
LOWER BOUNDS ON THE NUMBER OF SCATTERING POLES FORSEVERAL STRICTLY CONVEX OBSTACLESVESSELIN PETKOV1. Introdu
tionLet 
 � R3 be an open and 
onne
ted domain with C1 boundary �
 and bounded 
omplementK = R3 n 
 � fx 2 R3 : jxj � �0g:Denote by �(x) the exterior unit normal to �
 at x pointing into 
 and 
onsider the Neumannproblem 8>><>>:(�2t ��x)u = 0 in R � 
;��u = 0 on R � �
;u(0; x) = f1(x); �tu(0; x) = f2(x): (1.1)We 
an asso
iate to (1.1) a s
attering operatorS(�) : L2(S2) �! L2(S2); � 2 Rwhi
h admits a meromorphi
 
ontinuation in C with poles �j ; Im�j > 0 (see [13℄). Let � be theset of the s
attering poles �j 
ounted with their multipli
ity.Throughout this paper we assume that K has the formK = [Qj=1Kj ; Ki \Kj = ;; for i 6= j; (1.2)where Kj are stri
tly 
onvex 
ompa
t obsta
les for j = 1; : : : ; Q and Q � 3: Moreover, we supposethat K satis�es the following 
ondition introdu
ed by Ikawa ([9℄):(H) The 
onvex hull of every two 
onne
ted 
omponents of K does not have 
ommon pointswith any other 
onne
ted 
omponent of K.Consider the re
e
ting rays in 
 (see [9℄ and Chapter 2 in [19℄ for a pre
ise de�nition). Under the
ondition (H) every periodi
 ray is ordinary re
e
ting, that is 
 has no tangent segments. Given aperiodi
 re
e
ting ray 
 in 
 withm
 re
e
tions, we denote by T
 the primitive period (length) of 
,by d
 the period of 
 and by P
 the linear Poin
ar�e map related to 
. Setting jdet(I�P
)j = jI�P
 j,it is easy to prove (see [18℄, Appendix) that there exist 
onstants b1 > 0; b2 > 0; B0 > 0 so thatB0e2b1d
 � jI � P
 j � e2b2d
 : (1.3)Denote by � the set of all re
e
ting periodi
 rays in 
 and setd0 = min disti6=j (Ki;Kj); d1 = max disti6=j(Ki;Kj):1



2 V. PETKOVFor the 
ounting fun
tion of the lengths of periodi
 rays there exists a 
onstant a0 > 0 su
h that℄f
 2 � : d
 � qg � ea0q(see [9℄ and Chapter 2 in [19℄). Finally, it is well known ([16℄, [22℄, [26℄) that there exists a 
onstantA > 0 so that N(r) = ℄f�j 2 � : j�j j � rg � Ar3: (1.4)It is important to note that the 
onstants B0; a0; b1; b2 depend only on the geometry of the obsta-
le, whileA depends on the diameter ofK and the 
oer
ive estimate for the Neumann problem (1.1).The problem of the existen
e of a domain fz 2 C : 0 < Im z � Æg 
ontaining an in�nite numberof s
attering poles of (1.1) has been studied by Ikawa [10℄, [11℄ who proved that there exists Æ0 > 0su
h that ℄f� 2 � : 0 < Im�j � Æ0g =1:A similar result for hyperboli
 surfa
es has been obtained in [5℄. On the other hand, Sj�ostrand andZworski [23℄ (see also [21℄ for the 
ase of even dimension) obtained for the Neumann problem thelower bound ℄f�j 2 � : Im�j � !j ln�j j; jRe �j j � rg � C!r; ! > 0; r � r(!):There are only few works 
on
erning the lower bounds of the s
attering poles in a domainfz 2 C : 0 � Im z � Æg in the 
ase when all periodi
 traje
tories are hyperboli
, that is thePoin
ar�e map P
 has no eigenvalues on S1: The 
ase of two 
onvex obsta
les has been treated in[4℄. Re
ently, for hyperboli
 surfa
es M of �nite geometry Guillop�e and Zworski [7℄ established thelower bound ℄f� 2 RM : Im� < ��1; jRe �j � rg = 
(r1��); 0 < � < 1=2; (1.5)where RM denotes the set of s
attering poles related to M and we have f(r) = 
(g(r)) if theredoes not exist a 
onstant C for whi
h jf(r)j � Cjg(r)j. A more pre
ise result for 
onvex 
o-
ompa
thyperboli
 surfa
es has been proved by Zworski [27℄ who obtained for the left hand side of (1.5) anupper bound O(r1+Æ1), where Æ1 � 0 is related to the Hausdor� dimension of the trapped set (seealso [20℄ for similar results 
on
erning semi-
lassi
al problems).Our purpose in this note is to obtain a lower bound like (1.5) for the 
ounting fun
tionN0;Æ(r) = ℄f�j 2 � : 0 < Im�j � Æ; jRe �j j � rg:To des
ribe our results we need to introdu
e some 
onstants.Choose � and � so that 2=3 < � < � < 1: Next 
hoose � > 0, �x k 2 R so that � 11�� < k < �1and 
hoose a > k satisfying the inequalities k� < a� < k + 1: Throughout the paper we assumethat �; �; a; k; � are �xed. Given 0 < � < 1=3, �x a 
onstant � = �� (max(0; a0 � b1) + b2), put� = (a0=d0 + �); � = �=� and introdu
e Æ = (3� k + �)� :The main result is our paper is the following.Theorem 1. Let K be an obsta
le in the form (1:2) satisfying the 
ondition (H) and let Æ be
hosen as above. Then we haveN0;Æ(r) � 
1r����b2� ln r � 
2; r � 
0; (1.6)



