
LOWER BOUNDS ON THE NUMBER OF SCATTERING POLES FORSEVERAL STRICTLY CONVEX OBSTACLESVESSELIN PETKOV1. IntrodutionLet 
 � R3 be an open and onneted domain with C1 boundary �
 and bounded omplementK = R3 n 
 � fx 2 R3 : jxj � �0g:Denote by �(x) the exterior unit normal to �
 at x pointing into 
 and onsider the Neumannproblem 8>><>>:(�2t ��x)u = 0 in R � 
;��u = 0 on R � �
;u(0; x) = f1(x); �tu(0; x) = f2(x): (1.1)We an assoiate to (1.1) a sattering operatorS(�) : L2(S2) �! L2(S2); � 2 Rwhih admits a meromorphi ontinuation in C with poles �j ; Im�j > 0 (see [13℄). Let � be theset of the sattering poles �j ounted with their multipliity.Throughout this paper we assume that K has the formK = [Qj=1Kj ; Ki \Kj = ;; for i 6= j; (1.2)where Kj are stritly onvex ompat obstales for j = 1; : : : ; Q and Q � 3: Moreover, we supposethat K satis�es the following ondition introdued by Ikawa ([9℄):(H) The onvex hull of every two onneted omponents of K does not have ommon pointswith any other onneted omponent of K.Consider the reeting rays in 
 (see [9℄ and Chapter 2 in [19℄ for a preise de�nition). Under theondition (H) every periodi ray is ordinary reeting, that is  has no tangent segments. Given aperiodi reeting ray  in 
 withm reetions, we denote by T the primitive period (length) of ,by d the period of  and by P the linear Poinar�e map related to . Setting jdet(I�P)j = jI�P j,it is easy to prove (see [18℄, Appendix) that there exist onstants b1 > 0; b2 > 0; B0 > 0 so thatB0e2b1d � jI � P j � e2b2d : (1.3)Denote by � the set of all reeting periodi rays in 
 and setd0 = min disti6=j (Ki;Kj); d1 = max disti6=j(Ki;Kj):1



2 V. PETKOVFor the ounting funtion of the lengths of periodi rays there exists a onstant a0 > 0 suh that℄f 2 � : d � qg � ea0q(see [9℄ and Chapter 2 in [19℄). Finally, it is well known ([16℄, [22℄, [26℄) that there exists a onstantA > 0 so that N(r) = ℄f�j 2 � : j�j j � rg � Ar3: (1.4)It is important to note that the onstants B0; a0; b1; b2 depend only on the geometry of the obsta-le, whileA depends on the diameter ofK and the oerive estimate for the Neumann problem (1.1).The problem of the existene of a domain fz 2 C : 0 < Im z � Æg ontaining an in�nite numberof sattering poles of (1.1) has been studied by Ikawa [10℄, [11℄ who proved that there exists Æ0 > 0suh that ℄f� 2 � : 0 < Im�j � Æ0g =1:A similar result for hyperboli surfaes has been obtained in [5℄. On the other hand, Sj�ostrand andZworski [23℄ (see also [21℄ for the ase of even dimension) obtained for the Neumann problem thelower bound ℄f�j 2 � : Im�j � !j ln�j j; jRe �j j � rg � C!r; ! > 0; r � r(!):There are only few works onerning the lower bounds of the sattering poles in a domainfz 2 C : 0 � Im z � Æg in the ase when all periodi trajetories are hyperboli, that is thePoinar�e map P has no eigenvalues on S1: The ase of two onvex obstales has been treated in[4℄. Reently, for hyperboli surfaes M of �nite geometry Guillop�e and Zworski [7℄ established thelower bound ℄f� 2 RM : Im� < ��1; jRe �j � rg = 
(r1��); 0 < � < 1=2; (1.5)where RM denotes the set of sattering poles related to M and we have f(r) = 
