
RESONANCES FOR MAGNETIC STARK HAMILTONIANS IN TWODIMENSIONAL CASEMOUEZ DIMASSI AND VESSELIN PETKOVAbstrat. We study the resonanes of the two-dimensional Shr�odinger operator P1(B; �) =(Dx�By)2+D2y+�x+V (x; y); B > 0; � > 0, with onstant magneti and eletri �elds. We de�nethe resonanes of P1(B; �) and the spetral shift funtion �(�) related to P1(B; �) and P0(B; �) =P1(B;�) � V (x; y) without any restrition on B and �. For strong magneti �elds (B ! 1) weobtain a representation of the derivative of �(�), a trae formula for tr(f(P1(B; �))� f(P0(B;�)))and an upper bound for the number of the resonanes lying in fz 2 C : j<z � (2n � 1)Bj ��B; Im z � �Im �g; 0 < � < 1; 0 < � < 1; Im � < 0: Moreover, for B ! 1 we examine thefree resonanes domains and show that the resonanes are inluded in the neighborhoods fz 2 C :j<z�(2n�1)Bj � C0g, where (2n�1)B are the Landau levels and C0 > 0 is a onstant independenton B and n 2 N� = N n f0g: 1. IntrodutionThe two-dimensional Shr�odinger operator with homogeneous magneti and eletri �elds anbe written in the formP1(B;�) = (Dx �By)2 +D2y + �x+ V (x; y); D� = �i ��� ;where B and � are proportional to the strength of the homogeneous magneti and eletri �elds.In this paper we study the spetral shift funtion of the pair (P1(B;�); P0(B;�)), whereP0(B;�) = (Dx �By)2 +D2y + �xand V 2 C1(R2 ;R): We assume that there exists � > 0 so thatj��x;yV (x; y)j � C�hxi�2��hyi�1��; 8�; (1.1)where hXi = (1 + jXj2)1=2.The essential spetrum of P1(B; 0) and P0(B; 0) are the same and it is well known that thespetrum of the operator P0(B; 0) is given by[1n=1f(2n� 1)Bg:The numbers �n = (2n � 1)B; n 2 N� = N n f0g; alled Landau levels, are eigenvalues of in�-nite multipliity (see [2℄). Outside the Landau levels we have disrete eigenvalues aused by thepotential V . The presene of eletri �eld reates resonanes whih will be haraterized as theeigenvalues of a distorted operator.The spetral properties of the 2D Shr�odinger operator P1(B; 0) have been intensively studiedin the last ten years. In the ase of perturbations the Landau levels �n beome aumulationpoints of the eigenvalues of P1(B; 0) and the asymptotis of the funtion ounting the number ofthe eigenvalues lying in a neighborhood of �n have been examined by many authors in di�erent1



2 M. DIMASSI AND V. PETKOVaspets. For reent results the reader may onsult [25℄, [17℄, [14℄, [18℄, [26℄, [23℄ and the referenesgiven there. We would like to mention that it seems diÆult to obtain a trae formula involvingsome summation over the eigenvalues lose to a Landau level (see [22℄ for a result in this diretion).For the 2D Shr�odinger operator with rossed magneti and eletri �elds (� 6= 0) the situationompletely hanges and �ess(P0(B;�)) = �ess(P1(B;�)) = R: For dereasing potentials the operatorP1(B;�) an have embedded eigenvalues � 2 R, but this question seems not suÆiently investi-gated. From physial point of view, it is expeted that V (x; y) reates resonanes z 2 C ; Im z � 0;and it natural to de�ne and to study the spetral shift funtion (SSF) �(�) related to P1(B;�)and P0(B;�). There are only few works treating magneti Stark resonanes. The ase B ! 1was studied in [32℄, while the ase � ! 0 has been examined in [12℄, [13℄g (see also [19℄, [20℄,[31℄, [33℄). In these works the authors study mainly the resonanes lose to the eigenvalues of thenon-perturbed operator P0(B;�): Moreover, in [32℄, the omplex saling and the de�nition of theresonanes for B !1 lead to some diÆulties when we try to show that there are no resonanes zwith Imz > 0 and this was an open problem in [32℄. We an de�ne SSF following the general setup[34℄, but to our best knowledge the SSF for magneti Stark Hamiltonians has not been investigated,as well as there are no trae formulae involving the resonanes lying in a ompat domain in C .In this work we are strongly inspired by the reent progress in the analysis of the resonanes,SSF and trae formulae for Shr�odinger operators (see [28℄, [29℄, [30℄, [24℄, [4℄, [6℄, [8℄, [10℄, [11℄).In this diretion the role played by the SSF is very important and it was shown in [4℄ how manyappliations as Weyl asymptotis of SSF, trae formulae and Breit-Wigner approximations, anbe dedued from a representation of the derivative of SSF as a sum of harmoni measures relatedto resonanes z with Im z < 0, Dira measures assoiated to embedded eigenvalues z 2 R and, aharmoni funtion. In [11℄ we have followed this strategy for Stark Hamiltonians without magneti�elds (B = 0). In this paper we study the onnexions between the resonanes and the SSF formagneti Stark Hamiltonians and our main goal is to show that the derivative �0(�) has the samerepresentation as that mentioned above. Assuming � = 0, in the 3D ase a representation of SSFhas been obtained in [5℄.In Setion 2 we de�ne the SSF for P1(B;�) and P0(B;�) without any restrition on B and �.Next without a restrition on the generality, we assume throughout the paper that � = 1 and wewill use the notations P1(B) = P1(B; 1); P0(B) = P0(B; 1):To de�ne the resonanes, we will suppose that V admits a holomorphi extension in the x-variable into the domain �Æ0 = fz 2 C : 0 � jIm zj � Æ0gfor some Æ0 > 0: We assume also that for some � > 0 we have the estimatesj��V (x; y)j � C�hj<xji�2��hyi�1��; for x 2 �Æ0 ; y 2 R; 8�: (1.2)In Setion 3, by using a omplex saling in x-diretion, (x; y) �! (x + �; y); we introdue thedilated operators Pj(B; �) = U�1� Pj(B)U�; j = 0; 1;where for � 2 R we onsider the unitary operatorU� : L2(R2 )! L2(R2); f ! f(x+ �; y)



