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1. Introduction

The formulas relating the scattering resonances and the trace of some functions of the perturbed
and unperturbed operators play an important role in the scattering theory and in the analysis of
the distributions of resonances. For compactly supported perturbations of the Laplacian in odd
dimension a formula connecting the trace of the wave group to the resonances was proved by Lax-
Phillips [24] and with successive extension by Bardos-Guillot-Ralston [3], Melrose [26], Sjöstrand-
Zworski [39], Zworski [45].

Recently a substantial progress has been given in the analysis of the Schrödinger operator with
long-range perturbations going to 0 as |x| −→ +∞ and the works around the trace formulae gener-
ated many results on the upper and lower bounds of resonances, the Breit-Wigner approximation
and the Weyl-type asymptotics of the spectral shift function (see [36], [37], [28], [29], [6], [7], [9],
[4], [5] and the references given there). The approach developed in these works cannot be applied
directly to non semi-bounded Hamiltonians as Stark Hamiltonians like P2(h) = −h2∆ + V (x) + x1

since the symbol |ξ|2 + x1 + V (x) does not converge to |ξ|2 as |x| → +∞ and the operator P2(h) is
not elliptic.

We generalize for non semi-bounded Schrödinger type operators the result of [6] proving a rep-
resentation of the derivative of the spectral shift function ξ(λ, h) related to the semi-classical reso-
nances. We obtain the same result for Stark Hamiltonians P2(h). Also we examine the resonances of
the two-dimensional Schrödinger operator P1(B,β) = (Dx−By)

2+D2
y+βx+V (x, y), B > 0, β > 0,

with constant magnetic and electric fields. We define the resonances of P1(B,β) and the spectral
shift function ξ(λ), related to P1(B,β) and P0(B,β) = P1(B,β)− V (x, y), without any restriction
on B and β. For strong magnetic fields (B → ∞) we obtain a representation of the derivative of
ξ(λ), a trace formula for tr(f(P1(B,β) − f(P0(B,β))) and an upper bound for the number of the
resonances lying in {z ∈ C : |ℜz−(2n−1)B| ≤ αB, Imz ≥ µImθ}, 0 < α < 1, 0 < µ < 1, Imθ < 0.
Moreover, for B → ∞ we examine the free resonances domains and show that the resonances are
included in the neighborhoods {z ∈ C : |ℜz − (2n − 1)B| ≤ C0}, where (2n − 1)B are the Landau
levels and C0 > 0 is a constant independent on B and n ∈ N

∗.

2. Long range perturbations

Consider two self-adjoint operators Lj = Lj(h), j = 1, 2, in L2(Rn) and assume that

Lju =
∑

|ν|≤2

aj,ν(x;h)(hDx)
νu, u ∈ C∞

0 (Rn)
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with aj,ν(x;h) = aj,ν(x) independent of h for |ν| = 2 and aj,ν ∈ C∞
b (Rn) uniformly bounded with

respect to h. Assume that there exists C > 0 such that

lj,0(x, ξ) =
∑

|ν|=2

aj,ν(x)ξ
ν ≥ C|ξ|2, (2.1)

∑

|ν|≤2

aj,ν(x;h)ξ
ν −→ |ξ|2, |x| −→ ∞ (2.2)

and suppose that
∣∣∣a1,ν(x;h) − a2,ν(x;h)

∣∣∣≤ O(1)〈x〉−n−ǫ1, ǫ1 > 0, |ν| ≤ 2 (2.3)

uniformly with respect to h.
Next we assume that there exist θ0 ∈]0, π2 [, ǫ > 0 and R1 > R0 so that the coefficients aj,ν(x;h)

of Lj can be extended holomorphically in x to

Γ = {rω : ω ∈ C
n, dist (ω, Sn−1) < ǫ, r ∈ C, r ∈ ei[0,θ0]]R1,+∞[}

and (2.2), (2.3) extend to Γ. The spectral shift function ξ(λ, h) is a distribution in D′(R) such that
for f(λ) ∈ C∞

0 (R) we have

< ξ′(λ, h), f(λ) >= tr
(
f(L2) − f(L1)

)
.

