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Operators with point spectrum

Consider the operator A(h) = —h2A+4V(z),V €
C*®(R™;R), 0 < h < 1. Assume that

0°V| < Ca(1 4+ |2]%)%, ¢ > 0, Vo, z € R”
and set p(z,€) = €24V (z). Let I = (a,b) C

R be an open bounded interval and let

liM) (4.¢)|—00P(z, &) > b.

Then the operator A(h) has only a discret
spectrum on I and Vf € C5°(I) we have

tr f(A(h)) = > F() < C()R™T)

Aj(h)Eopp(A(R))

Moreover, we have Weyl asymptotics

N(Ah) = #{j(h) : a < Aj(h) < A < b)

= co(\)h "+ O(h T,

NA+eh)=NA-eh)= 3 H(A+eX—€])
)\jE(a,b)




Spectral shift function

Set Ag(h) = —h2A and assume that

0oV (2)| < Cu(l +|2|2)"™/2 m > n, Va.

Then O'ess(A(h)) = [O,+OO[ Let I = (a,b) C
RT. We may introduce the spectral shift func-
tion £(\; k) € D'(R) as a distribution

€.8) = tr(F(AM) = F(Ao(h) ), | € CF ().

Problems :

(1) Prove that ¢ (\, h) is a sum of continuous
measures related to resonances z; € C_ +
sum of delta measures related to embedded
eigenvalues p; € RT + a regular measure.
(2) Find a (Breit-Wigner) representation of
ENF6;h) —&(N—6:h) for 0 < d < h/C.

(3) Establish a trace formula relating the

trace tr(($N(AR) — (¥ (Ao())) to the

sum > f(z;) over the resonances z; € L2 for
f holomorphic in  and ¢ € C(RT).

(4) Find a Weyl asymptotics of £&(\, h).

(5) Examine the existence of resonances and
the lower bounds on the number of reso-
nances.




Compact perturbations

Let A(h) be a compact perturbation of Ag(h)
(potentials, obstacles etc.) Consider the scat-
tering operator S(\,h) = I+ K(\, h), A € RT,
where K is a trace class operator. Let Q2 =
la,b] + i[—c,c], O<a<b, ¢c>0,

Qe ={z € C: dist (z,02) < €}.
We can write

_ eg(A,h) szEQG()‘ - Ej)
HZjEQG()‘ o Zj)

with z; resonances in {z € C:Imz < 0} and
g(\, h) holomorphic in 2 /5.

det S(\, h)

Theorem 1 (P.- Zworski, 2001). The deriva-
tive of the scattering phase

1
s(\,h) = - logdet S(X, h)

admits for A € 2N R the representation

1 1 Im z;
' h) = —Img'(\h) — = J
s'(A\, h) o g\ h) WZ

and |g(\, k)| < C(QDA™™, A € Q.



Long range perturbations

Consider self-adjoint operators L; = L;(h),j =
1,2 and assume that

Lju = > a;,(x)(hDz)" u, u € C§°(R"™)
v|<2
There exists C > 0 such that
Lio(z,&) = Y aj (x)¢ >ClEf?, (1)

lv|=2

N aj(2) — €7, |z] — 00 (2)
v|<2

Suppose that for m > n, |[v| <2 we have

a1, (z) — az,,,<a:>\s C(1+ |z)~™/2  (3)

The spectral shift function £(\,h) is defined
for f(A) € C§°(R) by

<€OuR), FO) >=tr(f(12) = f(11))-



There exist 0y €]0,5[, e > 0 and Ry > Rp
so that the coefficients a;,(z) of L, can be
extended holomorphically in z to

M= {rw; we C?, dist (w, S 1) < ¢,

reC,rc ei[o’QO]]Rl, +oo[}
and (2), (3) extend to I'. Next we define the

resonances w € C_ by the complex scaling
method as the eigenvalues of the complex
scaling operators L;g, j = 1,2. We consider
a map &(0) : R™ 5 tw — fp(t)w € C", t = |x|,

fu(t) =t, 0<t< Ry, 0< arg fy(t) <0,
arg fo(t) < arg oifg < arg fo(t) + ¢,

fo(t) = €, t > Ty, i fy # O.

We change the variables and for Imé8 > 0O, the
operators L;y become non-selfadjoint opera-
tors and

dim Ker (L; g — 2) < o0

for —260 <Imz < 0. Denote by Res L;(h), j =
1,2, the set of resonances of L;(h).



Theorem 2 (Bruneau - P., Dimassi- P., 2003)
Under the above assumptions let

Q ccel=20200, +oo[, 0 < 0 < 6y < 7/2

be an open simply connected set and let W CC
2 be an open simply connected relatively
compact set which is symmetric with respect
to R. Assume that J=QnNRT, I=WnNRT

are intervals. Then for A € I we have

1 —Imw
fOm ="ImrO W +| ¥ ,
4 weRes L;NQ, TIA — w|
Imw+#0

2
+ Y s0-w)|

weRes L;NJ =1

where [a,j]?:l = ay — a1, r(z,h) is a function
holomorphic in 2 and r(z,h) satisfies the es-
timate

r(z,h)| < C(W)R™™", z€ W.