MAGNETIC STARK HAMILTONIANS 3and for � 2 D(0; �0) � C we extend Pj(B; �) (see Lemma 1 in Setion 3). The notations Pj(B; �)makes no onfusion with the notations Pj(B;�) given above sine � = 1. The resonanes arede�ned as the eigenvalues of the dilated operator P1(B; �) (see Setion 3 for more details) and inthis diretion we follow the previous works on Stark Hamiltonians [1℄, [16℄ (for a more ompletelist of referenes see [11℄).Denote by Res P1(B) the set of resonanes of P1(B). In Setions 4-6 we study the strongmagneti �elds haraterized by B !1: Denote by �(�;B) the spetral shift funtion related tooperators P1(B); P0(B): Let 0 < � < 2; 0 < �1; 0 < � < 1 be �xed and let
n = fz 2 C : j<z � (2n+ 1)Bj � �B; �1B � Im z � � Im�g :Let 
 � 
n and letW be an open relatively ompat subset of 
: Suppose that J = 
\R; I =W\Rare intervals. Our main result is the followingTheorem 1. Assume that V satis�es the assumption (1:2): Then for B large enough and � 2 Iwe have the representation�0(�;B) = 1� Im r(�;B) + X!2Res (P1(B))\
;Im !<0 �Im !�j�� !j2 + X!2�pp(P1(B))\J Æ(�� !); (1.3)where r(z;B) is a funtion holomorphi in 
 andjr(z;B)j � C(W )B; z 2W: (1.4)We like to stress that this representation of the derivative of �(B;�) is the same as that es-tablished for operators with perturbations whih deay to 0 as jxj ! 1 ([4℄, [24℄) and for StarkHamiltonians without magneti �eld [11℄. As an appliation we obtain a loal trae formula om-pletely similar to those in [30℄, [24℄, [11℄ This formula follows immediately from Theorem 1 (see[24℄).Theorem 2. Assume that V satis�es the assumption (1:2). Let
 � fz 2 C : Im z � �Im �g; 0 < � < 1be an open, simply onneted, relatively ompat suh that I = 
 \ R is an interval. Suppose thatf is holomorphi on a neighborhood of 
 and that  2 C10 (R) satis�es (�) = � 0; dist (I; �) > 2�;1; dist (I; �) < �;where � > 0 is suÆiently small. Then for B large enough we havetrh( f)(Pj(B))i1j=0 = Xz2 Res P1(B) \ 
 f(z) +E
;f; ; (1.5)where [aj ℄1j=0 = a1 � a0 andjE
;f; j �M( ;
)sup fjf(z)j : 0 � dist (
; z) � 2� ; Im z � 0gB :Our dilatation is simpler than that exploited by Wang [32℄ and this enables us to prove thatthere are no resonanes z with Im z > 0. We have not raised the question if our de�nition of theresonanes and that in [32℄ are equivalent for B ! 1: Nevertheless, we think that our approahis more natural, sine the resonanes, introdued in Setion 3, lie in the "non-physial" plane



4 M. DIMASSI AND V. PETKOVfz 2 C : Im z � 0g. The de�nition of the SSF is independent on the resonanes, and this on�rmsour hoie of omplex dilatation.We establish the following properties of the resonanes.Proposition 1. Let 0 < � < 1; n 2 N be �xed. Then there exists a onstant C0 > 0, independenton B, and Bn suh that for B � Bn, the operator P1(B) has no resonanes z lying in the domainfz 2 C : C0 � j<z � (2n� 1)Bj � B; Im z � � Im �g:Moreover, we show that there are no resonanes z with <z < �B; 0 < � < 1 and we establishan upper bound #fz 2 Res P1(B) : j<z � �nj � C0; Im z � �Im �g � C1Bwith C1 > 0 independent on B and �n. In partiular, in every ompat subset of C we have onlya �nite number of resonanes with �nite multipliities.Remark. From physial point of view, we see that the presene of a onstant eletri �eld gener-ated by the potential �x leads to the absene of embedded eigenvalues and resonanes with in�nitemultipliity. On the other hand, the Landau levels �n are the only points that may play the roleof attrators of resonanes reating the gaps and free resonanes regions. For �xed B it is provedin [12℄ that there are no resonanes z of P1(B) with j<zj � R0 > 0: In this diretion we obtain astronger result saying that we have no resonanes with negative real part.The main diÆulty in the proof of Theorem 1 is the onstrution of an operator L(B; �) and atrae lass operator K with kKktr = O(B) so thatP1(B; �)� z = L(B; �)� z +K;where (L(B; �)� z)�1 = O(1) for z in a omplex neighborhood 
n of �n. For this purpose we muststudy for z 2 
n the invertibility of the non-selfadjoint operator �(I � �)P1(B; �) � z�(I � �),where � is the spetral projetor on the eigenspae of (Dx� y)2+D2y related to �n. The existeneof double harateristis of the operator (Dx � By)2 +D2y whih is not globally ellipti, ombinedwith the Stark e�ets aused by x, lead to several diÆulties. The proof of Theorem 1, given inSetion 5, works without a redution to an e�etive Hamiltonian. Following the same strategy, wewill study elsewhere the general ase without the assumption B � 1. On the other hand, in Setion6 we onstrut an e�etive Hamiltonian E1;�+(z); related to P1(B; �), and the existene of the res-onanes is redued to the invertibility of E1;�+(z) in 
n: This leads to Proposition 1 given above.It is possible, applying the argument of Wang [32℄, to obtain a more preise information of the ex-istene of resonanes lose to some energy level E assoiated to the maximum or the minimum of V .Aknowledgments. The authors are grateful to G. Raikov for many helpful disussions. Wewould like to thank the referee for his suggestions and remarks onerning our exposition.2. Spetral shift funtionThroughout this work we will use the notations of [9℄ for symbols and pseudodi�erential oper-ators. In partiular, if m : Rd ! [0;1[ is an order funtion (see De�nition 7.5 in [9℄), we say that



MAGNETIC STARK HAMILTONIANS 5a(X;�) 2 S0(Rd ;m) if a(X;�) 2 C1(Rd ) is suh that for every � 2 Nd , there exists C� > 0 suhthat j��a(X;�)j � C�m(X;�) :In the speial ase when m = 1, we will write S0(Rd) instead of S0(Rd ; 1): We will use the standardWeyl quantization of symbols. More preisely, if P (y; �) is a symbol in S0(R4 ;m), then Pw(y;Dy)is the operator de�ned byPw(y;Dy)u(y) = (2�)�2 ZZ ei(y�y0)��P�y + y02 ; ��u(y0)dy0d�; for u 2 S(R2 ):Sometimes we will quantize a funtion P (x; y; �; �) only with respet to the variable (y; �). Inthis ase we will denote by Pw(x; y; �;Dy) the operator obtained as above, onsidering (x; �) as aparameter. Finally, when P (y; �) is a funtion on T �(R2 ) (possibly operator-valued), we denote byPw(y; hDy) the semilassial quantization obtained as above by quantizing P (y; h�).In this setion we assume that V (x; y) satis�es only the assumption (1.1). The operatorsP1(B); P0(B) are essentially self-adjoint with domain C10 (R2): In this setion we de�ne the spetralshift funtion related to P1(B) and P0(B).Introdue the unitary operator U : L2(R2 )! L2(R2) by(Uu)(x; y) = B 342� ZZR2 ei'B(x;y;x0;y0) u(x0; y0) dx0dy0where 'B(x; y; x0; y0) = Bxy �pBxy0 �Bx0y +pBx0y0 � 12pB3 y0:A simple alulus shows that~P0(B) = U�1P0(B)U = B(D2y + y2) + x� 14B2 ;~P1(B) = U�1P1(B)U = ~P0(B) + V !�x�B�1=2Dy � 12B2 ; B�1=2y +B�1Dx� :The fat that U is unitary an be easily obtained by a diret alulation, but a deeper reason forthis is the following observation. Sine U is a metapleti operator (i.e. operator assoiated with alinear anonial transformation), it follows from a lassial result of the theory of Fourier integraloperators that U is unitary (see [10℄, Theorem A.2, Chapter 7). The reader ould onsult [3℄, [15℄,[32℄, [7℄), for more details onerning the onstrution of U . We have the followingProposition 2. Assume that V satis�es the estimate (1:1). Then(i) The operator (P1(B)� i)�1 � (P0(B)� i)�1 is a trae lass one.(ii) For Im z 6= 0 we havek(i� P1(B))�1(z � P1(B))�1 � (i� P0(B))�1(z � P0(B))�1ktr = O(jIm zj�2): (2.1)Proof. Sine U is unitary, it is suÆient to show that the operator( ~P1(B) + i)�1 � ( ~P0(B) + i)�1is trae lass. In the following we will write ~Pj ; j = 0; 1; instead of ~Pj(B): By applying the resolventequality, we get ( ~P1 + i)�1 � ( ~P0 + i)�1 = �( ~P1 + i)�1V !( ~P0 + i)�1