We define the resonances w ∈ C− by the complex scaling method as the eigenvalues of the complex
scaling operators Lj,θ, j = 1, 2 (see [38], [36], [37]). Denote by Res Lj(h), j = 1, 2, the set of
resonances of Lj(h) and introduce the notation [aj ]

2
j=1 = a2 − a1.

Theorem 1. Under the above assumptions let

Ω ⊂⊂ e]−2θ,2θ[]0,+∞[, 0 < θ ≤ θ0 < π/2

be an open simply connected set and let W ⊂⊂ Ω be an open simply connected relatively compact

set which is symmetric with respect to R. Assume that J = Ω∩R
+, I = Ω∩R

+ are intervals. Then

for λ ∈ I we have

ξ′(λ, h) =
1

π
Im r(λ, h) +

[ ∑

w∈Res Lj∩Ω, Im w 6=0

−Imw

π|λ−w|2
+

∑

w∈Res Lj∩J

δ(λ− w)
]2

j=1
,

where r(z, h) = g+(z, h) − g+(z, h), g+(z, h) is a function holomorphic in Ω and g+(z, h) satisfies

the estimate

|g+(z, h)| ≤ C(W )h−n, z ∈W.

Remark. In the case of “black box” long-range perturbations, Theorem 1 is proved in [6] under
the assumption that Lj(h) are semi-bounded from below. This assumption were removed in [11].
The novelty in our approach is the proof of formula (3.5) based on a complex analysis argument
related to the behavior of the functions σ±(z) in C± (see Section 3).
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3. Stark Hamiltonians

The Schrödinger operator describing the particles in a homogeneous electric field can be written
in the form

P1(h) = −h2∆ + βx1,

where β > 0, h > 0 and x = (x1, x
′) ∈ R × R

n−1. The perturbation to the homogeneous electric
field has the form

P2(h) = −h2∆ + βx1 + V (x), (3.1)

where V (x) is a real-valued C∞(Rn) function. We assume that

|∂αV (x)| ≤ Cα〈x1〉
−s1〈x′〉−s2 , ∀α (3.2)

for s1 >
n+1

2 and s2 > n− 1, where 〈x〉 = (1 + |x|2)1/2.
The assumption (3.1) insures that the operator f(P2(h)) − f(P1(h)) is trace class for every

f ∈ C∞
0 (R). We denote by ξ(λ, h) ∈ D′(R) the spectral shift function defined by

〈ξ′(λ, h), f(λ)〉 = tr
(
f(P2(h)) − f(P1(h))

)
.

The case h = 1 has been studied by many authors (see [2], [16], [17], [18], [21], [44], [33], [34],
[35], [40]) and the scattering theory has been developed (see e.g. [2], [44], [33]). The problem
of resonances has been examined mainly for β ց 0 and only the resonances close to a negative
eigenvalue E0 of −∆ + V (x) have been treated (see for instance [35], [40], [22], [21]).

In the following we suppose for simplicity that β = 1. To define the resonances, we assume that
V admits a holomorphic extension in the x1-variable into the region

Γδ0,R := {z ∈ C : ℜz < R, |Im z| ≤ δ0},

for some δ0 > 0 and R > 0. We also assume that (3.2) remains true on Γδ0, R and

|∂αV (x1, x
′)| ≤ Cα〈|ℜx1|〉

−s1〈x′〉−s2 , ∀α. (3.3)

Let χ0 ∈ C∞(R) be such that χ0(t) = t for t ≤ −ǫ < 0 and χ0(t) = 0 for t ≥ 0. Set v(t) =

1 − eχ0(t−R0), where R0 < R and for θ ∈ R define Φθ(x) = (x1 + θv(x1), x
′). We denote by

Jθ(x) = det [DΦθ(x)] = 1 + θv′(x1) the Jacobian of Φθ(x). Then, for |θ| small, U(θ) defined by

U(θ)f(x) = J
1/2
θ (x)f(Φθ(x)) is unitary on L2(Rn).

We have

P1,θ(h) := U(θ)P1(h)U(θ)−1 = −h2∇
(
aθ(x)∇

)
+ x1 + θv(x1) + h2gθ(x),

P2,θ(h) := U(θ)P2(h)U(θ)−1 = P1,θ(h) + V (Φθ(x)),

where aθ(x) = (aθ,i,j(x))i,j is the diagonal matrix given by

aθ,1,1(x) = (1 + θv′(x1))
−2, aθ,j,j(x) = 1, j 6= 1.

