_1}{4} \geq \frac{c_2 \epsilon_1}{2}.
\end{aligned}$$

Thus, $|\Gamma^{(\ell)}(b, u') - \Gamma^{(\ell)}(b, u'')| \geq \frac{c_2}{2} \epsilon_1$ for all $u' \in \widehat{Z}_{j'}$ and $u'' \in \widehat{Z}_{j''}$. Hence, either $|\Gamma^{(\ell)}(b, u')| \geq \frac{c_2}{4} \epsilon_1$ for all $u' \in \widehat{Z}_{j'}$ or $|\Gamma^{(\ell)}(b, u'')| \geq \frac{c_2}{4} \epsilon_1$ for all $u'' \in \widehat{Z}_{j''}$.

Assume for example that $|\Gamma^{(\ell)}(b, u)| \geq \frac{c_2}{4}\epsilon_1$ for all $u \in \widehat{Z}_{j'}$. As observed above, for any $u \in \widehat{Z}$, we have $|\Gamma^{(\ell)}(b, u)| < \frac{3\pi}{2}$. Thus,

$$\frac{c_2}{4}\epsilon_1 \leq |\Gamma^{(\ell)}(b, u)| < \frac{3\pi}{2}$$

for all $u \in \widehat{Z}_{j'}$.

Now, as in [4] (see also [13]), one derives that $\chi_\ell^{(1)}(u) \leq 1$ and $\chi_\ell^{(2)}(u) \leq 1$ for all $u \in \widehat{Z}_{j'}$. This proves the lemma. \square

Remark 1. The statement of Theorem 5.1(c) in [9] must be corrected, changing the condition $|w| \leq B|b|$ by $|w| \leq \delta_1|b|$ with $0 < \delta_1 < 1$ as we have done in Theorem 1 above. Notice that Theorem 5.1(c) is a particular case of Theorem 1 since one assumes that the functions f, g are in $C^{Lip}(\hat{U})$. Similar corrections must be done in Theorem 6.1 in [9], replacing the condition $|b| \leq B|w|$ by $|b| \leq \delta_2|w|$ with a suitable small constant $0 < \delta_2 < 1$ and in Theorem 7.3 in [9] replacing $\eta_0 \leq |w|$ by $\eta_0 \leq |w| \leq \delta_1|\text{Im } s|$.

We pass to a corrected version of Theorem 2 in [10] and we use the notations of [10]. Recall that $F : \Lambda \rightarrow \mathbb{R}$, $G : \Lambda \rightarrow (0, \infty)$ are Hölder continuous functions. By adding a constant, we may assume that $\text{Pr}_{\sigma^\tau}(F) = 0$, and this does not change the equilibrium state m_{F+tG} . Therefore, $\text{Pr}_\sigma(f - \text{Pr}_{\sigma^\tau}(F)\tau) = 0$ yields $\text{Pr}_\sigma(f) = 0$. Given $p \in \mathcal{I}_G = \{ \int_{\mathcal{R}^\tau} G dm_{F+tG} : t \in \mathbb{R} \}$, we have

$$\frac{d\text{Pr}_{\sigma^\tau}(F + tG)}{dt} \Big|_{t=\xi(p)} = \int_{\mathcal{R}^\tau} G dm_{F+\xi(p)G} = p$$

and $\xi(p) \in \mathbb{R}$ is uniquely determined by the above equality. Set $g_p(x) := g(x) - p\tau(x)$ and

$$g_p^n(x) = g^n(x) - p\tau^n(x) = \int_0^{\tau^n(x)} (G(\pi(x, t)) - p) dt.$$

We have

$$\begin{aligned} 0 &= \int_{\mathcal{R}^\tau} (G - p) dm_{F+\xi(p)G} \\ &= \int_{\mathcal{R}^\tau} (G - p) dm_{F+\xi(p)(G-p)} \\ &= \left(\int_{\mathcal{R}} \tau d\mu_{f+\xi(p)g_p} \right)^{-1} \int_{\mathcal{R}} \left(\int_0^{\tau(x)} (G(\pi(x, t)) - p) dt \right) d\mu_{f+\xi(p)g_p}, \end{aligned}$$

which implies

$$\frac{d\text{Pr}_\sigma(f + tg_p)}{dt} \Big|_{t=\xi(p)} = \int_{\mathcal{R}} g_p d\mu_{f+\xi(p)g_p} = 0. \quad (9)$$

