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1. INTRODUCTION
Let Q C R? be an open and connected domain with C® boundary 92 and bounded complement
K=R\Qc{zecR: |z| <po}.

Denote by v(z) the exterior unit normal to 992 at z pointing into 2 and consider the Neumann
problem

(0? — Ay)u =0 in R x Q,
Oyu=0 on R x 09, (1.1)
u(0,z) = fi1(z), 0u(0,z) = fo(z).
We can associate to (1.1) a scattering operator
S(\): L2(S?) — L%(8%), A eR

which admits a meromorphic continuation in C with poles A;, Im A; > 0 (see [13]). Let A be the
set of the scattering poles ); counted with their multiplicity.

Throughout this paper we assume that K has the form
K=U% K;, K;NK; =0, for i # j, (1.2)

where K are strictly convex compact obstacles for j = 1,...,(Q and Q > 3. Moreover, we suppose
that K satisfies the following condition introduced by Ikawa ([9]):

(H) The convex hull of every two connected components of K does not have common points
with any other connected component of K.

Consider the reflecting rays in Q (see [9] and Chapter 2 in [19] for a precise definition). Under the
condition (H) every periodic ray is ordinary reflecting, that is v has no tangent segments. Given a
periodic reflecting ray « in £ with m., reflections, we denote by T, the primitive period (length) of 7,
by d,, the period of v and by P, the linear Poincaré map related to . Setting | det(I—Py)| = |I—P,|,
it is easy to prove (see [18], Appendix) that there exist constants by > 0, by > 0, By > 0 so that

Bt < |T - Py| < 2%, (1.3)
Denote by Z the set of all reflecting periodic rays in  and set

d() = min diStZ'?gj (Ki,Kj), dl = Inax diStiij (K“KJ)
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For the counting function of the lengths of periodic rays there exists a constant ag > 0 such that
i{yeE:d, <q} <e

(see [9] and Chapter 2 in [19]). Finally, it is well known ([16], [22], [26]) that there exists a constant
A > 0 so that

N(r)=#{\ € A:|\] <7} < ArP (1.4)

It is important to note that the constants By, ag, b1, by depend only on the geometry of the obsta-
cle, while A depends on the diameter of K and the coercive estimate for the Neumann problem (1.1).

The problem of the existence of a domain {z € C: 0 < Im z < §} containing an infinite number
of scattering poles of (1.1) has been studied by Ikawa [10], [11] who proved that there exists dyp > 0
such that
f{AeA: 0<Im); <y} = oc.
A similar result for hyperbolic surfaces has been obtained in [5]. On the other hand, Sjéstrand and
Zworski [23] (see also [21] for the case of even dimension) obtained for the Neumann problem the
lower bound

f{A; € A: ImA; <w|In)j|, [ReXj| <7} > Cur, w>0, r > r(w).

There are only few works concerning the lower bounds of the scattering poles in a domain
{z € C:0 < Imz < 4} in the case when all periodic trajectories are hyperbolic, that is the
Poincaré map P, has no eigenvalues on S'. The case of two convex obstacles has been treated in
[4]. Recently, for hyperbolic surfaces M of finite geometry Guillopé and Zworski [7] established the
lower bound

fH{INERN : ImA<e ', |ReA <r}=Q(r' ), 0<e<1/2, (1.5)

where Rj; denotes the set of scattering poles related to M and we have f(r) = Q(g(r)) if there
does not exist a constant C for which |f(r)| < C|g(r)|. A more precise result for convex co-compact
hyperbolic surfaces has been proved by Zworski [27] who obtained for the left hand side of (1.5) an
upper bound O(r'*+%1), where §; > 0 is related to the Hausdorff dimension of the trapped set (see
also [20] for similar results concerning semi-classical problems).

Our purpose in this note is to obtain a lower bound like (1.5) for the counting function
Nos(r) =#{N; € A:0<ImA; <4, |Re);| <r}.
To describe our results we need to introduce some constants.

Choose 0 and p so that 2/3 < 0 < u < 1. Next choose v > 0, fix k € R so that —ﬁ <k<-1
and choose a > k satisfying the inequalities k0 < af < k 4+ 1. Throughout the paper we assume
that p,0,a,k,v are fixed. Given 0 < € < 1/3, fix a constant o = g(max(O,ag — b1) + ba), put
B = (ao/dy + @), K = 0/ and introduce

3k
o= B k)
K
The main result is our paper is the following.

