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Abstract. We study a class of third order hyperbolic operators P in G = Ω ∩ {0 ≤ t ≤ T}, Ω ⊂
Rn+1 with triple characteristics on t = 0. We consider the case when the fundamental matrix of the
principal symbol for t = 0 has a couple of non vanishing real eigenvalues and P is strictly hyperbolic
for t > 0. We prove that P is strongly hyperbolic, that is the Cauchy problem for P + Q is well
posed in G for any lower order terms Q.

1. Introduction

Consider a differential operator

P (t, x, Dt, Dx) =
∑

α+|β|≤m

cα,β(t, x)Dα
t Dβ

x , Dt = −i∂t, Dxj = −i∂xj

of order m with C∞ coefficients cα,β(t, x), t ∈ R, x ∈ Rn. Denote by

pm(t, x, τ, ξ) =
∑

α+|β|=m

cα,β(t, x)ταξβ

the principal symbol of P . Let Ω ⊂ Rn+1 be an open set and let

Ω−
η = Ω ∩ {t ≤ η},Ω+

η = Ω ∩ {t ≥ η}, G = Ω ∩ {0 ≤ t ≤ T}.

We say that P is hyperbolic with respect to N0 = (1, 0, ..., 0) at (t0, x0) if

(i) pm(t0, x0, N0) 6= 0,

(ii) the equation
pm(t0, x0, τ, ξ) = 0 (1.1)

with respect to τ has only real roots τ = λj(t0, x0, ξ) for all ξ ∈ Rn. Set Pm(t, x, Dt, Dx) =
pm(t, x, Dt, Dx).

Definition 1. We say that the Cauchy problem

Pu = f in Ω ∩ {t < T}, supp u ⊂ Ḡ (1.2)

is well posed in G if
(i) (existence) for every f ∈ C∞

0 (Ω), suppf ⊂ Ω−
T there exists a solution u ∈ E ′(Ω) satisfying (1.2).

(ii) (uniqueness) if u ∈ E ′(Ω) satisfies (1.2), then for every s, 0 < s ≤ T, if Pu = 0 in Ω−
s , then

u = 0 in Ω−
s .

A necessary condition for the well posedeness of the Cauchy problem (WPC) is the hyperbolicity
of the operator P at every point (t, x) ∈ G.
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Definition 2. We say that the operator P with principal symbol pm is strongly hyperbolic in G
if for every point z0 = (t0, x0) ∈ G there exists a neighborhood U of z0 and T0 ≥ 0 (T0 < t0
if t0 > 0 and T0 = 0 if t0 = 0) such that the Cauchy problem (1.2) for the operator L =
Pm(t, x, Dt, Dx) + Qm−1(t, x, Dt, Dx) is well posed in U+

s for every T0 ≤ s < T (U) and for any
operator Qm−1(t, x, Dt, Dx) of order less or equal to m− 1.

A classical result says that if P is strictly hyperbolic, that is the equation (1.1) has simple roots
λj(t, x, ξ) for all (t.x, ξ) ∈ G×RN \{0}, then P is strongly hyperbolic. If the equation (1.1) has real
roots with constant multiplicity for (t, x, ξ) ∈ G×Rn \{0}, the operator P is strongly hyperbolic if
and only if it is strictly hyperbolic. Thus if we have some roots with constant multiplicity mj ≥ 2
for the (WPC) we must impose some conditions on lower terms Qm−1 called Levi conditions. The
analysis of the Cauchy problem for such operators is complete and we know the necessary [4] and
sufficient [3] conditions for (WPC).

Passing to the case of variable multiplicity of the roots of (1.1), notice that the roots λj(t, x, ξ)
in general are not smooth but only continuous. The case of operators with constant coefficients is
also completely examined and P is strongly hyperbolic if and only if P is strictly hyperbolic. The
necessary and sufficient condition of G̊arding for (WPC) says that there exists a constant c > 0
such that for the full symbol p of P we have

p(τ, ξ) 6= 0, for |Im τ | > c, ∀ξ ∈ Rn.

