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DYNAMICAL ZETA FUNCTIONS FOR BILLIARDS

by Yann CHAUBET & Vesselin PETKOV (*)

Abstract. — Let D ⊂ Rd, d ⩾ 2, be the union of a finite collection of pairwise
disjoint strictly convex compact obstacles. Let µj ∈ C, Im µj > 0 be the resonances
of the Laplacian in the exterior of D with Neumann or Dirichlet boundary condition
on ∂D. For d odd, u(t) =

∑
j

ei|t|µj is a distribution in D′(R\{0}) and the Laplace
transforms of the leading singularities of u(t) yield the dynamical zeta functions
ηN, ηD for Neumann and Dirichlet boundary conditions, respectively. These zeta
functions play a crucial role in the analysis of the distribution of the resonances.
Under a non-eclipse condition, for every d ⩾ 2 we show that ηN and ηD admit a
meromorphic continuation to the whole complex plane. In the particular case when
the boundary ∂D is real analytic, by using a result of Fried [17], we prove that
the function ηD cannot be entire. Following Ikawa [29], this implies the existence
of a strip {z ∈ C : 0 < Im z ⩽ α} containing an infinite number of resonances µj

for the Dirichlet problem. Moreover, for α ≫ 1 we obtain a lower bound for the
resonances lying in this strip.

Résumé. — Soit d ⩾ 2, et D ⊂ Rd une union finie d’obstacles strictement
convexes, compacts et deux à deux disjoints. Soient µj ∈ C, Im µj > 0, les ré-
sonances du Laplacien à l’extérieur de D avec conditions aux limites de Neumann
ou de Dirichlet sur ∂D. Pour d impair, la formule u(t) =

∑
j

ei|t|µj définit une
distribution de D′(R \ {0}). Les transformées de Laplace des singularités princi-
pales de u(t) s’expriment comme des fonctions zêta dynamiques ηN et ηD, associées
aux conditions aux limites de Neumann et Dirichlet, respectivement. Ces fonctions
zêta jouent un rôle crucial dans l’analyse de la distribution des résonances. Sous
une condition de non-éclipse, pour d ⩾ 2 quelconque, nous montrons que ηN et ηD
admettent un prolongement méromorphe à tout le plan complexe. Dans le cas par-
ticulier où la frontière ∂D est analytique réelle, en utilisant un résultat de Fried [17],
nous prouvons que la fonction ηD ne peut pas être entière. Ceci implique, d’après
un résultat de Ikawa [29], l’existence d’une bande {z ∈ C : 0 < Im z ⩽ α} conte-
nant un nombre infini de résonances µj pour le problème de Dirichlet. De plus,
pour α ≫ 1, nous obtenons une borne inférieure sur le nombre de résonances se
trouvant dans cette bande.
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1. Introduction

Let D1, . . . , Dr ⊂ Rd, r ⩾ 3, d ⩾ 2, be compact strictly convex disjoint
obstacles with smooth boundary and let D =

⋃r
j=1 Dj . We assume that

every Dj has non-empty interior and throughout this paper we suppose the
following non-eclipse condition

(1.1) Dk ∩ convex hull(Di ∪Dj) = ∅,

for any 1 ⩽ i, j, k ⩽ r such that i ̸= k and j ̸= k. Under this condition all
periodic trajectories for the billiard flow in Ω = Rd \D̊ are ordinary reflect-
ing ones without tangential intersections to the boundary of D. Notice that
if (1.1) is not satisfied, for generic perturbations of ∂D all periodic reflecting
trajectories in Ω have no tangential intersections to ∂D (see Theorem 6.3.1
in [47]). We consider the (non-grazing) billiard flow φt (see Section 2.2 for
a precise definition). In this paper the periodic trajectories will be called
periodic rays and we refer to Chapter 2 in [47] for basic definitions. For
any periodic trajectory γ, denote by τ(γ) > 0 its period, by τ ♯(γ) > 0 its
primitive period, and by m(γ) the number of reflections of γ at the obsta-
cles. Denote by Pγ the associated linearized Poincaré map (see Section 2.3
in [47] and Appendix A for the definition). Let P be the set of all periodic
rays. The counting function of the lengths of periodic rays satisfies

(1.2) ♯{γ ∈ P : τ ♯(γ) ⩽ x} ∼ eax

ax
, x −→ +∞,

for some a > 0 (see for instance, [42, Theorem 6.5] for weak-mixing sus-
pension symbolic flow and [31, 41]). In contrast to the case r = 2, for r ⩾ 3
there exists an infinite number of primitive periodic trajectories and we
have (see Corollary 2.2.5 in [47]) the estimate

♯{γ ∈ P : τ(γ) ⩽ x} ⩽ ea1x, x > 0

with a1 > a. Moreover, for some positive constants C1, b1, b2 we have (see
for instance [44, Appendix])

C1eb1τ(γ) ⩽ |det(Id− Pγ)| ⩽ eb2τ(γ), γ ∈ P.

Using these estimates, we may define for Re(s)≫ 1 two Dirichlet series

ηN(s) =
∑
γ∈P

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2 , ηD(s) =
∑
γ∈P

(−1)m(γ) τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2 ,

where the sums run over all the oriented periodic rays. Notice that some pe-
riodic rays have only one orientation, while others admits two (see
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Section 2.3). On the other hand, the length τ ♯(γ), the period τ(γ) and
|det(Id− Pγ)|1/2 are independent of the orientation of γ.

The series ηN(s), ηD(s) are related to the resonances of the self-adjoint
operators −∆b, b = N,D, acting on domains Db ⊂ H = L2(Rd \ D),
with Neumann and Dirichlet boundary conditions on ∂D, respectively. To
explain this relation, consider the resolvents

Rb(µ) =
(
−∆b − µ2)−1 : H −→ Db,

which are analytic in {µ ∈ C : Imµ < 0}. ThenRb(µ) : Hcomp → Db,loc has
a meromorphic continuation to µ ∈ C if d is odd, and to the logarithmic
covering of C \ {0} if d is even (see [37, Chapter 5] for d odd and [15,
Chapter 4]). These resolvents have poles in {z ∈ C : Im z > 0} and the
poles µj are called resonances. Introduce the distribution u ∈ D′(R) by the
formula

⟨u, φ⟩ = 2 trL2(Rd)

∫
R

(
cos(t

√
−∆b)⊕ 0− cos(t

√
−∆0)

)
φ(t)dt,

φ ∈ C∞
c (R).

Here ∆0 is the free Laplacian in Rd and writing L2(Rd) = L2(Rd \ D) ⊕
L2(D), the operator cos(t

√
−∆b)⊕ 0 acts as 0 on L2(D). Then for d odd,

Melrose [40] (see also [3] for a slightly weaker result) proved that u|R\{0} is
a distribution in D′(R \ {0}) having the representation

u(t) =
∑
j

m(µj)ei|t|µj ,

where m(µj) is the multiplicity of µj . In the notation we omitted the de-
pendence on the boundary conditions. The above series converges in the
sense of distributions since we have a bound ♯{µj : |µj | ⩽ r} ⩽ Crd for
all r > 0 (see Section 4.3 in [15]) and we may express the action ⟨u, φ⟩ on
functions φ ∈ C∞

c (R+) by the derivatives of φ (see Lemma B.1 in Appen-
dix B). The reader may consult [57] and [15] for the form of the singularity
of u(t) at t = 0, though it is not important for our exposition.

For d even, the situation is more complicated since the resonances are
defined in a logarithmic covering exp−1(C\{0}) of C\{0} and the arguments
of the resonances are not bounded (see [54, 55]). Let Λ = C\ eiπ

2 R+ and for
0 < ω < π

2 introduce

Λω = {µ ∈ Λ : 0 < Imµ ⩽ ω|Reµ|, 0 < argµ < π}.

Choose a function ψ in C∞
c (R; [0, 1]) equal to 1 in a neighborhood of 0 and

denote by σb(λ) := i
2π log detSb(λ) the scattering phase related to −∆b,

where Sb(λ) is the scattering matrix (see Definition 4.25 in [58] for Sb(λ)).
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Following the work of Zworski (Theorem 1 in [58]), there exists a function
vω,ψ ∈ C∞(R \ {0}) such that for even dimension d one has in the sense of
distributions D′(R \ {0})

(1.3) u(t) =
∑
µj∈Λω

m(µj)eiµj |t| +m(0)

+ 2
∫ ∞

0
ψ(λ)dσb

dλ (λ) cos(tλ)dλ+ vω,ψ(t),

where m(0) is a constant and

∂kt vω,ψ(t) = O(|t|−N ), ∀ k, ∀ N, |t| −→ ∞.

The reader may consult [50] for a local trace formula involving the reso-
nances. Concerning the singularities of the distribution u(t) ∈ D′(R \ {0}),
from [3] it follows that

sing suppu ⊂ {±τ(γ) : γ ∈ P}.

Under the condition (1.1), every periodic trajectory γ with period T = τ(γ)
is an ordinary reflecting ray and the singularity of u at t = T was described
by Guillemin and Melrose [22]. More precisely, the singularity at T has the
form

(1.4)
∑

γ∈P,τ(γ)=T

(−1)m(γ)τ ♯(γ)|det(Id− Pγ)|−1/2δ(t− T ) + L1
loc(R)

(see for instance, Corollary 4.3.4 in [47]), where for the Neumann problem
the factor (−1)m(γ) must be omitted. Taking the sum of the Laplace trans-
forms of the singularities of u(t)|R+ at τ(γ), γ ∈ P, we obtain the Dirichlet
series ηN(s), ηD(s).

The poles of ηN(s) and ηD(s) are important for the analysis of the dis-
tribution of the resonances (see [30, 31, 32, 33, 46, 52] and the papers
cited there). By using the Ruelle transfer operator and symbolic dynamics
(see [32, 41, 44, 52]), a meromorphic continuation of s 7→ ηN(s), ηD(s) has
been proved in a domain s0−ϵ ⩽ Re s with a suitable ϵ > 0, where s0 is the
abscissa of absolute convergence of the Dirichlet series ηN(s), ηD(s). In par-
ticular, these results imply the asymptotic (1.2). Recently, a meromorphic
continuation to C of the series

(1.5)
∑
γ∈P

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)| , Re(s)≫ 1,

has been proved by Delarue–Schütte–Weich (see Theorem 5.8 in [12]). We
refer also to [49] for results concerning weighted zeta functions. On the
other hand, a meromorphic continuation to the whole complex plane of
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the semi-classical zeta function for contact Anosov flows was established
by Faure–Tsujii [16]. Their zeta function is similar to the function ζN(s)
defined in (1.6) below. The meromorphic continuation of the Ruelle zeta
function

∏
γ∈P(1− e−sτ(γ))−1 for general Anosov flows was established by

Giulietti–Liverani–Pollicott [18] (see also the work of Dyatlov–Zworski [14]
for another proof based on microlocal analysis). In this paper the series
ηN(s), ηD(s) are simply called dynamical zeta functions following previous
works [44, 46] and we refer to the book of Baladi [1] for more references
concerning zeta functions for hyperbolic dynamical systems.

Our main result is the following

Theorem 1.1. — Let d ⩾ 2 and let the obstacles Dj , j = 1, . . . , r,
satisfy the condition (1.1). Then the series ηN(s) and ηD(s) admit a mero-
morphic continuation to the whole complex plane with simple poles and
integer residues.

One may also consider the zeta functions ζb(s) associated to the bound-
ary conditions b = D,N, defined for Re s large enough by

(1.6) ζb(s) = exp

−∑
γ∈P

(−1)m(γ)ε(b) e−sτ(γ)

µ(γ)|det(Id− Pγ)|1/2

 ,

where ε(D) = 1, ε(N) = 0 and τ(γ) = µ(γ)τ ♯(γ); µ(γ) ∈ N is the repetition
number. Notice that we have

(1.7) ζ ′
b(s)
ζb(s) = ηb(s), b = D,N, Re s≫ 1.

In particular, since by the above theorem ηb(s) has simple poles with integer
residues, it follows by a classical argument of complex analysis that we have
the following

Corollary 1.2. — Under the assumptions of Theorem 1.1 for b = D,N,
the function s 7→ ζb(s) extends meromorphically to the whole complex
plane.

In fact, we will prove a slightly more general result. For q ∈ N, q ⩾ 2,
consider the Dirichlet series

ηq(s) =
∑

γ∈P, m(γ)∈qN

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2 , Re(s)≫ 1,

where the sum runs over all periodic rays γ with m(γ) ∈ qN. We will
show that ηq(s) admits a meromorphic continuation to the whole complex
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plane, with simple poles and residues valued in Z/q (see Theorem 4.1). In
particular, considering the function ζq(s) defined by

ζq(s) = exp

− ∑
γ∈P, m(γ)∈qN

e−sτ(γ)

µ(γ)|det(Id− Pγ)|1/2

 , Re s≫ 1,

one gets qζ ′
q/ζq = qηq. Thus the function s 7→ ζq(s)q extends meromorphi-

cally to the whole complex plane since its logarithmic derivative is qηq and
by Theorem 4.1 the function qηq has simple poles with integer residues. One
reason for which it is interesting to study these functions is the relation

(1.8) ηD(s) = d
ds log ζ2(s)2

ζN(s) = 2η2(s)− ηN(s),

showing that ηD(s) for Re s ≫ 1 is expressed as the difference of two
Dirichlet series with positive coefficients. In particular, to show that ηD(s)
has a meromorphic extension to C, it is sufficient to prove that both series
ηN(s) and η2(s) have this property.

The distribution of the resonances µj in C depends on the geometry of
the obstacles and for trapping obstacles it was conjectured by Lax and
Phillips [37, p. 158] that there exists a sequence of resonances µj with
Imµj ↘ 0. For two disjoint strictly convex obstacles this conjecture is false
since there exists a strip {z ∈ C : 0 < Im z ⩽ a} without resonances
(see [26]). Ikawa [31, p. 212] conjectured that for trapping obstacles and d
odd there exists α > 0 such that

(1.9) N0,α = ♯{µj ∈ C : 0 < Imµj ⩽ α} =∞.

For d even we must consider

(1.10) N0,α = ♯{µj ∈ exp−1(C \ {0}) : 0 < Imµj ⩽ α, 0 < argµj < π}

since a meromorphic extension of RD(µ) is possible to the logarithmic cov-
ering exp−1(C \ {0}) of C \ {0} (see [54, 55] for the counting function of
the number of resonances µj when |µj | ⩽ r and |argµj | → ∞). Ikawa
called this conjecture modified Lax–Phillips conjecture (MLPC). In this
direction, for d odd, Ikawa [29, 31] proved for strictly convex disjoint ob-
stacles satisfying (1.1) that if ηN(s) or ηD(s) cannot be prolonged as entire
functions to C, then there exists α > 0 for which (1.9) holds for the Neu-
mann or Dirichlet boundary problem. Notice that the value α > 0 in [31] is
related to the singularity of ηD(s) and to some dynamical characteristics.
The proof in [31] can be modified to cover also the case d even, applying
the trace formula of Zworski (1.3) and the results of Vodev [54, 55] (see
Appendix B). It is important to note that the meromorphic continuation of
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ηD(s) to C was not established previously and to apply the result of Ikawa
we need to show that some (analytic) singularity exists. The existence of a
such singularity is trivial for the Neumann problem since ηN(s) is a Dirich-
let series with positive coefficients, and by the theorem of Landau (see for
instance, [5, Théorème 1, Chapitre IV]), ηN(s) must have a singularity at
s0 ∈ R, where s0 is the abscissa of absolute convergence of ηN(s). Moreover,
for d odd it was proved (see [45]) that there are constants c0 > 0, ε0 > 0
such that for every 0 < ε ⩽ ε0 we have a lower bound

♯
{
µj ∈ C : 0 < Imµj ⩽

c0

ε
, |µj | ⩽ r

}
⩾ Cεr

1−ε, r −→∞.

The situation for the Dirichlet problem is more complicated since ηD(s) is
analytic for Re s ⩾ s0, s0 being the abscissa of absolute convergence [44].
Moreover, for d = 2 [51] and for d ⩾ 3 under some conditions [53] Stoyanov
proved that there exists ε > 0 such that ηD(s) is analytic for Re s ⩾ s0− ε.
The reason of this cancellation of singularities is related to the change
of signs in the Dirichlet series defining ηD(s), as it is emphasised by the
relation (1.8). Despite many works in the physical literature concerning the
n-disk problem (see for example [4, 11, 38, 48, 56] and the references cited
there), a rigorous proof of the (MLPC) was established only for sufficiently
small balls [32] and for obstacles with sufficiently small diameters [52].

In this direction we prove the following

Theorem 1.3. — Assume the boundary ∂D real analytic. Under the
assumptions of Theorem 1.1, the function ηD has at least one pole and the
(MLPC) is satisfied for the Dirichlet problem. Moreover, for every 0 < δ < 1
there exists αδ > 0 such that for α > αδ and d odd we have

(1.11) ♯{µj ∈ C : 0 < Imµj ⩽ α, |µj | ⩽ r} ≠ O(rδ),

while for d even we have

(1.12) ♯{µj ∈ Λω : 0 < Imµj ⩽ α, 0 < argµj < π, |µj | ⩽ r} ≠ O(rδ).

