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DYNAMICAL ZETA FUNCTIONS FOR BILLIARDS

by Yann CHAUBET & Vesselin PETKOV (*)

ABSTRACT. — Let D C R%, d > 2, be the union of a finite collection of pairwise
disjoint strictly convex compact obstacles. Let p; € C, Im u; > 0 be the resonances
of the Laplacian in the exterior of D with Neumann or Dirichlet boundary condition
on AD. For d odd, u(t) = Zj e!ltltj is a distribution in D’(R\{0}) and the Laplace

transforms of the leading singularities of u(t) yield the dynamical zeta functions
nn, Mp for Neumann and Dirichlet boundary conditions, respectively. These zeta
functions play a crucial role in the analysis of the distribution of the resonances.
Under a non-eclipse condition, for every d > 2 we show that N and np admit a
meromorphic continuation to the whole complex plane. In the particular case when
the boundary 9D is real analytic, by using a result of Fried [17], we prove that
the function np cannot be entire. Following Ikawa [29], this implies the existence
of a strip {z € C: 0 < Imz < a} containing an infinite number of resonances 1
for the Dirichlet problem. Moreover, for a > 1 we obtain a lower bound for the
resonances lying in this strip.

RisuME. — Soit d > 2, et D C R? une union finie d’obstacles strictement
convexes, compacts et deux a deux disjoints. Soient p; € C, Impu; > 0, les ré-
sonances du Laplacien a I'extérieur de D avec conditions aux limites de Neumann
ou de Dirichlet sur dD. Pour d impair, la formule u(t) = E]‘ et définit une

distribution de D’(R \ {0}). Les transformées de Laplace des singularités princi-
pales de u(t) s’expriment comme des fonctions zéta dynamiques 7N et 7p, associées
aux conditions aux limites de Neumann et Dirichlet, respectivement. Ces fonctions
zéta jouent un role crucial dans I’analyse de la distribution des résonances. Sous
une condition de non-éclipse, pour d > 2 quelconque, nous montrons que 1N et np
admettent un prolongement méromorphe & tout le plan complexe. Dans le cas par-
ticulier ol la frontiére OD est analytique réelle, en utilisant un résultat de Fried [17],
nous prouvons que la fonction np ne peut pas étre entiere. Ceci implique, d’apres
un résultat de Ikawa [29], 'existence d’une bande {z € C: 0 < Imz < a} conte-
nant un nombre infini de résonances p; pour le probleme de Dirichlet. De plus,
pour a > 1, nous obtenons une borne inférieure sur le nombre de résonances se
trouvant dans cette bande.
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1. Introduction

Let Dy,...,D, C RY r >3, d > 2, be compact strictly convex disjoint
obstacles with smooth boundary and let D = U;=1 D;. We assume that
every D; has non-empty interior and throughout this paper we suppose the
following non-eclipse condition

(1.1) Dy, N convex hull(D; U D;) = ),

for any 1 < 4,j,k < r such that ¢ # k and j # k. Under this condition all
periodic trajectories for the billiard flow in = R¢ \D are ordinary reflect-
ing ones without tangential intersections to the boundary of D. Notice that
if (1.1) is not satisfied, for generic perturbations of D all periodic reflecting
trajectories in € have no tangential intersections to 9D (see Theorem 6.3.1
in [47]). We consider the (non-grazing) billiard flow ¢, (see Section 2.2 for
a precise definition). In this paper the periodic trajectories will be called
periodic rays and we refer to Chapter 2 in [47] for basic definitions. For
any periodic trajectory vy, denote by 7(7) > 0 its period, by 7#(y) > 0 its
primitive period, and by m(y) the number of reflections of  at the obsta-
cles. Denote by P, the associated linearized Poincaré map (see Section 2.3
in [47] and Appendix A for the definition). Let P be the set of all periodic
rays. The counting function of the lengths of periodic rays satisfies

eax

(1.2) H{yeP: Tu(v) gx}wa, T — 400,

for some a > 0 (see for instance, [42, Theorem 6.5] for weak-mixing sus-
pension symbolic flow and [31, 41]). In contrast to the case r = 2, for r > 3
there exists an infinite number of primitive periodic trajectories and we
have (see Corollary 2.2.5 in [47]) the estimate

H{yeP:7(y) <z} <e®®, >0

with a1 > a. Moreover, for some positive constants C1,b1,bs we have (see
for instance [44, Appendix])

17 L |det(Id — P,)| < 27 4 € P.

Using these estimates, we may define for Re(s) > 1 two Dirichlet series

7(7) i (y)e=s7()
— —_1)ym()
Z |det Id P )|1/2’ m(s) =D (1) [det(Id — P,)[/2°

YEP

where the sums run over all the oriented periodic rays. Notice that some pe-
riodic rays have only one orientation, while others admits two (see
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DYNAMICAL ZETA FUNCTIONS FOR BILLIARDS 3

Section 2.3). On the other hand, the length 7#(v), the period 7(v) and
|det(Id — P,)|'/? are independent of the orientation of .

The series nn(s), np(s) are related to the resonances of the self-adjoint
operators —Ay, b = N,D, acting on domains Dy, C H = L*(R?\ D),
with Neumann and Dirichlet boundary conditions on 0D, respectively. To
explain this relation, consider the resolvents

Ru(p) = (—Ap — u2)_1 : H — Dy,

which are analyticin {¢ € C: Im p < 0}. Then Ry, (1) : Heomp — Db loc has
a meromorphic continuation to u € C if d is odd, and to the logarithmic
covering of C \ {0} if d is even (see [37, Chapter 5] for d odd and [15,
Chapter 4]). These resolvents have poles in {z € C: Imz > 0} and the
poles i, are called resonances. Introduce the distribution u € D’(R) by the
formula

(U, ) = 2 trp2 ey /R (cos(tv/=A0) @0 = cos(ty/=A0) Jp(t)dt,
p € CX(R).