To understand the situation of variable multiplicity and variable coefficients, consider the ex-
ample

P = D2
t − a(z)D2

x + b0(z)Dt + b1(z)Dx + c(z), z = (t, x) ∈ R2 (1.3)

with a(z) ≥ 0. If a(z0) = da(z0) = att(z0) = 0, b1(z0) 6= 0, in a point z0 ∈ G, the Cauchy
problem for P is not well posed. On the other hand, if for a point z0 = (t0, x0) ∈ G, we have
a(z0) = da(z0) = 0, att(z0) 6= 0, then there exists a neighborhood U of z0 such that the Cauchy
problem in U+

t0
is well posed for arbitrary smooth lower order terms [14] and u ∈ Hk+2(U) if

f ∈ Hk+N (R2), k ∈ N, where

N = 3 + 2
[3
2

+
∣∣∣b1(z0)

(
att(z0)

)−1/2∣∣∣],
[z] being the integer part of z.

Below we change the notations and we denote t = x0, x = (x0, x1, ..., xn) ∈ Rn+1. The dual
variables will be denoted by ξ = (ξ0, ξ1, ..., ξn) = (ξ0, ξ

′). Let Σ(p) = {z ∈ T ∗Ω \ {0} : p(z) =
0}, Σ1(p) = {z ∈ T ∗(Ω) : z ∈ Σ(p), dp(z) = 0}. If we have a critical point (x̂, ξ̂) ∈ Σ1(p), then the
Hamiltonian system

dx

ds
= ∂ξp,

dξ

ds
= −∂xp

has a stationary point and we consider the differential of the right hand part. Thus we obtain the
fundamental matrix

Fp(x̂, ξ̂) =
(

pξ,x(x̂, ξ̂) pξ,ξ(x̂, ξ̂)
−px,x(x̂, ξ̂) −px,ξ(x̂, ξ̂)

)
.

We note below two properties of Fp:
1. For every point z ∈ Σ1(p) the Hessian Qp(X, Y ), X, Y ∈ Tz(T ∗(Ω)) at z of p

2 is well defined.
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Then Qp(X, Y ) = σ(X, Fp(z)Y ), σ being the symplectic form on T ∗(Ω). Thus after canonical trans-
formation the fundamental matrix is transformed into a similar one and its eigenvalues are invariant
under canonical transformations. Hörmander [5] called Fp(z) Hamiltonian map of Qp.
2. If P is hyperbolic in G and (x̂, ξ̂) is a critical point of pm(x, ξ), then Fpm(x̂, ξ̂) has at most two
non vanishing real simple eigenvalues µ and −µ and all other eigenvalues λ are purely imaginary,
that is Re λ = 0.

The existence of non vanishing real eigenvalues of Fpm(x̂, ξ̂) is a necessary condition for strong
hyperbolicity. More precisely, let pm−1(x, ξ) =

∑
|α|=m−1 cα(x)ξα and let

p′m−1(x, ξ) = pm−1(x, ξ) +
i
2

n∑
j=0

∂2pm

∂xj∂ξj
(x, ξ)

be the subprincipal symbol of P which is invariantly defined for (x, ξ) ∈ Σ1(pm). Then we have the
following

Theorem 1 ([7]). If P is strongly hyperbolic in G, then at every point (x̂, ξ̂) ∈ Σ1(pm) the funda-

mental matrix Fpm(x̂, ξ̂) has two non-zero real eigenvalues. Moreover, for (x, ξ′) ∈
◦
G× (Rn \ {0})

the multiplicities of the roots of (1) are not greater than two, and for (x, ξ′) ∈ {x0 = 0} ×Rn \ {0}
or for (x, ξ′) ∈ {x0 = T}×Rn \ {0} these multiplicities are not greater than three. If Fpm(x̂, ξ̂) has
only purely imaginary eigenvalues, the condition Im p′m−1(x̂, ξ̂) = 0 is necessary for (WPC).

If Fpm(x̂, ξ̂) has only purely imaginary eigenvalues, for (WCP) we have a second necessary
condition

|Re p′m−1(x̂, ξ̂)| ≤ 1
4

2n+2∑
j=0

|µj |,

µj being the eigenvalues of Fpm(x̂, ξ̂) repeated following their multiplicities. This condition has
been proved in [7] in some special cases concerning the structure of Fpm(x̂, ξ̂) and without any
restriction by Hörmander [5].

Definition 3. A hyperbolic operator with principal symbol p(x, ξ) will be called effectively hyperbolic
if at every point (x̂, ξ̂) ∈ Σ1(p), the fundamental matrix Fp(x̂, ξ̂) has two non-zero real eigenvalues.

V. Ivrii introduced the following

Conjecture A hyperbolic operator is strongly hyperbolic if and only if it is effectively hyperbolic.