SCATTERING POLES 3where the 
onstants 
i > 0; i = 0; 1; 2; depend on �; �; �; a; k; �; �;B0, the 
onstant A in (1:4) andthe 
onstant C3 in Theorem 2.Remark 1. It is 
lear that b2� � � and taking 1� � = �, we obtainN0;Æ(r) � 
1r1�3� ln r � 
2; r � 
0(�):The lower bound (1.6) is proved exploiting only the 
ontribution of a suitable sequen
e ofperiodi
 rays with primitive periods Tj �! +1. To obtain more pre
ise results for the density ofs
attering poles in fz 2 C : 0 < Im z � Æg, we must have some information for the distributionof the lengths of the periodi
 rays in small intervals Lj(�0) = (Tj � e��0Tj ; Tj + e��0dj ); where�0 > 0 is large enough. It is rather diÆ
ult to obtain some lower bounds for the number ofperiods in Lj(�0) and in Se
tion 2 we show that under a separation 
ondition (S) this numberis bounded by A0Tj : A more 
omplete analysis must take into a

ount the Hausdor� dimensionH0 = dimH(M0) of the non-wandering set M0 (see for instan
e [24℄ for the de�nition of M0).Re
ently, for obsta
les K � R2 , satisfying (H), R. Kenny [14℄ proved that H0 is always positiveand, moreover, he established some lower and upper bounds for H0: Thus, as in [7℄, it is natural to
onje
ture that for Æ large enough the bounds of N0;Æ(r) will depend on H0:2. Lengths of primitive periodi
 raysIn this se
tion we 
onstru
t a sequen
e of primitive periods Tj ! 1 so that Tj+1 � Tj � 1:First let us re
all the result of Theorem 1.3 in [24℄ (see also [17℄ for dimension n = 2) whi
h yieldsthe following asymptoti
 of the 
ounting fun
tionL(x) = ℄fT
 ; 
 2 � : T
 � xg = ehxhx �1 + o(1)�; x �! +1;where h > 0 is the topologi
al entropy of K. Fixing y > 0, it is very easy to obtain a lower boundof the fun
tion L(x + y) � L(x) as x ! 1: In fa
t, for � = �(h; y) > 0 suÆ
iently small and forx � maxf 1h ;X(�)g; we haveL(x+ y)� L(x) � ehxhx � ehy1 + hy (1� �)� (1 + �)�� ehxhx � h2y22(1 + hy) � Ch;y�� � hy2ehx3x(1 + hy)taking X(�) large enough. Thus, there exists a sequen
e of primitive periods Tj �!1 su
h thatTj+1 � Tj � 1; 8j � j0:Consider a sequen
e qj 2 N; j 2 N, so thatqj � 2=3 < Tj < qj + 2=3; 8j:Then we have Tj+1 � e��qj+1 � Tj � e��qj + 2; j � j0: (2.1)We may expe
t to improve Theorem 1 if the density of the periods in small neighbourhoods ofTj is suÆ
iently large (see Remark 3 in Se
tion 3). It seems less hopeful that a su
h 
lusteringphenomenon holds for generi
 obsta
les. As an illustration 
onsider the 
ase when the followingseparation 
ondition holds.