6 M. DIMASSI AND V. PETKOV= �( ~P0 + i)�1V !( ~P0 + i)�1 + ( ~P1 + i)�1V !( ~P0 + i)�1V !( ~P0 + i)�1 :The operator ( ~P1 + i)�1V ! is bounded and the proof is redued to show that( ~P0 + i)�1V !( ~P0 + i)�1is trae lass. Next we assume that B � �0 > 0: For simpliity suppose that �0 = 1. Let�(t) 2 C10 (R; [0; 1℄) be a ut-o� funtion suh that �(t) = 1 for jtj � 1 and �(t) = 0 for jtj � 2: Fixa number k, maxf1; 21+�g < k < 2; and introdue the symbolq(x; y; �) = �� hy; �ikj�2 + y2 +B�1(x+ i)j� ;where hy; �i = (1 + y2 + �2)1=2: It lear that q(x; y; �) 2 S0(R4(x;�;y;�)) and we set A = q!(x; y;Dy):We deompose ( ~P0 + i)�1V !( ~P0 + i)�1= ( ~P0 + i)�1AV !A( ~P0 + i)�1 + ( ~P0 + i)�1(I �A)V !A( ~P0 + i)�1+( ~P0 + i)�1(I �A)V !(I �A)( ~P0 + i)�1+( ~P0 + i)�1AV !(I �A)( ~P0 + i)�1 = L1 + L2 + L3 + L4 :To treat L1, notie that on the support of q(x; y; �) we have(B(�2 + y2) + x+ i)�1 2 S0(R4 ; hy; �i�k) :In fat, on the support of q we obtainhy; �ik � 2B�1jB(�2 + y2) + x+ i)j � 2jB(�2 + y2) + x+ ijand it is easy to estimate the derivatives of (B(�2 + y2) + x + i)�1. Aording to the alulus ofpseudodi�erential operators, L1 beomes a pseudodi�erentail operator with symbol inS0(R4 ; hy; �i�khx�B�1=2�i�2��hB�1=2y +B�1�i�1��);and the trae of L1 an be estimated (see for instane, Theorem 9.4 in [9℄) bykL1ktr � C0 ZZZZ hy; �i�2khx�B�1=2�i�2��hB�1=2y +B�1�i�1��dxd�dyd�� C 00B ZZ hy; �i�2kdyd� � C 000Bwith onstants C 00; C 000 ; independent on B. To deal with Lj ; j = 2; 3; 4; we will show that (I�A)V !and V !(I�A) are trae lass operators. For our analysis in Setions 4-6 we examine the dependeneon B of the trae estimates. Notie that on the support of the symbol of (I �A) we havehy; �ik � j(�2 + y2) +B�1(x+ i)j :Taking into aount the estimate (1:1), we getk(I �A)V !ktr �C1 ZZZZhy;�ik�j�2+y2+B�1(x+i)jhx�B�1=2�i�2��hB�1=2y +B�1�i�1��dxd�dyd�� C2B ZZZhy;�ik�j�2+y2+B�1(x+i)jhx�B�1=2�i�2��dxdyd�� C2B2 ZZZhy;�ik�j�2+y2+B�3=2�+u+B�1ijhBui�2��dudyd�



MAGNETIC STARK HAMILTONIANS 7� C 02B2 ZZZ hy;�ik�j�2+y2+B�3=2�+uj;juj� 12 hy;�ik hBui�2��dudyd�+C 02B2 ZZZ hy;�ik�j�2+y2+B�3=2�+uj;juj� 12 hy;�ik hBui�2��dudyd�� C 02B2�ZZZjuj�C3;jyj�C3;j�j�C3hBui�2��dudyd� + ZZZjuj� 12 hy;�ik hBui�2��dudyd��� C4B + C5B2 Z hBui�2���Z (2juj) 1k0 rdr�du � C4B + C6B2 Z hBui�2��+2=kdu � ~CB ;sine �2 � � + 2=k < �1: The analysis of V !(I � A) is ompletely similar. Finally, we obtain theestimate k( ~P0 + i)�1V !( ~P0 + i)�1ktr � A0B; B � 1with a onstant A0 > 0 independent on B:To establish (2:1), we write the left-hand side in the form�(i� P1(B))�1 � (i� P0(B))�1�(z � P1(B))�1+(i� P0(B))�1�(z � P1(B))�1 � (z � P0(B))�1�= �(i� P1(B))�1 � (i� P0(B))�1�(z � P1(B))�1�(z � P1(B))�1(i� P0(B))�1V (z � P1(B))�1 :The �rst term at the right-hand side of the last equality is trae lass. To estimate the seond one,we replae (z � P1(B))�1 by(i� P1(B))�1 � (z � i)(i� P1(B))�1(z � P1(B))�1and, as above, we write (i�P0(B))�1V (z�P1(B))�1 as a produt of (i�P0(B))�1V (i�P0(B))�1and a bounded operator. Combining this with the estimate k(z � Pj(B))�1k = O(jIm zj�1), weomplete the proof of (2:1). �The property (i) of Proposition 2 enables us to de�ne the spetral shift funtion �(B;�) 2 D0(R)related to operators P1(B) and P0(B) following the general theory (see for instane, p.297-303, [34℄)by the equality h�0; fi = tr�f(P1(B))� f(P0(B))�; f 2 C10 (R) :For our analysis it is important to have a representation of �(B;�) involving the resolvents ofPj(B). Let ~f(z) 2 C10 (C ) be an almost analyti extension of f . Set g(z) = f(z)(z � i). By theHel�er-Sj�ostrand formula we haveg(Pj(B)) = � 1� Z ��z ~f(z)(z � i)(z � Pj(B))�1L(dz); j = 0; 1 ;and we obtaintr�f(P1(B))� f(P0(B))� = � 1� Z ��z ~f(z)(z � i)trh(Pj(B)� i)�1(z � Pj(B))�1i1j=0L(dz) ;where L(dz) is the Lebesgue measure on C and [aj ℄1j=0 = a1�a0: Sine ��zf(z) = O(jImzjN ); 8N 2 N,the trae is well de�ned.