Following [11, 12], we say that the function $g_p(x)$ satisfies the *Diophantine condition* if there exist three periodic orbits $\tau^{n_k}(x_k) = x_k$, $n_k \in \mathbb{N}$, $k = 1, 2, 3$, issued from x_k , so that

$$\alpha = \frac{g_p^{n_3}(x_3) - g_p^{n_1}(x_1)}{g_p^{n_2}(x_2) - g_p^{n_1}(x_1)}$$

is a Diophantine number, that is, there exist $d > 0$ and $\nu > 1$ such that

$$\left| \alpha - \frac{m}{q} \right| \geq dq^{-1-\nu}, \quad \forall q \in \mathbb{N}, \quad \forall m \in \mathbb{Z}.$$

Under this condition, we have the following Dolgopyat type estimate for the Ruelle operator $L_{f+(\xi(p)+iu)g_p}$.

Proposition 1 (Prop. 2.2 in [12]). Assume that $g_p(x)$ satisfies the Diophantine condition. Then, there exist $b_0 > 1$, $\gamma > 0$, $c_2 > 0$, $C > 0$, and $D > 0$ such that for $|u| \geq b_0$, we have

$$\|L_{f+(\xi(p)+iu)g_p}^{2Nm} 1\|_\infty \leq C e^{2Nm \Pr_\sigma(f+\xi(p)g_p)} \left(1 - \frac{c_2}{|u|^\gamma}\right)^m, \quad \forall m \in \mathbb{N}, \quad (10)$$

where $N = [D \log |u|]$.

Below we assume that G is not cohomologous to a constant. Then, g_p is not cohomologous to 0, and the set \mathcal{I}_G has a non-empty interior $\text{Int } \mathcal{I}_G$. From (9), it follows that $g_p(x)$ is not cohomologous to a constant $b \neq 0$. Obviously, the same holds if $g_p(x)$ satisfies the Diophantine condition. Thus, g_p is not cohomologous to a constant and according to the results in [6], one obtains

$$\frac{d^2 \Pr_\sigma(f + tg_p)}{dt^2} \Big|_{t=\xi(p)} = \omega(p) > 0.$$

Moreover, equality (9) shows that $g_p(x)$ cannot be everywhere on \mathcal{R} a non-negative or a non-positive function. The change of sign of $g_p(x)$ leads to difficulties when we study the Dolgopyat type estimate of $L_{f+(\xi(p)+iu)g_p}$.

The function $g_p(x)$ is called non-lattice if $tg_p(x)$ cohomologous to $b + F(x)$ with $t \in \mathbb{R}$, $b \in \mathbb{R}$, $F \in C(\mathcal{R}; \mathbb{Z})$, implies $t = b = 0$. The sharp deviation results concern the estimate of the measure

$$G_n = \mu\{x \in \mathcal{R} : \frac{1}{\tau^n(x)} \int_0^{\tau^n(x)} G(\pi(x, t)) dt - p \in (-\delta_n, \delta_n)\}, \quad n \rightarrow \infty,$$

where $\mu = \mu_f$ is the equilibrium state of f . Let

$$0 < \tau_0 = \min_{x \in \mathcal{R}} \tau(x), \quad \tau_1 = \max_{x \in \mathcal{R}} \tau(x).$$

Then, $\tau_0 n \leq \tau^n(x) \leq \tau_1 n$, and we set

$$\nu_n = \tau_0 n \delta_n, \quad \epsilon_n = \tau_1 n \delta_n, \quad n \in \mathbb{N}.$$

Clearly, if $\delta_n = \frac{1}{n^{1+\kappa}}$, $\kappa > 0$, then $\nu_n = \mathcal{O}(n^{-\kappa})$, $\epsilon_n = \mathcal{O}(n^{-\kappa})$, and

$$\mu\{x : g^n(x) - p\tau^n(x) \in (-\nu_n, \nu_n)\} \leq G_n \leq \mu\{x : g^n(x) - p\tau^n(x) \in (-\epsilon_n, \epsilon_n)\}.$$

We prove a weaker version of Theorem 2 in [10], where the sequence $\delta_n = e^{-\delta n}$, $\delta > 0$, is replaced by $\epsilon_n = \mathcal{O}(n^{-\kappa})$, $\kappa > 0$.