Here Ag is the free Laplacian in R? and writing L2(R%) = L2(R?\ D) @
L?(D), the operator cos(tv/—Ayp) @ 0 acts as 0 on L?(D). Then for d odd,
Melrose [40] (see also [3] for a slightly weaker result) proved that u|g\ 10} is
a distribution in D’'(R\ {0}) having the representation

u(t) = - muy)el .

where m(pu;) is the multiplicity of ;. In the notation we omitted the de-
pendence on the boundary conditions. The above series converges in the
sense of distributions since we have a bound #{y; : |p;] < r} < Cr? for
all r > 0 (see Section 4.3 in [15]) and we may express the action (u, @) on
functions ¢ € C°(R™T) by the derivatives of ¢ (see Lemma B.1 in Appen-
dix B). The reader may consult [57] and [15] for the form of the singularity
of u(t) at t = 0, though it is not important for our exposition.

For d even, the situation is more complicated since the resonances are
defined in a logarithmic covering exp~1(C\{0}) of C\{0} and the arguments
of the resonances are not bounded (see [54, 55]). Let A = C\ e*3%" and for
0 <w < 7 introduce

A, ={peA: 0<Imp<wRepl, 0 <argu <}

Choose a function ¢ in C°(RR; [0, 1]) equal to 1 in a neighborhood of 0 and
denote by o,(A) := 5= logdet S,()) the scattering phase related to —Ap,
where S, (A) is the scattering matrix (see Definition 4.25 in [58] for S, (A)).
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4 Yann CHAUBET & Vesselin PETKOV

Following the work of Zworski (Theorem 1 in [58]), there exists a function
U,y € C°(R\ {0}) such that for even dimension d one has in the sense of
distributions D'(R \ {0})

(13) u®)= 3 muy)e”s ! +m(0)

i €A
+ 2/ B 372 (0 cos(tEN) A + v (1),
A P :
where m(0) is a constant and
N vwy(t) =0(t|™N), Vk, VN, [t| — oo.

The reader may consult [50] for a local trace formula involving the reso-
nances. Concerning the singularities of the distribution u(t) € D'(R\ {0}),
from [3] it follows that

singsuppu C {£7(v) : v € P}.

Under the condition (1.1), every periodic trajectory « with period T' = 7(vy)
is an ordinary reflecting ray and the singularity of u at t = T was described
by Guillemin and Melrose [22]. More precisely, the singularity at T has the
form

1) Y ()OO det(d - B8~ T) + Lh(R)
YEP,T(7)=T

(see for instance, Corollary 4.3.4 in [47]), where for the Neumann problem

the factor (—1)™() must be omitted. Taking the sum of the Laplace trans-

forms of the singularities of u(t)|g+ at 7(7y), v € P, we obtain the Dirichlet

series nn(s), np(s).

The poles of nx(s) and np(s) are important for the analysis of the dis-
tribution of the resonances (see [30, 31, 32, 33, 46, 52] and the papers
cited there). By using the Ruelle transfer operator and symbolic dynamics
(see [32, 41, 44, 52]), a meromorphic continuation of s — nx(s), np(s) has
been proved in a domain sy — e < Re s with a suitable € > 0, where sq is the
abscissa of absolute convergence of the Dirichlet series nn(s), np(s). In par-
ticular, these results imply the asymptotic (1.2). Recently, a meromorphic

continuation to C of the series
sT(7)

(15) Z \det Id P

Re(s) > 1,

has been proved by DelaruefSchuttefWeich (see Theorem 5.8 in [12]). We
refer also to [49] for results concerning weighted zeta functions. On the
other hand, a meromorphic continuation to the whole complex plane of
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DYNAMICAL ZETA FUNCTIONS FOR BILLIARDS 5

the semi-classical zeta function for contact Anosov flows was established
by Faure-Tsujii [16]. Their zeta function is similar to the function (x(s)
defined in (1.6) below. The meromorphic continuation of the Ruelle zeta
function [[ cp(1— e=*7(M)~1 for general Anosov flows was established by
Giulietti-Liverani-Pollicott [18] (see also the work of Dyatlov—Zworski [14]
for another proof based on microlocal analysis). In this paper the series
7N (s), np(s) are simply called dynamical zeta functions following previous
works [44, 46] and we refer to the book of Baladi [1] for more references
concerning zeta functions for hyperbolic dynamical systems.
Our main result is the following

THEOREM 1.1. — Let d > 2 and let the obstacles D;,j = 1,...,7,
satisfy the condition (1.1). Then the series nx(s) and np(s) admit a mero-
morphic continuation to the whole complex plane with simple poles and
integer residues.

One may also consider the zeta functions (,(s) associated to the bound-
ary conditions b = D, N; defined for Re s large enough by

)

u(y)ldet(ld — P72 | °

(16) Gl =ewp | = Y ()
YEP

where (D) = 1, e(N) = 0 and 7(7) = u(y)7*(v); u(y) € N is the repetition

number. Notice that we have

(1.7) W) (), b=D,N, Res> 1.

Cb(s)

In particular, since by the above theorem 7, (s) has simple poles with integer

residues, it follows by a classical argument of complex analysis that we have
the following

COROLLARY 1.2. — Under the assumptions of Theorem 1.1 forb=D, N,
the function s — ((s) extends meromorphically to the whole complex
plane.

In fact, we will prove a slightly more general result. For ¢ € N, ¢ > 2,
consider the Dirichlet series

Tﬁ(y)efsr(w)
Ng(s) = Z , Re(s)>1,
Jep, ey ldet(ld = P2

where the sum runs over all periodic rays v with m(y) € ¢N. We will
show that n,(s) admits a meromorphic continuation to the whole complex
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6 Yann CHAUBET & Vesselin PETKOV

plane, with simple poles and residues valued in Z/q (see Theorem 4.1). In
particular, considering the function (,(s) defined by

e—57(7)

Cq(s) = exp - 1 )
_ /2
o e 7))

Res> 1,

one gets q(; /Cq = qng- Thus the function s +— (,(s)? extends meromorphi-
cally to the whole complex plane since its logarithmic derivative is gn, and
by Theorem 4.1 the function gn, has simple poles with integer residues. One
reason for which it is interesting to study these functions is the relation

d <2(S)2

(1.8) no(s) = ;o8 NG 2n2(s) — N (s),

showing that np(s) for Res > 1 is expressed as the difference of two
Dirichlet series with positive coefficients. In particular, to show that np(s)
has a meromorphic extension to C, it is sufficient to prove that both series
7~ (s) and n2(s) have this property.