By the analytic assumption, Pj,θ(h) admits a holomorphic extension in θ into a complex disk
D(0, θ0) ⊂ C with radius θ0 ≤ δ0. Consider an open simply connected relatively compact domain

Ωθ ⊂⊂ {z ∈ C : ℜz ≤ R0 − 3ǫ, Im z ≥ α(1 − e−ǫ)Im θ},

where Im θ < 0, 0 < α < 1, ǫ > 0.
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Lemma 1. There exist θ0 > 0, h0 > 0 small enough such that for θ ∈ D(0, θ0) with Im θ < 0, h ∈
]0, h0] we have

σ(P1,θ) ∩ Ωθ = ∅.

Moreover, the operator (P2,θ(h) − z) is a Fredholm one with index 0 for all z ∈ Ωθ.

Let θ ∈ D(0, θ0) and Im θ < 0. We say that z ∈ C is a resonance of P2,θ(h) if

dimKer (P2,θ(h) − z) > 0.

The resonances depend on h but they are independent on θ ∈ D(0, θ0) with Im θ < 0. Moreover,
there are no resonances with Im z ≥ 0.

3.1. Representation of ξ′(λ, h) for Stark Hamiltonians

Let Ω = Ωθ be the domain introduced above and let W be an open relatively compact subset
of Ω. Assume that W and Ω are symmetric with respect to R and independent of h and suppose
that J = Ω ∩ R, I = W ∩ R are intervals.

Theorem 2. Assume (3.3) with s1 >
n+1

2 and s2 > n− 1. Then ξ′(λ, h) is real analytic in I and

for λ ∈ I we have the representation

ξ′(λ, h) =
1

π
Im r(λ, h) +

∑

z∈Res(P2(h))∩Ω

−Im ω

π|λ− z|2
,

where r(z, h) is a function holomorphic in Ω and

|r(z, h)| ≤ C(W )h−n, z ∈W (3.4)

with C(W ) > 0 independent on h ∈]0, h0[.

Main steps of the proof of Theorem 2

• Following the approach of Sjöstrand [37], we construct an operator P̂2,θ(h) : D → L2(Rn) with
the following properties:

K = P̂2,θ(h) − P2,θ(h) has rank O(h−n),

(P̂2,θ(h) − z)−1 = O(1) : L2(Rn) → D,

uniformly on z ∈ Ω. Let m > n/2 and define for ±Im z > 0 the functions

σ±(z) = (z2 + 1)m × tr
[
(Pj(h) − i)−m(Pj(h) + i)−m(z − Pj(h))

−1
]2

j=1
.

• We prove that for f ∈ C∞
0 (R) we have

〈ξ′, f〉 = lim
ǫց0

i

2π

∫
f(λ)

[
σ+(λ+ iǫ) − σ−(λ− iǫ)

]
dλ. (3.5)

Proposition 1. There exists a function a+(z, h) holomorphic in Ω such that for z ∈ Ω ∩ Im z > 0
we have

σ+(z) = tr
(
(P2 − z)−1K(P̂2 − z)−1

)
+ a+(z, h).

Moreover, |a+(z, h)| ≤ C(Ω)h−n, z ∈ Ω.
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Next, to obtain a meromorphic continuation of σ+(z) through the real axis, it suffices to do

this for the trace involving K. Setting K̃ = K(z − P̂2)
−1, we get the representation

−tr
(
(P2 − z)−1K(P̂2 − z)−1

)
= tr

(
(1 + K̃(z))−1∂zK̃(z)

)
= ∂z log det(1 + K̃(z)),

and the resonances of P2 are precisely the zeros of the function z → det(1 + K̃(z)).
Now, Theorem 2 is a simple consequence of (3.5), Proposition 1 and the above equality. For

the details we refer to [37], [6] and [11].