8 M. DIMASSI AND V. PETKOV3. Resonanes for magneti Stark hamiltoniansIn this and in the following setions we assume that V (x; y) satis�es the estimates (1.2). LetD(0; �0) be the disk in C of enter 0 and radius �0 > 0. For � 2 D(0; �0); �0 > 0 small, we will usethe dilation (x; y) �! (x+ �; y). For � 2 R, onsider the unitary operatorU� : L2(R2)! L2(R2 ); f ! f(x+ �; y):Let U be the unitary operator introdued in Setion 2. Setting ~U� = UU�, we introdue theoperators U�1� Pj(B)U� := Pj(B; �); j = 0; 1; (3.1)~U�1� P0(B) ~U� := ~P0(B; �) = B(D2y + y2) + x+ � � 14B2 ; (3.2)~U�1� P1(B) ~U� := ~P1(B; �) (3.3)= ~P0(B; �) + V w(x+ � �B� 12Dy � 12B2 ; B� 12 y +B�1Dx);Reall that throughout the paper we will use the notations Pj(B; �); ~Pj(B; �); j = 0; 1; for theoperators de�ned above and this makes no onfusion with the notation Pj(B;�) given in theIntrodution.Lemma 1. There exists �0 > 0 suh that the self-adjoint operators P1(B; �); ~P1(B; �), de�ned for� 2℄ � �0; �0[, extend to an analyti type-A family of operators on D(0; �0) with the same domainD as that of P0(B; 0); ~P0(B; 0). Moreover,�ess( ~P1(B; �)) = �ess( ~P0(B; �)) = �( ~P0(B; �)) = f�+ �; � 2 Rg:Proof. Clearly, the domain D of ~P0(B; �) is independent of � and � ! ~P0(B; �)u is analyti forall u 2 D. On the other hand, the analyti assumption on V implies that there exists �0 > 0 smallenough suh that D(0; �0) 3 � ! V w�x+ � �B� 12Dy � 12B2 ; B� 12 y +B�1Dx�uis analyti for any u 2 L2(R2). Following [21℄, this gives the �rst statement of the lemma. For theseond one, notie that �ess( ~P0(B; �)) = �( ~P0(B; �)) = f�+ � : � 2 Rg:Using (1:2) and Lemma 3 of [27℄, p. 111, we dedue that �ess( ~P1(B; �)) = �ess( ~P0(B; �)) and thisompletes the proof. �Below we take � 2 D(0; �0); Im � � 0; and onsider the domain
� = fz 2 C : Im z > Im �g :It is easy to see that there exist �0 > 0 small enough suh that for � 2 D(0; �0) with Im � � 0we have k(z � ~P0(B; �))�1k � 1jIm � � Im zj (3.4)for z 2 
�.Now, repeating the argument in [11℄, we prove the followingLemma 2. Let Im z0 > Im �: Then the operator P1(B; �)� z0 is a Fredholm one with index 0.



MAGNETIC STARK HAMILTONIANS 9Proof. Let ��(x; y) = (x+ �; y): For z 2 
 we haveP1(B; �)� z = �I + �V Æ ���(1�  z(u))hP0(B; �)� z+�V Æ ��� z(u)i�1�hP0(B; �)� z + �V Æ ��� z(u)i ;where u = (x; y);  z(u) 2 C1(R2 ; [0; 1℄) is a funtion suh that  z(u) = 0 for juj � C1;  z(u) = 1 forjuj � C1+1: Choosing C1 > 0 (depending on z) large enough, we may assume that j�V Æ���j z(u)is small, so the operator A�(z) = P0(B; �)� z + �V Æ ��� z(x)is invertible for z 2 
�. On the other hand,K�(z) = �V Æ ���(1�  z(u))A�(z)�1is ompat. Then dimKer ( ~P1(B; �)� z0) = dimKer (I +K�(z0));provided Im z0 > Im �:A simple argument shows that Image (P1(B; �)� z0) is losed andodim (P1(B; �)� z0) = dimKer (I +K�� (z0)):Thus P1(B; �)� z is a Fredholm operator with index 0 and the proof is omplete. �De�nition 1. Let Im � < 0. We say that z 2 
� is a resonane of P1(B) ifdimKer (P1(B; �)� z) > 0:As in [11℄, we show that P1(B) has no resonanes z with Im z > 0, as well as, that theresonanes in fz 2 C : Imz > Im �2 > Im �1g are independent of the hoie of � satisfying theondition 0 > Im �2 � Im � � Im �1:Following [27℄ and repeating the argument in [11℄, we an establish a link between the eigen-values of the omplex saling operator P1(B; �) and the poles of the suitably regularized resolvent.For this purpose, notie thatL2(R2 ) 3 f �! f(x+ �; y) 2 L2(R2); � 2 Rform an unitary group. Then there exists a dense set A � L2(R2) of analyti vetors so that1Xn=0 �nn! �nf�xn; f 2 Ais onvergent for � 2 D(0; �0): This implies that for �0 small and for f 2 A the funtionsU�f = f(x + �; y) admit a holomorphi extention in D(0; �0) . The same is true for U�1� f:Now suppose that � 2 
n is an eigenvalue for P1(B; �). Then we an �nd ' 6= 0 and  6= 0so that ( ; (P1(B; �) � z)�1') has a pole at z = �. By approximation, we onstrut funtions n 2 A; 'n 2 A so that  n �!  ; 'n �! ': For n large enough ( n; (P1(B; �) � z)�1'n) willhave a pole at z = �. We �x a suh n and setting F = U�1�  n; G = U�1� 'n; we dedue that(F; (P1(B)� z)�1G) has a pole at z = �.



10 M. DIMASSI AND V. PETKOVWe de�ne the multipliity of a resonane z0 bym(z0) = rank 12�i Z�(z0)(z � P1(B; �))�1dz;where �(z0) = fz = z0 + �ei'; 0 � ' � 2�g and � > 0 is small enough. In the following we �x� 2 D(0; �0) with Im � < 0 and we denote the set of resonanes of P1(B) by Res P1(B):Remark. Clearly, the operatorsP1(B; �) = U�P1(B)U�1� = (Dx �By)2 +D2x + x+ � + V (x+ �; y);and ~P1(B; �) have the same eigenvalues in 
� with the same multipliity. In a suh way, we anwork diretly with ~P1(B; �).Proposition 3. Let V satisfy (1:2) and let the ondition1 + �xV (x; y) > 0be ful�lled. Then, there exists �0 , Im �0 < 0, suh that P1(B) has no resonanes in 
�0 .Proof. First, sine �xV (x; y) tends to 0 when j(x; y)j tends to in�nity, it follows from our assump-tions that 1 + �xV (x; y) � � > 0;uniformly on (x; y) 2 R2 . For u in the domain of P0(B) we have�Im ((P1(B; �)� z)u; u) = (Im z � Im �)kuk2 � Im (V (�+ �; �)u; u):Applying Taylor's formula for the funtion � 7! V (x+ �; y), we obtainIm V (x+ �; y) = Im � �xV (x+ <�; y) +O(jIm �j2):Thus �Im ((P1(B; �)� z)u; u) = Im zkuk2 � Im �((1 + �xV (�+ <�; �))u; u) +O(jIm �j2)kuk2:Next, we hoose Im � < 0 small enough, and using the above inequality, we get the proposition. �4. Estimates of the resolvent for strong magneti fieldsIn this setion we will examine the ase of strong magneti �eld haraterized by B !1: Forsimpliity we assume � 2 iR. Let 'n be the n-th real normalized Hermite funtion given by(D2y + y2)'n = (2n� 1)'n; k'nk = 1; n 2 N� :To examine the resolvent (P1(B; �)� z)�1, we will study the resolvent of the operator~P1(B; �) = B(D2y + y2) + x+ � � 14B2 + V ! :Reall that V ! is a bounded pseudodi�erential operator in L2(R2) with Weyl symbolV �x�B�1=2� � 12B2 ; B�1=2y +B�1�� :We �x an integer n � 1 and let � be the spetral projetion of the operator D2y + y2 assoiated tothe interval [2n� 2; 2n℄: Introdue the operatorQ(B; �) = (I ��)hB(D2y + y2) + x+ � � 14B2 + V !i(I ��) :