The distribution of the resonances ;1; in C depends on the geometry of
the obstacles and for trapping obstacles it was conjectured by Lax and
Phillips [37, p. 158] that there exists a sequence of resonances p; with
Im p; N\ 0. For two disjoint strictly convex obstacles this conjecture is false
since there exists a strip {z € C : 0 < Imz < a} without resonances
(see [26]). Tkawa [31, p. 212] conjectured that for trapping obstacles and d
odd there exists a > 0 such that

(1.9) Noo =t{n; €C: 0<Imp; < a} =occ.
For d even we must consider
(1.10) N =f{p; €exp ' (C\{0}) : 0 <Imp; < a, 0 < argp; < m}

since a meromorphic extension of Rp(u) is possible to the logarithmic cov-
ering exp~1(C \ {0}) of C\ {0} (see [54, 55] for the counting function of
the number of resonances p; when |p;| < r and |arg u;| — o0). Ikawa
called this conjecture modified Lax—Phillips conjecture (MLPC). In this
direction, for d odd, Tkawa [29, 31] proved for strictly convex disjoint ob-
stacles satisfying (1.1) that if nx(s) or np(s) cannot be prolonged as entire
functions to C, then there exists a > 0 for which (1.9) holds for the Neu-
mann or Dirichlet boundary problem. Notice that the value o > 0 in [31] is
related to the singularity of np(s) and to some dynamical characteristics.
The proof in [31] can be modified to cover also the case d even, applying
the trace formula of Zworski (1.3) and the results of Vodev [54, 55] (see

Appendix B). It is important to note that the meromorphic continuation of
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7p(s) to C was not established previously and to apply the result of Tkawa
we need to show that some (analytic) singularity exists. The existence of a
such singularity is trivial for the Neumann problem since nn(s) is a Dirich-
let series with positive coefficients, and by the theorem of Landau (see for
instance, [5, Théoréme 1, Chapitre IV]), nn(s) must have a singularity at
so € R, where s is the abscissa of absolute convergence of nn(s). Moreover,
for d odd it was proved (see [45]) that there are constants ¢y > 0, gg > 0
such that for every 0 < ¢ < g9 we have a lower bound

ﬁ{uj €eC: 0<Imypy; < %0, 5] Sr} > Crl™e r — .

The situation for the Dirichlet problem is more complicated since np(s) is
analytic for Res > sg, so being the abscissa of absolute convergence [44].
Moreover, for d = 2 [51] and for d > 3 under some conditions [53] Stoyanov
proved that there exists € > 0 such that np(s) is analytic for Res > sp —e.
The reason of this cancellation of singularities is related to the change
of signs in the Dirichlet series defining np(s), as it is emphasised by the
relation (1.8). Despite many works in the physical literature concerning the
n-disk problem (see for example [4, 11, 38, 48, 56] and the references cited
there), a rigorous proof of the (MLPC) was established only for sufficiently
small balls [32] and for obstacles with sufficiently small diameters [52].
In this direction we prove the following

THEOREM 1.3. — Assume the boundary 0D real analytic. Under the
assumptions of Theorem 1.1, the function np has at least one pole and the
(MLPC) is satisfied for the Dirichlet problem. Moreover, for every 0 < 6 < 1
there exists ag > 0 such that for o > as and d odd we have

(1.11) #{n; € C: 0 <Imp; < a, |uy] <} #0(r),
while for d even we have
(1.12)  #{p; € Ap: 0<Imp; <@, 0 <argu; <, |pj| <r}#O@0).

Thus for the resonances of Dirichlet problem we obtain the analog of
the result concerning the Neumann problem mentioned above. More pre-
cisely, in Appendix B (see Proposition B.2 and Theorem B.3) we show that
there exists a > 0 depending on the singularity of np and the dynamical
characteristics of D such that for any 0 < § < 1, if we choose

_a
Ty
then for d odd and any constant 0 < C' < oo the estimate

H{p; €C: 0<Imp; < ay |pj|<7°}<0r‘;, r>1,
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8 Yann CHAUBET & Vesselin PETKOV

does not hold. For similar results and reference concerning the Pollicott—
Ruelle resonances we refer to [35, Theorem 2] and [34, Theorem 4.1].

Our paper relies heavily on the works [12, 13] and we provide specific
references in the text. For convenience of the reader we explain briefly the
general idea of the proofs of Theorems 1.1 and 1.3. First, in Section 2 we
make some geometric preparations. The non-grazing billiard flow ¢, acts
on M = B/ ~, where

B = SR\ (x"(D)UD,),

7 : SR? — RY is the natural projection, Dy = 7~ 1(0D) N T(dD) is the
grazing part and (x,v) ~ (y,w) if and only if (z,v) = (y,w) or x =y € ID
and w is equal to the reflected direction of v at x € dD. By using this
equivalence relation, the flow ; is continuous in M. However, to apply
the Dyatlov—Guillarmou theory [13] in order to study the spectral proper-
ties of ¢, which are related to the dynamical zeta functions, we need to
work with a smooth flow. For this reason we use a special smooth struc-
ture on M defined by flow-coordinates introduced in the recent work of
Delarue-Schiitte-Weich [12] (see Section 2.2). In this smooth model, the
flow ¢ is smooth, and it is uniformly hyperbolic when restricted to the
compact trapped set K of ¢, (see Section 2.4). The periodic points are
dense in K and for any z € K the tangent space T, M has the decom-
position T,M = RX(2) ® E,(z) ® Es(z) with unstable and stable spaces
E.(2), Es(z), where X is the generator of ¢;. A meromorphic continuation
of the cut-off resolvent x (X + s)~1x with y € C>°(M) supported near K
has been established in [13] in a general setting. As in [14] and [13], the
estimates on the wavefront set of the resolvent x(X +s) !y allow to define
its flat trace which is related to the series (1.5). This implies a meromorphic
continuation of this series to C (see [12]).