4 V. PETKOV(S) All primitive periods 
an be ordered as followsT1 < T2 < ::: < Tn < ::::;and there exists M � h so that Tk+1 � Tk � e�MTk ; 8k 2 N:Noti
e that the �rst assumption is generi
ally ful�lled sin
e for generi
 obsta
les the primitiveperiods are rationally independent (see Chapter 3 in [19℄). It is natural to 
onje
ture that these
ond one is also true for generi
 obsta
les. Assume (S) ful�lled and 
hoose � > M . It is 
learthat jmT
 � Tj j � e��Tj implies m � Tj+12d0 : Moreover, if for two primitive periods T
1 ; T
2 we havejlT
1 �mT
2 j � 2e��Tj ; m; l 2 N; m � 2; l � 2; j � j0;then l 6= m. Thus, we 
an �nd a 
onstant A0 > 0, depending only on d0, so that℄fd
 2 � : jd
 � Tj j � e��Tjg � A0Tj; 8j � j0and the density of periods in exponentially small neighbourhoods of Tj grows as A0Tj : To our bestknowledge, there are no examples, where the 
ondition (S) holds. On the other hand, it is verydiÆ
ult to 
onstru
t examples when all primitive periods are di�erent and (S) is not true. Finally,noti
e that a similar separation 
ondition for the s
attering poles plays an important role in theanalysis of the resonan
es expansions for trapping obsta
les [25℄.3. Lower bound for the fun
tion N0;Æ(r)In this se
tion we use freely the notations of the previous se
tions. Let �(t) 2 C10 (�1; 1) be afun
tion su
h that�(t) � 0; �(�t) = �(t); 8t 2 R; �(t) = 1 on [��0; �0℄; 0 < �0 < 1=2;�̂(0) = 1; �̂(�) � 0; 8� 2 R;where �̂(�) denotes the Fourier transform of �(t): Introdu
e the fun
tion'j(t) = �(e�qj (t� Tj));where Tj and qj are de�ned in Se
tion 2. The distribution U(t) 2 D0(R), given byU(t) = (P�j2� ei�j t for t > 0;P�j2� e�i�j t for t < 0;plays an important role in the analysis of the distribution of the s
attering poles (see [8℄, [10℄, [11℄,[23℄), [3℄, [4℄, [7℄).Our purpose is to obtain an estimate from below for N0;Æ(r) and to do this we will use anargument due to Farhy [4℄. We take 
j = e��qj and 
hoose�j = 3� k + �Tj � 
j > 0;where k and � are �xed as in Se
tion 1. Let d'U(�) denote the Fourier transform hei�t'(t); U(t)i:For the 
ounting fun
tionN!(r) = ℄f�j 2 � : Im�j � !j ln�jj; jRe �j j � rgFarhy, developing the method of Sj�ostrand and Zworski [23℄, established the following.