For operators with at most double characteristics some results for special class of operators
have been obtained by Hörmander [5], Ivrii [8] and Melrose [11]. The sufficient part of the above
conjecture is difficult since the double roots of the equation (1) in general are not smooth and we
have not a factorization with smooth factors. Moreover, the loss of regularity could depend on the
point and a microlocalization leads to considerable difficulties when we must treat the commuta-
tors. The above conjecture for operators with double characteristics has been completely solved by
N. Iwasaki [9], [10] and T. Nishitani [12], [13]. The proofs are rather long and very technical.

An effectively hyperbolic operator could be strongly hyperbolic if it has triple characteristics
on the boundary on G but to our best knowledge there are no examples of such operators in the
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literature. Our purpose is to study a class of operators P with triple characteristics on t = 0 and to
prove that P is strongly hyperbolic. Thus the above conjecture is true for some special operators
with triple characteristics. The analysis of the general case remains open.

2. Hyperbolic operators with triple characteristics

In this section we use again the notations of Section 1. According to Theorem 1, an effectively
hyperbolic operator P in G may have triple characteristics in G only for t = 0 or t = T . Assume
that P has triple characteristics for t = 0 and suppose that the triple roots of (1.1) for t = 0 are
τ = 0 (in general the triple characteristics for t = 0 are τ = λ(0, x, ξ)). Let P be of order 3 and let

p3 = τ3 + q1(t, x, ξ)τ2 + q2(t, x, ξ)τ + q3(t, x, ξ)

be the principal symbol of P with qj , j = 1, 2, 3, real-valued polynomials of order j with respect to
ξ with smooth coefficients.

Lemma 1 ([7]). Let p3(t, x, τ, ξ) be hyperbolic in G and let τ = 0 be a triple root of p3(0, x, τ, ξ) =
0, (0, x) ∈ G. Then

q3(0, x, ξ) = ∂tq3(0, x, ξ) = q2(0, x, ξ) = q1(0, x, ξ) = 0, (0, x) ∈ G, ξ ∈ Rn.

Moreover, p3 is effectively hyperbolic for t = τ = 0, if and only if

∂2p3

∂τ∂t
(0, x, 0, ξ) < 0, ξ ∈ Rn \ {0}.

Thus we must study an operator P with principal part

P3 = D3
t + ta1(t, x, Dx)D2

t − ta2(t, x, Dx)Dt + t2a3(t, x, Dx)

with aj(t, x, ξ) real-valued polynomials of order j in ξ and a2(t, x, ξ) ≥ c|ξ|2, c > 0 for ξ 6= 0. We
write P = P3 + Q with lower order terms Q = B2(t, x, Dx) + B1(t, x, Dx)Dt + C(t, x, Dt, Dx). Here
B2 and B1 are differential operator of order 2 and 1, respectively, while C is an operator of order
1. Notice that for |ξ| = 1 the discriminant ∆ of the equation p3(t, x, τ, ξ) = 0 with respect to τ has
the form

∆(t, x, ξ) =
(−3ta2 − t2a2

1

9

)3
+

(−9t2a1a2 − 27t2a3 − 2t3a3
1

54

)2

= q3 + r2 = − 1
27

t3a3
2 +O(t4)a6

and ∆ ≤ 0 for small t ≥ 0. Thus the operator P is strictly hyperbolic for small t > 0 and it
suffices to examine the Cauchy problem for 0 ≤ t ≤ t0, t0 � 1. Since the coefficients of the cubic
equation p3(t, x, τ, ξ) = 0 are real, for t ≥ 0 its real roots λk(t, x, ξ), k = 1, 2, 3, have the following
trigonometric form (see for instance, [15])

λ1 = 2ρ1/3 cos(θ/3)− ta1
3 ,

λ2 = 2ρ1/3 cos(θ/3 + 2π
3 )− ta1

3 ,

λ3 = 2ρ1/3 cos(θ/3 + 4π
3 )− ta1

3 ,

where
ρ = (−q)3/2, θ = arccos(r/ρ).

Next consider the symbols

δk =
∂p3

∂τ

∣∣∣
τ=λk

=
(
3τ2 + 2ta1τ − ta2

)∣∣∣
τ=λk

, k = 1, 2, 3.
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Since these symbols are homogeneous of order 2 in ξ, to find lower bounds for |δk|, it is sufficient
to examine their behavior for |ξ| = 1. We have

δ1 = 12ρ2/3 cos2(θ/3)− ta2 +O(t3/2)a2 =
(
4 cos2(θ/3)− 1

)
ta2 +O(t3/2)a2.