Thus for the resonances of Dirichlet problem we obtain the analog of
the result concerning the Neumann problem mentioned above. More pre-
cisely, in Appendix B (see Proposition B.2 and Theorem B.3) we show that
there exists a > 0 depending on the singularity of ηD and the dynamical
characteristics of D such that for any 0 < δ < 1, if we choose

α = a

1− δ ,

then for d odd and any constant 0 < C <∞ the estimate

♯{µj ∈ C : 0 < Imµj ⩽ α, |µj | ⩽ r} ⩽ Crδ, r ⩾ 1,
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does not hold. For similar results and reference concerning the Pollicott–
Ruelle resonances we refer to [35, Theorem 2] and [34, Theorem 4.1].

Our paper relies heavily on the works [12, 13] and we provide specific
references in the text. For convenience of the reader we explain briefly the
general idea of the proofs of Theorems 1.1 and 1.3. First, in Section 2 we
make some geometric preparations. The non-grazing billiard flow φt acts
on M = B/ ∼, where

B = SRd \ (π−1(D̊) ∪ Dg),

π : SRd → Rd is the natural projection, Dg = π−1(∂D) ∩ T (∂D) is the
grazing part and (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or x = y ∈ ∂D
and w is equal to the reflected direction of v at x ∈ ∂D. By using this
equivalence relation, the flow φt is continuous in M . However, to apply
the Dyatlov–Guillarmou theory [13] in order to study the spectral proper-
ties of φt which are related to the dynamical zeta functions, we need to
work with a smooth flow. For this reason we use a special smooth struc-
ture on M defined by flow-coordinates introduced in the recent work of
Delarue–Schütte–Weich [12] (see Section 2.2). In this smooth model, the
flow φt is smooth, and it is uniformly hyperbolic when restricted to the
compact trapped set K of φt (see Section 2.4). The periodic points are
dense in K and for any z ∈ K the tangent space TzM has the decom-
position TzM = RX(z) ⊕ Eu(z) ⊕ Es(z) with unstable and stable spaces
Eu(z), Es(z), where X is the generator of φt. A meromorphic continuation
of the cut-off resolvent χ(X + s)−1χ with χ ∈ C∞

c (M) supported near K
has been established in [13] in a general setting. As in [14] and [13], the
estimates on the wavefront set of the resolvent χ(X+s)−1χ allow to define
its flat trace which is related to the series (1.5). This implies a meromorphic
continuation of this series to C (see [12]).

To prove a meromorphic continuation of the series ηN(s) which involves
factors |det(Id − Pγ)|−1/2 instead of |det(Id − Pγ)|−1, a natural approach
would consist to study the Lie derivative LX acting on sections of the
unstable bundle Eu (see for example [16, pp. 6–8]). However, in general,
Eu(z) is not smooth with respect to z, but only Hölder continuous. Thus
we are led to change the geometrical setting as in the work of Faure–
Tsujii [16] (notice that the Grassmannian bundle introduced below also
appears in [7] and [19]). Consider the Grassmannian bundle πG : G → V

over a neighborhood V of K; for every z ∈ V the fiber π−1
G (z) is formed by

all (d− 1)-dimensional planes of TzV. Define the trapped set

K̃u = {(z, Eu(z)) : z ∈ K} ⊂ G

ANNALES DE L’INSTITUT FOURIER
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and introduce the natural lifted smooth flow φ̃t on G (see Section 2.5).
Then according to [7, Lemma A.3], the set K̃u is hyperbolic for φ̃t. We
introduce the tautological bundle E → G by setting

E = {(ω, v) ∈ π∗
G(TV ) : ω ∈ G, v ∈ [ω]},

where [ω] denotes the subspace of TπG(ω)V that ω ∈ G represents, and
π∗
G(TV ) is the pull-back of the tangent bundle TV → V by πG. Next, we

define the vector bundle F → G by

F = {(ω,W ) ∈ TG : dπG(w) ·W = 0}

which is the “vertical subbundle” of the bundle TG→ G. Finally, set

Ek,ℓ = ∧kE∗ ⊗ ∧ℓF , 0 ⩽ k ⩽ d− 1, 0 ⩽ ℓ ⩽ d2 − d,

where E∗ is the dual bundle of E . We define a suitable flow Φk,ℓt : Ek,ℓ → Ek,ℓ
as well as a transfer operator (see Section 2.6 for the notations)

Φk,ℓ,∗−t u(ω) = Φk,ℓt [u(φ̃−t(ω)], u ∈ C∞(G, Ek,ℓ).

For a periodic orbit γ(t) of φt, this geometrical setting allows to express
the term |det(Id − Pγ)|−1/2 as a finite sum involving the traces tr(αk,ℓγ̃ )
related to the periodic orbit γ̃ = {(γ(t), Eu(γ(t)) : t ∈ [0, τ(γ)]} of the
flow φ̃t (see Section 3.2 for the notation αk,ℓγ̃ and Lemma 3.1). This cru-
cial argument explains the introduction of the bundles Ek,ℓ and the re-
lated geometrical technical complications. In this context we may apply
the Dyatlov–Guillarmou theory (see Theorem 1 in [13]) for the generators

Pk,ℓu = d
dt

(
Φk,ℓ,∗−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,ℓ)

of the transfer operators Φk,ℓ,∗−t (in fact, by using a smooth connexion, we
introduce a new operator Qk,ℓ which coincides with Pk,ℓ near K̃u (see Sec-
tion 2.8)). This leads to a meromophic continuation of the cut-off resolvent
χ̃(Qk,ℓ + s)−1χ̃, where χ̃ ∈ C∞

c (Ṽ u) is equal to 1 on K̃u (see Section 2.8
for the notations). By applying the Guillemin flat trace formula [21] (see
Appendix B in [14] and Section 3 in [49]), concerning

tr♭
(∫ ∞

0
ϱ(t)χ̃(e−tQk,ℓu)χ̃dt

)
, ϱ ∈ C∞

c (0,∞),

we obtain the meromorphic continuation of ηN. Finally, the meromorphic
continuation of ηq is obtained in a similar way, by considering in addition
a certain q-reflection bundle Rq → G to which the flow φ̃t can be lifted
(see Section 4.1).
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The strategy to prove Theorem 1.3 is the following. First, the represen-
tation (1.8) tells us that, if ηD(s) can be extended to an entire function,
then the function ζ2

2/ζN has neither zeros nor poles on the whole com-
plex plane. For obstacles with real analytic boundary we may use real
analytic charts near ∂D to define a real analytic structure on M which
makes φt a real analytic flow. In this setting we may apply a result of
Fried [17] to the non-grazing flow φt lifted to the Grassmannian bundle,
and show that the entire functions ζ2 and ζN have finite order. This crucial
point implies that the meromorphic function ζ2

2/ζN has also finite order.
Finally, by using Hadamard’s factorisation theorem, one concludes that we
may write ζ2(s)2/ζN(s) = eQ(s) for some polynomial Q(s). This leads to
ηD(s) = −Q′(s). Since ηD(s)→ 0 as Re s→ +∞, we obtain a contradiction
and ηD(s) is not entire. The existence of a singularity of ηD(s) implies the
lower bound (B.4) (see Appendix B) and we obtain (1.11) and (1.12). No-
tice that this argument works as soon as the entire functions ζ2 and ζN have
finite order. The recent work of Bonthonneau–Jézéquel [6] about Anosov
flows suggests that this should be satisfied for obstacles with Gevrey regular
boundary ∂D. In particular, the (MLPC) should be true for such obstacles.
However in this paper we are not going to study this generalization.

The paper is organised as follows. In Section 2 one introduces the geo-
metric setting of the billiard flow φt and its smooth model. We define the
Grassmannian extension G and the bundles E ,F , Ek,l = ΛkE⋆ ⊗ ΛℓF over
G. Next, we discuss the setting for which we apply the Dyatlov–Guillarmou
theory [13] for some first order operator Qk,ℓ leading to a meromorphic con-
tinuation of the cut-off resolvent Rk,ℓ(s) = χ̃(Qk,ℓ + s)−1χ̃. In Section 3
we treat the flat trace of the resolvent Rk,ℓ

ε (s) = e−ε(Qk,ℓ+s)Rk,ℓ(s), ε > 0,
and we obtain a meromorphic continuation of ηN . In Section 4 we study
the dynamical zeta functions ηq(s) for particular rays γ having number of
reflections m(γ) ∈ qN, q ⩾ 2. Applying the result for η2(s), we deduce the
meromorphic continuation of ηD. Finally, in Section 5 we treat the modi-
fied Lax–Phillips conjecture for obstacles with real analytic boundary and
we prove that the function ηD is not entire. In Appendix A we present a
proof for d ⩾ 2 of the uniform hyperbolicity of the flow ϕt in the Euclidean
metric in Rd, while in Appendix B we discuss the modifications of the
proof of Theorem 2.1 in [31] for even dimensions and we finish the proof of
Theorem 1.3.
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2. Geometrical setting

2.1. The billiard flow

Let D1, . . . , Dr ⊂ Rd be pairwise disjoint compact convex obstacles,
satisfying the condition (1.1), where r ⩾ 3. We denote by SRd the unit
tangent bundle of Rd and by π : SRd → Rd the natural projection. For
x ∈ ∂Dj , we denote by nj(x) the inward unit normal vector to ∂Dj at the
point x pointing into Dj . Set D =

⋃r
j=1 Dj and

D = {(x, v) ∈ SRd : x ∈ ∂D}.

We will say that (x, v) ∈ T∂DjRd is incoming (resp. outgoing) if we have
⟨v, nj(x)⟩ > 0 (resp. ⟨v, nj(x)⟩ < 0). Introduce

Din = {(x, v) ∈ D : (x, v) is incoming},
Dout = {(x, v) ∈ D : (x, v) is outgoing}.

We define the grazing set Dg = T (∂D) ∩ D and one gets

D = Dg ⊔ Din ⊔ Dout.

The billiard flow (ϕt)t∈R is the complete flow acting on SRd\π−1(D̊) which
is defined as follows. For (x, v) ∈ SRd \ π−1(D̊) we set

τ±(x, v) = ± inf{t ⩾ 0 : x± tv ∈ ∂D}

and for (x, v) ∈ Din/out/g we denote by v′ ∈ Dout/in/g the image of v by the
reflexion with respect to Tx(∂D) at x ∈ ∂D, that is

v′ = v − 2⟨v, nj(x)⟩nj(x), v ∈ SxRd, x ∈ ∂Dj

(see Figure 2.1). By convention, we have τ±(x, v) = ±∞, if the ray x±tv has
no common point with ∂D for ±t > 0. Then for (x, v) ∈ (SRd\π−1(D))∪Dg
we define

ϕt(x, v) = (x+ tv, v), t ∈ [τ−(x, v), τ+(x, v)],
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x
v ∈ Din

v′ ∈ Dout
y

w

φt(y, w)

Di

Tx∂Di

ni(x)

Figure 2.1. The billiard flow ϕt

while for (x, v) ∈ Din/out, we set

ϕt(x, v) = (x+ tv, v) if
{

(x, v) ∈ Dout, t ∈ [0, τ+(x, v)[,
or (x, v) ∈ Din, t ∈ ]τ−(x, v), 0],

and

ϕt(x, v) = (x+ tv′, v′) if
{

(x, v′) ∈ Dout, t ∈ ]0, τ+(x, v′)[,
or (x, v′) ∈ Din, t ∈ ]τ−(x, v′), 0[.

Next we extend ϕt to a complete flow (which we still denote by ϕt) char-
acterized by the property

ϕt+s(x, v) = ϕt(ϕs(x, v)), t, s ∈ R, (x, v) ∈ SRd \ π−1(D̊).

Strictly speaking, ϕt is not a flow, since the above flow property does not
hold in full generality for (x, v) ∈ Din/out. However, we can deal with this
problem by considering an appropriate quotient space (see Section 2.2 be-
low).

2.2. A smooth model for the non-grazing billiard flow

In this subsection, we briefly recall the construction of [12, Section 3]
which allows to obtain a smooth model for the non-grazing billiard flow.
First, we define the non-grazing billiard table M as

M = B/ ∼, B = SRd \
(
π−1(D̊) ∪ Dg

)
,
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where (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or

x = y ∈ ∂D and w = v′.

The set M is endowed with the quotient topology. We will change the
notation and pass from ϕt to the non-grazing flow φt, which is defined on
M as follows. For (x, v) ∈ (SRd \ π−1(D)) ∪ Din we define

φt([(x, v)]) = [ϕt(x, v)], t ∈ ]τg
−(x, v), τg

+(x, v)[,

where [z] denotes the equivalence class of the vector z ∈ B for the relation
∼, and

τg
±(x, v) = ± inf{t > 0 : ϕ±t(x, v) ∈ Dg}.

Clearly, we may have τg
±(x, v) = ±∞. On other hand, it is important to

note that τg
±(x, v) ̸= 0 for (x, v) ∈ Din. Note that this formula indeed

defines a flow on M since each (x, v) ∈ B has a unique representative in
(SRd \ π−1(D̊))∪Din. Thus φt is continuous but the flow trajectory of the
point (x, v) for times t /∈ ]τg

−(x, v), τg
+(x, v)[ is not defined.

Following [12, Section 3], we define smooth charts on M = B/ ∼ as
follows. Introduce the surjective map πM : B → M by πM (x, v) = [(x, v)]
and note that

(2.1) φt ◦ πM = πM ◦ ϕt.

Set B̊ := SRd \ π−1(D). Then πM : B̊ → M is a homeomorphism onto
its image O. Let G = πM (Din) be the gluing region. We consider the map
π−1
M : O → B̊. Then we may pull back the smooth structure of B̊ to O and

define the charts on O by using those of B̊. Next we wish to define charts
in an open neighborhood of G. For every point z⋆ = (x⋆, v⋆) ∈ Din let

Fz⋆
: Uz⋆

× Uz⋆
−→ Din

be a local smooth parametrization of Din, where Uz⋆
is an open small

neighborhood of 0 in Rd−1. For small εz⋆ > 0, we may define the map

Ψz⋆
: ]−εz⋆

, εz⋆
[× Uz⋆

× Uz⋆
−→M

by

(2.2) Ψz⋆
(t, y, w) = (πM ◦ ϕt ◦ Fz⋆

)(y, w).

Up to shrinking Uz⋆ and taking εz⋆ smaller, Ψz⋆ is a homeomorphism onto
its image Oz⋆

⊂ M , (see Corollary 4.3 in [12]). Indeed, repeating the ar-
gument of [12], to see that Ψz⋆

is injective, let Fz⋆
(yk, wk) = (xk, vk) ∈

Din, k = 1, 2, and assume that πMϕt1(x1, v1) = πMϕt2(x2, v2). Since the
vectors in Din are transversal to ∂D, we see that for each z ∈ Oz⋆

, there is
a unique t ∈ ]−εz⋆ , εz⋆ [ such that φt(z) ∈ G. In particular, we have t1 = 0
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if and only if t2 = 0. In this case, (x1, v1) = (x2, v2) since πM : Din → G
is injective. If t1 ̸= 0, t2 ̸= 0, then t1 and t2 have the same sign and by the
injectivity of πM : B̊ →M and the definition of ϕt, we have{

(x1 + t1v1, v1) = (x2 + t2v2, v2) if t1, t2 > 0,
(x1 + t1v

′
1, v

′
1) = (x2 + t2v

′
2, v

′
2) if t1, t2 < 0,

where v′
k is the reflection of vk with respect to Txk

∂D for k = 1, 2. Thus one
concludes that (t1, x1, v1) = (t2, x2, v2). As mentioned above, the directions
in Din are transversal to the boundary ∂D. This implies that the maps Ψz⋆

are open. In particular, Ψz⋆
realises a homeomorphism onto its image Oz⋆

and we declare the map Ψ−1
z⋆

: Oz⋆
→ ]−εz⋆

, εz⋆
[ × Uz⋆

× Uz⋆
as a chart.

Hence we obtain an open covering

G ⊂
⋃

z⋆∈Din

Oz⋆
.

Note that if O ∩Oz⋆
̸= ∅ for any z⋆, clearly the map

(t, x, v) 7−→ (π−1
M ◦Ψz⋆

)(t, x, v) = (ϕt ◦ Fz⋆
)(x, v)

is smooth on Ψ−1
z⋆

(O∩Oz⋆
). On the other hand, assume that Oz⋆

∩Oz′
⋆
̸= ∅

for some z⋆, z′
⋆ ∈ Din. If πM (ϕt(Fz⋆

(x, v))) = πM (ϕs(Fz′
⋆
(y, w))) ∈ Oz⋆

∩
Oz′

⋆
, then as above this yields t = s, Fz⋆(x, v) = Fz′

⋆
(y, w), and we conclude

that

(2.3)

(Ψ−1
z⋆
◦Ψz′

⋆
)(t, y, w) =

(
Ψ−1
z⋆
◦ πM ◦ ϕt ◦ Fz′

⋆

)
(y, w)

=
(
Ψ−1
z⋆
◦ πM ◦ ϕt ◦ Fz⋆

) (
(F−1
z⋆
◦ Fz′

⋆
)(y, w)

)
=
(
t, (F−1

z⋆
◦ Fz′

⋆
)(y, w)

)
.