SCATTERING POLES 5Proposition 1. ([3℄, Proposition 2:3) Let k 6= �1; r > 2; a > k; b; p > 3; � 2 (0; 1); � > 0: Thenwe have the estimateN�j (r) � C Z r=21 jd'jU(�)jd� � Ca;k;�
�aj rk+1 � Cb
�bj r4�b � Cp;�
�pj r3��p; (3.1)where the positive 
onstants C; Ca;k;�; Cb; Cp;� are independent on j and r.Remark 2. A detailed analysis of the proof of the above result shows that the 
onstantsC; Ca;k;�; Cb; Cp;� depend on the parameters a; k; �; b; p; � and the 
onstant A in (1.4).Modifying the proof of Theorem 2.4 in [4℄, we obtain the following.Proposition 2. Let Tj be the sequen
e introdu
ed in Se
tion 2 and let b�(r) = � ln r �B; � = �� .Then for r � R0 we have the estimateN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C1r1 jd'jU(�)jd� � C2; (3.2)where the positive 
onstants B; R0; C0; C1; C2 depend on �; Æ; d0; �; � and the 
onstant A in (1:4).Proof. Clearly, Refz 2 C : Im z = Æ; ! ln jzj = Æg = ��e2Æ=! � Æ2�1=2. Settingaj = �exp(2Æ=�j)� Æ2�1=2; j � j0;and applying the estimate (3.1) for N�j (aj), we obtainN0;Æ(aj) � N�j (aj) � C Z aj=21 jd'jU(�)jd��Ca;k;� exp(a�qj)rk+1 � Cb exp(b�qj)r4�b � Cp;� exp(p�qj)r3��p; j � j0:Here and below j0 denotes an integer independent on j whi
h 
an 
hange from line to line. Takinginto a

ount (2.1), it is easy to see thata2j+1 � exp�4��(a2j + Æ2)� Æ2: (3.3)Consequently, we 
an �nd a 
onstant CÆ > 0 so thataj+1 � CÆ aj; 8j � j0:Now assume that for some integer j � j0 we have aj � r < aj+1 � CÆ aj : It follows that with a
onstant AÆ;k;� > 0, independent on r and j, we haveTj��1 �AÆ;k;� � ln r � Tj��1 +AÆ;k;�; j � j0:Take B = �AÆ;k;� in the de�nition of b�(r) and set C0 = C; C1 = 12CÆ : Sin
e �� = �, a 
ombinationof the above estimates yieldsN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C1r1 jd'jU(�)jd��Ca;�;Æ;k;� ra�+k+1 � Cb;�;Æ;k;� r4+b(��1) � Cp;�;�;Æ;k;� r3+p(���); j � j0:Next we 
hoose b and p large enough to arrange 4 + b(�� 1) < 0; 3 + p(�� �) < 0 and, a

ordingto the 
hoi
e of a and k, we get a� + k + 1 < 2k + 2 < 0: This 
ompletes the proof.



6 V. PETKOVTo study d'jU(�), we will exploit the tra
e formula (see [1℄, [15℄)d'jU(�) = 2trL2(R3) ZR ei�t'j(t)�
os(tp��)� 0� 
os(tp��0)�dt:Here �0 is the Lapla
ian in R3 ; � is the Lapla
ian in 
 with Neumann boundary 
ondition on �
and 
os(tp��)�0 a
ts as 0 on L2(K): Denote by E0(t; x; y); E(t; x; y) the kernels of the operators
os(tp��0); 
os(tp��), respe
tively, and set~E(t; x; y) = (E(t; x; y); (x; y) 2 
� 
;0 for (x; y) =2 
� 
:It is 
lear thatsuppx;y � ~E(t; x; y)�E0(t; x; y)� � f(x; y) 2 R6 : jxj � �0 + t; jyj � �0 + tgso for t 2 supp 'j(t) the integration with respe
t to x 
an be taken over 
j = fx 2 Rn : jxj ��0 + qj + 1g and we must study the tra
eZ
j hei�t'j(t); ~E(t; x; x)idx: (3.4)Sin
e ~E(t; x; y) is even with respe
t to t, we may write (3.4) in the formZ
j he�i�t ~'j(t); ~E(t; x; x)idxwith ~'j(t) = �(e�qj (t+Tj)) supported in (�Tj�e��qj ;�Tj+e��qj ). This shows that the behaviourof the re
e
ting rays for �Tj � t � 0 
an be exploited for the analysis of the tra
e in the same wayas the behaviour of the rays for 0 � t � Tj.The singularities of U(t) are related only to the periodi
 ordinary re
e
ting rays and the dis-tribution U(t)jR+ has the form U(t)jR+ = F (t) + V (t) withF (t) = X
2� T
 jI � P
 j�1=2Æ(t� d
); V (t) 2 L1lo
(R+):We refer to [6℄ and to Se
tion 6.3 in [19℄ for the details of the 
al
ulation of the leading singularitiesinvolved in F (t): Obviously, jd'jV (�)j � C(j)e��Tj ; j � j0with a fun
tion C(j) depending on j.To estimate the growth of C(j) as j �!1, we may apply the argument of Ikawa [8℄, [11℄, [12℄based on the 
onstru
tion of asymptoti
 solutions for the problem (1.1) (see also [2℄). Given a fun
-tion  2 C10 (
), the kernel E(t; x; y) (y) of the operator 
os�tp��� admits the representationE(t; x; y) (y) = (2�)�3 ZS2 d! Z 10 k2u(t; x; k; !)e�ikhy;!i (y)dk;where u(t; x; k; !) is the solution of the problem (1.1) with f1(x) = 	(x)eikhx;!i; f2(x) = 0 and	(x) 2 C10 (
) is equal to 1 on supp  . In this way the analysis is redu
ed to the investigation of