Given z € C, Imz < 0, and a Borel set J C
R =0C_ we have a harmonic measure

—Imz

w(z; J) =/ dt

Jmlt —z|2




Applications

e |local trace formula of Sjostrand, 1996
Theorem. Suppose that f is holomorphic on
a neighborhood of 2. Let I = Q2 NR and let
Y € C5°(R) satisfies

_ {0, d(I,\) > 2n,
‘”(’\)—{ 1, d(I,\) <,

where nn > 0 is sufficiently small. Then

tr| (P (L5 ()|

2
j=1
2

= T e

+ Eq fy(h)
2€ Res Pj(h) N Q j=1

with
|Eq ry(R)| < M(3,$2)

xsup {|f(z)| : 0<d(2,z) <2n,Imz<0}n™".

e (W) Weyl type asymptotics for the spectral
shift function €¢(\, k) = c¢c(A)h™" + O(h1—7).
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e (BW) Breit-Wigner approximation

Let O < F1 < E> and suppose that each

A € [Eg, E1] is a non-critical energy level for
Lj,j=1,2.

(H1) There exist positive constants B,e1,C1,hq
such that for any A € [Eg—e€1, E1+€1], h/B <

d < B and h €]0,hq] we have

Theorem 3 (Bruneau- P.) Assume (H1) and
suppose that L;(h), j = 1,2, have no embed-

ded eigenvalues in [E1, E>]. Then with By > 0

we have

EA+6,h) —&(A—0,h)

[ weRes Lj(h),
Imw#0, |lw—A|<h/B1

for 0 <é < h/C.

At —Imw -
di O(&h™,
/>\—5 7T|t — ’UJ|2 j:l —I_ ( )



e Estimates and asymptotics of M(\ h)
Let we (w,J) = [ _Im*fzdt Let Q@ C {Rez >

0} be a complex relatively compact neighbor-
hood of [Eg, E1]. Consider the function

M()‘a h) — Z wC_ (wa] — OO,)\])

weRes L, wel,
Imw#0

+#{u €] — o0, NN € spyy L(h)}

Theorem 4 (Bruneau - P.) Assume that each
A € [Eq, E1] is a non-critical level for L(h).

Then the condition (H1) is equivalent to the

estimate

M+ d8,h) — M(A—4,h)| < Ca26h™", (4)
for h/Bp <6 < By, X € [Eg, Eq].

Remark. The estimate (4) implies the result
of J.-F. Bony:

#{w e ResL(h) : |lw— A <§} <Céh".
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Strategy

I. Representation of the derivative of SSF as
a sum of measures
= local trace formula in the spirit of Sjostrand,
= Weyl asymptotics of SSF,
= weak Weyl asymptotics (H1).
II. Week Weyl asymptotics (H1)
= Estimate for the number of the resonances
#{zcC: |z— A <Ch} < C1h1™,
= Breit-Wigner approximaiton for £(A+46, h)—
(N —9,h) with remainder O(6)h™ ™.
ITII. Local trace formula
= Existence of resonances O(h™") in every
neighborhood W of the energy levels E such
that a measure related to V(x) has analytic
singularity at FE.
= EXxistence of clusters of resonances re-
lated to the positive measure of the set of
the periodic trajectories in the phase space
and to some quantization conditions involv-
ing the Maslov index of the periodic trajecto-
ries. (Application of a Gutzwiller type trace
fromula without any restriction on the peri-
odic trajectories (Popov - P,)).
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Gutzwiller trace formula for isolated pe-
riodic trajectories

Let A € [Eg —a,Eg+ a],a > 0. Assume that
for all such A the Hamiltonian field H, has
an isolated non-degenerate periodic trajec-
tory v(A) with period T'(\). Let

f(z) = /e—it(z—)\)/hg(t)e—(t—T(A))QCIn(l/h)/th’

where ¢(t) € C5°(J), g(t) = 1 in a neighbor-
hood of T([Eg — a,Eg + a)). Let S(v(N)) =
fv(k) ¢dx be the action, let Pv()\) be the linear
Poincaré map and let o(4(A)) be the cor-
responding Maslov index. Finally, let x €
C8°[Eg — 3a,Eg + 3a], x = 1 in a neighbor-
hood of [Eg — 2a, Eg + 2a] and T*(v(\)) be
the primitive period of y(\).