3.2 Applications

Using Theorem 2 and repeating the proof in [29], [6], we obtain the following local trace formula
in the spirit of Sjöstrand [36], [37]

Theorem 3. Assume that Pj(h), j = 1, 2, satisfy the assumptions of Sections 3.1, and let Ω be as

in Theorem 2. Suppose that f is holomorphic on a neighborhood of Ω and that ψ ∈ C∞
0 (R) satisfies

ψ(λ) =

{
0, d(I, λ) > 2ǫ,
1, d(I, λ) < ǫ,

where ǫ > 0 is sufficiently small. Then

tr
[
(ψf)(Pj(h))

]2

j=1
=

∑

z∈ Res P2(h) ∩ Ω

f(z) + EΩ,f,ψ(h) (3.6)

with

|EΩ,f,ψ(h)| ≤M(ψ,Ω)sup {|f(z)| : 0 ≤ d(Ω, z) ≤ 2ǫ , Im z ≤ 0}h−n .

For the application of the above results to the Weyl-type asymptotics, we need the following
weak asymptotics :

Theorem 4. Assume that V satisfies (3.2) with s1 > n+1
2 and s2 > n− 1 and suppose that

supp V ⊂ {x ∈ R
n : x1 > R} for some R ∈ R. Then for f ∈ C∞

0 (R) we have

tr(f(P2(h)) − f(P1(h))) ∼
∞∑

j=0

ajh
j−n, hց 0,

with

a0 = −(2π)−n
∫

R2n

(∂x1
V (x))f(|ξ|2 + x1 + V (x))dxdξ.

Theorem 5. In addition to the assumptions of Theorem 4 suppose that p2(x, ξ) = |ξ|2+V (x)+x1 is

not critical on {(x, ξ) : p2(x, ξ) = τ} for all τ ∈ [E0, E1], E0 < E1. Then there exist C0 > 0 and h0

small enough such that for θ ∈ C∞
0 (]− 1

C0
, 1
C0

[; R), θ = 1 in a neighborhood of 0, f ∈ C∞
0 (]E0, E1[)

and h ∈]0, h0] we have for ∀m ∈ N, ∀N ∈ N

tr
([
θ̂h(τ − Pj(h))f(Pj(h))

]2

j=1

)
= (2πh)−n

(
f(τ)

N−1∑

j=0

γj(τ)h
j + O(hN 〈τ〉−m)

)

uniformly with respect to τ ∈ R. Here

θ̂h(τ) = (2πh)−1

∫
eiτt/hθ(t)dt

is the semi-classical inverse Fourier transform of θ ∈ C∞
0 (R).
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In the case where the operators Pi(h), i = 1, 2, are elliptic, Theorem 4 and Theorem 5 are
well known (see [10], [19], [32] and the references given there). On the other hand, the approach
developed in these papers cannot be applied directly to the case of non-elliptic operators. For
potentials V satisfying suppx1

V ⊂ [R,+∞[, we show that

tr(f(P2(h)) − f(P1(h))) = −tr
(
(∂x1

V )f(P̃2(h))
)

+ O(h∞),

where P̃2(h) is an elliptic operator. Consequently, the above theorems follows from the results for
elliptic operators.

Theorem 6. Assume the assumptions of Theorem 5 fulfilled and suppose that E1 < δ1 = inf{x1 ∈
R : x1 ∈ suppx1

V }. Then there exists h0 > 0 small enough such that for h ∈]0, h0] we have

ξ(λ, h) = (2πh)−nc0(λ) + O(h−n+1), (3.7)

uniformly on λ ∈ [E0, E1], where

c0(λ) = −
1

n
ωn

∫

Rn

∂x1
V (x)(λ− V (x) − x1)

n/2
+ dx

with ωn = vol Sn−1. Moreover, if

Res(P2(h)) ∩
(
[E0, E1] − i[0,Nh ln(1/h)]

)
= ∅, h ∈]0, hN ], ∀N ∈ N,

then we have

ξ′(λ, h) ∼
∞∑

j=0

γj(λ)hj−n, hց 0

with γ0(λ) = c′0(λ).