(g(r)) if theredoes not exist a onstant C for whih jf(r)j � Cjg(r)j. A more preise result for onvex o-ompathyperboli surfaes has been proved by Zworski [27℄ who obtained for the left hand side of (1.5) anupper bound O(r1+Æ1), where Æ1 � 0 is related to the Hausdor� dimension of the trapped set (seealso [20℄ for similar results onerning semi-lassial problems).Our purpose in this note is to obtain a lower bound like (1.5) for the ounting funtionN0;Æ(r) = ℄f�j 2 � : 0 < Im�j � Æ; jRe �j j � rg:To desribe our results we need to introdue some onstants.Choose � and � so that 2=3 < � < � < 1: Next hoose � > 0, �x k 2 R so that � 11�� < k < �1and hoose a > k satisfying the inequalities k� < a� < k + 1: Throughout the paper we assumethat �; �; a; k; � are �xed. Given 0 < � < 1=3, �x a onstant � = �� (max(0; a0 � b1) + b2), put� = (a0=d0 + �); � = �=� and introdue Æ = (3� k + �)� :The main result is our paper is the following.Theorem 1. Let K be an obstale in the form (1:2) satisfying the ondition (H) and let Æ behosen as above. Then we haveN0;Æ(r) � 1r����b2� ln r � 2; r � 0; (1.6)



SCATTERING POLES 3where the onstants i > 0; i = 0; 1; 2; depend on �; �; �; a; k; �; �;B0, the onstant A in (1:4) andthe onstant C3 in Theorem 2.Remark 1. It is lear that b2� � � and taking 1� � = �, we obtainN0;Æ(r) � 1r1�3� ln r � 2; r � 0(�):The lower bound (1.6) is proved exploiting only the ontribution of a suitable sequene ofperiodi rays with primitive periods Tj �! +1. To obtain more preise results for the density ofsattering poles in fz 2 C : 0 < Im z � Æg, we must have some information for the distributionof the lengths of the periodi rays in small intervals Lj(�0) = (Tj � e��0Tj ; Tj + e��0dj ); where�0 > 0 is large enough. It is rather diÆult to obtain some lower bounds for the number ofperiods in Lj(�0) and in Setion 2 we show that under a separation ondition (S) this numberis bounded by A0Tj : A more omplete analysis must take into aount the Hausdor� dimensionH0 = dimH(M0) of the non-wandering set M0 (see for instane [24℄ for the de�nition of M0).Reently, for obstales K � R2 , satisfying (H), R. Kenny [14℄ proved that H0 is always positiveand, moreover, he established some lower and upper bounds for H0: Thus, as in [7℄, it is natural toonjeture that for Æ large enough the bounds of N0;Æ(r) will depend on H0:2. Lengths of primitive periodi raysIn this setion we onstrut a sequene of primitive periods Tj ! 1 so that Tj+1 � Tj � 1:First let us reall the result of Theorem 1.3 in [24℄ (see also [17℄ for dimension n = 2) whih yieldsthe following asymptoti of the ounting funtionL(x) = ℄fT ;  2 � : T � xg = ehxhx �1 + o(1)�; x �! +1;where h > 0 is the topologial entropy of K. Fixing y > 0, it is very easy to obtain a lower boundof the funtion L(x + y) � L(x) as x ! 1: In fat, for � = �(h; y) > 0 suÆiently small and forx � maxf 1h ;X(�)g; we haveL(x+ y)� L(x) � ehxhx � ehy1 + hy (1� �)� (1 + �)�� ehxhx � h2y22(1 + hy) � Ch;y�� � hy2ehx3x(1 + hy)taking X(�) large enough. Thus, there exists a sequene of primitive periods Tj �!1 suh thatTj+1 � Tj � 1; 8j � j0:Consider a sequene qj 2 N; j 2 N, so thatqj � 2=3 < Tj < qj + 2=3; 8j:Then we have Tj+1 � e��qj+1 � Tj � e��qj + 2; j � j0: (2.1)We may expet to improve Theorem 1 if the density of the periods in small neighbourhoods ofTj is suÆiently large (see Remark 3 in Setion 3). It seems less hopeful that a suh lusteringphenomenon holds for generi obstales. As an illustration onsider the ase when the followingseparation ondition holds.