MAGNETIC STARK HAMILTONIANS 11The main result in this setion is the followingProposition 4. Let 0 < � < 2; 0 < �1; 0 < � < 1 be �xed and let
n = fz 2 C : j<z � (2n+ 1)Bj � �B; �1B � Im z � � Im�g :Then for B � 1 suÆiently large and z 2 
n the operator (Q(B; �) � z)�1(I � �) is well de�nedand there exists a onstant  > 0, independent on B, suh thatk(Q(B; �)� z)(I ��)uk � jIm �jk(I ��)uk; u 2 D (4.1)uniformly with respet to z 2 
n:Consider a partition of unity G21(x) +G22(x) = 1 with Gi 2 C1(R; [0; 1℄); i = 1; 2,suppG1 � fx 2 R : jxj � 2gand G1(x) = 1 for jxj � 1: Choose 1=2 < Æ < 1 and introdue the operatorsA1 = G!1�x�B�1=2DyBÆ �; A2 = G!2�x�B�1=2DyBÆ �with Weyl symbols Gi�x�B�1=2�BÆ �; i = 1; 2: By a partial Fourier transform with respet to y, wean view Ai as an multipliation operator. Then, it is easy to see that A�i = Ai; i = 1; 2; andA2i = Op!G2i�x�B�1=2DyBÆ �; A21 +A22 = 1 :Here Op!g(x;Dy) denotes the Weyl pseudodi�erential operator with symbol g(x; �):Lemma 3. Let G 2 C10 (R): ThenhOp!G�x�B�1=2DyBÆ �;�i = O�B�1=2�Æ�in the spae of bounded operators L(L2(R2)):Proof. Choose a funtion f 2 C10 (℄2n�2; 2n[) suh that f = 1 near 2n�1. Obviously, f(D2y+y2) =� and the pseudodi�erential alulus yields yf 0(D2y + y2) = O(1) in L(L2(R2)): ThushOp!G�x�B�1=2DyBÆ �;�i = hOp!G�x�B�1=2DyBÆ �; f(D2y + y2)i= B�1=2�ÆO�Op!(G0)�x�B�1=2DyBÆ �yf 0(D2y + y2)� = O(B�1=2�Æ) : �To estimate the norms of the ommutators, we need the followingLemma 4. There exist onstants C0 > 0; C1 > 0, independent on B, and B0 � 1 so that forB � B0 we have ky Op!�G0i�x�B�1=2DyBÆ ��(I ��)uk� C0k(Q(B; �)� z)uk+ C1k(I ��)uk; i = 1; 2; 8z 2 
n; u 2 D: (4.2)



12 M. DIMASSI AND V. PETKOVProof. Introdue the symbol gi(x; y; �) = yG0i�B�Æ(x�B�1=2�)��2 + y2 +B�1x+ i :We will show that this symbol is in the lass S0(R4 ): In fat, the derivative �lx�py�k� gi(x; y; �) anbe written as a sum of termsB�(q�1)Æ yp0+1�k0(�2 + y2 +B�1x+ i)k+p+l0G(q)i �B�Æ(x�B�1=2�)�; q � 1with p0 � p; k0 � k; l0 � l + 1: Setting u = B�Æ(x�B�1=2�); we need to estimateTl;p;k(B; y; �; u) = yp+1�k��2 + y2 +B�1+Æu+B�3=2� + i�k+p+lG(q)i (u)uniformly with respet to B; y; �; u: For B�1+Æjuj � 12(�2 + y2); we havej�2 + y2 +B�1+Æu+ ij � 0(�2 + y2 + 1); 0 > 0and we get Tl;p;k = O(1) with respet to B; y; �; u. On the other hand, the support of G(q)i (u) isbounded and B�1+Æjuj � 12 (�2 + y2) leads to (�2 + y2) � 1B�1+Æ � 2. Thus we obtain againTl;p;k = O(1): Now onsider the operator Op!gi(x; y;Dy) with Weyl symbol gi(x; y; �): We haveOp!gi(x; y;Dy)(D2y + y2 +B�1x+ i) = yOp!�G0i�x�B�1=2DyBÆ ��+Ri(x; y;Dy) :Using the expliit formulae of Ri given by the alulus of pseudodi�erential operators, and repeatingthe above arguments, we see that the symbol of Ri is in the lass S0(R4). It follows from theCalderon-Vaillanourt's theorem (see for instane, Theorem 7.11 of [9℄) that Op!gi(x; y;Dy) andRi are bounded. Thus, ky Op!�G0i�x�B�1=2DyBÆ ��(I ��)uk� kOp!gi(x; y;Dy)(D2y + y2 +B�1x+ i)(I ��)uk+ C2k(I ��)uk� C3k(D2y + y2 +B�1x+ i)(I ��)uk+ C2k(I ��)uk� C3k(D2y + y2 +B�1(x� z))(I ��)uk + C 02k(I ��)uk� C3k�B(D2y + y2) + x+ � � 14B2 + V ! � z�(I ��)uk+ C4k(I ��)uk� C3k(Q(B; �)� z)uk+ C1k(I ��)uk; 8z 2 
n; u 2 D :Here we have used the fat that B�1z is bounded for z 2 
n as well as the estimate [�; V !℄ =O(B�1=2): �.To estimate the ation of Q(B; �) on Ai(I ��)u; i = 1; 2; we need the following



MAGNETIC STARK HAMILTONIANS 13Lemma 5. There exists a1 > 0, independent on B, and B0 � 1 so that for B � B0 and z 2 
nwe have kh(I ��)�B(D2y + y2) + x+ � + V !�(I ��)� ziA1(I ��)uk� a1BkA1(I ��)uk � O(B1=2�Æ)k(I ��)uk; u 2 D: (4.3)Lemma 6. There exists a2 > 0, independent on B, and B0 � 1 so that for B � B0 and z 2 
nwe have kh(I ��)�B(D2y + y2) + x+ � + V !�(I ��)� ziA2(I ��)uk� a2jIm �jkA2(I ��)uk �O(B�1=2�Æ)k(I ��)uk; u 2 D: (4.4)Assuming the above estimates established, we will omplete the proof of Proposition 4.Proof of Proposition 4. We haveF (u) = k(Q(B; �)� z)(I ��)uk2= �(A21 +A22)(Q(B; �)� z)(I ��)u; (Q(B; �)� z)(I ��)u�= Xi=1;2 kAi(Q(B; �)� z)(I ��)uk2 :Thus F (u) � 12 Xi=1;2 k(Q(B; �)� z)Ai(I ��)uk2 � 2 Xi=1;2 k[Ai; Q(B; �)℄(I ��)uk2 :The operators Ai;� ommute with x and[Ai; Q(B; �)℄ = [Ai; (I ��)B(D2y + y2)(I ��)℄ + [Ai; (I ��)V !(I ��)℄= [Ai; (I ��)B(D2y + y2)(I ��)℄ +O(B�1=2�Æ) ;sine by the pseudodi�erential alulus we get[Ai;�℄ = O(B�1=2�Æ); [Ai; V !℄ = O(B�1=2�Æ):Next [Ai; (I ��)B(D2y + y2)(I ��)℄ = [Ai; B(D2y + y2)℄(I ��)�B(D2y + y2)[Ai;�℄ :Then we have B(D2y + y2)[Ai;�℄ = B1=2�Æ(D2y + y2)Lif 0(D2y + y2); i = 1; 2with operators Li having symbols uniformly bounded with respet to B. The symbol of the operatoron the right hand side of the above equality is bounded with its derivatives and we dedueB(D2y + y2)[Ai;�℄ = O(B1=2�Æ)in the spae of bounded operators L(L2(R2 )): To treat the ommutator with B(D2y+ y2), we applyLemma 4. It is lear that[Ai; B(D2y + y2)℄(I ��) = O(1)B1=2�Æy Op!�G0i(B�Æ(x�B�1=2Dy)�(I ��) +O(B1=2�Æ) ;so for B large enough, aording to (4.2), we obtaink(I ��)[Ai; B(D2y + y2)℄(I ��)uk