Theorem 1. Let K be an obstacle in the form (1.2) satisfying the condition (H) and let § be
chosen as above. Then we have

Nos(r) > pl—ebok |y co, T > Cp, (1.6)
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where the constants ¢; > 0, 1 = 0,1,2, depend on €,a, ,a,k,0,u, By, the constant A in (1.4) and
the constant Cs in Theorem 2.

Remark 1. It is clear that borx < € and taking 1 — 6 = €, we obtain
Nos(r) > c1r! 3¢ Inr — ¢y, T > ¢oe).

The lower bound (1.6) is proved exploiting only the contribution of a suitable sequence of
periodic rays with primitive periods T — +o00. To obtain more precise results for the density of
scattering poles in {z € C : 0 < Imz < §}, we must have some information for the distribution
of the lengths of the periodic rays in small intervals L;(5o) = (T} — efﬁOTJ’,Tj + e P0di), where
Bo > 0 is large enough. It is rather difficult to obtain some lower bounds for the number of
periods in L;(f) and in Section 2 we show that under a separation condition (S) this number
is bounded by AgT};. A more complete analysis must take into account the Hausdorff dimension
Hy = dimy (M) of the non-wandering set My (see for instance [24] for the definition of Mj).
Recently, for obstacles K C R, satisfying (H), R. Kenny [14] proved that Hy is always positive
and, moreover, he established some lower and upper bounds for Hy. Thus, as in [7], it is natural to
conjecture that for § large enough the bounds of Ny 5(r) will depend on Hy.

2. LENGTHS OF PRIMITIVE PERIODIC RAYS

In this section we construct a sequence of primitive periods T} — oc so that Tj; —T; < 1.
First let us recall the result of Theorem 1.3 in [24] (see also [17] for dimension n = 2) which yields
the following asymptotic of the counting function

ehe
L(z)=#{T,,v€=2:T, <z} = E(l—i—o(l)), x — 400,

where h > 0 is the topological entropy of K. Fixing y > 0, it is very easy to obtain a lower bound
of the function L(z + y) — L(z) as £ — oo. In fact, for n = n(h,y) > 0 sufficiently small and for
z > max{s, X (n)}, we have

L L) > o (- 1
— > —n) —

(o 4y) = L) 2 (U= ) = (14 m)
6h,,'r, h2y2 hyQGhm
> (s Chyn) > o
~ hx (2(1 + hy) h,yﬂ) ~ 3z(1 + hy)

taking X (n) large enough. Thus, there exists a sequence of primitive periods T; — oo such that
Tjp1 —Tj <1, Yj > jo.
Consider a sequence g; € N, j € N, so that
q; —2/3<Tj <q;+2/3, Vj.
Then we have
Ti1—e Pt <Tj—e P 42, 5> . (2.1)

We may expect to improve Theorem 1 if the density of the periods in small neighbourhoods of
T; is sufficiently large (see Remark 3 in Section 3). It seems less hopeful that a such clustering
phenomenon holds for generic obstacles. As an illustration consider the case when the following
separation condition holds.
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(S) All primitive periods can be ordered as follows
Ty <Ty<..<Tp< ...,
and there exists M > h so that
Tprr — Ty > e Mk VE €N

Notice that the first assumption is generically fulfilled since for generic obstacles the primitive
periods are rationally independent (see Chapter 3 in [19]). It is natural to conjecture that the
second one is also true for generic obstacles. Assume (S) fulfilled and choose g > M. It is clear

that |mT — Tj| < e ?7i implies m < TQit;Zl

. Moreover, if for two primitive periods T’,,, T, we have

|ZT’71 - mT’)’Q‘ < 267[371].’ ’I’I’L,l € Na m > 2a ! > 2a 7 > jOa

then I £ m. Thus, we can find a constant Ay > 0, depending only on dg, so that
Hdy € E:]dy — Ty < e 71} < ATy, Vi 2 jo

and the density of periods in exponentially small neighbourhoods of T; grows as AyT}. To our best
knowledge, there are no examples, where the condition (S) holds. On the other hand, it is very
difficult to construct examples when all primitive periods are different and (S) is not true. Finally,
notice that a similar separation condition for the scattering poles plays an important role in the
analysis of the resonances expansions for trapping obstacles [25].