4 V. PETKOV(S) All primitive periods an be ordered as followsT1 < T2 < ::: < Tn < ::::;and there exists M � h so that Tk+1 � Tk � e�MTk ; 8k 2 N:Notie that the �rst assumption is generially ful�lled sine for generi obstales the primitiveperiods are rationally independent (see Chapter 3 in [19℄). It is natural to onjeture that theseond one is also true for generi obstales. Assume (S) ful�lled and hoose � > M . It is learthat jmT � Tj j � e��Tj implies m � Tj+12d0 : Moreover, if for two primitive periods T1 ; T2 we havejlT1 �mT2 j � 2e��Tj ; m; l 2 N; m � 2; l � 2; j � j0;then l 6= m. Thus, we an �nd a onstant A0 > 0, depending only on d0, so that℄fd 2 � : jd � Tj j � e��Tjg � A0Tj; 8j � j0and the density of periods in exponentially small neighbourhoods of Tj grows as A0Tj : To our bestknowledge, there are no examples, where the ondition (S) holds. On the other hand, it is verydiÆult to onstrut examples when all primitive periods are di�erent and (S) is not true. Finally,notie that a similar separation ondition for the sattering poles plays an important role in theanalysis of the resonanes expansions for trapping obstales [25℄.3. Lower bound for the funtion N0;Æ(r)In this setion we use freely the notations of the previous setions. Let �(t) 2 C10 (�1; 1) be afuntion suh that�(t) � 0; �(�t) = �(t); 8t 2 R; �(t) = 1 on [��0; �0℄; 0 < �0 < 1=2;�̂(0) = 1; �̂(�) � 0; 8� 2 R;where �̂(�) denotes the Fourier transform of �(t): Introdue the funtion'j(t) = �(e�qj (t� Tj));where Tj and qj are de�ned in Setion 2. The distribution U(t) 2 D0(R), given byU(t) = (P�j2� ei�j t for t > 0;P�j2� e�i�j t for t < 0;plays an important role in the analysis of the distribution of the sattering poles (see [8℄, [10℄, [11℄,[23℄), [3℄, [4℄, [7℄).Our purpose is to obtain an estimate from below for N0;Æ(r) and to do this we will use anargument due to Farhy [4℄. We take j = e��qj and hoose�j = 3� k + �Tj � j > 0;where k and � are �xed as in Setion 1. Let d'U(�) denote the Fourier transform hei�t'(t); U(t)i:For the ounting funtionN!(r) = ℄f�j 2 � : Im�j � !j ln�jj; jRe �j j � rgFarhy, developing the method of Sj�ostrand and Zworski [23℄, established the following.



SCATTERING POLES 5Proposition 1. ([3℄, Proposition 2:3) Let k 6= �1; r > 2; a > k; b; p > 3; � 2 (0; 1); � > 0: Thenwe have the estimateN�j (r) � C Z r=21 jd'jU(�)jd� � Ca;k;��aj rk+1 � Cb�bj r4�b � Cp;��pj r3��p; (3.1)where the positive onstants C; Ca;k;�; Cb; Cp;� are independent on j and r.Remark 2. A detailed analysis of the proof of the above result shows that the onstantsC; Ca;k;�; Cb; Cp;� depend on the parameters a; k; �; b; p; � and the onstant A in (1.4).Modifying the proof of Theorem 2.4 in [4℄, we obtain the following.Proposition 2. Let Tj be the sequene introdued in Setion 2 and let b�(r) = � ln r �B; � = �� .Then for r � R0 we have the estimateN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C1r1 jd'jU(�)jd� � C2; (3.2)where the positive onstants B; R0; C0; C1; C2 depend on �; Æ; d0; �; � and the onstant A in (1:4).Proof. Clearly, Refz 2 C : Im z = Æ; ! ln jzj = Æg = ��e2Æ=! � Æ2�1=2. Settingaj = �exp(2Æ=�j)� Æ2�1=2; j � j0;and applying the estimate (3.1) for N�j (aj), we obtainN0;Æ(aj) � N�j (aj) � C Z aj=21 jd'jU(�)jd��Ca;k;� exp(a�qj)rk+1 � Cb exp(b�qj)r4�b � Cp;� exp(p�qj)r3��p; j � j0:Here and below j0 denotes an integer independent on j whih an hange from line to line. Takinginto aount (2.1), it is easy to see thata2j+1 � exp�4��(a2j + Æ2)� Æ2: (3.3)Consequently, we an �nd a onstant CÆ > 0 so thataj+1 � CÆ aj; 8j � j0:Now assume that for some integer j � j0 we have aj � r < aj+1 � CÆ aj : It follows that with aonstant AÆ;k;� > 0, independent on r and j, we haveTj��1 �AÆ;k;� � ln r � Tj��1 +AÆ;k;�; j � j0:Take B = �AÆ;k;� in the de�nition of b�(r) and set C0 = C; C1 = 12CÆ : Sine �� = �, a ombinationof the above estimates yieldsN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C1r1 jd'jU(�)jd��Ca;�;Æ;k;� ra�+k+1 � Cb;�;Æ;k;� r4+b(��1) � Cp;�;�;Æ;k;� r3+p(���); j � j0:Next we hoose b and p large enough to arrange 4 + b(�� 1) < 0; 3 + p(�� �) < 0 and, aordingto the hoie of a and k, we get a� + k + 1 < 2k + 2 < 0: This ompletes the proof.