To prove a meromorphic continuation of the series nn(s) which involves
factors |det(Id — P,)|~/2 instead of |det(Id — P,)|!, a natural approach
would consist to study the Lie derivative Lx acting on sections of the
unstable bundle E,, (see for example [16, pp. 6-8]). However, in general,
E,(2) is not smooth with respect to z, but only Holder continuous. Thus
we are led to change the geometrical setting as in the work of Faure—
Tsujii [16] (notice that the Grassmannian bundle introduced below also
appears in [7] and [19]). Consider the Grassmannian bundle 7 : G — V
over a neighborhood V' of K; for every z € V the fiber 7' (2) is formed by
all (d — 1)-dimensional planes of T, V. Define the trapped set

Ky={(z,Bu(2): ze K} C @
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and introduce the natural lifted smooth flow @, on G (see Section 2.5).
Then according to [7, Lemma A.3], the set K, is hyperbolic for @;. We
introduce the tautological bundle £ — G by setting

E={(w,v) eTL(TV) : we G, ve w},

where [w] denotes the subspace of Ty (.)V that w € G represents, and
7&(TV) is the pull-back of the tangent bundle TV — V by mg. Next, we
define the vector bundle 7 — G by

F={(w,W) eTG : drg(w) - W =0}
which is the “vertical subbundle” of the bundle TG — G. Finally, set
Ere=NERNF, 0<k<d-1, 0<l<d*—d,

where £* is the dual bundle of £. We define a suitable flow @f’e €, = Ery
as well as a transfer operator (see Section 2.6 for the notations)

P u(w) = B (@i (w)], e C®(G,Ey).

For a periodic orbit v(t) of ¢, this geometrical setting allows to express
the term |det(Id — P,)|7'/2 as a finite sum involving the traces tr(ag‘z)
related to the periodic orbit 7 = {(v(¢), Eu(v(t)) : t € [0,7(y)]} of the
flow @, (see Section 3.2 for the notation ag’e and Lemma 3.1). This cru-
cial argument explains the introduction of the bundles &£, and the re-
lated geometrical technical complications. In this context we may apply

the Dyatlov—Guillarmou theory (see Theorem 1 in [13]) for the generators

, uc COO(G,S;%@)

d N
Py ou= —(@E’f’ u)
=0

dt

of the transfer operators @li’f " (in fact, by using a smooth connexion, we

introduce a new operator Qy ¢ which coincides with Py, ¢ near K u (see Sec-
tion 2.8)). This leads to a meromophic continuation of the cut-off resolvent
X(Qre + 5)71X, where ¥ € C°(V,,) is equal to 1 on K, (see Section 2.8
for the notations). By applying the Guillemin flat trace formula [21] (see
Appendix B in [14] and Section 3 in [49]), concerning

o ( / g(t»z(et%u»zdt), o€ C(0,00),
0

we obtain the meromorphic continuation of ny. Finally, the meromorphic
continuation of 7, is obtained in a similar way, by considering in addition
a certain g-reflection bundle R, — G to which the flow ¢; can be lifted
(see Section 4.1).
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The strategy to prove Theorem 1.3 is the following. First, the represen-
tation (1.8) tells us that, if np(s) can be extended to an entire function,
then the function (2/(x has neither zeros nor poles on the whole com-
plex plane. For obstacles with real analytic boundary we may use real
analytic charts near 0D to define a real analytic structure on M which
makes ¢; a real analytic flow. In this setting we may apply a result of
Fried [17] to the non-grazing flow ¢, lifted to the Grassmannian bundle,
and show that the entire functions (o and (x have finite order. This crucial
point implies that the meromorphic function ¢3/(x has also finite order.
Finally, by using Hadamard’s factorisation theorem, one concludes that we
may write (2(s)2/(n(s) = e@®) for some polynomial Q(s). This leads to
np(s) = —Q’'(s). Since np(s) — 0 as Re s = +00, we obtain a contradiction
and np(s) is not entire. The existence of a singularity of np(s) implies the
lower bound (B.4) (see Appendix B) and we obtain (1.11) and (1.12). No-
tice that this argument works as soon as the entire functions (> and {x have
finite order. The recent work of Bonthonneau—Jézéquel [6] about Anosov
flows suggests that this should be satisfied for obstacles with Gevrey regular
boundary dD. In particular, the (MLPC) should be true for such obstacles.
However in this paper we are not going to study this generalization.

The paper is organised as follows. In Section 2 one introduces the geo-
metric setting of the billiard flow ¢, and its smooth model. We define the
Grassmannian extension G and the bundles &, F, &, = A¥&* @ A*F over
G. Next, we discuss the setting for which we apply the Dyatlov—Guillarmou
theory [13] for some first order operator Qy, ¢ leading to a meromorphic con-
tinuation of the cut-off resolvent Ry ¢(s) = X(Qpe + s)7'X. In Section 3
we treat the flat trace of the resolvent RF4(s) = e==(QretsIRy, 4(s), € > 0,
and we obtain a meromorphic continuation of 7. In Section 4 we study
the dynamical zeta functions 7,(s) for particular rays v having number of
reflections m(7) € ¢N, ¢ > 2. Applying the result for 75(s), we deduce the
meromorphic continuation of np. Finally, in Section 5 we treat the modi-
fied Lax—Phillips conjecture for obstacles with real analytic boundary and
we prove that the function 7np is not entire. In Appendix A we present a
proof for d > 2 of the uniform hyperbolicity of the flow ¢; in the Euclidean
metric in R?, while in Appendix B we discuss the modifications of the
proof of Theorem 2.1 in [31] for even dimensions and we finish the proof of
Theorem 1.3.
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2. Geometrical setting
2.1. The billiard flow

Let Di,...,D, C R? be pairwise disjoint compact convex obstacles,
satisfying the condition (1.1), where » > 3. We denote by SR? the unit
tangent bundle of R? and by = : SR? — R? the natural projection. For
x € 0Dj, we denote by n;(x) the inward unit normal vector to 0D; at the
point x pointing into D;. Set D = U;Zl D; and