This shows that the change of coordinates Ψ−1
z⋆
◦Ψz′

⋆
is smooth on the set

Ψ−1
z′

⋆
(Oz⋆

∩Oz′
⋆
), and these charts endow M with a smooth structure. It is

easy to see that with this differential structure the flow (φt) is smooth on
M . Indeed, this is obvious far from the gluing region G. Now let z ∈ G and
z⋆ ∈ Din be such that πM (z⋆) = z. Then for s, t ∈ R, with |t| + |s| small,
and (y, w) ∈ Uz⋆

× Uz⋆
, we have(

Ψ−1
z⋆
◦ φs ◦Ψz⋆

)
(t, y, w) =

(
Ψ−1
z⋆
◦ φs ◦ πM ◦ ϕt ◦ Fz⋆

)
(y, w)

=
(
Ψ−1
z⋆
◦ πM ◦ ϕt+s ◦ Fz⋆

)
(y, w)

= (s+ t, y, w).

Consequently, the flow (φt) is also smooth near G and we obtain a smooth
non-complete flow on M .
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2.3. Oriented periodic rays

A periodic point of the billiard flow is a pair (x, v) lying in SRd, together
with a number τ > 0, such that ϕτ (x, v) = (x, v). The point (x, v) will be
called τ - periodic. A periodic trajectory of ϕt, or equivalently an oriented
periodic ray, is by definition an equivalence class of periodic points, where
we identify two periodic points (x, v) and (y, w), if they are τ -periodic with
the same τ and if there are τ1, τ2 ∈ R such that ϕτ1(x, v) = ϕτ2(y, w). Of
course, the map πM induces a bijection between oriented periodic rays and
periodic orbits of the non-grazing flow φt. For each periodic orbit γ, we
will denote by τ(γ) its period. Also, we will often identify a periodic orbit
with a parametrization γ : [0, τ(γ)]→ SRd.

Note that every oriented periodic ray is determined by a sequence

αγ = (i1, . . . , ik),

where ij ∈ {1, . . . , r}, with ik ̸= i1 and ij ̸= ij+1 for j = 1, . . . , k − 1,
such that γ has successive reflections on ∂Di1 , . . . , ∂Dik . The sequence
αγ is well defined modulo cyclic permutation, and we say that the ray γ

has type αγ . The non-eclipse condition (1.1) implies that the reciprocal is
true. More precisely, for any sequence α = (i1, . . . , ik) with ij ̸= ij+1 for
j = 1, . . . , k− 1 and ik ̸= i1, there exists a unique periodic ray γ such that
αγ = α (see [47, Proposition 2.2.2 and Corollary 2.2.4]).

We conclude this paragraph by some remark on the oriented rays. For
every oriented periodic ray γ generated by a periodic point (x, v) ∈ B̊ and
period τ , one may consider the reversed ray γ, generated by (x,−v) ∈ B̊ and
τ. There are two possibilities. For most rays, γ and γ give rise to different
oriented periodic rays, even if their projections in Rd are the same. However
it might happen that γ coincides with γ. This is the case, for example, if
the ray γ has type α = (1, 2) (modulo permutation).

2.4. Uniform hyperbolicity of the flow φt

From now on, we will work exclusively with the flow φt defined on M =
B/ ∼ by the smooth model described in Section 2.2. Let X be the generator
of φt. The trapped set K of φt is defined as the set of points z ∈M which
satisfy −τg

−(z) = τg
+(z) = +∞ and

supA(z) = − inf A(z) = +∞, where A(z) = {t ∈ R : π(φt(z)) ∈ ∂D}.
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16 Yann CHAUBET & Vesselin PETKOV

By definition, φt(z) is defined for all t ∈ R whenever z ∈ K. The flow
φt is called uniformly hyperbolic on K, if for each z ∈ K there exists a
decomposition

(2.4) TzM = RX(z)⊕ Eu(z)⊕ Es(z),

which is dφt-invariant (in the sense that dφt(Eb(z)) = Eb(φt(z)) where
b = u, s), with dimEs(z) = dimEu(z) = d−1, such that for some constants
C > 0, ν > 0, independent of z ∈ K, and some smooth norm ∥ · ∥ on TM ,
we have

(2.5) ∥dφt(z) · v∥ ⩽
{
Ce−νt∥v∥, v ∈ Es(z), t ⩾ 0,
Ce−ν|t|∥v∥, v ∈ Eu(z), t ⩽ 0.

The spaces Es(z) and Eu(z) depend continuously on z (see [23, Section 2]).
We may define the trapped set Ke for the flow ϕt in the Euclidean metric

and note that K = πM (Ke). (Here we use the notation ϕt for the flow in the
Euclidean metric to distinguish it with the flow φt definite on the smooth
model). The uniform hyperbolicity on Ke of the flow ϕt in the Euclidean
metric for z ∈ B̊ ∩Ke can be defined by the splitting of the tangent space
Tz(B̊ ∩ Ke) (see Definition 2.11 in [12] and Appendix A). Following this
definition, one avoids the points (x, v) ∈ Ke ∩ Din. To treat these points,
denote Din = {(x, v) : x ∈ ∂D, |v| = 1, ⟨v, n(x)⟩ ⩾ 0} and define the billiard
ball map

B : Din ∋ (x, v) 7−→ (y,Ryw) ∈ Din,

where Ry : SyRd → SyRd is the reflection with respect to Ty(∂D) and

(y, w) = ϕτ+(x,v)(x, v), τ+(x, v) = inf{t > 0 : π(ϕt(x, v)) ∈ ∂D}.

To see that B(x, v) is well defined we need τ+(x, v) <∞ and this condition
is satisfied for (x, v) ∈ Ke ∩ Din. The map B is called collision map in [9],
and it is smooth (see for instance, [36]). For (x, v) ∈ Ke∩Din we can define
dB(x, v) and this is useful for the estimates of ∥dϕt(x, v)∥ for (x, v) ∈ B̊∩Ke

(see [9, Section 4.4] and Appendix A).
The uniform hyperbolicity of ϕt in the Euclidean metric on B̊ ∩Ke im-

plies the uniform hyperbolicity of φt in the smooth model (see [12, Propo-
sition 3.7]). Thus, to obtain (2.5), we may apply the uniform hyperbolicity
of ϕt in the Euclidean metric on B̊∩Ke established for d = 2 in [41] and [9,
Section 4.4]. For d ⩾ 3, the same could perhaps be obtained by applying the
results in [2, Section 4]. The hyperbolicity at the points z = (x, v) ∈ Ke

which are not periodic must be justified and the stable/unstable spaces
Es(z)/Eu(z) must be well determined; for d ⩾ 3 this seems to be not suffi-
ciently detailed in the literature. Since the hyperbolicity of φt is crucial for

ANNALES DE L’INSTITUT FOURIER



DYNAMICAL ZETA FUNCTIONS FOR BILLIARDS 17

our exposition, and for the sake of completeness, we present in Appendix A
a proof of the uniform hyperbolicity as well as a construction of Es(z) and
Eu(z) for all z ∈ B̊ ∩Ke.

2.5. The Grassmannian extension

In what follows, we assume that the flow φt is hyperbolic on K and
we will take a small neighborhood V of K in M , with smooth boundary.
We embed V into a compact manifold without boundary N . For example,
we may take the double manifold N of the closure of V . This means that
N = V ×{0, 1}/ ∼ and (x, 0) ∼ (x, 1) for all x ∈ ∂V . We arbitrarily extend
X to obtain a smooth vector field on N , which we still denote by X. The
associated flow is still denoted by φt (however note that this new flow φt
is now complete).

For our exposition it is important to introduce the (d−1)-Grassmannian
bundle

πG : G −→ N

over N . More precisely, for every z ∈ N , the set π−1
G (z) consists of all

(d−1)-dimensional planes of TzN . Moreover, π−1
G (z) can be identified with

the Grasmannian Gd−1(R2d−1) which is isomorphic to O(2d − 1)/(O(d −
1)×O(d)), O(k) being the space of (k×k) orthogonal matrices with entries
in R. The dimension of O(k) is k(k − 1)/2, hence the dimension of π−1

G (z)
is d(d − 1). Note that G is a smooth compact manifold. We may lift the
flow φt to a flow φ̃t : G→ G which is simply defined by

(2.6) φ̃t(z, E) = (φt(z),dφt(z)(E)),
z ∈ N, E ⊂ TzN, dφt(z)(E) ⊂ Tφt(z)N.

Introduce the set

K̃u = {(z, Eu(z)) : z ∈ K} ⊂ G.

Clearly, K̃u is invariant under the action of φ̃t, since dφt(z)(Eu(z)) =
Eu(φt(z)). The set K̃u will be seen as the trapped set of the restriction of
φ̃t to a neighborhood of K̃u. As K is a hyperbolic set, it follows from [7,
Lemma A.3] that the set K̃u is hyperbolic for φ̃t and we have a decompo-
sition

TωG = RX̃(ω)⊕ Ẽu(ω)⊕ Ẽs(ω), ω ∈ K̃u.

Here X̃ is the generator of the flow (φ̃t) and the spaces Ẽs(ω) and Ẽu(ω)
are defined as follows. For small ε > 0, let

Ws(z, ε) = {z′ ∈ N : dist(φt(z), φt(z′)) ⩽ ε for every t ⩾ 0}
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and

Wu(z, ε) = {z′ ∈ N : dist(φ−t(z), φ−t(z′)) ⩽ ε for every t ⩾ 0}

be the local stable and unstable manifolds at z of size ε, where dist is
any smooth distance on N . It is known that the local stable and unstable
manifolds are smooth (see for instance, [23, Section 2]). Moreover for any
b = s, u we have

Tz(Wb(z, ε)) = Eb(z)
and for any t ⩾ t0 > 0,

φt(Ws(z, ε)) ⊂Ws(φt(z), ε), φ−t(Wu(z, ε)) ⊂Wu(φ−t(z), ε).

For b = s, u, we define

W̃b(z) = TWb(z, ε) = {(z′, Eb(z′)) : z′ ∈Wb(z, ε)} ⊂ G.

Finally, for ω = (z, Eu(z)) ∈ K̃u, set

Ẽu(ω) = Tω(W̃u(z)),

and define Ẽs(ω) as the tangent space at ω of the manifold

W̃ s,tot(z) =
{
E ∈ π−1

G (Ws(z, ε)) : dist(Eu(z), E) < ε
}
,

where dist is any smooth distance on the fibres of TN .

Lemma 2.1. — For any ω = (z, E) ∈ G we have isomorphisms

Ẽu(ω) ≃ Eu(z), Ẽs(ω) ≃ Es(z)⊕ ker dπG(ω).

Under these identifications, we have

dφ̃t|Ẽu(ω) ≃ dφt|Eu(z), dφ̃t|Ẽs(ω) ≃ dφt|Es(z) ⊕ dφ̃t|ker dπG(ω).

Proof. — Note that if ω = (z, E) ∈ G, by (2.6) one has

(2.7) dπG(ω)◦dφ̃t(ω) = d(πG◦φ̃t)(ω) = d(φt◦πG)(ω) = dφt(z)◦dπG(ω).

This equality shows that dφ̃t preserves ker dπG. Looking at the definitions
of W̃u(z) and Wu(z, ε), we see that

dπG(ω)|Ẽu(z) : Ẽu(z) −→ Eu(z)

realises an isomorphism. Then by (2.7), it is clear that dπG(ω)|TωW̃u(z)
realises a conjugation between dφ̃t(ω)|Ẽu(ω) and dφt(z)|Eu(z). Similarly,
dπG|TωW̃ s(ω) realises an isomorphism TωW̃ s(ω) ≃ Es(z), which conjugates
dφ̃t|Ẽs(ω) and dφt|Es(z). Thus the lemma will be proven if we show that we
have the direct sum

Ẽs(z) = TωW̃ s,tot(z) = TωW̃ s(z)⊕ ker dπG(ω).
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To see this, take a local trivialization W̃ s,tot(z)→Ws(z, ε)×Gd−1(R2d−1)
sending ω ∈ G on (z, E0) for some E0 ∈ Gd−1(R2d−1) and such that W̃ s(z)
is sent to Ws(z, ε) × {E0}. In these local coordinates one has the identifi-
cations

TωW̃ s(z) ≃ Es(z)⊕ {0} and ker dπG(ω) ≃ {0} ⊕ TE0Gd−1(R2d−1).

As TωW̃ s,tot(z) is identified with Es(z) ⊕ TE0Gd−1(R2d−1), the proof is
complete. □

We conclude this paragraph by noting that for any ω = (z, E) ∈ K̃u we
have

dim Ẽu(ω) + dim Ẽs(ω) = dimEu(z) + dimEs(z) + dim ker dπG(ω)

= dimN − 1 + dim π−1
G (z)

= dimG− 1,

since dimG = dimN + dim π−1
G (z).

2.6. Vector bundles

We define the tautological vector bundle E → G by

E = {(ω, u) ∈ π∗
G(TN) : ω ∈ G, u ∈ [ω]},

where [ω] = E denotes the (d− 1) dimensional subspace of TπG(ω)N repre-
sented by ω = (z, E) and π∗

G(TN) is the pullback bundle of TN. Also, we
define the “vertical bundle” F → G by

F = {(ω,W ) ∈ TG : dπG(ω) ·W = 0}.

It is a subbundle of the bundle TG → G. The dimensions of the fibres Eω
and Fω of E and F over ω are given by

dim Eω = d− 1, dimFω = dim ker dπG(ω) = dim π−1
G (z) = d2 − d

for any ω ∈ G with πG(ω) = z. Finally, set

Ek,ℓ = ∧kE∗ ⊗ ∧ℓF , 0 ⩽ k ⩽ d− 1, 0 ⩽ ℓ ⩽ d2 − d,

where E∗ is the dual bundle of E , that is, we replace the fibre Eω by its dual
space E∗

ω. We consider E∗ and not E since the map dφt(πG(ω)) : Eω → Eφ̃t(ω)

is expanding for ω ∈ K̃u and t → +∞, whereas dφt(πG(ω))−⊤ : E∗
ω →

E∗
φ̃t(ω) is contracting. Here −⊤ denotes the inverse transpose. Indeed, for
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ω = (z, Eu(z)) ∈ K̃u and u ∈ Eu(z)∗ (here Eu(z)∗ is the dual vector space
of Eu(z)) one has 〈

dφt(z)−⊤u, v
〉

= ⟨u,dφ−t(φt(z))v⟩

for any

v ∈ dφt(z)Eu(z) = Eu(φt(z)) ∈ Eφ̃t(ω),

where ⟨ ·, · ⟩ is the pairing on E∗
φ̃t(ω) × Eφ̃t(ω). As a consequence, the map

dφt(πG(ω))−⊤ is contracting on E∗
ω when ω ∈ K̃u, since dφ−t(φt(z)) is

contracting on Eu(φt(z)). This fact will be important for the proof of
Lemma 3.1 below.

In what follows we use the notation ω = (z, η) ∈ G and u ⊗ v ∈ Ek,ℓ|ω.
By using the flow φ̃t, we introduce a flow Φk,ℓt : Ek,ℓ → Ek,ℓ by setting

(2.8) Φk,ℓt (ω, u⊗ v)

=
(
φ̃t(ω), bt(ω) ·

[(
dφt(πG(ω))−⊤)∧k (u)⊗ dφ̃t(ω)∧ℓ(v)

])
,

where we set

bt(ω) = |det dφt(πG(ω))|[ω]|1/2 · |det (dφ̃t(ω)|ker dπG
) |−1.

Here the determinants are taken with respect to any choice of smooth
metrics gN on N and the induced metrics gG on G, as follows. If ω =
(z, E) ∈ G and t ∈ R, then the number |det dφt(z)|[ω]| is defined as the
absolute value of the ratio

(dφt(z)|[ω])∧d−1 · µ[ω]

µ[φ̃t(ω)]
,

where µ[ω] = e1,[ω]∧ · · · ∧ ed−1,[ω] ∈
∧d−1[ω] (resp. µ[φ̃t(ω))] ∈

∧d−1[φ̃t(ω)])
is a volume element given by any basis e1,[ω], . . . , ed−1,[ω] of [ω] (resp.
[φ̃t(ω)]) which is orthonormal with respect to the scalar product induced by
gN |[ω] (resp. gN |[φ̃t(ω)]). The number |det (dφ̃t(ω)|ker dπG

) | is defined sim-
ilarly. If we pass from one orthonormal basis to another one, we multiply
the terms by the determinant of a unitary matrix and the absolute value
of the above ratio is the same. On the other hand, for a periodic point
ωγ̃ = φ̃τ(γ)(ωγ̃) this number is simply |det dφτ(γ)(πG(ωγ̃))|[ωγ̃ ]|. Taking lo-
cal trivializations of E∗ and F , we see that the action of Φk,ℓt is smooth.
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Thus we have the following diagram:

Ek,ℓ
Φk,ℓ

t−−−−→ Ek,ℓy y
G

φ̃t−−−−→ GyπG

yπG

N
φt−−−−→ N

Now, consider the transfer operator

Φk,ℓ,∗−t : C∞(G, Ek,ℓ) −→ C∞(G, Ek,ℓ)

defined by

(2.9) Φk,ℓ,∗−t u(ω) = Φk,ℓt
[
u(φ̃−t(ω))

]
, u ∈ C∞(G, Ek,ℓ).