In the analysis of the counting function of eigenvalues, asymptotics like (3.7) are a simple
consequence of Theorem 4, Theorem 5 and some Tauberian arguments. For the SSF, the main
difficulty to establish (3.7) is that, in general, we do not know if ξ(λ, h) is monotone with respect to
λ and we cannot apply Tauberian theorems. To overcome this difficulty, we use the representation
formula given in Theorem 2. In fact, Theorem 2 allows us to consider the integrals of the sum of
the harmonic measures ωC

−

(z) related to the resonances z, Im z < 0, as a monotonic function and
to apply a Tauberian argument as for the counting function of eigenvalues (see [27], [6]). Here the
harmonic measures ωC

−

(z) have the form

ωC
−

(z)(E) = −
1

π

∫

E

Im z

|t− z|2
dt, E ⊂ R.

For the term involving r(z, h) we use the estimate (3.4).

4. Stark Hamiltonian with strong magnetic field

The two-dimensional Schrödinger operator with electric and homogeneous magnetic fields can
be written in the form

P1(B,β) = P0(B,β) + V (x, y), P0(B,β) = (Dx −By)2 +D2
y + βx, Dν = −i

∂

∂ν
,

where B and β are proportional to the strength of the homogeneous magnetic and electric fields.
We assume that V satisfies (3.3) in Γδ0,+∞ = {z ∈ C : |Im z| ≤ δ0}, where now x1 = x and x′ = y.
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The essential spectrum of P1(B, 0) and P0(B, 0) are the same and it is well known that the
spectrum of the operator P0(B, 0) is given by

∪∞
n=1{(2n − 1)B}.

The numbers λn = (2n−1)B, n ∈ N
∗, called Landau levels, are the eigenvalues of infinite multiplicity

(see [1]). Outside the Landau levels we have discrete eigenvalues caused by the potential V . The
presence of electric field creates resonances which will be characterized as the eigenvalues of a
distorted operator P1(B, θ), Im θ < 0.

The spectral properties of the 2D Schrödinger operator P1(B, 0) have been intensively studied
in the last ten years. In the case of perturbations the Landau levels λn become accumulation
points of the eigenvalues of P1(B, 0) and the asymptotics of the function counting the number of
the eigenvalues lying in a neighborhood of λn have been examined by many authors in different
aspects (see [30], [19], [20], [31], [25] and the references given there). We would like to mention that
it seems difficult to obtain a trace formula involving some summation over the eigenvalues close to
a Landau level (see [23] for a result in this direction).

For the 2D Schrödinger operator with crossed magnetic and electric fields (β 6= 0) the situation
completely changes and σessP0(B,β) = σessP1(B,β) = R. For decreasing potentials the operator
P1(B,β) can have embedded eigenvalues λ ∈ R, but this question seems not sufficiently investi-
gated. From physical point of view, it is expected that V (x, y) creates resonances z ∈ C, Im z ≤ 0,
and it natural to define and to study the spectral shift function (SSF) ξ(λ) related to P1(B,β)
and P0(B,β). There are only few works treating magnetic Stark resonances. The case B → ∞
was studied in [41], [42], while the case β → 0 has been examined in [13], [14] (see also [40]). In
these works the authors study mainly the resonances close to the eigenvalues of the non-perturbed
operator P0(B,β). Moreover, in [41] the complex scaling and the definition of the resonances for
B → ∞ lead to some difficulties when we try to show that there are no resonances z with Im z > 0
and this was an open problem in [41]. We can define SSF following the general setup [43] , but to
our best knowledge the SSF for magnetic Stark Hamiltonians has been not investigated, as well as
there are no trace formulae involving the resonances lying in a compact domain in C.

4.1 Resonances for magnetic Stark Hamiltonians

From now on we assume that β = 1, and we write Pj(B) instead of Pj(B,β). Let D(0, θ0)
be the disk in C of center 0 and radius θ0 > 0. For θ ∈ D(0, θ0), θ0 > 0 small, we will use the
dilatation (x, y) −→ (x+ θ, y). More precisely, for θ ∈ R, consider the unitary operator

Uθ : L2(R2) → L2(R2), f → f(x+ θ, y).