D = {(z,v) € SR? : z € dD}.
We will say that (z,v) € Typ,R? is incoming (resp. outgoing) if we have
(v,nj(x)) > 0 (resp. (v,n;(x)) < 0). Introduce
Diy = {(z,v) € D : (x,v) is incoming},
Dout = {(z,v) € D : (z,v) is outgoing}.
We define the grazing set Dy = T'(0D) N D and one gets
D = Dy LI Diy L Doy
The billiard flow (¢ )ser is the complete flow acting on SR\ 7~1(D) which
is defined as follows. For (z,v) € SR?\ 7=1(D) we set
Te(z,v) =xinf{t >0: 2+ tv € OD}
and for (z,v) € Diy/out/g We denote by v" € Doy /in/e the image of v by the
reflexion with respect to T,,(0D) at « € 9D, that is
v = v —2(v,n;(x))ni(z), veS,RY x€aD;
(see Figure 2.1). By convention, we have 74 (x,v) = o0, if the ray z+tv has
no common point with dD for ¢ > 0. Then for (z,v) € (SR¥\7~1(D))UD,

we define
oi(z,v) = (z+to,v), te[r—(z,v),74(z,v)],

TOME 1 (-1), FASCICULE 0



12 Yann CHAUBET & Vesselin PETKOV

$u(y, w)

T,0D;

Figure 2.1. The billiard flow ¢,
while for (z,v) € Dy /ous, We set

(bt(x,v) = (l’ +t’U,'U) lf { (1'7'0) S Douh t S [0,7’4_(:6,’[})[,

or (z,v) € Din, t€]r_(z,0),0],

and
Ge(m,v) = (z+t',0") if (z,0") € Dous, ¢ €]0, 74 (2, 0")];
’ ’ or (2,0) € Dy L€ Jr_(z0/),0]

Next we extend ¢; to a complete flow (which we still denote by ¢;) char-
acterized by the property

Gris(z,0) = Oy(ps(z,v)), t,seER, (x,v) e SR\ 7771(10)).

Strictly speaking, ¢; is not a flow, since the above flow property does not
hold in full generality for (z,v) € Diy/out- However, we can deal with this
problem by considering an appropriate quotient space (see Section 2.2 be-
low).

2.2. A smooth model for the non-grazing billiard flow

In this subsection, we briefly recall the construction of [12, Section 3]
which allows to obtain a smooth model for the non-grazing billiard flow.
First, we define the non-grazing billiard table M as

M=B/~ B=sR\(x}(D)UD,),
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where (z,v) ~ (y,w) if and only if (z,v) = (y,w) or
r=y€dD and w=1"

The set M is endowed with the quotient topology. We will change the
notation and pass from ¢, to the non-grazing flow ¢, which is defined on
M as follows. For (z,v) € (SR%\ 771(D)) UD;, we define

thq(xvv)]) = [d)t(xvv)]v tE]T%(.%‘,U),Ti(.T,U)[,
where [z] denotes the equivalence class of the vector z € B for the relation
~, and
8 (z,v) = £inf{t > 0: ¢pu4(z,v) € Dy}

Clearly, we may have 7§ (z,v) = foo. On other hand, it is important to
note that 7% (z,v) # 0 for (z,v) € Diy. Note that this formula indeed
defines a flow on M since each (z,v) € B has a unique representative in
(SR\ 71(D)) U Din. Thus ¢, is continuous but the flow trajectory of the
point (z,v) for times t ¢ |75 (x,v), 7% (x, v)[ is not defined.

Following [12, Section 3], we define smooth charts on M = B/ ~ as
follows. Introduce the surjective map 7y : B — M by ma(z,v) = [(z,v)]
and note that

(2.1) Pt O Tpr = Tpf O Pr.

Set B := SR%\ 7~ (D). Then 7y : B — M is a homeomorphism onto
its image O. Let G = 7 (Din) be the gluing region. We consider the map
71';41 : O = B. Then we may pull back the smooth structure of B to O and
define the charts on O by using those of B. Next we wish to define charts
in an open neighborhood of G. For every point z, = (24, vs) € Dy let

F, U, xU, — D
be a local smooth parametrization of Dj,, where U,, is an open small
neighborhood of 0 in R4~!. For small €., > 0, we may define the map
U, :]—e,,6.[xU,, xU,, — M
by
(2.2) U, (t,y,w) = (mpr 0 pp 0 Fr, ) (y, w).

Up to shrinking U, and taking €, smaller, ¥, is a homeomorphism onto
its image O,, C M, (see Corollary 4.3 in [12]). Indeed, repeating the ar-
gument of [12], to see that ¥, is injective, let F., (yg,wr) = (Tg,vr) €
Din, k = 1,2, and assume that mpr¢s, (€1,v1) = Tarde, (€2, v2). Since the
vectors in Dy, are transversal to 0D, we see that for each z € O, _, there is
a unique t € |—¢,,, €, [ such that ¢;(z) € G. In particular, we have t; =0
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if and only if ¢ = 0. In this case, (z1,v1) = (z2,v2) since mps : Din — G
is injective. If t; # 0,t5 # 0, then ¢; and t; have the same sign and by the
injectivity of 7y : B — M and the definition of ¢;, we have

(x1 +tivi,v1) = (22 + tavg,ve) if Ly, >0,
((El +t1’l}/1,'l)ll) = (SL’Q + tz'l)é,’ué) if t1,te < 0,

where v}, is the reflection of vy, with respect to T, 0D for k = 1,2. Thus one
concludes that (t1,21,v1) = (t2,x2,v2). As mentioned above, the directions
in Dy, are transversal to the boundary dD. This implies that the maps ¥,
are open. In particular, ¥, realises a homeomorphism onto its image O,
and we declare the map U;' : 0., — |—e.,,e..[x U., x U., as a chart.
Hence we obtain an open covering

gcC U 0.,.
2+ €Din
Note that if O N O,, # 0 for any z,, clearly the map
(t,x,v) — (ﬂ-ZT/[l ° \I/z*)(t,l‘,’()) = (¢t © FZ*)(xa U)
is smooth on U7 1(ONO.,). On the other hand, assume that 0., NO., # 0
for some z,, 2, € Din. If mar(¢e(Fr, (2,0))) = mar(¢s(Fx (y,w))) € Oz, N

O.:, then as above this yields t = s, F, (z,v) = F./ (y,w), and we conclude
that

(2 oWy )(t,yw) = (W' o mar 0 6r 0 Fiy ) (y,w)
(2.3) = (U 'omyogioF.,) ((FZ:1 o F.r)(y, w))
=(t,(F;'o F..)(y,w)) .
This shows that the change of coordinates W' o ¥_, is smooth on the set
v N0, N 0./), and these charts endow M with a smooth structure. It is
easy to see that with this differential structure the flow (¢;) is smooth on
M. Indeed, this is obvious far from the gluing region G. Now let z € G and
2« € D, be such that mps(zx) = 2. Then for s,t € R, with |¢| + |s| small,
and (y,w) € U,, x U,,, we have
(V2 opsoW.) (Ly,w) = (P2 ops om0 gy 0 F, ) (y,w)
= (V' om0 dpys o Fr,) (y,w)
= (s +t,y,w).