14 M. DIMASSI AND V. PETKOV� C5B1=2�Æk(Q(B; �)� z)(I ��)uk+ C6B1=2�Æk(I ��)uk; z 2 
n; u 2 D ;with onstants C5 > 0; C6 > 0 independent on z and B. Finally, taking into aount the estimates(4.3), (4.4), we dedue2(1 � C 05B1�2Æ)F (u) � ha21B2kA1(I ��)uk2 + a22jIm �j2kA2(I ��)uk2i�C7B1�2Æk(I ��)uk2� h�minfa1B; a2jIm �jg�2 � C7B1�2Æik(I ��)uk2 :For B suÆiently large this implies the estimate (4.1). �Proof of Lemma 5. First notie that the operator D2y + y2 + 1 is ellipti, sokDyuk � k(D2y + y2 + 1)uk +C8kuk � k(I ��)(D2y + y2)uk + (C8 + 2n+ 2)kuk� B�1k(I ��)hB(D2y + y2)� ziuk+ C 08kuk; (4.5)where we have used that B�1z is bounded for z 2 
n: Seond, applying the estimate (4.5) for theterm (I ��)B�1=2DyA1(I ��)u;we obtain k(I ��)hB(D2y + y2) + x+ � � 14B2 + V ! � ziA1(I ��)uk= k(I ��)hB(D2y + y2) +BÆ�x�B�1=2DyBÆ �+B�1=2Dy � 14B2 + V ! � ziA1(I ��)uk� (1�B�3=2)k(I ��)hB(D2y + y2)� ziA1(I ��)uk�BÆ�x�B�1=2DyBÆ �A1(I ��)u� C9kA1(I ��)uk :Our assumptions on 
n and the spetral theorem for D2y + y2 implyk(I ��)hB(D2y + y2)� ziA1(I ��)uk � a1Bk(I ��)A1(I ��)k� a1BkA1(I ��)uk � O(B1=2�Æ)k(I ��)uk; a1 > 0 :Next hoose a funtion ~G1 2 C10 (R; [0; 1℄) with support lose to that of G1 and suh that ~G1 = 1on supp G1: Then BÆ�x�B�1=2DyBÆ �A1(I ��)u= BÆ�x�B�1=2DyBÆ �Op! ~G1�x�B�1=2DyBÆ �A1(I ��)uand, sine u ~G1(u) is bounded, we an estimate this term by C10BÆkA1(I � �)uk: Taking B largeenough, we omplete the proof. �Proof of Lemma 6. We have����h(I ��)�B(D2y + y2) + x+ � � 14B2 + V !�(I ��)� ziA2(I ��)u;A2(I ��)u����



MAGNETIC STARK HAMILTONIANS 15� �Im �h(I ��)�B(D2y + y2) + x� 14B2 + � + V !�(I ��)� ziA2(I ��)u;A2(I ��)u�= (Im z � Im �)kA2(I ��)uk2 � Im�(I ��)V !(I ��)A2(I ��)u;A2(I ��)u�� �(1� �)jIm �j � C11B�1=2�Æ�kA2(I ��)uk2�Im�(I ��)V !A2(I ��)u;A2(I ��)u�� C11B�1=2�Æk(I ��)uk2 :Now we hoose a funtion ~G2 2 C1b (R; [0; 1℄) with support lose to that of G2 and suh that ~G2 = 1on supp G2, and replae V !A2 by V !Op! ~G2(B�Æ(x�B�1=2Dy))A2. On the support of ~G2(u) wehave juj � 1: Thus to treat the termIm�(I ��)V !Op! ~G2(B�Æ(x�B�1=2Dy))A2(I ��)u;A2(I ��)u� ;we take B large enough in order to arrange the estimatekV !(x�B�1=2Dy � 12B2 ; B�1=2y +B�1Dx)Op! ~G2(B�Æ(x�B�1=2Dy))k � (1� �)2 jIm �j :The deay properties of the potential V and its derivatives and the pseudodi�erential alulus makethis possible, sine on the support of the symbol ~G2(B�Æ(x�B�1=2�)) we havejx�B�1=2�j � BÆ :Combining this with the above estimates, we omplete the proof. �Remark. By the same argument, we obtain the estimatek(Q�(B; �)� �z)(I ��)uk � jIm �jk(I ��)uk; z 2 
n; u 2 D :Thus the operator Q(B; �)� z is bijetive on Image (I ��) and we denote its inverse byR̂(z) = �(I ��) ~P1(B; �)(I ��)� z��1(I ��): (4.6)A modi�ation of the proof of Proposition 4 yields the followingProposition 5. Let 0 < � < 1; �1 > 0; 0 < � < 1; n � 0 be �xed. Then for B large enough theoperator P1(B) has no resonanes z lying in the domains<z � �B; �1B � Im z � � Im �; (4.7)((2n+ 1) + �)B � j<zj � ((2n+ 3)� �)B; �1B � Im z � � Im �: (4.8)Proof. To treat the domain (4.8), it is suÆient to repeat the proof of Proposition 4 without theprojetor �. For example, in the proof of Lemma 5 we estimate the termkhB(D2y + y2)� ziA1uk � �BkA1ukand we follow the same argument. To deal with z lying in (4.7), �rst assume that�B � <z � �B; � < 0:Then we an repeat the argument of the proof of Proposition 4 with � replaed by 0, sine B�1zis bounded. Now suppose that <z � �B < 0: There are two points, where we have used the fat



16 M. DIMASSI AND V. PETKOVthat B�1z is bounded. The �rst one is the estimate (4.3) in the proof of Lemma 5. For <z < 0,the operator D2y + y2 �B�1<z + 1 is ellipti and sine B�1Im z is bounded, we getkDyuk � k(D2y + y2 �B�1<z)uk+ C9kuk� B�1k(B(D2y + y2)� z)u)k + C9kuk :Next we estimate the term B�1=2DyA1u;exploiting the fat that Dy and A1 ommutes and apply the above estimate. The seond point isrelated to Lemma 4. For <z < 0 onsider the symbolgi(x; y; �) = yG0i�B�Æ(x�B�1=2�)��2 + y2 +B�1(x�<z) + i :It is easy to show that this symbol is in S0(R4 ): Then the proof of Lemma 4 goes without anyhange and we obtain (4.2). Finally, we get the estimatek ~P1(B; �)� z)uk � jIm �jkuk; u 2 D ;and we onlude that P1(B) has no resonanes z with <z < 0: �5. Representation of the derivative of the spetral shift funtion for strongmagneti fieldsOur purpose in this setion is to prove Theorem 1 given in the Introdution. We use thenotations of the previous setions and we work in the domain 
n: Consider the operatorsL1(B; �) = (I ��)�B(D2y + y2) + x+ � � 14B2 + V !�(I ��) ;L2(B; �) = ��B(D2y + y2) + x+ � � 14B2�� ;W! = (I ��)V !�+�V !(I ��) + �V !� :It is lear that L1(B; �) + L2(B; �)� z +W! = ~P1(B; �)� z :The operator ~L(B; �)� z := L1(B; �) + L2(B; �)� z is invertible for z 2 
n: In fat, we havek(~L(B; �)� z)uk2 = k(L1(B; �)� z)(I ��)uk2 + k(L2(B; �)� z)�uk2 :For the �rst term at the right hand side we apply Proposition 4, while for the seond one weestimate the imaginary part of (L2(B; �)� z)�u;�u): Thus for z 2 
n we obtaink(L(B; �)� z)uk2 � 1k(I ��)uk2 + 2k�uk2 � 3kuk2; j > 0; j = 1; 2; 3 :Sine [�; V !℄ = O(B�1=2), for B large enough, the operatorL(B; �)� z := ~L(B; �) + (I ��)V !� +�V !(I ��)� zis invertible for z 2 
n: On the other hand, K = �V !� is a pseudodi�erential operator in L2(R2 )with prinipal symbolf(�2 + y2)V �x�B�1=2� � 12B2 ; B�1=2y +B�1��f(�2 + y2);