SCATTERING POLES 7the integral Z Z
j ei�t'j(t)(t)E(t; x; x) (x)dtdx= (2�)�3 ZR dt Z
j dx ZS2 d! Z 10 k2ei�t'j(t)u(t; x; k; !) (x)e�ikhx;!idk:In the works of Ikawa [8℄, [9℄ and Burq [2℄ it was 
onstru
ted an asymptoti
 solution u(N) =w(N)� + w(N)+ of u(t; x; k; !) withw(N)� (t; x; k; !) =XJ exp�ik('J (x; !)� t)� NXp=0 v�;J; p(t; x;!)(ik)�p:Here ! 2 S2; k 2 R+ , andJ = (j1; j2; :::; jn); jk 2 f1; :::; Qg; jk 6= jk+1; k = 1; 2; ::; n � 1; jJ j = nare 
on�gurations related to the rays re
e
ting on �Kj1 ; �Kj2 ; :::; �Kjn : The fun
tion (u�u(N)) isa solution of the problem8>><>>:(�2t ��x)(u� u(N)) = k�NFN (t; x; k; !) in R � 
;��(u� u(N)) = k�NgN (t; x; k; !) on R � �
;(u� u(N))(0; x; k; !) = �t(u� u(N))(0; x; k; !) = 0;where FN is related to the a
tion of (�2t ��x) to the amplitudes with index N , while gN (t; x; k; !)is related to the tra
e on �
 of the normal derivatives of the amplitudes with index N multipliedwith the 
orresponding phase fun
tions. The analysis of the integral involving (u� u(N)) yields aterm O(e��Tj ) (see for more details [8℄) and we are going to study the integral(2�)�3 ZR dt Z
j dx ZS2 d! Z 10 k2ei�t'j(t)�w(N)+ (t; x; k; !) + w(N)� (t; x; k; !)� (x)e�ikhx;!idk:By a stationary phase argument we obtain the leading term (see [6℄ and Chapter 6 in [19℄). Toestimate the rest, a trivial modi�
ation of Proposition 2.2 in [11℄ yields the following.Theorem 2. There exists a 
onstant C3 > 0, depending only on K, and J1(�) > 0 so that forj�j � e�qj and j � J1(�) we havejd'jV (�)j � C3 exp�(a0d0 � �)Tj�: (3.5)Noti
e that the number of 
on�gurations J su
h that (jJ j � 1)d0 � qj + 1 is bounded byA1 exp(a0Tj=d0) and this explains the fa
tor exp(a0d0Tj) above.Proof of Theorem 1. First, observe that for �xed r and for Tj � b�(r) we havee�(1� �� )qj � e�(1� �� )(Tj�1) � exp��(1 � �� )(� ln r �B � 1)� = C4r���with a 
onstant C4 = exp(��(1 � �� )(B + 1)) independent on r. Thus for every r and for Tj 2[b�(r); b+(r)℄ the inequality j�j � C4r��� implies j�j � e�(1� �� )qj . Se
ondly, take r suÆ
iently largeto arrange C1r > C4r���. Then, a

ording to Proposition 2, we obtainN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C4r���1 j\('jU)(�)jd�� C2