Let Pk,ℓ : C∞(G, Ek,ℓ) → C∞(G, Ek,ℓ) be the generator of Φk,ℓ,∗−t , which is
defined by

Pk,ℓu = d
dt

(
Φk,ℓ,∗−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,ℓ).

Then we have the equality

(2.10) Pk,ℓ(fu) = (X̃f)u + f(Pk,ℓu), f ∈ C∞(G), u ∈ C∞(G, Ek,ℓ).

Fix any norm on Ek,ℓ; this fixes a scalar product on L2(G, Ek,ℓ). We also
consider the transfer operator Φk,ℓ,∗−t as a strongly continuous semigroup
e−tPk,ℓ , t ⩾ 0 with generator Pk,ℓ with domain in L2(G, Ek,ℓ). The expo-
nential bound of the derivatives of φ−t implies an estimate

∥e−tPk,ℓ∥L2(G,Ek,ℓ)→L2(G,Ek,ℓ) ⩽ Ceβt, t ⩾ C0 > 0,

for some constants β > 0, C0 > 0. Next, we want to study the spectral prop-
erties of the operator Pk,ℓ applying the work of Dyatlov–Guillarmou [13].
For this purpose, one needs to see K̃u as the trapped set of the restriction
of φ̃t to some neighborhood Ṽ u of K̃u in G, so that ∂Ṽ u has convex-
ity properties with respect to X̃ (see the condition (2.11) below with Ỹ

replaced by X̃). These conditions are necessary if we wish to apply the re-
sults in [13]. However, it is not clear that such a neighborhood exists, and
one needs to modify X̃ slightly outside a neighborhood of K̃u to obtain the
desired properties. This is done in Section 2.7 below.
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2.7. Isolating blocks

By [10, Theorem 1.5], there exists an arbitrarily small open neighborhood
Ṽ u of K̃u in G such that the following holds.

(i) The boundary ∂Ṽ u of Ṽ u is smooth,
(ii) The set ∂0Ṽ u = {z ∈ ∂Ṽ u : X̃(z) ∈ Tz(∂Ṽ u)} is a smooth subman-

ifold of codimension 1 of ∂Ṽ u,
(iii) There is ε > 0 such that for any z ∈ ∂Ṽ u one has

X̃(z) ∈ Tz(∂Ṽ u) =⇒ φ̃t(z) /∈ clos Ṽ u, t ∈ ]−ε, ε[ \ {0},

where clos A denotes the closure of a set A.
In what follows we denote

Γ±(X̃) =
{
z ∈ Ṽ u : φ̃t(z) ∈ Ṽ u, ∓t > 0

}
.

A function ρ̃ ∈ C∞(clos Ṽ u,R⩾0) will be called a boundary defining func-
tion for Ṽ u if we have ∂Ṽ u = {z ∈ clos Ṽ u : ρ̃(z) = 0} and dρ̃(z) ̸= 0 for
any z ∈ ∂Ṽ u.

By [20, Lemma 2.3] (see also [12, Lemma 5.2]), we have the following
result.

Lemma 2.2. — For any small neighborhood W̃ 0 of ∂Ṽ u in clos Ṽ u, we
may find a vector field Ỹ on clos Ṽ u which is arbitrarily close to X̃ in the
C∞-topology, such that the following holds.

(1) supp(Ỹ − X̃) ⊂ W̃ 0,
(2) Γ±(X̃) = Γ±(Ỹ ), where Γ±(Ỹ ) is defined as Γ±(X̃) by replacing

the flow (φ̃t) by the flow generated by Ỹ ,
(3) For any defining function ρ̃ of Ṽ u and any ω ∈ ∂Ṽ u we have

(2.11) Ỹ ρ̃(ω) = 0 =⇒ Ỹ 2ρ̃(ω) < 0.

From now on, we will fix Ṽ u, W̃ 0 and Ỹ as above. Let (ψ̃t)t∈R be the
flow generated by Ỹ . By [13, Lemma 1.1] we may find a smooth extension
of Ỹ on G (still denoted by Ỹ ) so that for every ω ∈ G and t ⩾ 0, we have

(2.12) ω, ψ̃t(ω) ∈ clos Ṽ u =⇒ ψ̃τ (ω) ∈ clos Ṽ u for every τ ∈ [0, t].

Set Γ̃± = Γ±(Ỹ ) for simplicity. The extended unstable/stable bundles
Ẽ∗

± ⊂ T ∗Ṽ u over Γ̃± are defined by

Ẽ∗
±(ω) = {η ∈ T ∗

ω Ṽ u : Ψt(η) −→ t→±∞0},

where Ψt is the symplectic lift of ψ̃t, that is

Ψt(ω, η) =
(
ψ̃t(ω),dψ̃t(ω)−⊤ · η

)
, (ω, η) ∈ T ∗G, t ∈ R,
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and −⊤ denotes the inverse transpose. Then by [13, Lemma 1.10], the bun-
dles Ẽ∗

±(ω) depend continuously on ω ∈ Γ̃±, and for any smooth norm | · |
on T ∗G with some constants C > 0, β > 0 independent of ω, η for t→ ∓∞
we have

|Ψ±t(ω, η)| ⩽ Ce−β|t||η|, η ∈ E∗
±(ω).

2.8. Dyatlov–Guillarmou theory

Let ∇k,ℓ be any smooth connection on Ek,ℓ. Then by (2.10) we have

Pk,ℓ = ∇k,ℓ
X̃

+ Ak,ℓ

for some Ak,ℓ ∈ C∞(G,End(Ek,ℓ)). We define a new operator Qk,ℓ by
setting

Qk,ℓ = ∇k,ℓ
Ỹ

+ Ak,ℓ : C∞(G, Ek,ℓ) −→ C∞(G, Ek,ℓ).

Note that Qk,ℓ coincides with Pk,ℓ near K̃u since Ỹ coincides with X̃ near
K̃u. Clearly, we have

(2.13) Qk,ℓ(fu) = (Ỹ f)u + f(Qk,ℓu), f ∈ C∞(G), u ∈ C∞(G, Ek,ℓ).

Next, consider the transfer operator e−tQk,ℓ : C∞(G, Ek,ℓ) → C∞(G, Ek,ℓ)
with generator Qk,ℓ, that is,

∂te−tQk,ℓu = −Qk,ℓe−tQk,ℓu, u ∈ C∞(G, Ek,ℓ), t ⩾ 0.

As above, for some constant C > 0, we have

∥e−tQk,ℓ∥L2(G,Ek,ℓ)→L2(G,Ek,ℓ) ⩽ CeCt, t ⩾ 0.

Then for Re(s) > C, the resolvent (Qk,ℓ + s)−1 on L2(G, Ek,ℓ) is given by

(2.14) (Qk,ℓ + s)−1 =
∫ ∞

0
e−t(Qk,ℓ+s)dt : L2(G, Ek,ℓ) −→ L2(G, Ek,ℓ).

Consider the operator

Rk,ℓ(s) = 1Ṽ u
(Qk,ℓ + s)−11Ṽ u

, Re(s)≫ 1,

from C∞
c (Ṽ u, Ek,ℓ) to D′(Ṽ u, Ek,ℓ), where D′(Ṽ u, Ek,ℓ) denotes the space

of Ek,ℓ-valued distributions. Recall that K̃u is the trapped set of φ̃t when
restricted to Ṽ u. Taking into account (2.11), (2.12) and (2.13), we see
that the assumptions (A1)–(A5) in [13, Section 0] are satisfied. We are
in position to apply [13, Theorem 1] in order to obtain a meromorphic
extension of Rk,ℓ(s) to the whole plane C. Moreover, according to [13,
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Theorem 2], for every pole s0 ∈ C in a small neighborhood of s0 one has
the representation

(2.15) Rk,ℓ(s) = RH,k,ℓ(s) +
J(s0)∑
j=1

(−1)j−1(Qk,ℓ + s0)j−1Πk,ℓ
s0

(s− s0)j ,

where RH,k,ℓ(s) : C∞
c (Ṽ u, Ek,ℓ) → D′(Ṽ u, Ek,ℓ) is a holomorphic family of

operators near s = s0 and Πk,ℓ
s0

: C∞
c (Ṽ u, Ek,ℓ) → D′(Ṽ u, Ek,ℓ) is a finite

rank projector. Denote by KRH,k,ℓ(s) and KΠk,ℓ
s0

the Schwartz kernels of
the operators RH,k,ℓ(s) and Πk,ℓ

s0
, respectively. Recall the definition of the

twisted wavefront set

WF′(A) = {(x, ξ, y,−η) : (x, ξ, y, η) ∈WF(KA)},

KA being the distributional kernel of the operator A. By [13, Lemma 3.5],
we have

(2.16) WF′(KRH,k,ℓ
(s)) ⊂ ∆(T ∗Ṽ u) ∪Υ+ ∪ (Ẽ∗

+ × Ẽ∗
−).

Here ∆(T ∗Ṽ u) is the diagonal in T ∗(Ṽ u × Ṽ u),

Υ+ = {(Ψt(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗Ṽ u, t ⩾ 0, ⟨Ỹ (ω),Ω⟩ = 0},

while the bundles Ẽ∗
± and flow Ψt are defined in Section 2.7. Finally, we

have

(2.17) supp(KΠk,ℓ
s0

) ⊂ Γ+ × Γ− and WF′(KΠk,ℓ
s0

(s)) ⊂ Ẽ∗
+ × Ẽ∗

−.

3. Dynamical zeta function for the Neumann problem

In this section we prove that the function ηN admits a meromorphic
continuation to the whole complex plane, by relating ηN(s) to the flat trace
of the cut-off resolvent Rk,ℓ(s).

3.1. Flat trace

First, we recall the definition of the flat trace for operators acting on
vector bundles. Consider a manifold V , a vector bundle E over V and a
continuous operator T : C∞

c (V, E) → D′(V, E). Fix a smooth density µ on
V ; this defines a pairing ⟨ · , · ⟩ on C∞

c (V, E)× C∞
c (V, E∗). Let

KT ∈ D′(V × V, E ⊠ E∗)
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be the Schwartz kernel of T with respect to this pairing, which is defined by

⟨KT, π
∗
1u⊗ π∗

2v⟩ = ⟨Tu,v⟩, u ∈ C∞
c (V, E), v ∈ C∞

c (V, E∗),

where the pairing on D′(V × V, E ⊠ E∗)×C∞
c (V × V, E ⊠ E∗) is taken with

respect to µ× µ. Here, the bundle

E ⊠ E∗ = π∗
1E ⊗ π∗

2E∗ −→ V

is given by the tensor product of the pullbacks π∗
1E , and π∗

2E∗, where the
maps π1, π2 : V × V → V denote the projections over the first and the
second factor, respectively.

Denote by ∆ = {(x, x) : x ∈ V } ⊂ V × V the diagonal in V × V and
consider the inclusion map ι∆ : ∆→ V × V, (x, x) 7→ (x, x). Assume that

(3.1) WF′(KT) ∩∆(T ∗V \ {0}) = ∅,

where ∆(T ∗V \{0}) is the diagonal in (T ∗(V )\{0})× (T ∗(V )\{0}). Then
by [25, Theorem 8.2.4], the pull-back

ι∗∆KT ∈ D′(V, End(E))

is well defined, where we used the identification

ι∗∆(E ⊠ E∗) ≃ E ⊗ E∗ ≃ End(E).

If KT is compactly supported, we define the flat trace of T by

tr♭ T = ⟨trEnd(E)(ι∗∆KT), 1⟩,

where again the pairing is taken with respect to µ. It is not hard to see
that the flat trace does not depend on the choice of the density µ.

3.2. Flat trace of the cut-off resolvent

We introduce a cut-off function χ̃ ∈ C∞
c (Ṽ u) such that χ̃ ≡ 1 on K̃u.

For ϱ ∈ C∞
c (R+ \ {0}) define

Tk,ℓ
ϱ u =

(∫ ∞

0
ϱ(t)χ̃(e−tQk,ℓu)χ̃dt

)
, u ∈ C∞(G, Ek,ℓ).

As in [49], we need to introduce some notations. For simplicity we denote
H = E ⊗ F , where E → G, F → G are bundles over G. Let e−tX be a
transport operator. For ω ∈ G and t > 0 introduce the parallel transport
map

αω,t = α1,ω,t ⊗ α2,ω,t : Eω ⊗Fω −→ Eφ̃t(ω) ⊗Fφ̃t(ω)

given by
u⊗ v 7−→ (e−tX(u⊗ v))(φ̃(t)),
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where u,v are some sections of Eω and Fω over ω, respectively. The def-
inition does not depend on the choice of u and v (see [13, (0.8)]). Now if
γ̃(t) = {φ̃t(ω0) : 0 ⩽ t ⩽ τ(γ̃)} is a periodic orbit, we have

αj,ω0,τ(γ̃) = α−1
j,ω0,t

◦ αj,γ̃(t),τ(γ̃) ◦ αj,ω0,t, j = 1, 2,

and therefore the trace

(3.2) tr(αγ̃) = tr(α1,γ̃(t),τ(γ̃)) tr(α2,γ̃(t),τ(γ̃))

is independent of t. (Here we use the flow φ̃t instead of ψ̃t since for periodic
orbits the action of both flows is the same.) Returning to the bundle Ek,ℓ,
the flow Φk,ℓt and the operator e−tQk,ℓ , introduced in Sections 2.6 and 2.8,
the corresponding parallel transport map will be denoted by αk,ℓω,t and the
trace tr(αk,ℓγ̃ ) is well defined.

In the same way we define the linearized Poincaré map for ω ∈ γ̃ and
τ(γ̃) by

Pω,τ(γ̃) = dφ̃−τ(γ̃)(ω)
∣∣
Ẽs(ω)⊕Ẽu(ω).

As above, given a periodic orbit γ̃, the map Pω,τ(γ̃) is conjugated to Pω′,τ(γ̃)

if ω and ω′ lie on γ̃ and we define P̃ γ as Pω,τ(γ̃). To define the flat trace,we
must check the condition (3.1) concerning the intersection of the wave front
WF′(KTk,ℓ

ϱ
) of the kernel KTk,l

ϱ
of Tk,ℓ

ϱ and the conormal bundle N∗(∆Ṽ u
),

∆Ṽ u
being the diagonal in (Ṽ u × Ṽ u). This is down in Section 3.1 of [49].

We omit the repetition and refer to this paper for a detailed exposition.
We may apply the Guillemin trace formula [21, Section 2 of Lecture 2] (we

refer to [49, Lemma 3.1] for a detailed presentation based on the argument
of [14, Appendix B]), which implies that the flat trace of Tk,ℓ

ϱ is well defined,
and

(3.3) tr♭(Tk,ℓ
ϱ ) =

∑
γ̃

ϱ(τ(γ))τ ♯(γ) tr(αk,ℓγ̃ )
|det(Id− P̃ γ)|

,

where the sum runs over all periodic orbits γ̃ of φ̃t. Here,

P̃ γ = dφ̃−τ(γ)(ωγ̃)
∣∣
Ẽu(ωγ̃ )⊕Ẽs(ωγ̃ )

is the linearized Poincaré map of the closed orbit

t 7−→ γ̃(t) = (γ(t), Eu(γ(t)))

of the flow φ̃t and ωγ̃ ∈ Im(γ̃) is any reference point taken in the image of γ̃.
Note that if we take another point ω′

γ̃ ∈ Im(γ̃), then the map dφ̃−τ(γ)(ω′
γ̃)

is conjugated to dφ̃−τ(γ)(ωγ̃) by dφ̃t1(ωγ̃), where t1 ∈ R is chosen so that
φ̃t1(ω′

γ̃) = ωγ̃ . Hence the determinant det(Id− P̃ γ) does not depend on the
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reference point ωγ̃ and is well defined. The number tr(αk,ℓγ̃ ) is the trace of
the linear map

αk,ℓωγ̃ ,τ(γ) : Ek,ℓ|ωγ̃
−→ Ek,ℓ|ωγ̃

,

where for t ∈ R and ω ∈ G, we denote by

αk,ℓω,t : Ek,ℓ|ω −→ Ek,ℓ|φ̃t(ω)

the restriction of the map Φk,ℓt : Ek,ℓ → Ek,ℓ to the fiber Ek,ℓ|ω. Again, if we
take another reference point ω′

γ̃ , the map αk,ℓω′
γ̃ ,τ(γ) is conjugated to αk,ℓωγ̃ ,τ(γ),

hence its trace depends only on γ̃, and this justifies the notation tr(αk,ℓγ̃ ).
Next, we follow the strategy of [49, Section 3.1] which is based on that

used in [14, Section 4] for Anosov flows on closed manifolds to compute
the flat trace of the (shifted) resolvent defined below. We may apply for-
mula (3.3) with the functions ϱs,T (t) = e−stϱT (t), where the support of
ϱT ∈ C∞

c (R+) satisfies supp ϱT ⊂ [ε/2, T+1] for 0 < ε < d0 = minγ∈P τ(γ)
small and ϱT ≡ 1 on [ε, T ]. Then taking the limit T → ∞, we obtain,
with (2.14) in mind,

(3.4) tr♭ Rk,ℓ
ε (s) =

∑
γ̃

e−sτ(γ)τ ♯(γ) tr(αk,ℓγ̃ )
|det(Id− P̃ γ)|

, Re(s)≫ 1.