Since r
ρ = O(t1/2), we have cos(θ/3) =

√
3

2 +o(t) and this implies for small t and |ξ| = 1 the estimate
|δ1| ≥ c1ta2 with c1 > 0. On the other hand,

δ2,3 = 3λ2
2,3 − ta2 +O(t3/2)a2 =

(
4 sin2(π/6± θ/3)− 1

)
ta2 +O(t3/2)a2

and we obtain the following

Lemma 2. There exist constants γ > 0 and γ1 > 0 such that for 0 ≤ t ≤ γ1 we have

|δk| ≥ γ ta2(t, x, ξ) ≥ γct|ξ|2, k = 1, 2, 3. (2.1)

Finally, notice that λ1λ2λ3 = −t2a3(t, x, ξ).

3. Energy estimates for a model operator

Consider the operator

P (t, Dt, Dx) = D3
t + ta1(t, Dx)D2

t − ta2(Dx)Dt + t2a3(t, Dx) + b(t, Dx), t ≥ 0 (3.1)

where a2(Dx) =
∑n

i,j=1 ai,jDiDj and b(t, Dx) =
∑n

i,j=1 bi,j(t)DiDj is a second order differential
operator. For simplicity we assume that a2 is independent on t. The analysis of operators with
a2(t, Dx) goes without any change. We assume that

a(ξ) = a2(ξ) =
n∑

i,j=1

ai,jξiξj ≥ δ0|ξ|2, δ0 > 0.

Moreover, the symbols a1(t, ξ), a3(t, ξ) are real-valued and homogeneous of order 1 and 3 in ξ,
respectively. We want to establish an a priori estimate for P for t ≥ 0. Set

f(t, ξ) = t +
1

(1 + a(ξ))1/3
.

Let v(t, x) ∈ C∞
0 (Rt ×Rn). Multiplying P by −i and taking the Fourier transform with respect to

the variable x, we obtain

P̂ u = −̂iPv = ∂3
t u + ita1(t, ξ)u′′ + t∂ta(ξ)u− it2a3(t, ξ)u + b1(t, ξ)u

with b1(t, Dx) = −ib(t, Dx) and u = v̂. Let u′′ = v̂tt, u′ = v̂t. We have

2Re P̂ uū′′ = ∂t|u′′|2 + ta(ξ)∂t|u′|2 + 2t2a3(t, ξ)Im (uū′′) + 2Re
(
b1(t, ξ)uū′′

)
.

Denote by N a large positive integer and by λ a large positive parameter. Multiply the above
identity involving P̂ u by e−λtf−2N . We obtain

e−λtf−2N2Re (P̂ uū′′) = e−λtf−2N∂t|u′′|2 + e−λtf−2N ta(ξ)∂t|u′|2

+ e−λtf−2N2
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
= e−λtf−2N∂tẼ(u)− e−λtf−2Na(ξ)|u′|2 + e−λtf−2N2

(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
,
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where

Ẽ(u) = |u′′|2 + ta(ξ)|u′|2.

The above identity can be rewritten as

e−λtf−2N2Re (P̂ uū′′) = ∂t

(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+ 2Ne−λtf−2N−1Ẽ(u)− e−λtf−2Na(ξ)|u′|2 + 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
.

Since

e−λtf2N2Re (P̂ uū′′) ≤ e−λtf−2N+1|P̂ u|2 + e−λtf−2N−1|u′′|2,

we have the inequality

e−λtf−2N+1|P̂ u|2 ≥ ∂t

(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+ (2N − 1)e−λtf−2N−1|u′′|2 + 2Ne−λtf−2N−1ta(ξ)|u′|2

− e−λtf−2Na(ξ)|u′|2 + 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
.

Let us now consider the following identity, where k is a positive integer and g denotes a smooth
function in the same class as u:

e−λtf−2k2Re g′ḡ = ∂t

(
e−λtf−2k|g|2

)
+ λe−λtf−2k|g|2 + 2ke−λtf−2k−1|g|2.

This implies

e−λtf−2k+1|g′|2 ≥ ∂t

(
e−λtf−2k|g|2

)
+ λe−λtf−2k|g|2 + (2k − 1)e−λtf−2k−1|g|2.