It is clear that
U−1
θ P0(B)Uθ := P̃0(B, θ) = P0(B) + θ, (4.1)

U−1
θ P1(B)Uθ = P1(B, θ) = P0(B, θ) + V (x+ θ, y). (4.2)

Using the analytic assumption on V , we obtain

Lemma 2. There exists θ0 > 0 such that the self-adjoint operator P1(B, θ), defined for θ ∈]−θ0, θ0[,
extends to an analytic type-A family of operators on D(0, θ0) with the same domain D as that of

P̃0(B, 0). Moreover,

σess(P1(B, θ)) = σess(P0(B, θ)) = σ(P0(B, θ)) = {λ+ θ; λ ∈ R}.
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Definition 1. Let Im θ < 0. We say that z ∈ Ωθ is a resonance of P1(B) if

dim Ker (P1(B, θ) − z) > 0.

As in section 3, we show that P1(B) has no resonances z with Im z > 0, as well as, that the
resonances in {z ∈ C : Imz > Im θ2 > Im θ1} are independent of the choice of θ satisfying the
condition 0 > Im θ2 ≥ Im θ ≥ Im θ1. We define the multiplicity of a resonance z0 by

m(z0) = rank
1

2πi

∫

γν(z0)
(z − P̃1(B, θ))

−1dz,

where γǫ(z0) = {z = z0 + νeiϕ, 0 ≤ ϕ < 2π} and ν > 0 is small enough. In the following we fix
θ ∈ D(0, θ0) with Im θ < 0 and we denote the resonances of P1(B) by Res P1(B).

Proposition 2. Let V satisfy (3.3) with s1 > 2 and s2 > 1 and assume that

1 + ∂xV (x, y) > 0.

Then, there exists θ0 , Im θ0 < 0, such that P1(B) has no resonances in Ωθ0 .

Proof. First, since ∂xV (x, y) tends to 0 when |(x, y)| tends to infinity, it follows from our assump-
tions that

1 + ∂xV (x, y) ≥ η > 0,

uniformly on (x, y) ∈ R
2. For u in the domain of P0(B) we have

−Im ((P1(B, θ) − z)u, u) = (Im z − Im θ)‖u‖2 − Im (V (· + θ, ·)u, u).

Applying Taylor formula for the function θ 7→ V (x+ θ, y), we obtain

Im V (x+ θ, y) = Im θ ∂xV (x+ ℜθ, y) + O(|Im θ|2).

Thus

−Im ((P1(B, θ) − z)u, u) = Im z‖u‖2 − Im θ((1 + ∂xV (· + ℜθ, ·))u, u) + O(|Im θ|2)‖u‖2.

Next, we choose Im θ < 0 small enough, and using the above inequality we get the proposition. �

4.2. Representation of the derivative of the spectral shift function for strong mag-

netic fields

In this section we will examine the case of strong magnetic field characterized by B → ∞. For
simplicity we assume θ ∈ iR. First, by using a symplectic change of variables (see [8], [19], [15]),
there exists an unitary operator U such that

P̃0(B, θ) = U−1P0(B, θ)U = B(D2
y + y2) + x+ θ −

1

4B2
,

P̃1(B, θ) = U−1P1(B, θ)U = P̃0(B, θ) + V ω ,

where

V ω := V ω(x+ θ −B−1/2Dy −
1

2B2
, B−1/2y +B−1Dx).

Let ϕn be the n-th real normalized Hermite function given by

(D2
y + y2)ϕn = (2n + 1)ϕn, ‖ϕn‖ = 1, n ∈ N.
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Fix 0 < α < 2, 0 < α1 and 0 < µ < 1. Set

Ωn = {z ∈ C : |ℜz − (2n+ 1)B| ≤ αB, α1B ≥ Im z ≥ µ Imθ} .

Let Π be the spectral projection corresponding to eigenspace generated by ϕn.

Proposition 3. For B ≫ 1 sufficiently large and z ∈ Ωn the operator
(
(I − Π)P̃1(B, θ)(I − Π) −

z
)−1

(I − Π) is well defined and there exists a constant γ > 0, independent on B, such that

‖
(
(I − Π)P̃1(B, θ) − z

)
(I − Π)u‖ ≥ γ|Im θ|‖(I − Π)u‖, u ∈ D (4.3)

uniformly with respect to z ∈ Ωn.

The existence of double characteristics of the operator (Dx −By)2 +D2
y which is not globally

elliptic, combined with the Stark effects caused by x, lead to several difficulties. In particular, the
proof of Proposition 3 is rather technical and too long and we refer to Proposition 3 in [12] for
more details.