3. LOWER BOUND FOR THE FUNCTION N 5(r)

In this section we use freely the notations of the previous sections. Let p(t) € C§°(—1,1) be a
function such that

p(f) >0, p(it) = p(t)a vt € R, p(f) =1 on [760,60L 0<e < 1/2,
p(0) =1, p(§) 20, V¢ R,

where p(€) denotes the Fourier transform of p(t). Introduce the function

wi(t) = p(e™ (t = Ty)),
where Tj and ¢; are defined in Section 2. The distribution U(t) € D'(R), given by

a et for >0,
U(t) = {ZAJEA it g
Z)\jeAe it for ¢ < 0,
plays an important role in the analysis of the distribution of the scattering poles (see [8], [10], [11],

[23]), (3], [4], [7]).

Our purpose is to obtain an estimate from below for Ny s(r) and to do this we will use an
argument due to Farhy [4]. We take y; = e~?% and choose
3—k+v
Pj =
Tj =

where k and v are fixed as in Section 1. Let pU()) denote the Fourier transform (eiM(t), U(t)).
For the counting function

No(r) = #{}; € A :Tm \; < w|In )|, Re )| < r}

> (0,

Farhy, developing the method of Sjostrand and Zworski [23], established the following.
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Proposition 1. ([3], Proposition 2.3) Let k # —1,7 > 2,a > k, b, p > 3, € (0,1),v > 0. Then
we have the estimate

r/2 ____ _
Ny, (r) > C’/1 lo; U(X)|dX — C’a’ky,,'yj*“rk“ — C’w_;brélfb — Cp.u; Pp3—np (3.1)

where the positive constants C, Cg .1, Cp, Cp, are independent on j and r.

Remark 2. A detailed analysis of the proof of the above result shows that the constants
C, Co kv, Cp, Cpp depend on the parameters a, k, v, b, p, ¢ and the constant A in (1.4).

Modifying the proof of Theorem 2.4 in [4], we obtain the following.

Proposition 2. Let T; be the sequence introduced in Section 2 and let by (r) = kInr £ B, k = %

Then for r > Ry we have the estimate
Cir
Ny s(r) > Cy min / U (M) |dX\ — Co, 3.2
04(r) 1€l (r), b1(n)] 1 o5 U3) (3-2)
where the positive constants B, Ry, Cy, Cy, Cy depend on [3,6,dg, 0, and the constant A in (1.4).

1/2
Proof. Clearly, Re{z € C:Imz =46, wln|z| =6} = :I:(e%/“’ — 52) . Setting

1/2 ) )
aj = (eXp(25/pj) - 52) » J > Jo,

and applying the estimate (3.1) for N, (a;), we obtain

5
a;/2
Nos(aj) > N, (aj) > C /] ;U (\)|dA

k —b 3— Lo
~Coapw exp(afa)r*™ — Cpexp(bfgy)r'™" — Gy exp(pBay)r® ™, j > jo.
Here and below jy denotes an integer independent on j which can change from line to line. Taking

into account (2.1), it is easy to see that
4

a_?H < exp(;) (a? + 6%) — 6% (3.3)

Consequently, we can find a constant C5 > 0 so that
aj+1 < Csaz, Vj > jo.
Now assume that for some integer j > jp we have a; < r < a;;1 < Cs aj. It follows that with a
constant Asy , > 0, independent on r and j, we have
Tk — Aspp <Int < Tj ™'+ Aspp. 5> Jo

Take B = kA, in the definition of b4 () and set Cy = C, Cy = 2]75 Since Bk = 6, a combination
of the above estimates yields

Cir
Ny s(r) > C min / U(N)|dA
i) 2 Comin [ D)

af+k+1 4+b(0-1) _

3+p(6—
Pk, kT p(0=u)

7Ca,n,6,k,u r - Cb,fi,ﬁ,k,u r ) 7 > 70
Next we choose b and p large enough to arrange 4 + b(f — 1) < 0, 3+ p(f — p) < 0 and, according
to the choice of @ and k, we get af + k + 1 < 2k + 2 < 0. This completes the proof. O
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To study @(A), we will exploit the trace formula (see [1], [15])

FU () = 2wy /TR ¢, (1) (cos (/=) © 0 — cos(tv/~Bg) ) .