Now, taking g = u′ we have

e−λtf−2k+1|u′′|2 ≥ ∂t

(
e−λtf−2k|u′|2

)
+ λe−λtf−2k|u′|2 + (2k − 1)e−λtf−2k−1|u′|2, (3.2)

while, taking g = u, we get

e−λtf−2k+1|u′|2 ≥ ∂t

(
e−λtf−2k|u|2

)
+ λe−λtf−2k|u|2 + (2k − 1)e−λtf−2k−1|u|2. (3.3)

From (3.2) and (3.3) above we obtain

e−λtf−2k+1|u′′|2 ≥ ∂t

(
e−λtf−2k|u′|2

)
+ λe−λtf−2k|u′|2

+ (2k − 2)e−λtf−2k−1|u′|2

+ ∂t

(
e−λtf−2k−2|u|2

)
+ λe−λtf−2k−2|u|2 + (2k + 1)e−λtf−2k−3|u|2. (3.4)
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Plugging this into the estimate for |P̂ u|2 and choosing k = N + 1, we obtain

e−λtf−2N+1|P̂ u|2 ≥ ∂t

(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+O(N)
{

e−λtf−2N−1|u′′|2 + ∂t

(
e−λtf−2N−2|u′|2

)
+ λe−λtf−2N−2|u′|2

}
+O(N2)e−λtf−2N−3|u′|2

+O(N)
{

∂t

(
e−λtf−2N−4|u|2

)
+ λe−λtf−2N−4|u|2

}
+O(N2)e−λtf−2N−5|u|2

+ 2Ne−λtf−2N−1ta(ξ)|u′|2 − e−λtf−2Na(ξ)|u′|2

+ 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
. (3.5)

Here O(N) means a function of N which satisfies an estimate of the type: O(N) ≥ cN , with a
fixed positive constant c.

From inequality (3.4) above we also deduce that

e−λtf−2N−1ta(ξ)|u′|2 ≥ ∂t

(
e−λtf−2N−2ta(ξ)|u|2

)
+ λe−λtf−2N−2ta(ξ)|u|2

− e−λtf−2N−2a(ξ)|u|2 + (2N + 1)e−λtf−2N−3ta(ξ)|u|2.

Replacing the part of the corresponding term in (3.12) with the above inequality, we finally obtain

e−λtf−2N+1|P̂ u|2 ≥ ∂t

(
e−λtf−2N Ẽ(u)

)
+ λe−λtf−2N Ẽ(u)

+O(N)
{

e−λtf−2N−1|u′′|2 + ∂t

(
e−λtf−2N−2|u′|2

)
+ λe−λtf−2N−2|u′|2

}
+O(N2)e−λtf−2N−3|u′|2

+O(N)
{

∂t

(
e−λtf−2N−4|u|2

)
+ λe−λtf−2N−4|u|2

}
+O(N2)e−λtf−2N−5|u|2 +O(N)e−λtf−2N−1ta(ξ)|u′|2

+O(N)
{

∂t

(
e−λtf−2N−2ta(ξ)|u|2

)
+ λe−λtf−2N−2ta(ξ)|u|2

}
+O(N2)e−λtf−2N−3ta(ξ)|u|2

−O(N)e−λtf−2N−2a(ξ)|u|2 − e−λtf−2Na(ξ)|u′|2

+ 2e−λtf−2N
(
t2a3(t, ξ)Im (uū′′) + Re b1(t, ξ)uū′′

)
. (3.6)

There are four ”error” terms, all written in the last two lines of (3.6). We deal first with the term
containing u′, the second term term in the second line from below. Neglecting the exponential
term, we would like to estimate f−2Na(ξ) by f−2N−3 + f−2N−1ta(ξ). First we would like to prove
an inequality of the form

f−2N−3

1 + a(ξ)
+ tf−2N−1 ≥ αf−2N , (3.7)
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with a positive constant α. Dividing by f−2N−3, the proof is reduced to the inequality
1

1 + a(ξ)
+ tf2 ≥ αf3.

Now

f3 = t3 +
1

1 + a(ξ)
+

3t2

(1 + a(ξ))1/3
+

3t

(1 + a(ξ))2/3
,

while on the left hand side we have

1
1 + a(ξ))

+ t3 +
2t2

(1 + a(ξ))1/3
+

t

(1 + a(ξ))2/3
.