6 V. PETKOVTo study d'jU(�), we will exploit the trae formula (see [1℄, [15℄)d'jU(�) = 2trL2(R3) ZR ei�t'j(t)�os(tp��)� 0� os(tp��0)�dt:Here �0 is the Laplaian in R3 ; � is the Laplaian in 
 with Neumann boundary ondition on �
and os(tp��)�0 ats as 0 on L2(K): Denote by E0(t; x; y); E(t; x; y) the kernels of the operatorsos(tp��0); os(tp��), respetively, and set~E(t; x; y) = (E(t; x; y); (x; y) 2 
� 
;0 for (x; y) =2 
� 
:It is lear thatsuppx;y � ~E(t; x; y)�E0(t; x; y)� � f(x; y) 2 R6 : jxj � �0 + t; jyj � �0 + tgso for t 2 supp 'j(t) the integration with respet to x an be taken over 
j = fx 2 Rn : jxj ��0 + qj + 1g and we must study the traeZ
j hei�t'j(t); ~E(t; x; x)idx: (3.4)Sine ~E(t; x; y) is even with respet to t, we may write (3.4) in the formZ
j he�i�t ~'j(t); ~E(t; x; x)idxwith ~'j(t) = �(e�qj (t+Tj)) supported in (�Tj�e��qj ;�Tj+e��qj ). This shows that the behaviourof the reeting rays for �Tj � t � 0 an be exploited for the analysis of the trae in the same wayas the behaviour of the rays for 0 � t � Tj.The singularities of U(t) are related only to the periodi ordinary reeting rays and the dis-tribution U(t)jR+ has the form U(t)jR+ = F (t) + V (t) withF (t) = X2� T jI � P j�1=2Æ(t� d); V (t) 2 L1lo(R+):We refer to [6℄ and to Setion 6.3 in [19℄ for the details of the alulation of the leading singularitiesinvolved in F (t): Obviously, jd'jV (�)j � C(j)e��Tj ; j � j0with a funtion C(j) depending on j.To estimate the growth of C(j) as j �!1, we may apply the argument of Ikawa [8℄, [11℄, [12℄based on the onstrution of asymptoti solutions for the problem (1.1) (see also [2℄). Given a fun-tion  2 C10 (
), the kernel E(t; x; y) (y) of the operator os�tp��� admits the representationE(t; x; y) (y) = (2�)�3 ZS2 d! Z 10 k2u(t; x; k; !)e�ikhy;!i (y)dk;where u(t; x; k; !) is the solution of the problem (1.1) with f1(x) = 	(x)eikhx;!i; f2(x) = 0 and	(x) 2 C10 (
) is equal to 1 on supp  . In this way the analysis is redued to the investigation of



SCATTERING POLES 7the integral Z Z
j ei�t'j(t)(t)E(t; x; x) (x)dtdx= (2�)�3 ZR dt Z
j dx ZS2 d! Z 10 k2ei�t'j(t)u(t; x; k; !) (x)e�ikhx;!idk:In the works of Ikawa [8℄, [9℄ and Burq [2℄ it was onstruted an asymptoti solution u(N) =w(N)� + w(N)+ of u(t; x; k; !) withw(N)� (t; x; k; !) =XJ exp�ik('J (x; !)� t)� NXp=0 v�;J; p(t; x;!)(ik)�p:Here ! 2 S2; k 2 R+ , andJ = (j1; j2; :::; jn); jk 2 f1; :::; Qg; jk 6= jk+1; k = 1; 2; ::; n � 1; jJ j = nare on�gurations related to the rays reeting on �Kj1 ; �Kj2 ; :::; �Kjn : The funtion (u�u(N)) isa solution of the problem8>><>>:(�2t ��x)(u� u(N)) = k�NFN (t; x; k; !) in R � 
;��(u� u(N)) = k�NgN (t; x; k; !) on R � �
;(u� u(N))(0; x; k; !) = �t(u� u(N))(0; x; k; !) = 0;where FN is related to the ation of (�2t ��x) to the amplitudes with index N , while gN (t; x; k; !)is related to the trae on �
 of the normal derivatives of the amplitudes with index N multipliedwith the orresponding phase funtions. The analysis of the integral involving (u� u(N)) yields aterm O(e��Tj ) (see for more details [8℄) and we are going to study the integral(2�)�3 ZR dt Z
j dx ZS2 d! Z 10 k2ei�t'j(t)�w(N)+ (t; x; k; !) + w(N)� (t; x; k; !)� (x)e�ikhx;!idk:By a stationary phase argument we obtain the leading term (see [6℄ and Chapter 6 in [19℄). Toestimate the rest, a trivial modi�ation of Proposition 2.2 in [11℄ yields the following.Theorem 2. There exists a onstant C3 > 0, depending only on K, and J1(�) > 0 so that forj�j � e�qj and j � J1(�) we havejd'jV (�)j � C3 exp�(a0d0 � �)Tj�: (3.5)Notie that the number of on�gurations J suh that (jJ j � 1)d0 � qj + 1 is bounded byA1 exp(a0Tj=d0) and this explains the fator exp(a0d0Tj) above.Proof of Theorem 1. First, observe that for �xed r and for Tj � b�(r) we havee�(1� �� )qj � e�(1� �� )(Tj�1) � exp��(1 � �� )(� ln r �B � 1)� = C4r���with a onstant C4 = exp(��(1 � �� )(B + 1)) independent on r. Thus for every r and for Tj 2[b�(r); b+(r)℄ the inequality j�j � C4r��� implies j�j � e�(1� �� )qj . Seondly, take r suÆiently largeto arrange C1r > C4r���. Then, aording to Proposition 2, we obtainN0;Æ(r) � C0 minTj2[b�(r); b+(r)℄ Z C4r���1 j\('jU)(�)jd�� C2



8 V. PETKOV� C0 minTj2[b�(r); b+(r)℄ Z C4r���1 �jd'jF (�)j � jd'jV (�)j�d�� C2; r � R1 � R0:Next we will estimate the Fourier transform hei�t'j(t); F (t)i, provided j�j � e�(1� �� )qj : Clearly,there exists J = J(�; �) > 0 so that ���h(ei�t � ei�Tj )'j(t); F (t)i���= ��� Xjd�Tj j�e��qj �(e�qj (d � Tj))�ei�d � ei�Tj�T jI � P j�1=2���� C�j�je��qj exp�(a0 � b1)(qj + 1)�(qj + 1)� C� exp(��� ) exp�(a0 � b1 � � �� )(qj + 1)�(qj + 1) � d0e�b2Tj ; j�j � e�(1� �� )qj ; 8j � J:where we have used the inequality a0 � b1 � � �� � ��a0�d0 � b2:On the other hand, the fat that we have only positive terms in the sum below implies< 'j(t); F (t) >= Xjd�Tj j�e��qj T jI � P j�1=2�(e�qj (d � Tj)) (3.6)� Tje��Tj + ℄fd : jd � Tjj � �0e��qj ; d 6= Tjg2d0e�b2(Tj+1):Consequently, for j�j � e�(1� �� )qj and j � J we obtainjhei�t'j(t); F (t)ij � jh'j(t); F (t)ij � ���h�ei�t � ei�Tj�'j(t); F (t)i��� � Tj2 e�b2Tj : (3.7)Combining the above estimate for d'jF (�) with (3.5) and taking j suÆiently large, we getN0;Æ(r) � 12C0C4r���h(� ln r �B) exp��b2(� ln r +B)��2C3 exp�(a0=d0 � �)(� ln r �B)�i� C2;provided r large enough. Our hoie of � yields � � a0d0 � �� b2 and we onlude thatN0;Æ(r) � C5r����b2�h� ln r �B � C6r(1� �� )b2�i� C2with C5 = 12C0C4e�b2B; C6 = 2C3 exp�(� � a0=d0)B�:For r large enough we obtain the estimate (1.6) and the proof of Theorem 1 is omplete. 2Remark 3. The estimate (3.6) shows that we an improve our prinipal result (1.6) if for asuitable sequene Tj !1 we have a lower bound℄fd : jd � Tj j � �0e��Tjg � �1e�1Tj ; �1 > 0; 0 < �1 < h; 8j � j0:This will add a fator r��1 in the lower bound of N0;Æ(r): On the other hand, as we have mentionedin Setion 2, if the ondition (S) holds, the above lustering phenomenon never appears.