Here Ay is the Laplacian in R?, A is the Laplacian in Q with Neumann boundary condition on 05
and cos(tv/—A) @0 acts as 0 on L?(K). Denote by Ey(t,z,y), E(t,z,y) the kernels of the operators
cos(tv/—Ay), cos(tv/—A), respectively, and set

~ E(t eNxQ

El(t’x’y) — ( ’x’y)7 (x’y) )

0 for (z,y) ¢ 2 x Q.
It is clear that
supp,, (B(t2,y) = Eo(t,2,9)) C {(2,9) € R : 2] < po+1, [y] < po+1}

so for t € supp ¢;(t) the integration with respect to z can be taken over ; = {z € R" : |z| <
po + q; + 1} and we must study the trace

| (s (0. Bt ) do. (3.4)

i
Since E(t,z,y) is even with respect to ¢, we may write (3.4) in the form
[t (0, Btz )
Q;

with ¢ (t) = p(eP% (t+T;)) supported in (=Tj —e #%, —T;+e P%). This shows that the behaviour
of the reflecting rays for —7; <¢ <0 can be explmted for the analysis of the trace in the same way
as the behaviour of the rays for 0 <¢ <Tj.

The singularities of U(t) are related only to the periodic ordinary reflecting rays and the dis-
tribution U (t)|g+ has the form U(t)|g+ = F(t) + V(t) with

f) = Z T’Y|I o P’Y‘71/25(t B d’Y)a V(f) € LIIOC(R_I—)'
YEE

We refer to [6] and to Section 6.3 in [19] for the details of the calculation of the leading singularities
involved in F(¢). Obviously,

loiVIN < Ce™. > jo
with a function C'(j) depending on j.

To estimate the growth of C(j) as j — oo, we may apply the argument of Tkawa [8], [11], [12]
based on the construction of asymptotic solutions for the problem (1.1) (see also [2]). Given a func-

tion ¢ € C§°(Q), the kernel E(t, z,y)9(y) of the operator cos (t\/fA)zb admits the representation

Bt 2, y)(y) = (27) /q dw/ K2u(t, @ b, w)e H0 g () dk,

where u(t, z; k,w) is the solution of the problem (1.1) with fi(z) = ¥(z)e®®®), fo(z) = 0 and
U(z) € C§°(R) is equal to 1 on supp 9. In this way the analysis is reduced to the investigation of
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the integral

[ [ i) ®B o 2)@)dtda
J Ja;

oo . .
= (2m) 3 / dt/ d'r/ dw/ erZ)‘t@j(t)u(t,m;k,w)q,b(m)eilk@’w)dk.
IR Ja;  Js2 o
Ny _

In the works of Tkawa [8], [9] and Burq [2] it was constructed an asymptotic solution u(V) =
w™ 4 wSrN) of u(t, z; k,w) with

N
Wi (8, zk,w) = 3 exp(ik (s (2,0) F 1) D v (1 25 0) (ik) 7.
J p=0

Here w € §%, k € RT, and

J =012 0n)s gk € {1 @, Jk # Jk1, k=1,2,.,n =1, [J] =n

are configurations related to the rays reflecting on 0Kj,, 0Kj,, ..., 0K}, . The function (u — uM) is
a solution of the problem

(0} — Ap)(u — uN)) = k- NFy(t, 2 k,w) in R x Q,

Ay(u—u™)) =k Ngn(t,z;k,w) on R x 9Q,

(u—u™)(0, 23k, w) = 3y (u — u™)(0, 21k, w) =0,
where Fy is related to the action of (97 — A,) to the amplitudes with index N, while gn (¢, z; k, w)
is related to the trace on 0 of the normal derivatives of the amplitudes with index N multiplied

with the corresponding phase functions. The analysis of the integral involving (u — u(N)) yields a
term O(e=P77) (see for more details [8]) and we are going to study the integral

oo ) .
(2m) 73 / dt/ d'r/ dw/ E2e™ o, (t) (wS_N)(t,m;k,w) —I—11)(,N)(t,m;k,w))zb(m)eflk(m’“)dk.
JrJa, sz Jo

By a stationary phase argument we obtain the leading term (see [6] and Chapter 6 in [19]). To
estimate the rest, a trivial modification of Proposition 2.2 in [11] yields the following.