Consequently, the flow (¢;) is also smooth near G and we obtain a smooth
non-complete flow on M.
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2.3. Oriented periodic rays

A periodic point of the billiard flow is a pair (z, v) lying in SR?, together
with a number 7 > 0, such that ¢ (x,v) = (x,v). The point (z,v) will be
called 7- periodic. A periodic trajectory of ¢, or equivalently an oriented
periodic ray, is by definition an equivalence class of periodic points, where
we identify two periodic points (z,v) and (y,w), if they are T-periodic with
the same 7 and if there are 71,72 € R such that ¢, (z,v) = ¢, (y,w). Of
course, the map m,; induces a bijection between oriented periodic rays and
periodic orbits of the non-grazing flow ¢;. For each periodic orbit 7, we
will denote by 7(7) its period. Also, we will often identify a periodic orbit
with a parametrization v : [0,7(v)] — SR9.

Note that every oriented periodic ray is determined by a sequence

Qy = (ila"'aik)a

where i; € {1,...,r}, with 4 # 41 and ¢; # i;4q for j = 1,...,k — 1,
such that v has successive reflections on 0D;,,...,0D;,. The sequence
oy is well defined modulo cyclic permutation, and we say that the ray ~y
has type .. The non-eclipse condition (1.1) implies that the reciprocal is
true. More precisely, for any sequence o = (i1,...,%;) with i; # i;41 for
j=1,...,k—1 and iy # i1, there exists a unique periodic ray - such that
oy = a (see [47, Proposition 2.2.2 and Corollary 2.2.4]).

We conclude this paragraph by some remark on the oriented rays. For
every oriented periodic ray 7 generated by a periodic point (z,v) € B and
period 7, one may consider the reversed ray 7, generated by (z, —v) € Band
7. There are two possibilities. For most rays, v and 7 give rise to different
oriented periodic rays, even if their projections in R? are the same. However
it might happen that 7 coincides with ~. This is the case, for example, if
the ray ~ has type a = (1,2) (modulo permutation).

2.4. Uniform hyperbolicity of the flow ¢,

From now on, we will work exclusively with the flow ¢; defined on M =
B/ ~ by the smooth model described in Section 2.2. Let X be the generator
of ;. The trapped set K of ¢; is defined as the set of points z € M which
satisfy —75(2) = 7% (z) = 400 and

sup A(z) = —inf A(z) = +00, where A(z) ={t € R : nw(pi(z)) € OD}.
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By definition, ¢;(z) is defined for all ¢ € R whenever z € K. The flow
@y is called uniformly hyperbolic on K, if for each z € K there exists a
decomposition

(2.4) T.M = RX(2) @ E,(2) & Ey(2),

which is dgs-invariant (in the sense that de:(Ep(z)) = Ep(¢i(z)) where
b = u, s), with dim F,(z) = dim E,(z) = d—1, such that for some constants
C >0, v > 0, independent of z € K, and some smooth norm || - || on TM,
we have

Ce ||, wveEs(z), t=0,
Co"Mo]l, ve Eu(z), ¢<0.

(2.5) [depe(2) - vl < {

The spaces E;(z) and E,(z) depend continuously on z (see [23, Section 2]).

We may define the trapped set K. for the flow ¢, in the Euclidean metric
and note that K = 7y (K.). (Here we use the notation ¢, for the flow in the
Euclidean metric to distinguish it with the flow ¢, definite on the smooth
model). The uniform hyperbolicity on K. of the flow ¢; in the Euclidean
metric for z € BN K, can be defined by the splitting of the tangent space
T.(BN K.) (see Definition 2.11 in [12] and Appendix A). Following this
definition, one avoids the points (z,v) € K. N D;,. To treat these points,
denote Dy, = {(z,v) : € dD, |v| = 1, (v,n(z)) > 0} and define the billiard
ball map

B: Dy, > (z,v) — (y, Ryw) € Din,

where R, : S;R? — S, R? is the reflection with respect to T,,(9D) and

(Y, w) = br, (2,0)(,0), T (x,v) = inf{t >0 : 7(¢¢(x,v)) € ID}.

To see that B(z,v) is well defined we need 74 (z,v) < oo and this condition
is satisfied for (z,v) € K. N Di,. The map B is called collision map in [9],
and it is smooth (see for instance, [36]). For (z,v) € K. NDy, we can define
dB(z, v) and this is useful for the estimates of ||d¢y (z, v)| for (z,v) € BNK,
(see [9, Section 4.4] and Appendix A).

The uniform hyperbolicity of ¢; in the Euclidean metric on BN K, im-
plies the uniform hyperbolicity of ; in the smooth model (see [12, Propo-
sition 3.7]). Thus, to obtain (2.5), we may apply the uniform hyperbolicity
of ¢; in the Euclidean metric on BN K, established for d = 2 in [41] and [9,
Section 4.4]. For d > 3, the same could perhaps be obtained by applying the
results in [2, Section 4]. The hyperbolicity at the points z = (z,v) € K,
which are not periodic must be justified and the stable/unstable spaces
E(2)/E.(z) must be well determined; for d > 3 this seems to be not suffi-
ciently detailed in the literature. Since the hyperbolicity of ; is crucial for
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our exposition, and for the sake of completeness, we present in Appendix A
a proof of the uniform hyperbolicity as well as a construction of E;(z) and
E,(z) for all z € BN K,.

2.5. The Grassmannian extension

In what follows, we assume that the flow ¢; is hyperbolic on K and
we will take a small neighborhood V of K in M, with smooth boundary.
We embed V into a compact manifold without boundary N. For example,
we may take the double manifold N of the closure of V. This means that
N =V x{0,1}/ ~ and (x,0) ~ (z,1) for all z € V. We arbitrarily extend
X to obtain a smooth vector field on N, which we still denote by X. The
associated flow is still denoted by ¢; (however note that this new flow
is now complete).