SCATTERING POLES 9Remark 4. In the ase of Dirihlet problem the distribution F (t) has the formF (t) = X2�(�1)mT jI � P j�1=2Æ(t� d):The hange of signs in the representation of F (t) leads to onsiderable diÆulties. In this situationour argument an be applied if we an onstrut a sequene of periods dj !1 so thatdj+1 � dj � d; 8j � J; (3.8)jh'(e�qj (t� dj)); F (t)ij � �0e��dj (3.9)with d > 0; �0 > 0; � > 0 independent on j � J . Notie that in [12℄ the existene of a sequene dj ,satisfying (3.9), was related to the analyti singularities of the dynamial zeta funtionFD(s) = X2�(�1)mT jI � P j�1=2e�sd ; Re s� 1:AknowledgmentsThe author is grateful to Luhezar Stoyanov for stimulating disussions and for pointing outthe results onerning the dimension of the non-wandering set.Referenes[1℄ C. Bardos,J.C. Guillot and J. Ralston, La relation de Poisson pour l'�equation des ondes dans un ouvert non-born�e,Commun. Partial Di�. Equations, 7 (1982), 905-958.[2℄ N. Burq, Controle de l'�equation des plaques en pr�esene d'obstales stritement onvexes, Suppl. Bull. So. Math.Frane, 121 (1993), M�emoire 55.[3℄ L. Farhy, Distribution near the real axis of the sattering poles generated by a non-hyperboli periodi ray, Ann.Inst. H. Poinar�e (Physique Th�eorique), 60 (1994), 291-302.[4℄ L. Farhy, Lower bounds on the number of sattering poles under lines parallel to the real axis, Commun. PartialDi�. Equations, 20 (1995), 729-740.[5℄ L. Farhy and V. Tsanov, Strips with in�nite number of zeros for a lass of Selberg zeta funtions, Preprint, 1998.[6℄ V. Guillemin and R. Melrose, The Poisson summation formula for manifolds with boundary, Adv. in Math. 32(1979), 128-148.[7℄ L. Guillop�e and M. Zworski, Wave trae for Riemann surfaes, Geom. Anal. and Funt. Anal. 6 (1999), 1158-1168.[8℄ M. Ikawa, Trapping obstales with a sequene of poles of the sattering matrix onverging to the real axis, OsakaJ. Math. 22 (1985), 657-689.[9℄ M. Ikawa, Deay of solutions of the wave equation in the exterior of several stritly onvex bodies, Ann. Inst.Fourier (Grenoble), 38 (1988), 113-146.[10℄ M. Ikawa, On the existene of poles of the sattering matrix for several onvex bodies, Pro. Japan Aad. Ser. AMath. Si. 64 (1988), 91-93.[11℄ M. Ikawa, On the poles of the sattering matrix for several onvex bodies, Algebrai analysis, Vol. I, 243-251,Boston, MA, Aademi Press, 1988.[12℄ M. Ikawa, On the distribution of poles of the sattering matrix for several onvex bodies, pp. 210-225 in LetureNotes in Mathematis, 1450, Berlin, Springer, 1990.[13℄ P. Lax and R. Phillips, Sattering Theory, New York, Aademi Press, 1967.[14℄ R. Kenny, Estimates of Hausdor� dimension for the non-wandering set of an open planar billiard, University ofWestern Australia, Preprint, 1999.[15℄ R. Melrose, Polynomial bounds on the number of sattering poles, J. Funt. Anal. 53 (1983), 29-40.[16℄ R. Melrose, Polynomial bound on the distribution of poles in sattering by an obstale, Journ�ees Equations auxD�eriv�ees Partielles, St. Jean de Monts, 1984.[17℄ T. Morita, The symboli representation of billiards without boundary ondition, Trans. AMS, 325 (1991), 819-828.[18℄ V. Petkov, Analyti singularities of the dynamial zeta funtion, Nonlinearity, 12 (1999), 1663-1681.
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