Theorem 2. There exists a constant C3 > 0, depending only on K, and J,(8) > 0 so that for
Al < P and j > J1(B) we have

9V < Caexp(

ap

o 0T (3.5)

Notice that the number of configurations J such that (|J| — 1)dy < ¢; + 1 is bounded by
Ay exp(aoTj/do) and this explains the factor exp(z27}) above.

Proof of Theorem 1. First, observe that for fixed r and for T; > b_(r) we have
PU=5)a > PU=5)T-1) > exp(ﬁ(l - 5)(#&11&7" - B - 1)) = Cyr?=¢

with a constant Cy = exp(—f(1 — 5)(B + 1)) independent on r. Thus for every r and for T} €
[b_(r), by (r)] the inequality |A| < Cyr?~¢ implies || < (=79 Secondly, take r sufficiently large
to arrange Cyr > Cyr?~¢. Then, according to Proposition 2, we obtain

(;'47"97F o —
N, > C i / TIY(N)|d\ — C
0,6(r) > 0 e 0, o), [(p;U)(N)] >
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047,975 - .
> C i / F(N)| —|@;VN)])d\ — Cy, 7> Ry > Ry.
>Co, omin [ (I FO - V) dA = Co, > Ry > Ry

Next we will estimate the Fourier transform (e, (t), F(t)), provided |A| < eP1=5)9i Clearly,
there exists J = J(e,6) > 0 so that

‘((ei/\t . ei)‘Tj)Qy‘ (t), F(t))‘
S| X el )N - ) By
‘dW*Tj‘geiﬁq-i

< CplAle P9 exp((ag — b1)(g; + 1)) (g; + 1)

e €

< Cpexp(5) exp((ao — by - hy

where we have used the inequality

)i+ 1)) (g +1) < doe ™5, [\ < P10, >

€ 9(1,0
w—b —B=<———0
ap — 01 59 = T 2
On the other hand, the fact that we have only positive terms in the sum below implies
<@i(t),Ft)>= Y T =P (U (d, ~ Ty)) (3.6)

|y —Tj|<e™ 55
Z TjeiﬁTj + ﬂ{(]fy : |(]fy - Tj‘ S 60676(1-7, dfy ;é Tj}2d0€7b2(f7+1).
Consequently, for |A| < eP(1-5)% and j > J we obtain

(3 (1), F0)] = (0 (1), F@)] = (™ = ) (1), F(1))| > e ™B. (37)
Combining the above estimate for @\F(A) with (3.5) and taking j sufficiently large, we get

Nos(r) > %C‘OCM"(FE [(ﬁlnr — B) exp(be(ﬁlnr + B))

—2C4 exp((ao/do —B)(kInr — B))] —Cy,
provided r large enough. Our choice of g yields 8 — 3—8 > gbg and we conclude that

_8
€

Nos(r) > Crf—cb2r [h‘, Inr — B — Cgr! )bw} — Oy
with )
Cs = 5CoCae ", Cg =204 exp((ﬁ - ao/dg)B).
For r large enough we obtain the estimate (1.6) and the proof of Theorem 1 is complete. O
Remark 3. The estimate (3.6) shows that we can improve our principal result (1.6) if for a
suitable sequence T; — oo we have a lower bound
t{dy : |dy — Tj| < eoe PTi} > e1eMTi) ¢ > 0,0 < < h, Vi > jo.

This will add a factor 7" in the lower bound of Ny 5(r). On the other hand, as we have mentioned
in Section 2, if the condition (S) holds, the above clustering phenomenon never appears.
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Remark 4. In the case of Dirichlet problem the distribution F'(¢) has the form

F(t) = Z(_l)mvTﬂ[ - Pv‘i]/%(t — dy).
YEE

The change of signs in the representation of F'(¢) leads to considerable difficulties. In this situation
our argument can be applied if we can construct a sequence of periods d; — oo so that

djy1 —dj <d, Vj > J, (3.8)

(e (t — dy)), F(1))| > moe ™ (3.9)

with d > 0, ng > 0, n > 0 independent on j > J. Notice that in [12] the existence of a sequence d;,
satisfying (3.9), was related to the analytic singularities of the dynamical zeta function

Fp(s) =Y (=1)™T,|I — P, "¢ %% Res > 1.
YeEE
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