For our exposition it is important to introduce the (d —1)-Grassmannian
bundle

mq:G— N

over N. More precisely, for every z € N, the set 7151(2) consists of all
(d—1)-dimensional planes of T, N. Moreover, 75" () can be identified with
the Grasmannian Gy_1(R??~!) which is isomorphic to O(2d — 1)/(O(d —
1) x O(d)), O(k) being the space of (k x k) orthogonal matrices with entries
in R. The dimension of O(k) is k(k — 1)/2, hence the dimension of 75" (2)
is d(d — 1). Note that G is a smooth compact manifold. We may lift the
flow ¢, to a flow @, : G — G which is simply defined by

(2.6) @iz, E) = (p(2), dpe(2)(E)),
z€N, ECT.N, dgi(2)(E)C Ty, )N.
Introduce the set
Ku={(2,E,(2)) : z€ K} CG.

Clearly, K, is invariant under the action of @, since dgy(z)(Ey(z)) =
E.(¢:(2)). The set K, will be seen as the trapped set of the restriction of
¢ to a neighborhood of K, As K is a hyperbolic set, it follows from [7,
Lemma A.3] that the set K, is hyperbolic for ¢; and we have a decompo-
sition
T.,G = RX(w) @ Ey(w) ® Ey(w), we K,

Here X is the generator of the flow (3;) and the spaces Eq(w) and B, (w)
are defined as follows. For small € > 0, let

Ws(z,e) = {7z € N : dist(¢¢(2), pi(2")) < e for every t > 0}
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and
Wu(z,e) = {2 € N : dist(¢_¢(2), p_¢(2")) < € for every t > 0}
be the local stable and unstable manifolds at z of size €, where dist is
any smooth distance on N. It is known that the local stable and unstable
manifolds are smooth (see for instance, [23, Section 2]). Moreover for any
b = s,u we have
T.Wy(z,¢€)) = Ep(2)
and for any t >ty > 0,
0t(Ws(z,€)) C Welpi(2),€), p_t(Wul(z,€)) C Wulp—t(2),€).
For b = s, u, we define
Wy(2) = TWy(z,¢) = {(, Ep(2)) : 2" € Wa(2,€)} C G.
Finally, for w = (2, B, (2)) € K., set
Bu(w) = To(Wu(2)),
and define E, (w) as the tangent space at w of the manifold
Wsot(2) = {E € 151 (Wi(z,¢)) : dist(By(2), E) < €},
where dist is any smooth distance on the fibres of TN.
LEMMA 2.1. — For any w = (2, E) € G we have isomorphisms
Eu(w) ~ Ey(2), Es(w)~ Ey(z) ® ker drg(w).

Under these identifications, we have

dotl g, ) > d@tlE, (), APt g, () = detlE,(2) © dPtlker dme (w)-

Proof. — Note that if w = (z, F) € G, by (2.6) one has
(2.7) drg(w)odgr(w) = d(rgop:)(w) = d(promg)(w) = dii(2) odmg (w)-
This equality shows that dp; preserves ker dmg. Looking at the definitions
of W, (z) and W, (z,¢), we see that
dr6(w)lp, )t Bu() — Eu(2)
realises an isomorphism. Then by (2.7), it is clear that dmg(w)|z,w, ()
realises a conjugation between dgi(w)|g, () and dy(2)|p,(z). Similarly,

A7, v () Tealises an isomorphism T W, (w) ~ E;(z), which conjugates
A%z, (o) and dey| g, (). Thus the lemma will be proven if we show that we
have the direct sum

Ey(2) = TuW 40t (2) = T, W(2) & ker dmg (w).
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To see this, take a local trivialization W 4o (2) = Wa(2, ) x Gg_1 (R241)
sending w € G on (z, Ey) for some Ey € G4_1(R??71) and such that W, (2)
is sent to Ws(z,e) X {Ep}. In these local coordinates one has the identifi-
cations

T, We(z) ~ Ey(z) ® {0} and kerdrg(w) ~ {0} ® Tp,Ga_1 (R*1).

As TWI7V/37t0t(z) is identified with F(z) ® Tg,Gq—1(R?471), the proof is
complete. O

We conclude this paragraph by noting that for any w = (2, E) € K., we
have

dim E, (w) + dim E,(w) = dim B, (z) + dim E,(z) 4 dim ker drg (w)
=dim N — 1 + dim 75" (2)
=dimG —1,

since dim G' = dim N + dim 7" ().

2.6. Vector bundles

We define the tautological vector bundle & — G by
E={(w,u) en&(TN) : we G, ue€ W]},

where [w] = E denotes the (d — 1) dimensional subspace of T, (,,) N repre-
sented by w = (2, F) and 7§ (TN) is the pullback bundle of TN. Also, we
define the “vertical bundle” F — G by

F={(w,W) eTG : drg(w) - W = 0}.

It is a subbundle of the bundle TG — G. The dimensions of the fibres &,
and F, of & and F over w are given by

dimé&, =d—1, dimF, =dimkerdrg(w) =dim7;'(2) =d* —d
for any w € G with 7g(w) = z. Finally, set
Ei=NE"QNF, 0<k<d-1, 0<(<d®—d,

where £* is the dual bundle of £, that is, we replace the fibre &, by its dual
space £. We consider £* and not € since the map dy:(1g(w)) : &, — &

Be(w)
is expanding for w € K, and t — 400, whereas dp;(mg(w))™ " @ & —
E: is contracting. Here ~ T denotes the inverse transpose. Indeed, for

Pe(w)
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w=(z,B,(2)) € K, and u € E,(2)* (here E,(z)* is the dual vector space
of E,(z)) one has

(dpe(2)™ Tu,0) = (u, dp—i(p2(2))0)
for any
v € dpy(2)Eu(z) = Eulpr(2)) € €5, (w)

where (+,-) is the pairing on 5Et(w) X Eg,(w)- As a consequence, the map
dg(me(w)) T is contracting on £ when w € K, since dp_q(py(2)) is
contracting on Fy(p:(z)). This fact will be important for the proof of
Lemma 3.1 below.