Here for Re(s) large enough and ε > 0 small, we set

Rk,ℓ
ε (s) = χ̃e−ε(s+Qk,ℓ)(Qk,ℓ + s)−1χ̃,

and ε is chosen so that e−εQk,ℓ supp(χ̃) ⊂ Ṽ u, so that Rk,ℓ
ε (s) is well de-

fined. The equality (3.4) is exactly the equation concerning limT→∞ tr♭(BT )
with f ≡ 1 on page 668 in [49], and we refer to this work for a detailed
proof. Note that the flat trace tr♭ Rk,ℓ

ε (s) is well defined thanks to the infor-
mation on the wavefront set WF′(KRk,ℓ

ε (s)) obtained from (2.16), together
with the multiplication properties satisfied by wavefront sets (see [25, The-
orem 8.2.14]).

Next, one states the following result, similar to that in [16, Section 2].
This crucial lemma explains the reason to introduce the bundles Ek,ℓ. For
the sake of completeness, we present a detailed proof.

Lemma 3.1. — For any periodic orbit γ̃ related to a periodic orbit γ,
we have

1
|det(Id− P̃ γ)|

d−1∑
k=0

d2−d∑
ℓ=0

(−1)k+ℓ tr(αk,ℓγ̃ ) = |det(Id− Pγ)|−1/2.
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Proof. — Let γ(t) be a periodic orbit and let γ̃(t) = (γ(t), Eu(γ(t)) with
ωγ̃ ∈ γ̃ and z ∈ γ. Set

Pγ,u = dφ−τ(γ)(z)|Eu(z), Pγ,s = dφ−τ(γ)(z)|Es(z),

Pγ,⊥ = dφ̃−τ(γ)(ωγ̃)|ker dπG(ω), P−1
γ,⊥ = dφ̃−τ(γ)(ωγ̃)−1|ker dπG(ω).

The linearized Poincaré map P̃ γ of the closed orbit γ̃ satisfies

(3.5)
det(Id− P̃ γ) = det

(
Id− dφ̃−τ(γ)|Ẽs(ω)⊕Ẽu(ω)

)
= det (Id− Pγ) det (Id− Pγ,⊥)

since Ẽs(ω) ≃ Es(z) ⊕ ker dπG(ω) and Ẽu(ω) ≃ Eu(z) by Lemma 2.1.
Recall the well known formula

det(Id−A) =
k∑
j=0

(−1)j tr∧jA

for any endomorphism A of a k-dimensional vector space. Moreover, notice
that

tr(αk,ℓγ̃ ) = bτ(γ)(ωγ̃) tr∧kPγ,u tr∧ℓP−1
γ,⊥,

since by (2.8), αk,ℓγ̃ coincides with the map

bτ(γ)(ωγ̃) ∧k
[
dφτ(γ)(πG(ωγ̃))−⊤]⊗ ∧ℓ [dφ̃τ(γ)(ωγ̃)

]
:

∧k E∗|ωγ̃ ⊗ ∧ℓF|ωγ̃ −→ ∧kE∗|ωγ̃ ⊗ ∧ℓF|ωγ̃ .

Therefore, one gets

(3.6)
d2−d∑
ℓ=0

d−1∑
k=0

(−1)k+ℓtr(αk,ℓγ̃ )

= bτ(γ)(ωγ̃)
(
d−1∑
k=0

(−1)k tr∧kPγ,u

)d2−d∑
ℓ=0

(−1)ℓ tr∧ℓP−1
γ,⊥


= |det(Pγ,u)|−1/2|det(Pγ,⊥)|det(Id− Pγ,u) det(Id− P−1

γ,⊥).

Here we have used the equality

bτ(γ)(ωγ̃) = |det dφτ(γ)(πG(ωγ̃))|[ωγ̃ ]|1/2 · |det
(
dφ̃τ(γ)(ωγ̃)|ker dπG

)
|−1

= |det(Pγ,u)|−1/2|det(Pγ,⊥)|
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which holds because Pγ,u and Pγ,⊥ are defined with dφ−t and dφ̃−t, re-
spectively. Therefore (3.5) yields

(3.7)
∑
k,ℓ

(−1)k+ℓ tr(αk,ℓγ̃ )
|det(Id− P̃ γ)|

=
det(Id− Pγ,u) det(Id− P−1

γ,⊥)|det(Pγ,u)|−1/2

|det(Id− Pγ)||det(Id− Pγ,⊥)||det(Pγ,⊥)|−1 .

Since Pγ is a linear symplectic map, we have

det(Id− P−1
γ,s ) = det(Id− Pγ,u), det(Pγ,s) = det(P−1

γ,u),

and one deduces
|det(Id− Pγ)| = |det(Id− Pγ,u)||det(Id− Pγ,s)|

= |det(Pγ,s)||det(Id− Pγ,u)||det(Id− P−1
γ,s )|

= |det(Pγ,u)|−1|det(Id− Pγ,u)|2.

For t > 0 the map dφ̃t = (dφ̃−t)−1 is contracting on ker dπG ⊂ Ẽs(ωγ̃)
(resp. dφ−t is contracting on Eu(z)) and this yields det(Id − P−1

γ,⊥) > 0
(resp. det(Id − Pγ,u) > 0). Thus the terms involving Pγ,⊥ in (3.7) cancel
and since

|det(Id− Pγ)|−1/2 = |det(Pγ,u)|1/2 det(Id− Pγ,u)−1,

the right hand side of (3.7) is equal to |det(Id− Pγ)|−1/2. □

3.3. Meromorphic continuation of ηN

From Lemma 3.1 and (3.4), we deduce that for Re(s)≫ 1, we have

ηN(s) =
d−1∑
k=0

d2−d∑
ℓ=0

(−1)k+ℓ tr♭ Rk,ℓ
ε (s),

where ηN(s) is defined by

ηN(s) =
∑
γ

τ ♯(γ)e−τ(γ)s

|det(Id− Pγ)|1/2 .

Since for every k, ℓ the family s 7→ Rk,ℓ
ε (s) extends to a meromorphic family

on the whole complex plane, so does s 7→ ηN(s). Indeed, it follows from the
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proof of [13, Lemma 3.2] that s 7→ KRk,ℓ
ε (s) is continuous as a map(1)

C \ Res(Rk,ℓ
ε ) −→ D′

Γ(G×G, Ek,ℓ ⊠ E∗
k,ℓ).

Here for s /∈ Res(Rk,ℓ
ε ) the distribution KRk,ℓ

ε (s) is the Schwartz kernel of
Rk,ℓ
ε (s) and (see (2.16) for the notation)

Γ = ∆ε ∪Υ+,ε ∪ Ẽ∗
+ × Ẽ∗

−,

where ∆ε = {(Ψε(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗(Ṽ u) \ {0}} and

Υ+,ε = {(Ψt(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗(Ṽ u) \ {0}, t ⩾ ε, ⟨Ỹ (ω),Ω⟩ = 0},

while D′
Γ(G×G, Ek,ℓ⊠E∗

k,ℓ) is the space of distributions valued in Ek,ℓ⊠E∗
k,ℓ

whose wavefront set is contained in Γ. This space is endowed with its usual
topology (see [25, Section 8.2]). Thus, outside the set of poles Res(Rk,ℓ

ε ),
we apply the procedure with a flat trace. In particular, s 7→ tr♭ Rk,ℓ

ε (s)
is continuous on C \ Res(Rk,ℓ

ε ) by [25, Theorem 8.2.4]. Finally, Cauchy’s
formula implies that this map is meromorphic on C and this completes the
proof that the Dirichlet series ηN(s) admits a meromorphic continuation
in C.

Next, we establish that ηN(s) has simple poles with integer residues. To
do this, we may proceed as in [13, Section 4]. For the sake of completeness
we reproduce the argument. Let s0 ∈ Res(Rk,ℓ) for some k, ℓ. Recalling the
development (2.15), it is enough to show that

(3.8) tr♭
(
χ̃e−ε(s0+Qk,ℓ) [(Qk,ℓ + s0)j−1Πk,ℓ

s0

]
χ̃
)

= 0, j ⩾ 2,

and

(3.9) tr♭
(
χ̃e−ε(s0+Qk,ℓ)Πk,ℓ

s0
χ̃
)

= rank Πk,ℓ
s0
.

In the following we fix k and ℓ. We may write

Πk,ℓ
s0

=
m∑
i=1

ui ⊗ vi,

where ⊗ denotes the tensor product and by (2.17) for i = 1, . . . ,m we have

(3.10)
ui ∈ D′(Ṽ u, Ek,ℓ), supp(ui) ⊂ Γ+, WF′(ui) ⊂ Ẽ∗

+,

vi ∈ D′(Ṽ u, E∗
k,ℓ), supp(vi) ⊂ Γ−, WF′(vi) ⊂ Ẽ∗

−.

The relations
Ẽ∗

+ ∩ Ẽ∗
− ∩ (T ∗(Ṽ ) \ {0}) = ∅,

(1) This follows from the fact that the estimates on the wavefront set of Rk,ℓ
ε (s) given

in [13, Lemma 3.5] are locally uniform with respect to s ∈ C.
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make possible to define the pairing ⟨ui,vp⟩ on Ek,ℓ×E∗
k,ℓ for i, p = 1, . . . ,m

which yields a distribution on Ṽ u. This distribution is compactly supported
since

supp ui ∩ supp vp ⊂ Γ+ ∩ Γ− = K̃u.

The family (ui) is a basis of the range of Πk,ℓ
s0
. By definition of the flat

trace using the information on the wavefront sets and the supports of ui
and vj , we can write

(3.11) tr♭
(
χ̃e−ε(s0+Qk,ℓ) [(Qk,ℓ + s0)j−1Πk,ℓ

s0

]
χ̃
)

=
m∑
i=1

∫
Ṽ u

⟨χ̃e−ε(s0+Q)(Qk,ℓ + s0)j−1ui, χ̃vi⟩.

Here the integrals make sense taking into account the estimates of the
supports and the wavefront sets of ui and vp mentioned above. Since Πk,ℓ

s0

is a projector it holds Πk,ℓ
s0
◦ Πk,ℓ

s0
= Πk,ℓ

s0
, therefore the family (vp) is dual

to the basis (ui) in the sense that

(3.12)
∫
Ṽ u

⟨ui,vp⟩ = δip, 1 ⩽ i, p ⩽ m,

where δip are the Kronecker symbols. Introduce

C
(j)
s0,k,ℓ

=
{

u ∈ D′(Ṽ u, Ek,ℓ) : suppu⊂ Γ+,WF(u)⊂ Ẽ∗
+, (Qk,ℓ+s0)ju = 0

}
.

Then, since χ̃ = 1 near K̃u, by applying (3.11), one deduces that the
operator χ̃e−ε(s0+Qk,ℓ)(Qk,ℓ + s0)Πk,ℓ

s0
χ̃ maps

χ̃C
(j+1)
s0,k,ℓ

−→ χ̃C
(j)
s0,k,ℓ

, and χ̃C
(1)
s0,k,ℓ

−→ {0}, j ⩾ 1.

This fact and (3.12) show that (3.8) holds. To prove (3.9), we write

∑
i

∫
Ṽ u

⟨χ̃e−ε(s0+Qk,ℓ)ui, χ̃vi⟩

=
∑
i

∫
Ṽ u

⟨ui,vi⟩ −
∑
i

∫ ε

0
dt
∫
Ṽ u

〈
χ̃e−t(s0+Qk,ℓ)(Qk,ℓ + s0)ui, χ̃vi

〉
.

Now, we replace ε by t in (3.8) for any t ∈ [0, ε], and we obtain that the
last sum in the right hand side of the above equation vanishes. Finally,
applying (3.12), we obtain (3.9).
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4. Dynamical zeta function for particular rays

In this section we adapt the above construction to prove the following
result.

Theorem 4.1. — Let q ∈ N⩾1. The function ηq(s) defined by

ηq(s) =
∑

γ∈P, m(γ)∈qN

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2 , Re(s)≫ 1,

where the sum runs over all periodic rays γ with m(γ) ∈ qN, admits a
meromorphic continuation to the whole complex plane with simple poles
and residues valued in Z/q.

Note that for large Re(s) we have the formula

(4.1) ηD(s) = 2η2(s)− ηN(s).

In particular, Theorem 4.1 implies that ηD(s) also extends meromorphically
to the whole complex plane, since ηN(s) does by the preceding section.
In particular, we obtain Theorem 1.1 since 2η2(s) has simple poles with
residues in Z.

4.1. The q-reflection bundle

For q ⩾ 2 define the q-reflection bundle Rq →M by

(4.2) Rq =
([
SRd \

(
π−1(D̊) ∪ Dg

)]
× Rq

)/
≈,

where the equivalence classes of the relation ≈ are defined as follows. For
(x, v) ∈ SRd \

(
π−1(D̊) ∪ Dg

)
and ξ ∈ Rq, we set

[(x, v, ξ)] = {(x, v, ξ), (x, v′, A(q) · ξ)} if (x, v) ∈ Din, (x, v′) ∈ Dout,

where A(q) is the q × q matrix with entries in {0, 1} given by

A(q) =


0 1
1 0

. . . . . .
1 0

 .

Clearly, the matrix A(q) yields a shift permutation

A(q)(ξ1, ξ2, . . . , ξq) = (ξq, ξ1, . . . , ξq−1).
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This indeed defines an equivalence relation since (x, v′) ∈ Dout whenever
(x, v) ∈ Din. Note that

(4.3) A(q)q = Id, trA(q)j = 0, j = 1, . . . , q − 1.

Let us describe the smooth structure of Rq, using the charts of M and
the notations of Section 2.2. For z⋆ ∈ Din, let Uz⋆

= B(0, δ) = {x ∈
Rd−1 : |x| < δ} be a neighborhood of 0 used for the definition of Fz⋆ (see
Section 2.2) and let

Ψ−1
z⋆

: Oz⋆
−→ ]−ϵ, ϵ[×B(0, δ)×B(0, δ) = Wz⋆

be a chart. Then the bundle Rq →M can be defined by defining its transi-
tion maps, as follows. Let W = Ψ−1(B\π−1(∂D)) be a chart. In the smooth
coordinates introduced in Section 2.2, we have Wz⋆∩W = W+⊔W−, where

W+ = ]0, ε[×B(0, δ)×B(0, δ) and W− = ]−ε, 0[×B(0, δ)×B(0, δ).

Then we define the transition map αz⋆
: Wz⋆

∩W → GL(Rq) of the bundle
Rq with respect to the pair of charts (Ψz⋆

,Ψ) to be the locally constant
map defined by

αz⋆
(z) =

{
Id if z ∈W−,

A(q) if z ∈W+.

For z⋆, z′
⋆ ∈ Din, the transition map of Rq for the pair of charts (Ψz⋆ ,Ψz′

⋆
)

is declared to be constant and equal to Id on Wz⋆
∩Wz′

⋆
. In this way we

obtain a smooth bundle Rq over M , which is clearly homeomorphic to the
quotient space (4.2). Since the transition maps of Rq are locally constant,
there is a natural flat connection dq on Rq which is given in the charts by
the trivial connection on Rq.

Consider a small smooth neighborhood V of K. As in Section 2.4, we
embed V into a smooth compact manifold without boundary N , and we
fix an extension of Rq to N (this is always possible if we choose N to be
the double manifold of V ). Consider any connection ∇q on the extension
of Rq which coincides with dq near K, and denote by

Pq,t(z) : Rq(z) −→ Rq(φt(z))

the parallel transport of ∇q along the curve {φτ (z) : 0 ⩽ τ ⩽ t}. We have
a smooth action of φqt on Rq which is given by the horizontal lift of φt

φqt (z, ξ) = (φt(z), Pq,t(z) · ξ), (z, ξ) ∈ Rq.

As in (3.2), we see that for a periodic orbit γ we define Pq,γ as an endo-
morphism on Rq. From (4.3), and the fact that ∇q coincides with dq near
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K, we easily deduce that for any periodic orbit γ = (φτ (z))τ∈[0,τ(γ)], we
have

(4.4) tr(Pq,γ) =
{
q if m(γ) = 0 mod q,

0 if m(γ) ̸= 0 mod q.