8 V. PETKOV� C0 minTj2[b�(r); b+(r)℄ Z C4r���1 �jd'jF (�)j � jd'jV (�)j�d�� C2; r � R1 � R0:Next we will estimate the Fourier transform hei�t'j(t); F (t)i, provided j�j � e�(1� �� )qj : Clearly,there exists J = J(�; �) > 0 so that ���h(ei�t � ei�Tj )'j(t); F (t)i���= ��� Xjd
�Tj j�e��qj �(e�qj (d
 � Tj))�ei�d
 � ei�Tj�T
 jI � P
 j�1=2���� C�j�je��qj exp�(a0 � b1)(qj + 1)�(qj + 1)� C� exp(��� ) exp�(a0 � b1 � � �� )(qj + 1)�(qj + 1) � d0e�b2Tj ; j�j � e�(1� �� )qj ; 8j � J:where we have used the inequality a0 � b1 � � �� � ��a0�d0 � b2:On the other hand, the fa
t that we have only positive terms in the sum below implies< 'j(t); F (t) >= Xjd
�Tj j�e��qj T
 jI � P
 j�1=2�(e�qj (d
 � Tj)) (3.6)� Tje��Tj + ℄fd
 : jd
 � Tjj � �0e��qj ; d
 6= Tjg2d0e�b2(Tj+1):Consequently, for j�j � e�(1� �� )qj and j � J we obtainjhei�t'j(t); F (t)ij � jh'j(t); F (t)ij � ���h�ei�t � ei�Tj�'j(t); F (t)i��� � Tj2 e�b2Tj : (3.7)Combining the above estimate for d'jF (�) with (3.5) and taking j suÆ
iently large, we getN0;Æ(r) � 12C0C4r���h(� ln r �B) exp��b2(� ln r +B)��2C3 exp�(a0=d0 � �)(� ln r �B)�i� C2;provided r large enough. Our 
hoi
e of � yields � � a0d0 � �� b2 and we 
on
lude thatN0;Æ(r) � C5r����b2�h� ln r �B � C6r(1� �� )b2�i� C2with C5 = 12C0C4e�b2B; C6 = 2C3 exp�(� � a0=d0)B�:For r large enough we obtain the estimate (1.6) and the proof of Theorem 1 is 
omplete. 2Remark 3. The estimate (3.6) shows that we 
an improve our prin
ipal result (1.6) if for asuitable sequen
e Tj !1 we have a lower bound℄fd
 : jd
 � Tj j � �0e��Tjg � �1e�1Tj ; �1 > 0; 0 < �1 < h; 8j � j0:This will add a fa
tor r��1 in the lower bound of N0;Æ(r): On the other hand, as we have mentionedin Se
tion 2, if the 
ondition (S) holds, the above 
lustering phenomenon never appears.



SCATTERING POLES 9Remark 4. In the 
ase of Diri
hlet problem the distribution F (t) has the formF (t) = X
2�(�1)m
T
 jI � P
 j�1=2Æ(t� d
):The 
hange of signs in the representation of F (t) leads to 
onsiderable diÆ
ulties. In this situationour argument 
an be applied if we 
an 
onstru
t a sequen
e of periods dj !1 so thatdj+1 � dj � d; 8j � J; (3.8)jh'(e�qj (t� dj)); F (t)ij � �0e��dj (3.9)with d > 0; �0 > 0; � > 0 independent on j � J . Noti
e that in [12℄ the existen
e of a sequen
e dj ,satisfying (3.9), was related to the analyti
 singularities of the dynami
al zeta fun
tionFD(s) = X
2�(�1)m
T
 jI � P
 j�1=2e�sd
 ; Re s� 1:A
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