The terms on both sides are the same, so that if we choose α suitably, (3.7) ensues. Thus we
deduce

αf−2Na(ξ) ≤ ta(ξ)f−2N−1 +
a(ξ)

(1 + a(ξ)
f−2N−3 ≤ ta(ξ)f−2N−1 + f−2N−3. (3.8)

Next let us treat the first term in the second line from below in (3.6). We want to estimate
f−2N−2a(ξ) with f−2N−5 + f−2N−3ta(ξ). This is very easy, since the coefficients of the terms
containing |u|2 in (3.6) grow as N2, and a small portion of them may absorb O(N). Now the
inequality

f−2N−5 + f−2N−3ta(ξ) ≥ αf−2N−2a(ξ)

is obtained from (3.8), dividing by f2.
Now we pass to the analysis of the last term in the last line of (3.6). First we deduce

Re (b1(t, ξ)uū′′) = Re b1(t, ξ)Re (uū′′)− Im b1(t, ξ)Im (uū′′).

To deal with the term involving Re b1(t, ξ), we use the equality

2Re (uū′′) = ∂t2Re (uū′)− 2|u′|2

The term with |u′|2 be be treated as above since |b1(t, ξ)| ≤ Cδ0a(ξ). To study the term with
Re (uū′), we write

e−λtf−2NRe
(
b1(t, ξ)Re (uū′)

)
(3.9)

= ∂t

(
e−λtf−2NRe b1(t, ξ)Re (uū′)

)
+ λe−λtf−2NRe b1(t, ξ)Re (uū′)

+2Nf−2N−1Re b1(t, ξ)Re (uū′) + e−λtf−2NRe b1,t(t, ξ)Re (uū′) = ∂t(...) + I + II + III.

There are three terms on the right hand side of (3.9). Consider I. Applying the Cauchy-Schwartz
inequality and |b1(t, ξ)| ≤ C|ξ|2, we obtain

λ
∣∣∣e−λtf−2NRe b1(t, ξ)Re (uū′)

∣∣∣ (3.10)

≤ Cλδ−1
0

[
εe−λtf−2N+1a(ξ)|u′|2 +

1
ε
e−λtf−2N−1a(ξ)|u|2

]
≤ Cλδ−1

0 εα−1e−λt[f−2N ta(ξ)|u′|2 + f−2N−2|u′|2]

+
Cλ

ε
δ−1
0 α−1e−λt[f−2N−2ta(ξ)|u|2 + f−2N−4|u|2],
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where ε > 0 is a small positive constant, to be chosen below. Taking Cδ−1
0 α−1ε < 1/2, we may

estimate the term with f−2N ta(ξ)|u′|2 by f−2N Ẽ(u). Next Cλ
ε δ−1

0 α−1e−λtf−2N−2ta(ξ)|u|2 can be
absorbed by the corresponding term in (6) with large N and the same is true for the term with
f−2N−4|u|2. The analysis of III is similar and simpler.

To handle II, we use the inequality

II ≤ C2
1δ−1e−λtf−2Na(ξ)|u′|2 + 4N2δf−2N−2a(ξ)|u|2,

where C1 = Cδ−1
0 and β > 0 is a small constant.

The latter term in the above line is similar to the first in the last line of (3.6); the only difference
is the factor in front, which is bigger here. However, remarking that all the terms containing |u|2
in (3.6) have also O(N2), it is clear that choosing δ suitably small, but finite and independent of
u, N and λ, will allow us to conclude by arguing as above. The fist summand on the other hand
is similar to the middle term in the last line of (3.6): C1 is real and depends on the lower order
terms, δ is fixed. This is estimated as we did before, provided that N is large enough.

Next we turn to the term containing −Im b1(t, ξ)Im (uū′′) containing Im b1(t, ξ). We remark
that Im(uū′′) = ∂t(uū′−u′ū), so that we obtain two terms which can be discussed almost verbatim
as before. This might require enlarging N .

Finally, consider the term

2e−λtf−2N t2a3(t, ξ)Im (uū′′) ≥ −C1e
−λtf−2N t4(1 + |ξ|2)3|u|2 − e−λtf−2N |u′′|2.

The last term in the right hand side can be treated as above, however the first one cannot be
absorbed by other positive terms taking N large enough. Consequently, in (3.6) we obtain an
upper bound on the left by

e−λtf−2N+1|P̂ u|2 + C1t
4e−λtf−2N (1 + |ξ|2)3|u|2.

