SPECTRAL SHIFT FUNCTION AND RESONANCES FOR NON
SEMI-BOUNDED AND STARK HAMILTONIANS
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ABSTRACT. We generalize for non semi-bounded Schrédinger type operators the result of [8] proving
a representation of the derivative of the spectral shift function £(A, h) related to the semi-classical
resonances. For Stark Hamiltonians Py(h) = —h%A + Bz1 + V(x), B > 0, we obtain the same
result as well as a local trace formula. We establish an upper bound O(h™") for the number of
the resonances in a compact domain  C C_ and we obtain a Weyl-type asymptotics of £(X, h) for
V € C*(R") with supp,, V' C [R, +oo[. Finally, we establish the existence of resonances in every
h-independent complex neighborhood of Ey if Fy is an analytic singularity of a suitable measure
related to V.

Résumé. On généralise pour des opérateurs de Schrédinger non semi-bornés le résultat de [8]
en obtenant une représentation de la dérivée de la fonction de décalage spectral £(X, h) associée aux
résonances semi-classiques. Pour des hamiltoniens de Stark Py(h) = —h?A+ Bz1 +V(x), 8 > 0, on
obtient le méme résultat et aussi une formule de trace locale. On démontre une borne supérieure
O(h™™) pour le nombre de résonances dans un domaine compact Q C C_ et on établit une asymp-
totique de Weyl pour £(A, h) dans le cas quand V' € C*(R") a la propriété supp, V' C [R, +oo[.
Finalement, on démontre qu’il existe des résonances dans chaque h-indépendant voisinage complexe
de Eq si Ep est une singularité analytique d’une mesure convenable associée a V.
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1. INTRODUCTION

The main problem examined in this work is the relation between the spectral shift function
&(X, h) and the resonances for the semiclassical Stark hamiltonian

Py(h) = =h*A + fzi + V(2),

where V() € C*°(R") is a real-valued potential decreasing as |z| — 400, h > 0 and 8 > 0. The
spectrum of P,(h) is absolutely continuous and coincides with R (see [1], [15]). Without loss of
generality, throughout the paper we suppose that 8 = 1 and we consider P»(h) as a perturbation
of the operator P (h) = —h2A + 1.

The case h = 1 has been studied by many authors (see [1], [14], [15], [17], [41], [31], [32],
[34], [42]) and the scattering theory has been developed (see e.g. [1], [41], [31]). The problem of
resonances has been examined mainly for 8\, 0 and only the existence of resonances close to a neg-
ative eigenvalue Ej of the operator —A+V (z) has been treated (see for instance [33], [34], [42], [22]).

Recently a substantial progress has been given in the analysis of the Schrodinger operator with
long-range perturbations going to 0 as |z| — 400 and the works around the trace formulae gener-
ated many results on the upper and lower bounds of resonances, the Breit-Wigner approximation
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and the Weyl-type asymptotics of the spectral shift function (see [39], [36], [37], [26], [27], [2], [3],
[8], [9] and the references given there). The approach developed in these works cannot be applied
directly to Stark hamiltonians like P;(h), since the symbol |¢|? + 21 + V(z) does not converge to
|€|% as |z| — +oo and the operator P;(h) is not elliptic. The spectral shift function (SSF) &(\)
associated to Pj(1) and P,(1) has been studied by Robert and Wang [32] for short-range pertur-
bations V (z) and by Korotaev and Pushinitski [23] for perturbations V (z) with compact support.
Nevertheless, there are no works treating the link between the derivative of SSF and the resonances
via a local trace formula in the spirit of Sjostrand [36] (see also [27], [8]). Moreover, there are no
results on the upper bounds of the (semiclassical) resonances z lying in a compact domain Q C C
as well as the works treating the lower bounds of the number of the resonances produced by an
analytic singularity.