4.2. Transfer operators acting on G

Now, consider the bundle

Eqk,ℓ = Ek,ℓ ⊗ π∗
GRq,

where π∗
GRq is the pullback of Rq by πG and Ek,ℓ is defined in Section 2.6,

so that π∗
GRq → G is a vector bundle over G. We may lift the flow φqt to a

flow Φk,ℓ,qt on Eqk,ℓ which is defined locally near K̃u by

Φk,ℓ,qt (ω, u⊗ v ⊗ ξ)

=
(
φ̃t(ω), bt(ω) ·

[(
dφt(πG(ω))−⊤)∧k (u)⊗ (dφ̃t(ω))∧ℓ(v)⊗ Pq,t(z) · ξ

])
for any ω = (z, E) ∈ G, u ⊗ v ⊗ ξ ∈ Eqk,ℓ(ω) and t ∈ R. Here bt(ω) is
defined in Section 2.6. As in Section 2.8, we consider a smooth connection
∇k,ℓ,q = ∇k,ℓ ⊗ π∗

G∇q on Eqk,ℓ. Define the transfer operator

Φk,ℓ,q,∗−t : C∞(G, Eqk,ℓ) −→ C∞(G, Eqk,ℓ)

by

Φk,ℓ,q,∗−t u(ω) = Φk,ℓ,qt [u(φ̃−t(ω)], u ∈ C∞(G, Eqk,ℓ).

Then the operator

Pk,ℓ,q = d
dt

(
Φk,ℓ,q,∗−t

)∣∣∣∣
t=0

, u ∈ C∞(G, Eqk,ℓ)

which is defined near K̃u, can be written locally as ∇k,ℓ,q
X̃

+ Ak,ℓ,q for some
Ak,ℓ,q ∈ C∞(Ũu,End Eqk,ℓ) defined in some small neighborhood Ũu of K̃u.
Next, we choose some Bk,ℓ,q ∈ C∞(G,End Eqk,ℓ) which coincides Ak,ℓ,q near
K̃u. We consider Ṽ u and Ỹ as in Section 2.7, and set

Qk,ℓ,q = ∇k,ℓ,q
Ỹ

+ Bk,ℓ,q : C∞(G, Eqk,ℓ) −→ C∞(G, Eqk,ℓ).
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4.3. Meromorphic continuation of ηq(s)

For χ̃ ∈ C∞
c (Ṽ u) such that χ̃ ≡ 1 near K̃u, define

Rk,ℓ,q
ε (s) = χ̃e−ε(Qk,ℓ,q+s)(Qk,ℓ,q + s)−1χ̃.

Repeating the argument of the preceding section, one can obtain an analog
of (3.4), where the factor tr(αk,ℓγ̃ ) must be replaced by tr(αk,ℓγ̃ ) tr(Pq,γ).
This leads to a meromorphic continuation of Rk,ℓ,q

ε (s).
On the other hand, by (4.4) one gets tr(Pq,γ) = 1qN(m(γ)). In particular,

proceeding exactly as in the preceding section, we obtain that for Re(s)
large enough we have

(4.5)
d−1∑
k=0

d2−d∑
ℓ=0

(−1)k+ℓ tr♭ Rk,ℓ,q
ε (s) = q

∑
γ∈P

m(γ)∈qN

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2 .

Therefore, repeating the argument of Section 3, we establish a meromorphic
continuation of the function s 7→ ηq(s). Finally, by using (4.5), we may
proceed exactly as in Section 3.3 to show that qηq(s) has integer residues.
This completes the proof of Theorem 4.1.

5. Modified Lax–Phillips conjecture for real analytic
obstacles

In this section, we assume that the obstacles D1, . . . , Dr have real an-
alytic boundary. Then the smooth structure on M defined in Section 2.2
induces an analytic structure on M . Indeed, with notations of Section 2.2,
the local parametrizations Fz⋆

of Din can be chosen to be real analytic,
as Din is a real analytic submanifold of SRd−1. This makes the transition
maps (2.3) real analytic, and thus we obtain a real analytic structure on M .
In the charts defined by Ψz⋆

and Ψ (see Section 4.1), the billiard flow φt is a
translation and it defines a real analytic flow. Of course, the Grassmannian
bundle G→M also becomes real analytic. Consequently, the lifted flow φ̃t
on G, which is defined by (2.6), is real analytic as well.

Consider the bundles Eqk,ℓ → G defined in Section 4.2 for q ⩾ 2, 1 ⩽ k ⩽
d − 1 and 1 ⩽ ℓ ⩽ d2 − d. In the case q = 1 the bundles E1

k,ℓ → G are
isomorphic to Ek,ℓ, Ek,ℓ being the bundles defined in Section 2.6. As before,
we naturally extend the flow φ̃t to a flow Φk,ℓ,qt (which is non-complete) on
Eqk,ℓ. We set

E+
q =

⊕
k+ℓ even

Eqk,ℓ and E−
q =

⊕
k+ℓ odd

Eqk,ℓ.
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Define the flows Φ+
t,q and Φ−

t,q, acting respectively on the bundles E+
q and

E−
q , by

Φ+
t,q =

⊕
k+ℓ even

Φk,ℓ,qt and Φ−
t,q =

⊕
k+ℓ odd

Φk,ℓ,qt .

Then Φ±
t,q is a virtual lift of φ̃t to the virtual bundle Evirtual

q = E+
q −E−

q , in
the sense of [17, p. 176]. Next, given a periodic ray γ, a point ω = (z, E) ∈
G, z ∈ γ, and a bundle ξ → G over G, one considers the transformation
Φτ(γ) : ξω → ξω, where ξω is the fibre over ω and Φt is the lift of the
flow φ̃t to ξ. Then we set χγ(ξ) = tr Φτ(γ). Following [17, p. 176], one
defines χγ(E+

q −E−
q ) = χγ(E+

q )−χγ(E−
q ). For a periodic ray γ related to a

primitive periodic ray γ♯ one defines µ(γ) ∈ N determined by the equality
τ(γ) = µ(γ)τ(γ♯).

After this preparation introduce the zeta function

ζq(s) = exp
(
−1
q

∑
γ̃

χγ(E+
q − E−

q )
µ(γ)|det(Id− P̃ γ)|

e−sτ(γ)
)
, Re(s)≫ 1.

This function corresponds exactly to the flat-trace function s 7→ T ♭(s)
introduced by Fried [17, p. 177]. On the other hand, one has

χγ(E+
q − E−

q ) = tr Φ+
τ(γ),q − tr Φ−

τ(γ),q =
∑
k,ℓ

(−1)k+ℓ tr Φk,ℓ,qτ(γ) (ωγ̃).

According to the analysis of Section 3 for the function ζN(s), one deduces

d
ds log ζ1(s) =

∑
γ∈P

τ(γ♯)e−sτ(γ)

|det(Id− Pγ)|1/2 = ηN(s), Re s≫ 1.

Similarly, the argument of Section 4 implies

d
ds log(ζ2(s)2) = 2

∑
γ∈P

m(γ)∈2N

τ(γ♯)e−sτ(γ)

|det(Id− Pγ)|1/2 = 2η2(s), Re s≫ 1.

Consequently, the representation (4.1) yields

(5.1) ηD(s) = d
ds log

(ζ2(s)2

ζ1(s)

)
, Re s≫ 1.

For obstacles with real analytic boundary the flow φ̃t is real analytic and
the bundles E±

q are real analytic, too.
For convenience of the reader, we recall the definition of the order of a

function f meromorphic on the complex plane (see for instance [24]). For
r ⩾ 0, denote by n(r, f) the number of poles of f in the disk {|z| ⩽ r}
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counted with their multiplicity. Introduce the (Nevalinna) counting func-
tion

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt+ n(0, f) log r.

Let log+ : R→ R+ be the function defined by

log+ x =
{

log x if x ⩾ 1,
0 if x ⩽ 1.

The proximity function m(r, f) is defined by

m(r, f) = 1
2π

∫ 2π

0
log+ |f(reiθ)|dθ,

assuming that f(z) has no poles for |z| = r. Then T (r, f) = N(r, f)+m(r, f)
is called the (Nevalinna) characteristic of f . Finally, the order ρ(f) of f is
defined by

ρ(f) = lim sup
r→∞

log+ T (r, f)
log r .

We are now in position to apply the principal result of Fried [17, The-
orem on p. 180, see also pp. 177–178] saying that the zeta functions s 7→
ζk(s), k = 1, 2, are entire functions with finite orders ρ(ζk). Thus ζ2

2/ζ1 is
a meromorphic function with order max{ρ(ζ1), ρ(ζ2)}.

Proof that ηD(s) is not an entire function. — We will show that the
Dirichlet series ηD(s) cannot be continued as an entire function to C, that
is, ηD(s) has at least one pole. We proceed by contradiction and assume that
ηD(s) is an entire function. Applying the representation (5.1), this means
that ζ2(s)2/ζ1(s) has neither poles nor zeros. As we have mentioned above,
this function has finite order, so by the Hadamard factorisation theorem
we deduce that ζ2(s)2/ζ1(s) = exp(Q(s)) for some polynomial Q(s). This
implies that ηD(s) = Q′(s) is a polynomial, which is impossible. Indeed,
since ηD(s)→ 0 as Re(s)→ +∞, this implies that Q′(s) must be the zero
polynomial. By uniqueness of the development of Dirichlet series of the
form

∑
n ane−λns [43] absolutely convergent for Re s ⩾ s0, this leads to a

contradiction. □

Appendix A. Hyperbolicity of the billiard flow

In this appendix we show that the non-grazing flow ϕt defined in Sec-
tion 2.1 in Euclidean metric is uniformly hyperbolic on the trapped set
Ke. Throughout this section we work with the Euclidean metric. As it was
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mentioned in Section 2.4, we can obtain the uniform hyperbolicity of the
flow φt on K in the smooth model from that for ϕt on B̊ ∩Ke. The flow ϕt
is hyperbolic on B̊ ∩Ke if for every z = (x, v) ∈ B̊ ∩Ke we have a splitting

TzRd = RX(z)⊕ Es(z)⊕ Eu(z),

where X(z) = v and Es(z)/Eu(z) are stable/unstable spaces such that
dϕt(z) maps Es/u(z) onto Es/u(ϕt(z)) whenever ϕt(z) ∈ B̊ ∩Ke, and if for
some constants C > 0, ν > 0 independent of z ∈ Ke, we have

(A.1) ∥dϕt(z) · v∥ ⩽
{
Ce−νt∥v∥, v ∈ Es(z), t ⩾ 0,
Ce−ν|t|∥v∥, v ∈ Eu(z), t ⩽ 0.

First, we consider the case of periodic points. Our purpose is to define
the unstable and stable manifolds Eu(z) and Es(z) at a periodic point
z ∈ B̊ ∩ Ke, and to estimate the norm of dϕt(z)|Eb(z) for b = u, s. Con-
sider a periodic ray γ with reflection points zi = (qi, ωi), qi ∈ ∂D, ωi ∈
Sd−1, i = 0, . . . ,m(γ) = m with period T > 0. Let πx be the projection
πx : (t, x, τ, ξ) ∋ T ∗(R × Ω) → x ∈ Ω and let γ̃ ⊂ T ∗(R × Ω) be the gen-
eralized bicharacteristic of the wave operator ∂2

t −∆x for which πx(γ̃) = γ

(see Section 1.2 in [47] for the definition of generalized bicharacteristics).
Let ρ = (x, ξ) ∈ γ̃ ∩

(
T ∗(Ω̊) \ {0}

)
be such that πx(ρ) ̸= qi, i = 0, . . . ,m.

Then the flow ϕT maps a small conic neighborhood V ⊂ T ∗(Ω̊) \ {0} of ρ
to a conic neighborhood W ⊂ T ∗(Ω̊) \ {0} of ρ and

dϕT (ρ) : Tρ(T ∗(Ω̊)) −→ Tρ(T ∗(Ω̊)).

The tangent vector ζ to γ̃ at ρ and the cone axis η = {tξ, t > 0} are invariant
with respect to dϕT (ρ) and we define the quotient Σρ = Tρ(T ∗(Ω̊))/Eρ, Eρ
being the two dimensional space spanned by ζ and η. Then

Pγ(ρ) = dϕT (ρ)|Σρ

is the linear Poincaré map corresponding to γ at ρ. It is easy to see that if
µ ∈ γ̃ ∩

(
T ∗(Ω̊) \ {0}

)
is another periodic point, the maps Pγ(ρ) and Pγ(µ)

are conjugated and the eigenvalues of Pγ(ρ) are independent of the choice
of ρ.

Recall the billiard ball map B introduced in Section 2.4. The advan-
tage is that B is smooth (see [36]). We will apply the representation of
the Poincaré map for billiard ball map B established in Theorem 2.3.1 and
Proposition 2.3.2 in [47]. To do this, we recall some notations given in Sec-
tion 2 of [47]. Let Πi ⊂ Rd be the plane passing through qi and orthogonal
to ωi and let Π′

i be the plane passing through qi and orthogonal to ωi−1.

For j = i (mod m) we set Πj = Πi, qj = qi. Set λi = ∥qi−1 − qi∥ and let
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qi−1

qi

Πi−1

Πi

u wi−1

v

p

`(u, v)

`′(u, v)

u′
wi

v′

Π′i

Figure A.1. The map Ψi : (u, v) 7→ (u′, v′)

σi be the symmetry with respect to the tangent plane αi = Tqi
(∂D). (If

u = ut + un ∈ Sd−1 with ut ∈ αi, un ⊥ αi, then σi(u) = ut − un.) Clearly,

σi(ωi) = ωi+1, σi(Π′
i) = Πi, Π0 = Πm.

We identify Πi−1 and Π′
i by using a translation along the line determined

by the segment [qi−1, qi] and we will write σi(Πi−1) = Πi.

Given (u, v) ∈ Πi−1 × Πi−1 sufficiently close to (0, 0), consider the line
ℓ(u, v) passing through qi−1 +u and having direction ωi−1 + v (the point v
is identified with the vector v). Then ℓ(u, v) intersects ∂D at a point p =
p(u, v) close to qi. Let ℓ′(u, v) be the line symmetric to ℓ(u, v) with respect
to the tangent plane to ∂D at p and let qi + u′ ∈ Πi be the intersection
point of ℓ′(u, v) with Πi. There exists an unique v′ ∈ Πi for which ωi + v′

has the direction of ℓ′(u, v). Thus we get a map

Ψi : Πi−1 ×Πi−1 ∋ (u, v) 7−→ (u′, v′) ∈ Πi ×Πi

defined for (u, v) in a small neighborhood of (0, 0) (see Figure A.1). The
smoothness of the billiard ball map B implies the smoothness of Ψi. Next
consider the second fundamental form S(ξ, η) = ⟨Gi(ξ), η⟩ for D at qi,
where

Gi = dnj(qi) : αi −→ αi
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is the Gauss map. Here recall that nj(q) is the inward unit normal vector
to ∂Dj at q pointing into Dj . Introduce a symmetric linear map ψ̃i on Πi

defined for ξ, η ∈ Π′
i by

⟨ψ̃iσi(ξ), σi(η)⟩ = −2⟨ωi−1, nj(qi)⟩⟨Gi(πi(ξ)), πi(η)⟩,

where ⟨ · , · ⟩ denotes the scalar product in Rd, πi : Π′
i → αi is the projection

on αi along Rωi−1.
Notice that the non-eclipse condition (1.1) implies that there exists β0 ∈

]0, π/2[ depending only on D such that for all incoming directions ωi−1 and
all reflection points qi ∈ ∂Dj , one has

−⟨ωi−1, nj(qi)⟩ = ⟨ωi, nj(qi)⟩ ⩾ cosβ0 > 0.

Consequently, the symmetric map ψ̃i has spectrum included in [µ1, µ2] with
0 < µ1 < µ2 depending only on κ = cosβ0 and the sectional curvatures of
∂D. Finally, define the symmetric map

ψi = s−1
i ψ̃isi : Πm −→ Πm

with si = σi ◦ σi−1 ◦ · · · ◦ σ1. By Theorem 2.3.1 in [47], the map dΨi(0, 0)
has the form

dΨi(0, 0) =
(
I λiI

ψ̃i I + λiψ̃i

)(
σi 0
0 σi

)
,

and the linearized Poincaré map Pγ related to γ is given by

Pγ = d(Ψm ◦ · · · ◦Ψ1)(0, 0) : Π0 ×Π0 −→ Π0 ×Π0,

which implies

Pγ =
(
sm 0
0 sm

)(
I λmI

ψm I + λmψm

)
· · ·
(
I λ1I

ψ1 I + λ1ψ1

)
.

Here the space Π0 × Π0 is identified with the space Tρ(T ∗(Ω))/Eρ, where
πx(ρ) = (q0, ω0).