Now assume 0 ≤ s < T ≤ 1 and v = Dtv = D2
t v = 0 when t = s. We integrate from t to T

w.r.t. to the time variable s. Thus yields some integrals
∫ T
t (....)ds and terms

e−λT f−2N (T, ξ)Ẽ(u(T, ξ))

+O(N)
[
e−λT f−2N−2(T, ξ)|u′(T, ξ)|2 + e−λT f−2N−4(T, ξ)|u(T, ξ)|2

]
+O(N)e−λT f−2N−2(T, ξ)Ta(ξ)|u(T, ξ)|2

+2e−λT f−2N (T, ξ)Re b(T, ξ)Re (uū′)(T, ξ)

−2e−λT f−2N (T, ξ)Im b(T, ξ)(uū′ − ū′u)(T, ξ).
Concerning the boundary terms, only the last three terms in the above sum has no positive

sign. We have no coefficient λ before them and these terms can be treated by the above argument
using the positive terms and choosing N large enough. Next we integrate with respect to ξ in Rn

and we replace the L2(Rn
ξ ) norms by L2(Rn

x) norms. Moreover, we have the obvious inequalities

f−1 =
(1 + a(ξ))1/3

t(1 + a(ξ))1/3 + 1
≤ (1 + a(ξ))1/3 ≤ C2(1 + |ξ|2)1/3, t ≥ 0,

f−1 ≥ 1/2, 0 ≤ t < T ≤ 1.
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Then

C1t
4

∫ T

t

∫
e−λsf−2N (1 + |ξ|2)3|u|2dξds ≤ C2t

4

∫ T

t

∫
e−λs(1 + |ξ|2)2N/3+3|u|2dξds

≤ C3t
4

∫ T

t
e−λs‖v‖2

(2N/3+3)ds,

where ‖.‖(s) is the H(s) norm in Rn for fixed s. Now for v and 0 < t ≤ T and small T we may apply
the energy estimates for strictly hyperbolic operators (see Section 23.2 and the proof of Lemma
23.2.1 in [5]). Taking into account Lemma 2, we get∫ T

t
e−λs‖v‖2

(2N/3+3)ds ≤ CN

t2

∫ T

t
e−λs‖Pv‖2

(2N/3+1)ds.

We introduce U1(s, ξ) = (1 + |ξ|2)1/2u(s, ξ) and observe that U1 satisfies the same initial con-
ditions on s = t as u and

P̂U1 = (1 + |ξ|2)1/2P̂ u.

Finally, we obtain the following

Theorem 2. Let v ∈ C∞
0 (Rt × Rn) and let v(s, x) = Dtv(s, x) = D2

t v(s, x) = 0 for s = t. Let
0 ≤ t < T ≤ 1 Then for T small enough and for an integer N and λ > λ0 depending on the lower
order terms b(t, Dx) we have the estimate

λ

∫ T

t
e−λs

(
‖D2

t v‖2
(1) + ‖Dtv‖2

(2) + ‖v‖2
(2)

)
ds ≤ C(N)

∫ T

t
e−λs‖Pv‖2

(2N/3+2)ds. (3.11)

Now will treat the estimates for functions v ∈ C∞
0 (Rt × Rn) with initial data

v(T, x) = Dtv(T, x) = D2
t v(T, x) = 0.

To do this we multiply P̂ u by −eλtf2N ū′′ and repeating the above argument, we obtain for 0 ≤ t <
T ≤ 1

eλtf2N+1|P̂ u|2 ≥ −∂t

(
eλtf2N Ẽ(u)

)
+ λeλtf2N Ẽ(u)

+O(N)
{

eλtf2N−1|u′′|2 − ∂t

(
eλtf2N−2|u′|2

)
+ λeλtf2N−2|u′|2

}
+O(N2)eλtf2N−3|u′|2

+O(N)
{
−∂t

(
eλtf2N−4|u|2

)
+ λeλtf2N−4|u|2

}
+O(N2)eλtf2N−5|u|2

− 2Neλtf2N−1ta(ξ)|u′|2 + eλtf2Na(ξ)|u′|2

+ 2eλtf2N t2a3(t, ξ)Im (uū′′)− 2eλtf2NRe b1(t, ξ)uū′′. (3.12)

Now we assume 0 ≤ s < T ≤ 1 and let v = Dtv = D2
t v = 0 when s = T. We integrate from t to

T with respect to the time variable s and we treat the boundary terms with s = t as above, while
the ”error” terms are handled in the same way as in the case with initial data on s = t. Thus we
obtain a priori estimate involving the ”weights” f2N−k(Dx), −1 ≤ k ≤ 5. On the other hand,

f2N+1 ≤ (t + 1)2N+1, 0 ≤ t < T ≤ 1,
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f2N ≥ 1
(1 + a(ξ))2N/3

≥ BN (1 + |ξ|2)−2N/3.