In what follows we use the notation w = (z,7) € G and u @ v € & 4.

By using the flow @;, we introduce a flow @f’e 1 ko — Ek e by setting

(2.8) @) (w,u®v)
= (@(w), by (w) - [(dwt(wc(w))*T)

Nk

(u) ® dze(@)™(v)] ).

where we set

be(w) = |det dipe(m6 ()| /2 - |det (ABe (@) lkerama ) |-

Here the determinants are taken with respect to any choice of smooth
metrics gy on N and the induced metrics gg on G, as follows. If w =
(2, F) € G and t € R, then the number |det dy;(2)|.| is defined as the
absolute value of the ratio

(des(2)] )
(4 ()]

a—1
" Hw)

9

where p) = e A Aeat,iw) € N w] (Tesp. g, € A Be(w)))
is a volume element given by any basis ej ],...,€4—1u] Of [w] (resp.
[#1(w)]) which is orthonormal with respect to the scalar product induced by
9Nl (resp. gn iz, (w)]). The number |det (AP (w)|ker dre) | is defined sim-
ilarly. If we pass from one orthonormal basis to another one, we multiply
the terms by the determinant of a unitary matrix and the absolute value
of the above ratio is the same. On the other hand, for a periodic point
w5 = Pr(y)(w5) this number is simply |det dp, (1) (Ta(w5))lw.|- Taking lo-
cal trivializations of £* and F, we see that the action of ®* is smooth.
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Thus we have the following diagram:

@k,e
t
Erp — Ery

L
G 25 @
lm lm
N 2, N

Now, consider the transfer operator
8" L C(G, Ex ) — C(G, Ene)
defined by
(2.9) PF P u(w) = @ [u(@_i(w))], ue€ C™(G, &)
Let Py ¢ : C®(G, &) = C(G, k) be the generator of @ﬁ’f’*, which is
defined by

Pu= (257a)| . wec=(G.&).

dt

Then we have the equality
(2.10) Pre(fu) = (XfHut f(Preu), feO(G), uel™(G, ).

Fix any norm on & ¢; this fixes a scalar product on L?(G, & ). We also
consider the transfer operator q)]i’f " as a strongly continuous semigroup
e Pre t > 0 with generator Py, with domain in L?(G, &y ¢). The expo-
nential bound of the derivatives of ¢ _; implies an estimate

—tP t
e P | L2(gep ) r2(Gar) < C€F, t > Co >0,

for some constants g > 0, Cy > 0. Next, we want to study the spectral prop-
erties of the operator Py o applying the work of Dyatlov—Guillarmou [13].
For this purpose, one needs to see K « as the trapped set of the restriction
of ¢; to some neighborhood IN/u of K « in G, so that 8Y~/u has convex-
ity properties with respect to X (see the condition (2.11) below with Y
replaced by X ). These conditions are necessary if we wish to apply the re-
sults in [13]. However, it is not clear that such a neighborhood exists, and
one needs to modify X slightly outside a neighborhood of K + to obtain the
desired properties. This is done in Section 2.7 below.
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2.7. Isolating blocks

By [10, Theorem 1.5], there exists an arbitrarily small open neighborhood
V. of K, in G such that the following holds.

(i) The boundary OV, of Vu is smooth,
(i) The set 9V, = {z € OV, X( ) € T,(0V,)} is a smooth subman-
ifold of codimension 1 of 8Vu, N
(iii) There is € > 0 such that for any z € 9V, one has
X(2) €T.(0V,) = @u(2) ¢clos V,, te]—eel\{0},
where clos A denotes the closure of a set A.
In what follows we denote
Ty (X)={z€V,: () €Vu, Ft>0}.
A function p € C*° (clos Vs R>o) will be called a boundary defining func-
tion for V,, if we have 0V, = {z € clos V,, : p(z) = 0} and dp(z) # O for
any z € V.
By [20, Lemma 2.3] (see also [12, Lemma 5.2]), we have the following
result.

LEMMA 2.2. — For any small neighborhood Wo of OV, in clos Vu, we
may find a vector field Y on clos Vu which is arbitrarily close to X in the
C>-topology, such that the following holds.

(1) supp(f/ -X)cC Wo,

(2) T+(X) = L (Y), where ['+(Y) is defined as I'+(X) by replacing
the flow (@) by the flow generated by Y,

(3) For any defining function p of V. and any w € OV, we have

(2.11) Ypw)=0 = Y?jw)<0.

From now on, we will fix ?U,WO and Y as above. Let (zzt)teﬂg be the
flow generated by Y. By [13, Lemma 1.1] we may find a smooth extension
of Y on @ (still denoted by Y) so that for every w € G and ¢ > 0, we have

(212) w, (W) eclos V, = ,(w) e closV, for every 7 € [0,1].

Set I'y = I'+(Y) for simplicity. The extended unstable/stable bundles
L CT*V, over I'y are defined by

E*i(w) ={ne Tu*)f/u U () — 54000},
where ¥, is the symplectic lift of Jt, that is
Uiw,n) = (Do) di (@) -0). (@,n) €T'G, teR
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and ~ T denotes the inverse transpose. Then by [13, Lemma 1.10], the bun-
dles E% (w) depend continuously on w € I'y, and for any smooth norm | - |
on T*G with some constants C' > 0, 8 > 0 independent of w,n for t — Foo
we have

(Wir(w,n)| < Ce™ M|, n e EL(w).

2.8. Dyatlov—Guillarmou theory

Let V** be any smooth connection on &, . Then by (2.10) we have
Pk,@ = V;é + Ak,g

for some Ay, € C®(G,End(& ). We define a new operator Qg by
setting
Qi = Vi 4 Apy i C%(G, Exe) — C(G, ).

Note that Qy ¢ coincides with Py, ; near K « since Y coincides with X near
K, . Clearly, we have

(2.13) Que(fu) = (Y)u+f(Qrew), f€C(G), ueC>(G. &)
Next, consider the transfer operator e *Qx¢ : C°(G, & 4) — C™(G, Exp)
with generator Qg ¢, that is,
eI iu = —Qp e fu, ue C®(G,Ey), t=0.
As above, for some constant C' > 0, we have
le™" R | L2 (e ) L2(Gun) < C