MAGNETIC STARK HAMILTONIANS 17and we onlude that K is a trae lass one. Moreover, one obtains immediately the estimatekKktr � CB (5.1)with a onstant C > 0, independent on B. Thus we have the followingTheorem 3. Let B be suÆiently large. Then for z 2 
n we havez � ~P1(B; �) = z � L(B; �)�K (5.2)and the operator z � L(B; �) is invertible for z 2 
n:By using the above theorem, it is easy to establish diretly the existene of a meromorphiontinuation of the resolvent ( ~P1(B; �)� z)�1 for z 2 
n: In fat, we writez � ~P1(B; �) = [I �K(z � L(B; �))�1℄(z � L(B; �)) ;and we onlude that the operator [I � K(z � L(B; �))�1℄ has a meromorphi ontinuation forz 2 
n: In the next setion we will onstrut an e�etive operator E1;�+(z) so that the eigenvaluesof ~P1(B; �), and hene those of P1(B; �), oinide with the zero eigenvalues of E1;�+(z): This willbe more onvenient for the analysis of the free resonanes regions.Introdue the funtions��(z) = (z2 + 1)trh(Pj(B)� i)�1(Pj(B) + i)�1(z � Pj(B))�1i10; � Im z > 0;where [aj ℄10 = a1 � a0: It follows from Proposition 2 that ��(z) are well de�ned and we have��(z) = �+(�z); Im z < 0 :For � real the operator (Pj(B)� i)�1(Pj(B) + i)�1(z � Pj(B))�1 is unitary equivalent to( ~Pj(B; �)� i)�1( ~Pj(B; �) + i)�1(z � ~Pj(B; �))�1:Consequently, the yliity of the trae yields�+(z) = (z2 + 1)trh( ~Pj(B; �)� i)�1( ~Pj(B; �) + i)�1(z � ~Pj(B; �))�1i10 (5.3)for all z 2 
+ = 
n \ fIm z > 0g, � 2 D(0; �0) \ R.Now, �x Æ > 0 and let z 2 
Æ = 
n \ fIm z � Æg. Sine ~Pj(B; �) extends to an analyti type-A family of operators on D(0; �0), for suÆiently small �0 and z 2 
Æ, the r.h.s of (5.3) extends byanalyti ontinuation in � to the disk D(0; �0). For � 2 D(0; �0) with Im � < 0, both terms of (5.3)are holomorphi on 
+, and, onsequently, (5.3) remains true for all z in 
+.From now on, the number � will be �xed in D(0; �0) with Im � < 0. We drop the subsriptB; �; most of the time and write Pj; L instead of ~Pj(B; �); L(B; �). For simpliity of the notationswe set B = h�1: As we have proved, there exists a trae lass operator K, kKktr = O(h�1), suhthat P1 = L�K and (L� z)�1 = O(1) : L2(R2 )! D uniformly for z 2 
n :Then (z�P1) = (I+ ~K(z))(z�L) with ~K = K(z�L)�1 and the resonanes z 2 ResP1(B) oinidewith their multipliities with the zeros of the funtionD(z; h) = det(I + ~K(z)):Then, as in Proposition 3 in [11℄, we obtain the upper bound#fz 2 Res P1 : z 2 
ng � C(
n)h�1: (5.4)



18 M. DIMASSI AND V. PETKOVFor the funtion �+(z) we have the followingProposition 6. There exists a funtion a+(z; h), holomorphi in 
n, suh that for z 2 
n \ fz 2C : Im z > 0g we have �+(z) = tr�(P1 � z)�1K(L� z)�1�+ a+(z; h): (5.5)Moreover, ja+(z; h)j � C1(
n)h�1; z 2 
n: (5.6)Proof. The proof is similar to that of Proposition 3 in [11℄, so we will omit some details. We write�+(z) = I1(z) + I2(z), whereI1(z) = (z2 + 1)tr�(P1 � i)�1(P1 + i)�1(z � L)�1�(P0 � i)�1(P0 + i)�1(z � P0)�1� ;I2(z) = (z2 + 1)tr�(P1 � i)�1(P1 + i)�1(P1 � z)�1K(z � L)�1� :As in [11℄, Setion 3, by using the resolvent equation and the yliity of the trae, we show thatI2(z) is equal to tr((P1 � z)�1K(L � z)�1) modulo a funtion holomorphi in a neighborhood of
n and satis�es (5.6). Next we deompose I1(z) as followsI1(z) = (z2 + 1)tr�h(Pj � i)�1(Pj + i)�1i1j=0(z � L)�1�+(z2 + 1)tr�(P0 � i)�1(P0 + i)(z � P0)�1K(z � L)�1�+(z2 + 1)tr�(P0 � i)�1(P0 + i)�1(z � P0)�1V !(z � L)�1� ;and we onlude that I1(z) is holomorphi in 
n: For the �rst and the seond terms in the aboveequality we obtain bounds O(h�1): In fat, for the �rst term we apply the argument of the proofof Proposition 2 with B = h�1, while for the seond one we use the estimate (5.1) ombined withthe estimate of the resolvent (z � L)�1: Finally, to estimate the trae of the term(P0 � i)�1(P0 + i)�1V !�x+ � � h1=2Dy � 12h2; h1=2y + hDx�;we write V ! = AV !A + (I � A)V !A + AV !(I � A) + (I � A)V !(I � A) with the operator Ahaving symbol q(x; y; �), introdued in the proof of Proposition 2, and we follow the argument ofthis proposition. �Aording to Lemma 1 in [11℄, for every f 2 C10 (R) we haveh�0; fi = lim�&0 i2� Z f(�)h�+(�+ i�)� ��(�� i�)id� ;where the limit is taken in the sense of distributions. Following without any hange the proof inSetion 6 of [11℄, we obtain Theorem 1.



MAGNETIC STARK HAMILTONIANS 196. Effetive Hamiltonian for strong magneti fieldsIn this setion we use freely the notations of the previous setion. In partiular, the set 
n andthe projetion � are assoiated to a Landau level (2n � 1)B with a �xed integer n � 1. Let usintrodue the operatorsR+ : L2(R2x;y ) 3 v �! (hv(x; �);  n(�)iL2(Ry) = ZRy v(x; y) n(y)dy 2 L2(Rx);R� = R�+ : L2(Rx) 3 u �! u(x) n(y) 2 L2(R2x;y ):These operators satisfy R+R� = IL2(Rx); R�R+ = �:Consider the following Grushin problem:P0(z) = � ~P0(B; �)� z R�R+ 0 � : D � L2(Rx;y )! L2(R2x;y )� L2(Rx):By a simple omputation, we have the followingLemma 7. The operator P0(z) is uniformly invertible for z 2 
n and � 2 D(0; �0). Its inverse isholomorphi in (z; �) and has the formE0(z) = � E0(z) E0;+E0;� E0;�+(z) � ;where E0(z) = bR0(z); E0;+ = R�; E0;� = R+; E0;�+(z) = z � (2n� 1)B � x� � + 14B2 ;bR0(z) = �(I ��) ~P0(B; �)(I ��)� z��1(I ��):Now onsider the Grushin problem for the perturbed Hamiltonian ~P1(B; �)� z :P1(z) = � ~P1(B; �)� z R�R+ 0 � : (6.1)Proposition 7. For B large enough the operator P1(z) is invertible for z 2 
n and its inverse isgiven by E1(z) = � E1(z) E1;+(z)E1;�(z) E1;�+(z) � ;where E1(z) = R̂(z)a(z); (6.2)E1;�(z) = R+a(z); (6.3)E1;+(z) = �R̂(z)a(z)[V !;�℄R� +R�; (6.4)E1;�+(z) = �R+a(z)[V !;�℄R� + hz � (2n� 1)B � x� � + 14B2 �R+V !R�i: (6.5)Here a(z) = �I + [�; V !℄R̂(z)��1 and R̂(z) is given by (4:6):