Theorem 5 (Robert, J.F.Bony) For \ € [Eg—
a, Eg + a] and h small we have

trix?(A;(h)) f(A;(h)]j=g = O(hIn(1/h))

+et5(r(N)/heioc (Y T* (4 (1)) det(I—P,y()\))|_1/2

with a remainder uniform with repsect to \ €
[Eg — a, Eg 4+ a] and C bounded in R.
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Let [a(h),b(h)] C [Eg—a,Eg+a],0<a<1/2
and let W C C be defined by

Rez € [a(h) — CoghIn(1/h),b(h) + CohIn(1/h)],

hin(l/h In((6(h)—a(h
ImzZ_T?F(Qe/z))<n_1+ N((b(R)-—a ))).

Theorem 6 (J.F.Bony) Under the above as-
sumptions we have with 38 > 0 the following
lower bound

#(ResA1(h) NW)

1 b(h)

> _ - * . —-1/2
= 2k Jan) T (A)|det(I P’y()\))| dA

—O®P ) (b(h) — a(h)).

We have a generalization when we have finite
number periodic trajectories v;(\) on p(z,§) =

A with 5(v;(A)), o(v;(A)), T*(v;(A)) indepen-
denton jy=1,....N
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Let E be a non-critical value of p(x,£&) and
let the energy surface

> ={(z,6) e T"(R") : p(z,§) = E}
be compact smooth hypersurface. Let g(x, hDy)
be a h-pseudodifferentail operator represent-
ing f(A(h)). Let p(t) € C3°(R) and let p(t)
vanish in a neighborhood of 0. Let 0 < 4 < 1.

Theorem 7 (Popov -P., 1998) For any |r| <
ro and 0 < h < hg we have

tr / exp(ith~1(E + rh))3(5t)g(z, hDy)

X ea:p(—ith_lA(h))g(:c, hDgy)dt

— 1—-n ~ *
=@ Y [ AkRT ()

keZ\{0}

% exp(ik(h—ls<u>+rT*<u>—a(u»)du+oa<h1—”>,

where 1 is the set of absolutely periodic tra-
Jjectories of H, on .

We have u(P \ N) = 0, where P is the set of
periodic trajectories of H, on .
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Gutzwiller trace formula without assump-
tions on periodic trajectories

Let E be a non-critical value of p(x,£&) and
let the energy surface

> ={(z,8) e T"(R™) : p(z,&) = E}

be compact smooth hypersurface with Liou-
ville measure u(X).

Theorem 8 (Popov-P., 1998) Suppose that

E <A< )Xy and let E be a non-critical value

of p(xz,&). Then for any function p(t) € S(R)

with Fourier transform p(t) € C§°(R) we have
E - \j(h) u(E)

p = p(0) ht="4h(2wh) ™"
)\j(%):f)\ < h ) (2m)n

X exp(ik(h~1S(W)—o()) | p(kT*(v))dv
h, 2 el )
+Op(h1_n)7

where 1 is the set of absolutely periodic tra-
Jjectories of H, on .

15



References I: e scattering phase s(\) for ob-
stacles, n > 3, n odd, (Melrose, Commun.
PDE.,1988).

e Breit-Wigner approximation for the scatter-
ing phase for classical (h=1) compact pertur-
bations of —A (Zworski - P., Comm. Math.
Phys. 1999).

e scattering phase for "black box” compact
perturbations of —h2A (Zworski - P., Ann.
Inst. Poincaré, 2001).

e spectral shift function for " black box” long
range perturbations and operators L;(h) >
—C (Bruneau -P., Duke Math. J., 2003).

e spectral shift function for periodic pertur-
bations V(z) —A + V(z) + p(hx) (Dimassi,
J. Funct. Anal. (to appear)).

e spectral shift function for Stark Hamiltoni-
ans —h2A+Bz+V(z) (Dimassi -P., J. Math.
Pures Appl., 2003).

e spectral shift function for magnetic Stark
Hamiltonians (Dy — By)? + D7 + Bz + V(z, y)
(Dimassi -P., Preprint, 2004).

16



References II.

1. W. H. Miller, J. Chem. Phys., 56, 38
(1972).

2. J.D. Gezeltzer and W.H. Miller, Resonant
features in the energy dependence of the rate
of ketene isomerisation, J. Chem. Phys. 103
(1995), 7868-78376.

3. K. Lin, Numerical Study of Quantum
Resonances in Chaotic Scattering, J. Comp.
Phys. vol. 176 (2) (2002), 295-3209.

4. K. Lin and M. Zworski, Quantum Reso-
nances in Chaotic Scattering, Chem. Phys.
Lett. vol. 355 (1-2) (2002), 201-205.

5. K. Lu, Sridvar, M. Zworski, Fractal Weyl
law for chaotic open systems, Phys. Rev.
Lett. 91 (2003), 154101.

6. J. Kaidel, P. Winkler and M. Brack, Peri-
odic orbit theory for the continuum of general
mixed-dynamical systems, Preprint, 2003.

17