Let us introduce the following operators

L1(B, θ) = (I − Π)
(
B(D2

y + y2) + x+ θ −
1

4B2
+ V ω

)
(I − Π) ,

L2(B, θ) = Π
(
B(D2

y + y2) + x+ θ −
1

4B2

)
Π ,

W ω = (I − Π)V ωΠ + ΠV ω(I − Π) + ΠV ωΠ .

It clear that

L1(B, θ) + L2(B, θ) − z +W ω = P̃1(B, θ) − z .

The operator L̃(B, θ) − z = L1(B, θ) + L2(B, θ) − z is invertible for z ∈ Ωn. In fact, we have

‖(L̃(B, θ) − z)u‖2 = ‖(L1(B, θ) − z)(I − Π)u‖2 + ‖(L2(B, θ) − z)Πu‖2 .

For the first term at the right hand side we apply Proposition 3, while for the second one we
estimate the imaginary part of (L2(B, θ) − z)Πu,Πu). Thus for z ∈ Ωn we obtain

‖(L̃(B, θ) − z)u‖2 ≥ γ1‖(I − Π)u‖2 + γ2‖Πu‖
2 ≥ γ3‖u‖

2, γj > 0, j = 1, 2, 3 .

Since [Π, V ω] = O(B−1/2), for B large enough the operator

L(B, θ) − z = L̃(B, θ) + (I − Π)V ωΠ + ΠV ω(I − Π) − z

is invertible for z ∈ Ωn. On the other hand, by the h-pseudodifferential calculus (see for instance
[10]) K = ΠV ωΠ is an h- pseudodifferential operator in L2(R2), and

‖K‖tr ≤ CB (4.4)

with a constant C > 0, independent on B. Thus we have the following

Theorem 7. Let B be sufficiently large. Then for z ∈ Ωn we have

z − P̃1(B, θ) = z − L(B, θ)−K (4.5)

and the operator z − L(B, θ) is invertible for z ∈ Ωn.
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Denote by ξ(λ,B) the spectral shift function related to operators P1(B), P0(B). Let Ω ⊂ Ωn

and let W be an open relatively compact subset of Ω. Suppose that J = Ω ∩ R, I = W ∩ R are
intervals. Now, repeating the proof of Theorem 2 and using the above theorem, we obtain the
following

Theorem 8. Let V satisfy (3.3) with s1 > 2 and s2 > 1. Then for B sufficiently large and λ ∈ I
we have the representation

ξ′(λ,B) =
1

π
Im r(λ,B) +

∑

z∈Res (P1(B))∩Ω, Im z<0

−Im z

π|λ− z|2
+

∑

z∈σpp(P1(B))∩J

δ(λ − z), (4.6)

where r(z,B) is a function holomorphic in Ω and

|r(z,B)| ≤ C(W )B, z ∈W. (4.7)

According to Proposition 3, the invertibility of (P̃1(B, θ) − z) for z ∈ Ωn is reduced to the

invertibility of Π(̃P1(B, θ) − z)Π + O(B−1/2). Hence, considering a suitable Grushin problem, we

can reduce the spectral study of P̃1(B, θ) in Ωn to the study of a h-pseudodifferential operator
E−+(z, θ, h). Moreover, the leading term of the symbol of E−+(z, θ, h) can be explicitly calculated
(see [12], section 6). In particular, by using the formula of E−+(z, θ, h), we obtain the following

Proposition 4. Let 0 < µ < 1, n ∈ N be fixed. Then there exists a constant C0 > 0, independent

on B, and Bn such that for B ≥ Bn, the operator P1(B) has no resonances z lying in the domain

{z ∈ C : C0 ≤ |ℜz − (2n− 1)B| ≤ B, Im z ≥ µ Im θ}.

Moreover, there are no resonances z with ℜz < αB, 0 < α < 1.

Remark. Our results implies that the Landau levels λn are the only points that may play
the role of attractors of resonances creating the gaps and free resonances regions. For fixed B it is
proved in [13] that there are no resonances z of P1(B) with |ℜz| ≥ R0(B) > 0. In this direction the
above proposition says that we have no resonances with negative real part.
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E-mail address: dimassi@math.univ-paris13.fr
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