20 M. DIMASSI AND V. PETKOVProof. Set ~E(z) =  R̂(z) R�R+ z � h(2n� 1)B + x+ � � 14B2 +R+V !R�i ! :We have V !R� �R�R+V !R� = V !R�R+R� ��V !R� = [V !;�℄R� = O(B�1=2) :A simple alulus impliesP1(z) Æ ~E(z) = � I + [�; V !℄R̂(z) [V !;�℄R�0 I �= I +O(B�1=2) ;sine [V !;�℄ = O(B�1=2). Consequently, for B large enough, the operator P1(z) has a right inverseand we get E1(z) = ~E(z) Æ� (I + [�; V !℄R̂(z))�1 �(I + [�; V !℄R̂(z))�1[V !;�℄R�0 I �= � R̂(z)a(z) �R̂(z)a(z)[V !; �℄R� +R�R+a(z) �R+a(z)[V !;�℄R� + z � (2n� 1)B � x� � + 14B2 �R+V !R� � :This ompletes the proof. �To study the properties of the operators Ej;�+(z); j = 0; 1; we set B�1 = h. We need thefollowingLemma 8. We have[V !;�℄ : L2(R2) �! L2(R2) 2 Op !�S0�R4 ; hxi�2��hB�i�1��hyi�1h�i�1��: (6.6)Proof. Reall that we may write � = f(D2y + y2) with f 2 C10 (℄(2n � 2; 2n[): Aording toTheorem 8.7 in [9℄, we have � 2 Op!�S0(R2 ; hyi�1h�i�1)� :Sine the operator V ! 2 Op!�S0(R4 ; hxi�2��hB�i�1��)�, we obtain (6.6) by the alulus of pseudo-di�erential operators. �Proposition 8. The operator E1;�+(z)�E0;�+(z) is a h-pseudodi�erential one with Weyl symbola(x; �; z; h) 2 S0(R2 ; hxi�2��h�i�1��) suh thata(x; �; z; h) � 1Xj=0 aj(x; �; z)hj ; (6.7)where a0(x; �; z) = �V (x+ �; �); a1(x; �; z) = �(2n� 1)�x;�V (x+ �; �)=4: (6.8)



MAGNETIC STARK HAMILTONIANS 21Proof. The proof is similar to that of Proposition 2.5 in [7℄, so we will omit some details. We haveE1;�+(z) �E0;�+(z) = �R+a(z)[V !;�℄R� �R+V !R�:The operator R+V !R� : L2(Rx) �! L2(Rx) has the form(R+V !R�u)(x) = DV !�x+ � � 12h2 � h1=2Dy; h1=2y + hDx�(u(x) n(y));  n(y)EL2(Ry) :This implies that the symbol of R+V !R� is given byJ(h1=2) = hV !(x+ � � 12h2 � h1=2Dy; h1=2y + �) n(y);  n(y)iL2(Ry) :The estimate �����x��� V !(x+ � � h1=2�; h1=2y + �)���� C�;�hxi�2��h�i�1��h�i2+�hyi1+�and the fat that  n(y) = e� y22 Pn(y); Pn(y) being a polynomial, imply(x; �)! V !(x+ � � 12h2 � h1=2Dy; h1=2y + �) 2 S0�R2 ; hxi�2��h�i�1��� :Applying Taylor's formula, we obtainV !(x+ � � h1=2Dy � 12h2; h1=2y + �) = V !(x+ �; �)�h1=2Dy�xV !(x+ �; �) + h1=2y��V !(x+ �; �) + : : : :Sine  n(�y) = (�1)n n(y), we have hD2k+1y  n;  ni = 0 for all k 2 N. This implies that J(h1=2) =J(�h1=2), so J(h1=2) has an asymptoti expansion in power of h (see Proposition 4.3 in [7℄ for moredetails.) Thus the symbol of R+V !R� satis�es (6.7). To show thatR+a(z)[V !;�℄R� 2 Op!�S0(R2 ; hxi�2��h�i�1��)�; (6.9)�rst we prove that a(z)[V !;�℄ is a h-pseudodi�erential operator and next we repeat the aboveargument ombined with Lemma 8. This ompletes the proof. �From the onstrution of the Grushin operators one obtains the following well known formulae(see for instane, [15℄, [6℄, [7℄):(z � ~Pj(B; �))�1 = �Ej(z) +Ej;+(z)E�1j;�+(z)Ej;�(z) ;Ej;�+(z)�1 = �R+( ~Pj(B; �)� z)�1R�+; j = 0; 1 :Consequently, z 2 �( ~Pj(B; �)) , 0 2 �(Ej;�+(z)); j = 0; 1: (6.10)Reall that the operators ~Pj(B; �) are unitarily equivalent to the operators Pj(B; �), so the eigen-values of these operators oinide. Aording to Proposition 8, the analysis of the invertibility ofthe operator E1;�+(z) is redued to that of the operatorz � (2n� 1)h�1 � x� � + 14h2 + a!(x; hDx; z);



22 M. DIMASSI AND V. PETKOVwhere a!(x; hDx; z) is a h-pseudodi�erential operator with Weyl symbola(x; �; z; h) � 1Xj=0 aj(x; �; z)hjgiven by (6.7).Proof of Proposition 1. SetAw(x; hDx; z) := z � (2n� 1)B � x� � � 14B2 � V w(x+ �; hDx)= E0;�+(z) � V w(x+ �; hDx) :Clearly, E�10;�+(z) = �z � (2n� 1)B � x� � � 14B2��1 2 Op!(S0(R2 ));and kE�10;�+(z)k � 1(1� �)jIm �j ; (6.11)uniformly with respet to z 2 
n.Let R > 0 be a large onstant suh thatsupjxj>R; �2Rj��x;�V (x+ �; �)j < (1� �)j�j2 ; j�j � N0;where N0 is an integer independent on B and n: In fat, N0 depends on the hoie of a semi-norm in the spae of symbols S0(R2 ) whih by the Calderon -Vaillanourt's theorem onerning L2ontinuity of Weyl pseudodi�erential operators is equivalent to the norm in the spae of boundedoperator L(L2(R2)) (see Theorem 7.11 in [9℄). Forz 2 ~
n := fz 2 C : j<z � (2n� 1)j > 2 sup(x;�)2R2; j�j�N0j��x;�V (x+ �; �)j+ j<�j+Rg;we have sup(x;�)2R2; j�j�N0�����x;���z � (2n� 1)B � x� � � x��1V (x+ �; �)���� < 12 : (6.12)To see this, it suÆes to notie that, for z 2 ~
n and jxj < R, we havejz � (2n� 1)B � � � xj > 2 sup(x;�)2R2; j�j�N0j��x;�V (x+ �; �)j:It follows from the Calderon- Vaillanourt theorem that for h small enoughkV w(x+ �; hDx)E�10;�+(z)k � 12 :Combining this with (6.11) and using the equalityAw(x; hDx; z) = (I � V w(x+ �; hDx)E�10;�+(z))E0;�+(z);we dedue that, for h small enough we havekAw(x; hDx; z)�1k � 2(1� �)jIm �j :
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