Now we repeat without changes the argument of Proposition 2.3.2 in [47].
For k = 0, 1, . . . ,m, consider the space Mk of linear symmetric non-
negative definite maps M : Πk → Πk. Next, let Mk(ε) ⊂ Mk be the
space of maps such that M ⩾ εI with ε > 0. To study the spectrum of Pγ ,
consider the subspace

L0 = {(u,M0u) : u ∈ Π0}, M0 ∈M0,

which is Lagrangian with respect to the symplectic structure on Π0 × Π0
induced from the symplectic structure on Tρ(T ∗(Ω)) by the factorisation
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with Eρ. The action of the map dΨ1(0, 0), transforms the Lagrangian space
L0 into

L1 = {σ1(I + λ1M0)u, σ1((I + λ1ψ1)M0 + ψ1)u : u ∈ Π0} ⊂ Π1 ×Π1.

Introducing the operator

Ai :Mi−1 −→Mi

defined by
Ai(M) = σiM(I + λiM)−1σ−1

i + ψ̃i,

we write L1 = {(u,M1u) : u ∈ Π1} with M1 = A1(M0). By recurrence,
define

Lk = {(u,Mku) : u ∈ Πk}, Mk = Ak(Mk−1), k = 1, 2, . . . ,m.

The maps Ak are contractions from Mk−1(ε) to Mk(ε), hence

A = Am ◦ · · · ◦ A1

becomes also a contraction fromM0(ε) toM0(ε). We choose M0 ∈M0(ε)
as a fixed point of A and thus we fix L0. Notice that ε > 0 can be chosen
uniformly for all periodic rays. Thus we deduce

Pγ

(
u

M0u

)
=
(

Su

M0Su

)
with a map S : Π0 → Π0 having the form

S = σm(I+λmA′
m−1(M0))◦σm−1(I+λm−1A′

m−2(M0))◦· · ·◦σ1(I+λ1M0),

where A′
k = Ak ◦ Ak−1 ◦ · · · ◦ A1. Setting

d0 = min
i ̸=j

dist(Di, Dj) > 0, d1 = max
i̸=j

dist(Di, Dj),

and β = log(1 + εd0), one obtains

∥Su∥ ⩾ (1 + d0ε)m∥u∥ = eβm∥u∥.

Obviously, the eigenvalues of S are eigenvalues of Pγ and we conclude that
Pγ has (d− 1) eigenvalues ν1, . . . , νd−1 satisfying

|νj | ⩾ eβm, j = 1, . . . , d− 1.

For 0 < τ < λ1, consider a point ρ = ϕτ (z) ∈ B̊ ∩ γ, where z =
(x, v) ∈ Din. The map ϕτ : Din → B̊ is smooth near z and moreover
dϕτ (z) : Σz → Σρ. We identify Π0×Π0 with Σz and Σϕτ (z) with the image

dϕτ (z)Σz =
(
I τI

0 I

)
(Π0 ×Π0).
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Next we define the unstable subspace of Σρ as

Eu(ρ) = dϕτ (z)(L0) =
(
I τI

0 I

)
(L0).

Let 0 < σ < λp+1 with p ⩾ 1 and set t = −τ +
∑p
j=1 λj + σ.

Then ϕ−τ is smooth near ρ, the map Bp is smooth and

dϕt(ρ)|Σρ
= dϕσ(Bp(z)) ◦ dBp(z) ◦ dϕ−τ (ρ) : Σρ −→ Σϕt(ρ).

This is illustrated by the diagram

Eu(ρ) dϕt(ρ)−−−−→ Eu(ϕt(ρ))ydϕ−τ (ρ)
xdϕσ(Bp(z))

Π0
χ0−−−−→ L0

dBp(z)−−−−→ Lp
χp←−−−− Πp,

where χ0 : Π0 ∋ u 7→ (u,M0u) ∈ L0 ⊂ Π0 × Π0 and χp : Πp ∋ u 7→
(u,Mpu) ∈ Lp ⊂ Πp ×Πp. It is easy to obtain an estimate of the action of
dϕt(ρ)|Eu(ρ) for ρ = ϕτ (z), v = dϕτ (z)(u,M0u) ∈ Eu(ρ). Clearly,

dϕt(ρ) · v = (dϕσ(Bp(z)) ◦ dBp(z))(u,M0u).

By the above argument we deduce

dBp(z)(u,M0u) = (Spu,MpSpu) ∈ Lp
with

Sp = σp(I + λpA′
p−1(M0)) ◦ σp−1(I + λp−1A′

p−2(M0)) ◦ · · · ◦ σ1(I + λ1M0).

Setting β0 = β/d1 and w = (u,M0u) = dϕ−τ (ρ) · v, we have

(A.2) ∥dBp(z) · w∥

= ∥(Spu,MpSpu)∥ ⩾ ∥Spu∥ ⩾ e
β

d1
pd1∥u∥ ⩾ eβ0(t+τ−σ)∥u∥,

and

(A.3) ∥dBp(z) · w∥ ⩽ C0e−β0d1eβ0t∥w∥ = C0e−β0d1eβ0t∥dϕ−τ (ρ)v∥.

Here we used the estimate

∥w∥ =
(
∥u∥2 + ∥M0u∥2

)1/2
⩽ (1 +B2

0)1/2∥u∥

with ∥M0∥Π0→Π0 ⩽ B0 and we set C0 = (1 + B2
0)−1/2. The constant B0

can be chosen uniformly for all Mk and all periodic points since for every
non-negative symmetric map M one has

∥M(I + λkM)−1∥ ⩽ 1
λk

⩽
1
d0
,
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while the norms ∥ψ̃k∥ are uniformly bounded by a constant depending of
the sectional curvatures of D and κ > 0. Consequently,

(A.4) ∥Ak(M)∥ ⩽ B0,

the same is true for the norm of the fixed point M0 = Am(Mm−1) and
the estimate (A.4) is uniform for all periodic points. Finally, estimat-
ing the norm of dϕ−σ(Bp(z)) =

(
I −σI
0 I

)
, we obtain ∥dϕ−σ(Bp(z))ζ∥ ⩾

(1 + d1)−1∥ζ∥ and

∥dϕt(ρ)v∥ ⩾ (1 + d1)−1C0e
−β0d1eβ0t∥dϕ−τ (ρ)v∥

⩾ (1 + d1)−2C0e
−β0d1eβ0t∥v∥.

It remains to treat the case ρ = ϕτ (z), z ∈ Din, 0 < t = τ + σ < λ1.
Then ϕt(ρ) = ϕτ+σ(z) ∈ B̊ ∩ γ and we obtain easily an estimate for
∥(dϕτ+σ(z)) · v∥.

Our case is a partial one of a more general setting (see [39]) concerning
Lagrangian spaces {(u,Mu)} with positive definite linear maps M . Such
spaces are called positive Lagrangian. A linear symplectic map L is called
monotone if it maps positive Lagrangian onto positive Lagrangian. In [39]
it is proved that any monotone symplectic map is a contraction on the
manifold of positive Lagrangian spaces. After a suitable conjugation the
map L has the representation (see Proposition 3 in [39])

L =
(
A−1 0

0 A∗

)(
I R

P I + PR

)
with positive definite matrices P and R. In our situation, we have A = I,
R = λiI and P = ψi.

To determine the stable space Es(z) at z, we will study the flow ϕt
for t < 0 and repeat the above argument leading to a fixed point. For
completeness we present some details. The linear map P−1

γ for a periodic
ray γ with m reflections has the representation

P−1
γ = (dΨ1)−1 ◦ · · · ◦ (dΨm)−1 : Π0 ×Π0 −→ Π0 ×Π0,

where

(dΨk)−1 =
(
σ−1
k 0
0 σ−1

k

)(
I + λkψk −λkI
−ψk I

)
.

Recall that Π0 = Πm. Consider a Lagrangian

Q0 = Qm = {(u,−Nmu) : u ∈ Π0}
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with a symmetric non-negative definite map Nm ∈M0. Then
(dΨm)−1Qm =

{(
σ−1
m (I +λm(ψm +Nm))u,−σ−1

m (ψm +Nm)u
)

: u ∈Π0
}

= {(u,−Nm−1u) : u ∈ Πm−1},

where

Nm−1 = σ−1
m (ψm +Nm)

(
I + λm(ψm +Nm)

)−1
σm : Πm−1 −→ Πm−1.

By recurrence, introduce the Lagrangian spaces

Qk = {(u,−Nku) : u ∈ Πk}, Nk = Bk(Nk+1), k = 0, . . . ,m− 1,

where

Bk(M) = σ−1
k+1(ψk+1 +M)

(
I + λk+1(ψk+1 +M)

)−1
σk+1 : Πk −→ Πk.

It is easy to see that Bk are contractions from Mk+1(ε) to Mk(ε) since

σk+1

(
Bk(M1)− Bk(M2)

)
σ−1
k+1

= (I + λk+1(ψk+1 +M1))−1(M1 −M2)(I + λk+1(ψk+1 +M2))−1.

Therefore, B = B0 ◦ · · · ◦ Bm−1 will be contraction from M0(ε) to M0(ε)
and there exists a fixed point Nm ∈M0(ε) of B. Moreover,

P−1
γ

(
u

−Nmu

)
=
(

S̃u

−NmS̃u

)
, u ∈ Π0,

where

S̃ = σ−1
1 (I + λ1(ψ1 + B′

1(Nm))) ◦ σ−1
2 (I + λ2(ψ2 + B′

2(Nm)))

◦ · · · ◦ σ−1
m (I + λm(ψm +Nm))

and B′
k = Bk ◦ · · · ◦ Bm−1, k = 1, . . . ,m− 1. Clearly,

∥S̃u∥ ⩾ (1 + d0ε)m∥u∥, u ∈ Π0,

where ε > 0 depends of the sectional curvatures of D. Thus the stable man-
ifold at ϕσ(z),−λm−1 < σ < 0 can be defined as Es(ϕσ(z)) = dϕσ(z)(Qm)
and we may repeat the above argument for the estimate of dϕt(ϕσ(z))
acting on Es(ϕσ(z)) for t < 0.

The intersection of the unstable and stable manifolds at y = ϕt(z), 0 <
t < λp is (0, 0). Indeed, we have

Eu(y) = dϕt(z)(Lp−1), Es(y) = dϕt−λp
(ϕλp

(z))(Qp),

where Lp−1 = {(u,Mp−1u) : u ∈ Πp−1 × Πp−1} and Qp = {(−u,−Npu) :
u ∈ Πp×Πp}. Assume that Eu(y)∩Es(y) ̸= (0, 0). Then there exists 0 ̸= v ∈
Lp−1 ∩ dϕ−λp(ϕλp(z))(Qp). By the above argument dϕ−λp(ϕλp(z))(Qp) =
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{(u,−Np−1u) : u ∈ Πp−1 × Πp−1}. This implies the existence of u ̸= 0
for which (Mp−1 + Np−1)u = 0 which is impossible since Mp−1 + Np−1
is a definite positive map. Consequently, Eu(y) and Es(y) are transversal
subspaces of dimension d−1 of Σy and we have a direct sum Σy = Eu(y)⊕
Es(y).

Now we pass to the estimates of dϕt(z)|Eu(z), where z ∈ B̊ ∩Ke is not a
periodic point. Since z ∈ Ke, the trajectory γ = {ϕt(z) : t ∈ R} has infinite
number successive reflection points qk ∈ ∂Dik , k ∈ Z, with an infinite
sequence

J0 = (ij)j∈Z, ij ̸= ij+1.

For every p ⩾ p0 ≫ 1 define the configuration

αp =
{

(i−p, . . . , i0, . . . , ip) if ip ̸= i−p,

(i−p, . . . , i0, . . . , ip+1) if ip = i−p.

Repeating αp infinite times, one obtains an infinite configuration. Following
the arguments of the proof of Proposition 10.3.2 in [47], there exists a
periodic ray γp following this configuration and we obtain a sequence of
periodic rays (γp0+k)k⩾0. Let {qp,k ∈ ∂Dik} be the reflexion points of γp.
For the periodic ray γp passing through qp,0 ∈ ∂Di0 consider the linear
space

Lp,0 = {(u,Mp,0u) : u ∈ Πp,0} ⊂ Πp,0 ×Πp,0.

Our purpose is to show that the symmetric linear maps Mp,0 ∈ Mp,0(ε)
composed by some unitary maps converge as p→∞ to a symmetric linear
map M̃0 ∈ M0(ε) on Π0. This composition is necessary since the maps
Mp,0, p ⩾ p0, are defined on different spaces. To do this, we will use Lem-
mas 10.2.1, 10.4.1 and 10.4.2 in [47]. Consider the rays γp0+q, q ⩾ 1, and γ.
These rays have reflection points passing successively through the obstacles

L′ = Di−p0−1 , Di−p0
, . . . , Di0 , . . . , Dip0

, Dip0+1 = L′′.

According to Lemma 10.2.1 in [47], there exist uniform constants C > 0
and δ ∈ (0, 1) such that for any |k| ⩽ p0 and j = 1, . . . , q, one has

∥qp0+1,k−qp0+j,k∥ ⩽ C(δp0+k+δp0−k), ∥qp0+j,k−qk∥ ⩽ C(δp0+k+δp0−k).

We need to introduce some notations from [47, Section 10.4]. Let x ∈ ∂Di

and y ∈ ∂Dj with i ̸= j, and assume that the segment [x, y] is transversal to
both ∂Di and ∂Dj . Let Π be the plane orthogonal to [x, y], passing through
x. Let e = (x− y)/∥x− y∥, and introduce the projection π : Π→ Tx(∂D)
along the vector e. As above, we define the symmetric linear map ψ̃ : Π→ Π
by

⟨ψ̃(u), u⟩ = 2⟨e, n(x)⟩⟨Gx(π(u)), π(u)⟩, u ∈ Π,

TOME 1 (-1), FASCICULE 0



46 Yann CHAUBET & Vesselin PETKOV

and notice that
spec ψ̃ ⊂ [µ1, µ2], 0 < µ1 < µ2.

Setting D0 = 2C, we have the estimates

∥qp0+j,k − qk∥ ⩽ D0δ
p0+k, k = −p0 + 1, . . . , 0, j = 1, . . . , q.

Fix 1 ⩽ j ⩽ q and introduce the vectors

ek = qk+1 − qk
∥qk+1 − qk∥

, e′
k = qp0+j,k+1 − qp0+j,k

∥qp0+j,k+1 − qp0+j,k∥
.

Consider the maps ψ̃k : Πk → Πk and ψ̃′
k : Π′

k → Π′
k related to the

segments [qk−1, qk] and [qp0+j,k−1, qp0+j,k], respectively. Let M−p0+1 :
Π−p0+1 → Π−p0+1 and M ′

−p0+j : Π′
−p0+j → Π′

−p0+j be symmetric non-
negative definite linear operators. By recurrence, define

Mk = σkMk−1(I + λkMk−1)−1σk + ψ̃k, k = −p0 + 2, . . . , 0,

where λk = ∥qk−1 − qk∥ and σk is the symmetry with respect to Tqk
(∂D).

Similarly, we define M ′
k, k = −p0 + 2, . . . , 0, replacing ψ̃k, λk and σk by

ψ̃′
k, λp0+j,k = ∥qp0+j,k−1 − qp0+j,k∥ and σ′

k, respectively. Next, introduce
the constants

b = (1 + 2µ1κd0)−1 < 1, a1 = max{δ, b} < 1,

where d0 > 0 and κ > 0 were defined above. We choose M−p0+1 so that
∥M−p0+1∥ ⩽ B0 and by induction one deduces ∥Mk∥ ⩽ B0. Here B0 > 0
is the constant in (A.4). We have uniform estimates

(A.5) ∥Mk∥ ⩽ B0, ∥M ′
k∥ ⩽ B0, k = −p0 + 1, . . . , 0.

Applying [47, Lemma 10.4.1], there exists a linear isometry Ak : Rd → Rd
such that Ak(Π′

k) = Πk, and Ak satisfies the estimates

(A.6) ∥Ak − I∥ ⩽ C1D0(1 + δ)δk, ∥ψ̃k −Akψ̃′
kA

−1
k ∥ ⩽ C2D0(1 + δ)δk,

for any k = −p0 + 1, . . . , 0. Now we are in position to apply [47, Lem-
ma 10.4.2] saying that with some constant E > 0, depending only of D, κ, δ
and b, for k = −p0 + 1, . . . , 0 we have

(A.7) ∥Mk −AkM ′
kA

−1
k ∥

⩽ D0Ea
p0+k
1 + b2(k+p0−1)∥M−p0+1 −A−p0+1M

′
−p0+1A

−1
−p0+1∥.

The norm of the second term on the right hand side is bounded by the
quantity 2B0b

2(k+p0−1) and for k = 0 we obtain

∥M0 −A0M
′
0A

−1
0 ∥ ⩽ D0Ea

p0
1 + 2B0b

2(p0−1).
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Applying the above estimate for the rays γp0+q, the maps M ′
0, A0 will de-

pend of the ray γp0+q and for this reason we denote them by M ′
q,0, Aq,0.

Now we use these estimates for the maps M ′
q,0, Mq′,0 related to the rays

γp0+q and γp0+q′ and by the triangle inequality one deduces

(A.8)
∥∥Aq,0M ′

q,0A
−1
q,0 −Aq′,0M

′
q′,0A

−1
q′,0
∥∥ ⩽ 2D0Ea

p0
1 + 4B0b

2(p0−1).