Theorem 2. Assume that $G : \Lambda \rightarrow (0, \infty)$ is a Hölder continuous function which is not cohomologous to a constant function, and there exists a Markov family $\mathcal{R} = \{R_i\}_{i=1}^k$ of the flow φ_t on Λ such that G is constant on the stable leaves of all rectangular boxes

$$B_i = \{\varphi_t(x) : x \in R_i, 0 \leq t \leq \tau(x)\}, \quad i = 1, \dots, k.$$

Assume that the suspended flow σ_τ^t is topologically weak mixing. Let $p \in \text{Int } \mathcal{I}_G$, $g_p(x)$ be non-lattice and let $g_p(x)$ satisfy the Diophantine condition. Then, there exists $\kappa > 0$ such that if $\epsilon_n = \mathcal{O}(n^{-\kappa})$, we have

$$\mu\{x \in \mathcal{R} : g^n(x) - p\tau^n(x) \in (-\epsilon_n, \epsilon_n)\} \sim \frac{2\epsilon_n}{\sqrt{2\pi\omega(p)n}} e^{nJ(p)}, \quad n \rightarrow \infty. \quad (11)$$

Here, $J(p) = \Pr_\sigma(f + \xi(p)g_p) \leq 0$ and $J(p) = 0$ if and only if $p = \int G dm_F$ and $\xi(p) = 0$.

Remark 2. To satisfy some of the assumptions in the above theorem, we may assume that the functions τ and g are σ -independent. This means that if $t_1\tau + t_2g$ with $t_1 \in \mathbb{R}, t_2 \in \mathbb{R}$, is cohomologous to a function in $C(\mathcal{R}; \mathbb{Z})$, then $t_1 = t_2 = 0$. The σ -independence of τ and g implies that the flow σ_τ^t is topologically weak mixing and G is not cohomologous to a constant.

If $\mu_{f+\xi(p)g_p}(R_i) \in \mathbb{Q}$ for $i = 1, \dots, k$ and $g_p(x)$ satisfies the Diophantine condition, then $g_p(x)$ is non-lattice. Indeed, assuming $t g_p(x) \sim b + F(x)$ with $t \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}, F(x) \in C(\mathcal{R}; \mathbb{Z})$, and applying (9), one deduces

$$b + \sum_{i=1}^k m_i \mu_{f+\xi(p)g_p}(R_i) = 0,$$

where $m_i = F(x)|_{R_i} \in \mathbb{Z}$, $i = 1, \dots, k$. This implies $b \in \mathbb{Q}$, and one obtains a contradiction with the Diophantine condition for g_p . In general, the Diophantine condition for g_p does not imply that g_p is non-lattice.

The only point in the proof of Theorem 2 in [10] that must change is the analysis of the term

$$I_3(n) = \frac{\epsilon_n}{2\pi} \int_{|u|>a} \left(\int L_{f+(\xi(p)+iu g_p)}^n \mathbf{1}(x) d\mu(x) \right) \hat{\chi}(\epsilon_n(u - \mathbf{i}\xi(p))) du$$

where $a > 0$ is large. By using estimate (10), we obtain

$$I_3(n) = e^{nJ(p)} \mathcal{O}\left(\epsilon_n^{1-k} \int_a^\infty \left(1 - \frac{c_2}{u^\gamma}\right)^{\frac{n}{2(D \log u)}} u^{-k} du\right), \quad k \gg 1,$$

The purpose is to show that the term $\mathcal{O}(\dots)$ goes to 0 as $n \rightarrow \infty$ faster than $\epsilon_n n^{-1/2}$. To prove this, we repeat the argument of subsection 4.2 in [12]. For reader's convenience we present some details.