We introduce UN (s, ξ) = (1 + |ξ|2)(2N+2)/3u(t, ξ) and observe that UN satisfies the same initial
conditions on s = T as u and

P̂UN = (1 + |ξ|2)(2N+2)/3P̂ u.

Thus we deduce the following

Theorem 3. Let v ∈ C∞
0 (Rt × Rn) and let v(s, x) = Dtv(s, x) = D2

t v(s, x) = 0 for s = T. Let
0 ≤ t < T ≤ 1. Then for T small enough and for an integer N and λ > λ0 depending on the lower
order terms b(t, Dx) we have the estimate

λ

∫ T

t
eλs

(
‖D2

t v‖2
(2/3) + ‖Dtv‖2

(4/3) + ‖v‖2
(2)

)
ds ≤ C1(N,T )

∫ T

t
eλs‖Pv‖2

(2N/3+2)ds, (3.13)

where ‖.‖(m) is the H(m) norm in Rn for fixed s.

From Theorems 2 and 3 we conclude in a standard way that the Cauchy problem for P is well
posed.

4. Operators with coeffcients depending on t and x

We sketch briefly some ideas for the analysis of the case when we have operators with coefficients
depending on t and x.

First consider a scaling t = ε2/3s, x = εy, ε > 0. Multiplying by ε2, we obtain an operator

P = D3
s − sa2(ε2/3s, εy,Dy)Ds + B2(ε2/3s, εy,Dy)

+ε1/3
[
sa1(ε2/3t, εy,Dy)D2

s + s2a3(ε2/3s, εy,Dy) + B1(ε2/3s, εy,Dy)Ds

]
+ εC1(...).

Our final purpose is to choose ε = O( 1
N ), where N is a big fixed integer related to lower

order terms as in the case treated in Section 3. With this choice of ε we are going to study the
Cauchy problem for sufficiently small t > 0. This is enough since for t > 0 our operator is strictly
hyperbolic.

We cannot apply Fourier transform and moreover it is convenient to employ a suitable class of
pseudodifferential operators. Notice that f = t+(1+a2(t, x, ξ))−1/3 is a symbol in the class S0

1,2/3,
when derivatives with respect to t are considered, but is in the class S0

1,0 if t is just a parameter
and no derivatives with respect to t are involved.

Let 〈ξ〉2 = 1 + |ξ|2 and let
g(x,ξ) = |dx|2 + 〈ξ〉−2|dξ|2 (4.1)

be the classical slowly varying (1, 0)− metric. We need also the dilated metric

gε
(x,ξ) = ε2|dx|2 + 〈ξ〉−2|dξ|2. (4.2)

Define the following ”order” function

mt,µ
N (x, ξ) = f−N (t, ξ)〈ξ〉µ/2, (4.3)

where N is a large integer and µ is any real number. Then we may define the class S(mt,µ
N , g) of

symbols in the standard way. We point out explicitly that t is just a parameter and at this level
we may omit it in our notation. We have

Proposition 1. f−N (t, ξ) ∈ S(mt,0
N , g).
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We have also

Proposition 2. Let c(x, ξ) ∈ Sµ(1, g) be a classical symbol of order µ. Then f−N (t, ξ)#xc(x, ξ) =
bt(x, ξ), where bt ∈ S(mt,µ

N , g). Here #x denotes the operation of formal asymptotic composition
g#xc =

∑
|α|≥0

1
α!∂

α
ξ g(x, ξ)Dα

x c(x, ξ).

To examine the lower order terms we need to handle the term

f−N (t, Dx)b(ε2/3t, εx, Dx)fN (t, Dx),
b(t, x, Dx) being a second order pseudodifferential operator. We deduce that

BN = f−N (t, ξ)#xb(ε2/3t, εx, ξ)(1 + |ξ|2)−1fN (t, ξ) ∈ S(mt,0
N , g)

but we need to estimate the L2 norm of the operator BN and for this reason we take ε to be of
order O( 1

N ). Therefore in the calculus of lower order terms of BN the powers of N are compensated
by the powers of ε. Moreover, we may write the composition of symbols BN by using a finite sum
and an integral representation of the remainder introduced by J.M. Bony [2].

The details of the analysis of the operators with variable coefficients depending on (t, x) will be
given in a paper in preparation [1].
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