Here Aq,0(Π′
q,0) = Π0 and Aq′,0(Π′

q′,0) = Π0 are some isometries
satisfying the estimates (A.6). Clearly, one obtain a Cauchy sequence
(Aq,0M ′

q,0A
−1
q,0)q⩾1 which converges to a symmetric non-negative linear map

M̃0 in Π0. Moreover, if for every q we have M ′
q,0 ⩾ εI, then M̃0 ⩾ εI.

After this preparation, for any 0 < τ < ∥q1 − q0∥ we define the unstable
manifold at ρ = ϕτ (z0) with z0 = (q0, v0) as the subspace

Eu(ρ) = dϕτ (z0){(u, M̃0u) ∈ Π0 ×Π0 : u ∈ Π0} ⊂ Σρ.

It is important to note that the procedure leading to the estimate (A.7)
can be repeated starting with M̃0 instead of M−p0+1. Then if M̃k are the
maps obtained from M̃0 after successive reflections, we obtain an estimate

∥M̃k −AkM ′
kA

−1
k ∥ ⩽ D0Ea

p0+k
1 + b2(k+p0−1)∥M̃0 −A0M̃

′
0A

−1
0 ∥

for k = 1, . . . , p0/2.
We can repeat the above argument for v ∈ Eu(ρ) and

t = −τ +
p∑
j=1

λj + σ,

where 0 < τ < λ1 and 0 < σ < λp+1, to estimate

∥dϕt(ρ) · v∥.

We apply (A.2) and (A.3) with the expansion map S̃p defined as the
composition of the maps (I + λkA′

k−1(M̃0)) and we get an estimate for
∥dϕt(ρ) · v∥. Finally, the construction of the stable space Es(ϕσ(z0)) for
∥q−1 − q0∥ < σ < 0 can be obtained by a similar argument and we omit
the details.

Appendix B. Ikawa’s criterion and proof of Theorem 1.3

In this appendix we prove Theorem 1.3 for all dimensions d ⩾ 2. The
result of Ikawa [31, Theorem 2.1] was established for d odd and it yields only
an infinite number of resonances in a suitable band. To obtain a stronger
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result we apply the argument of [35]. The proof is based on Lemma 2.2,
Proposition 2.3 and Theorem 2.4 in [31]. Recall the notation

Λω =
{
µj ∈ C \ eiπ

2 R+ : 0 < Imµj ⩽ ω|Reµj |, 0 < argµj < π
}
.

For the modification covering all dimensions d ⩾ 2, it is necessary only
to modify Lemma 2.2 in [31] since the other results are independent of
the dimension d. Below we consider only the resonances µj for which 0 <
argµj < π and we omit this in the notation.

Let ρ ∈ C∞
c (R;R+) be an even function with supp ρ ⊂ [−1, 1] such that

ρ(t) > 1 if |t| ⩽ 1/2,

and the property that its Fourier transform is non-negative,

ρ̂(k) =
∫

eitkρ(t)dt ⩾ 0, k ∈ R.

(As in [31], we use the above Fourier transform, since we deal with ⟨eiµjt, ρ⟩).
It is easy to construct ρ with the above properties. Let ϕ ∈ C∞

c (R; [0, 1])
be an even function with support in [−1/2, 1/2] such that ϕ(x) ≡ 1 for
|x| ⩽ 3/8. Define

Φ(t) := (ϕ ⋆ ϕ)(t) =
∫ ∞

−∞
ϕ(x)ϕ(t− x)dx ⩾ 0.

Clearly, Φ(t) is even, has support in [−1, 1] and Φ̂(k) = (ϕ̂(k))2. For k ∈ R
the function ϕ̂(k) is real valued and Φ̂(k) ⩾ 0 for k ∈ R. On the other hand,
for |t| ⩽ 1/2 we have

Φ(t) ⩾
∫ 1/4

−1/4
ϕ(t− x)dx =

∫ t+1/4

t−1/4
ϕ(s)ds

⩾ mes([t− 1/4, t+ 1/4] ∩ [−3/8, 3/8]) ⩾ 1
8

and we may take ρ(t) = 9Φ(t).
Let (ℓq)q∈N and (mq)q∈N be sequences of positive numbers such that

ℓq ⩾ d0 = mink ̸=j dist(Dk, Dj) > 0, mq ⩾ max{1, 1
d0
} and let ℓq,mq →∞

as q →∞. Finally, set

ρq(t) = ρ(mq(t− ℓq)), t ∈ R,

and c0 =
∫
ρ(t)dt ⩾ 1. The result [31, Lemma 2.2] must be modified as

follows.

Lemma B.1. — Let 0 < δ < 1 be fixed. Assume that for α ⩾ 1we have

N(α) = #{µj ∈ Λω : 0 < Imµj ⩽ α, |µj | ⩽ r} ⩽ P (α, δ)rδ
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with P (α, δ) <∞. Then we have

(B.1)
∑
µj∈Λω

|ρ̂q(µj)| ⩽ C0e
αmd+1

q e−αℓq + C1P (α, δ)m−(1−δ)
q

for some constants C0 > 0, C1 > 0 independent of α and q.

Proof. — We write∑
µj∈Λω

=
∑
µj∈Λω

Imµj>α

+
∑
µj∈Λω

Imµj⩽α

= (I) + (II).

For (I) one integrates by parts,

(B.2)
∫ ℓq+ 1

mq

ℓq− 1
mq

ρ(mq(t− ℓq))eitµj dt

=
(−1)d+2md+2

q

(iµj)d+2

∫ ℓq+ 1
mq

ℓq− 1
mq

ρ(d+2)(mq(t− ℓq))eitµj dt.

We have |eitµj | ⩽ e−t Imµj and since supp ρq ⊂ [ℓq −m−1
q , ℓq + m−1

q ] and
Imµj > α, we get

|eitµj | ⩽ e−α(ℓq−m−1
q ) ⩽ e−α(ℓq−1).

In particular, the right hand side of (B.2) is estimated by

Ceα
e−αℓqmd+1

q

|µj |d+2 ∥ρ∥Cd+2(R)

with a constant C > 0 independent of j and q. On the other hand, for d
even by the results of Vodev [54, 55] we have the estimate

#{µj : 0 ⩽ argµj ⩽ π, |µj | ⩽ k} ⩽ C2k
d.

and for d odd we have the same bound (see Section 4.3 in [15]). Conse-
quently, the series∑

|µj |⩾1

1
|µj |d+2 =

∞∑
k=1

∑
k⩽|µj |<k+1

1
|µj |d+2 ⩽ C2

∞∑
k=1

(k + 1)d

kd+2 ⩽ C3

is convergent. This yields the first term on the right hand side of (B.1).
Passing to the estimate of (II), we apply the argument of the proof of
Theorem 2 in [35]. First,∫

eiζtρq(t)dt = m−1
q eiζℓq ρ̂(ζm−1

q ).
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Applying the Paley–Winner theorem for Im ζ ⩾ 0 and N ⩾ 2 one deduces∣∣∣∣∫ eiζtρq(t)dt
∣∣∣∣ ⩽ CNm

−1
q e− Im ζ(ℓq−m−1

q )(1 + |ζm−1
q |)−N

⩽ CNm
−1
q (1 + |ζm−1

q )−N .

Therefore∣∣∣∣∣∣
∑

Imµj>α

⟨eiµjt, ρq(t)⟩

∣∣∣∣∣∣ ⩽ CNm
−1
q

∫ ∞

0
(1 +m−1

q r)−NdNα(r)

⩽ −CNm−1
q

∫ ∞

0

d
dr

(
(1 +m−1

q r)−N
)
Nα(r)dr

⩽ BNP (α, δ)m−1+δ
q

∫ ∞

0
(1 + y)−N−1yδdy

= ANP (α, δ)m−(1−δ)
q .

Notice that the other terms in the trace formula of Zworski (1.3) are easily
estimated. In fact, since λ 7→ ψ(λ) has compact support, one gets∣∣∣∣∫ (∫ ψ(λ)dσ

dλ (λ) cos(λt)dλ
)
ρ(mq(t− ℓq))dt

∣∣∣∣ ⩽ Cψ

∫
ρ(mq(t− ℓq))dt

⩽ Cψc0m
−1
q .

Here we integrate by parts in the integral with respect to λ and exploit the
fact that σ(λ) is bounded on the support of ψ(λ) (see Section 3.10 in [15]
for the estimates of σ(λ)). Similarly,∣∣∣∣∫ vω,ψ(t)ρ(mq(t− ℓq))dt

∣∣∣∣ ⩽ Cω,ψ

∫
ρ(mq(t− ℓq))dt ⩽ c0Cω,ψm

−1
q .

We can put the estimates of these terms in C1P (α, δ)m−(1−δ)
q increasing

the constant C1. This completes the proof. □

Define the distribution F̂D ∈ S ′(R+) by

(B.3) F̂D(t) =
∑
γ∈P

(−1)m(γ)τ ♯(γ)δ(t− τ(γ))
|det(I − Pγ)|1/2 .

As we mentioned above, the following results are proved in [31] and their
proofs are independent of the dimension d. For convenience of the reader
we present the statements.

Proposition B.2 ([31, Propsition 2.3]). — Suppose that ηD(s) cannot
be continued as an entire function of s. Then there exists α0 > 0 such that
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for any β > α0 we can find sequences (ℓq), (mq) with ℓq → ∞ as q → ∞
and such that for all q ⩾ 0 one has

eβℓq ⩽ mq ⩽ e2βℓq and |⟨F̂D, ρq⟩| ⩾ e−α0ℓq .

Theorem B.3 (Theorem 2.4, [31]). — There are constants C > 0 and
α1 > 0 such that for any sequences (ℓq) and (mq) with ℓq →∞ as q →∞,
it holds

(B.4) |⟨u, ρq⟩| ⩾ |⟨F̂D, ρq⟩| − Ceα1ℓqm−1
q .

Remark B.4. — In [31, Theorem 2.4], on the right hand side of (B.4),
one has the term m−ϵ

q for some ϵ > 0 instead of m−1
q . In particular the

above estimate holds, increasing β > α0.

The above theorem is given in [31] without proof. However its proof
repeats that of Proposition 2.2 in [30] following the procedure described
in [27, Section 3] and exploiting the construction of asymptotic solutions
in [28]. The first term on the right hand side of (B.4) is obtained by the
leading term in (1.4) applying the stationary phase argument to a trace of
a global parametrix (see Chapter 4 in [47]) or to the trace of the asymptotic
solutions given below. For the second one we must estimate a sum∑

γ∈P
τ(γ)⩽ℓq+m−1

q

∫ ℓq+m−1
q

ℓq−m−1
q

ρq(t)rγ(t)dt,

where rγ is a function in L1
loc(R), which is obtained from the lower order

terms in the application of the stationary phase argument. Since rγ(t) could
increase as t→∞, we need a precise analysis of the behavior of rγ(t).

We discuss briefly the approach of Ikawa and refer to [27, 28] for more
details. First one expresses the distribution u(t) defined in Introduction
by the kernels E(t, x, y), E0(t, x, y) of the operators cos(t

√
−∆) ⊕ 0 and

cos(t
√
−∆0), respectively (recall that −∆ is the Laplacian in Q = Rd \D

with Dirichlet boundary conditions on ∂D). Consider

Ê(t, x, y) =
{
E(t, x, y) if (x, y) ∈ Q×Q,
0 if (x, y) /∈ Q×Q.

If D ⊂ {x : |x| ⩽ a0}, then

suppx,y
(
Ê(t, x, y)− E0(t, x, y)

)
⊂
{

(x, y) ∈ Rd × Rd : |x| ⩽ a0 + t, |y| ⩽ a0 + t
}
.
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For t ∈ supp ρq we must study the trace∫
Ωq

⟨Ê(t, x, x)− E0(t, x, x), ρq⟩dx

with Qq = {x ∈ Q : |x| ⩽ a0 + ℓq + 1}. For odd dimensions the ker-
nel E0(t, x, x) vanishes for t > 0. For even dimensions, x 7→ E0(t, x, x) is
smooth for any t > 0 and we can easily estimate∣∣∣∣∣

∫
Ωq

⟨E0(t, x, x), ρq⟩dx

∣∣∣∣∣ ⩽ A0m
−1
q

with A0 > 0 independent of q by using the representation of the kernel
E0(t, x, y) by oscillatory integrals with phases ⟨x−y, η⟩±t (see for example,
[47, Section 3.1]).

Now, choose g ∈ C∞
c (Qq) and write the kernel E(t, x, y) of cos(t

√
−∆) as

E(t, x, y)g(y) = (2π)−d
∫
Sd−1

dη
∫ ∞

0
kd−1u(t, x; k, η)e−ik⟨y,η⟩g(y)dk,

where u(t, x; k, η) is the solution of the problem
(∂2
t −∆x)u = 0 in Rt ×Q,

u = 0 on Rt × ∂Q,
u(0, x) = g̃(x)eik⟨x,η⟩, ∂tu(0, x) = 0,

with a function g̃ ∈ C∞
c (Q) equal to 1 on supp g. In the works [8, 27, 28, 30])

of Ikawa and Burq, asymptotic solutions w(N) = w
(N)
q,+ +w

(N)
q,− of the above

problem have been constructed. They have the form

w
(N)
q,± (t, x; k, η) =

∑
|j|d0⩽a0+ℓq+1

eik(φ±
j (x,η)∓t)

N∑
h=0

v±
j,h(t, x, η)(ik)−h.

Here j = {j1, j2, . . . , jn}, jk ∈ (1, . . . , r), jk ̸= jk+1, k = 1, 2, . . . , n −
1, |j| = n is a configuration related to the rays reflecting successively on
∂Dj1 , ∂Dj2 , . . . , ∂Djn

(see Section 2.3). The phases φ±
j are constructed

successively starting from ⟨x, η⟩ and following the reflections on obstacles
determined by the configuration j. The amplitudes v±

j,h are determined by
transport equations. The reader may consult [27, Section 3], [30, Equations
(3.2) and (3.3)], [28, Section 4] and [8] for the construction of v±

j,h. The
function u− w(N) is solution of the problem

(∂2
t −∆x)(u− w(N)) = k−NFN (t, x; k, η) in Rt ×Q,

u− w(N) = k−NbN (t, x; k, η) on Rt × ∂Q,
(u− w(N))(0, x; k, η) = ∂t(u− w(N))(0, x; k, η) = 0.
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Here FN is obtained as the action of (∂2
t − ∆x) to the amplitudes v±

j,N ,

while bN is obtained by the traces on ∂Q of the amplitudes v±
j,N . It is

important to note that the asymptotic solutions w(N) are independent of
the sequence (mq). The integral involving u − w(N) is easily estimated
and it yields a term O(m−1

q ) (see [27]). For the integral involving w
(N)
q,±

one applies the stationary phase argument as k → ∞ for the integration
with respect to x ∈ Qq, η ∈ Sd−1, considering t as a parameter. Next,
in [28], estimates of the derivatives of order p of v±

j,h(x, t, η) with respect
to x ∈ Qq, η ∈ Sd−1 with bound Cpe

−α2ℓq (t + 1)h, α2 > 0 have been
established. Here Cp > 0 and α2 > 0 are independent of ℓq. By using a
partition on unity

∑
j ψj(x) = 1 on Qq, for large fixed N one deduces the

estimate ∣∣⟨u− F̂D, ρq⟩
∣∣ ⩽ Ae−α2ℓq #

{
j : |j| ⩽ 2ℓq

d0

}
ℓ2N+2
q m−1

q

with constant A > 0 independent of q. Finally, since

#
{

j : |j| ⩽ 2ℓq
d0

}
⩽ eα3ℓq , ∀ q ⩾ 1

with constant α3 > 0 independent of q, we obtain (B.4).
Combining Proposition B.2 and the estimates (B.1) and (B.4), it is easy

to obtain a contradiction with the assumption that P (α, δ) < ∞ for all
α ⩾ 1. Indeed, let

α = (2d+ 3)
1− δ (α0 + α1 + 1), β = α

2d+ 3 .

Then
md+1
q e−αℓq ⩽ e(d+1)2βℓq e−αℓq = e−βℓq ⩽ e−β(1−δ)ℓq

and

α1 + α0 − β = α0 + α1 −
α0 + α1 + 1

1− δ = −1− δ(α0 + α1 + 1)
1− δ .

From (B.1), (B.4) and Proposition B.2 one deduces(
C0eα + C1P (α, δ)

)
e−β(1−δ)ℓq ⩾ C0e

αmd+1
q e−αℓq + C1P (α, δ)e−β(1−δ)ℓq

⩾ |⟨u, ρq⟩| ⩾ e−α0ℓq − Ceα1ℓq e−βℓq

= e−α0ℓq

(
1− Ce−ℓq− δ(α0+α1+1)

1−δ ℓq

)
.

Since β(1 − δ) > α0, letting q → ∞ we obtain a contradiction. This com-
pletes the proof of Theorem 1.3.
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