Write

$$\int_a^\infty \epsilon_n^{1-k} \left(1 - \frac{c_2}{u^\gamma}\right)^{\frac{n}{2(D \log u)}} u^{-k} du = \int_a^{n^{\delta'}} (\dots) + \int_{n^{\delta'}}^\infty (\dots) = I_1 + I_2$$

with $0 < \kappa < \delta' < 1/\gamma$. Since $\delta' \gamma < 1$, it is easy to see that for every $r \geq 1$ and $n \geq N_0(r, k)$ sufficiently large, we have

$$I_1 \leq a^{-k} n^{\frac{1}{\gamma} + (k-1)\kappa} \left(1 - \frac{c_2}{n^{\delta' \gamma}}\right)^{\frac{n}{D \delta' \log n}} \leq \frac{1}{n^r}.$$

Next,

$$I_2 \leq n^{(1-k)\delta' + (k-1)\kappa} = n^{(k-1)(\kappa - \delta')}.$$

Since $\kappa - \delta' < 0$, choosing k large, we obtain $I_2 = \mathcal{O}(n^{-r})$, $n \geq N_1(r)$. This completes the proof. \square

Acknowledgments. We would like to thank Thibault Lefeuvre who informed us that the statement (c) of Theorem 5.1 in [9] with $|w| \leq B|b|$ and any $B > 0$ is false. This led to the corrections of the corresponding results in [9] and [10].

REFERENCES

- [1] R. Bowen, Equilibrium states and the ergodic theory of anosov diffeomorphisms, *Lect. Notes in Math.*, Springer-Verlag, Berlin, **470** (1975).
- [2] R. Bowen, [Symbolic dynamics for hyperbolic flows](#), *Amer. J. Math.*, **95** (1973), 429-460.
- [3] R. Bowen and D. Ruelle, [The ergodic theory of Axiom A flows](#), *Invent. Math.*, **29** (1975), 181-202.
- [4] D. Dolgopyat, [Decay of correlations in Anosov flows](#), *Ann. Math.*, **147** (1998), 357-390.
- [5] A. Katok and B. Hasselblatt, *Introduction to the Modern Theory of Dynamical Systems*, Cambridge Univ. Press, Cambridge, 1995.
- [6] S. P. Lalley, [Distribution of period orbits of symbolic and Axiom A flows](#), *Adv. Appl. Math.*, **8** (1987), 154-193.
- [7] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, *Astérisque*, (1990), No. 187-188, 268 pp.
- [8] V. Petkov and L. Stoyanov, Sharp large deviations for some hyperbolic systems, *Ergodic Theory Dynam. Systems*, **35** (2015), 249-273.
- [9] V. Petkov and L. Stoyanov, [Ruelle transfer operators with two complex parameters and applications](#), *Discr. Cont. Dyn. Sys.*, **36** (2016), 6413-6451.
- [10] V. Petkov and L. Stoyanov, [Spectral estimates for Ruelle transfer operators with two parameters and sharp large deviations](#), *Discr. Cont. Dyn. Sys.*, **39** (2019), 6391-6417.
- [11] M. Pollicott and R. Sharp, Error terms for closed orbits of hyperbolic flows, *Ergodic Theory Dynamical Systems*, **21** (2001), 545-562.
- [12] M. Pollicott and R. Sharp, [Large deviations, fluctuations and shrinking intervals](#), *Comm. Math. Phys.*, **290** (2009), 321-334.
- [13] L. Stoyanov, [Spectra of Ruelle transfer operators for Axiom A flows](#), *Nonlinearity*, **24** (2011), 1089-1120.
- [14] L. Stoyanov, [Pinching conditions, linearization and regularity of Axiom A flows](#), *Discr. Cont. Dyn. Sys.*, **33** (2013), 391-412.
- [15] S. Waddington, [Large deviations for Anosov flows](#), *Ann. Inst. H. Poincaré, Analyse non-Linéaire*, **13** (1996), 445-484.

Received for publication August 13, 2025; early access January 2026.