In this paper we deal with all these problems studying trapping perturbations of P;(h) in the
semiclassical setup without the assumption § \, 0. We are inspired by the ideas and tools in [36],
[37], [26], [27], [8]. In Section 3 we generalize in the semiclassical “black box” setup, introduced in
[36], the result of [8] for non semi-bounded operators without any assumption on the spectrum of
the operators L;(h) . The novelty in our proof is Lemma 1 based on a complex analysis argument
related to the behavior of the functions o4 (z) in Cy. The rest of the proof follows with some
modifications that of Theorem 1 in [8].

In Section 4 we introduce the SSF £(A, h) for Stark hamiltonians. Our purpose is to obtain
a representation of &'(A, h) having the form involved in Theorem 1. The resonances of Py(h) are
introduced in Section 5 by the method of analytic distortion applied in the classical case (h = 1)
as BN\, 0 in [42], [22] (see also [14], [17], [33], [34]). We study the resonances in a domain

D=0oC{z€C: Rez< R -3¢, Imz > a(l —e ) Imb},
where Imf < 0, 0 < a < 1, € > 0 and R are given by the analytic distortion. The resonances are

determined as the eigenvalues of the distorted operator P 4(h) in Q. Following the approach of
[37], we construct an operator P g(h) so that

Pyg(h) — Pyg(h) = K hasrank O(h™")

and H(ﬁgyg(h) —2)7 | = O(1), uniformly for z € Q. This makes it possible to apply the argument
of Theorem 1 and to exploit the estimates of det (I + K(z — ]32)*1) given in [37]. The main result
concerning the Stark operator P(h) is Theorem 2 (Section 6). Moreover, we establish an upper
bound
#{z € Res P,(h), z € Q} < C(Q)h "

which seems to be the first result of this type for Stark hamiltonians (Proposition 2). In Section 7
we obtain a local trace formula in the spirit of Sjostrand [37] (see also [27], [8]). We apply this trace
formula to show the existence of O(h™") resonances (Theorem 7) in a h-independent neighborhood
of an analytic singularity of suitable measure related to V' (see [35], [11] for similar results) . For
this purpose we need an asymptotic expansion of the trace

tr[f (Pa(h)) = f(PL(R)] ~ D ajhi ™", h\,0 (1.1)

j=0
for f € C§°(R).
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In the case, where the operators P;(h), i = 1,2 are elliptic, the asymptotics like (1.1) are
well known (see [10], [30], [20] and the references cited there). On the other hand, the approach
developed in [10], [30] and [20] cannot be applied directly to the case of non-elliptic operators. For
potentials V' satisfying

supp oz, V C [R, +0o0], (1.2)
our strategy in Section 7 will be to show that
2 -
te([F(Pi(n)] ) = —te[(@n, VIF(Po(R))] + O(h™), (1.3)
7=1

where Pg(h) is an elliptic operator. This makes it possible to apply the results for elliptic operators.
In Section 7, we consider also the case where f depends on the semi-classical parameter h and we
obtain an asymptotic expansion (Theorem 5). To our best knowledge, such complete asymptotics
in powers of h for the Stark hamiltonians are new. Combining the representation of &'(\, k) in
Theorem 2 with Theorem 5, we are able for the class of potentials satisfying (1.2) to establish a
Weyl-type formula for the spectral shift function with remainder O(h'~™). For this purpose we
exploit the sum of harmonic measures related to the Breit-Wigner factors following the approach
in [8], [12]. We notice that all previous results on Weyl-type asymptotics for Stark hamiltonians
have been obtained in the classical case (b = 1) (see [32], [23]). We will discuss the case of short
range potentials elsewhere.

Acknowledgments. The authors are grateful to V. Bruneau and X. P. Wang for many helpful
discussions. We are also grateful to J. F. Bony for pointing out some mistakes in a previous version
of the paper.

2. PRELIMINARIES

We start with the abstract ”black box” scattering assumptions introduced in [39], [36] and [37].
The operators Lj(h) = Lj,j = 1,2, 0 < h < hq, are defined in domains D; C H; of a complex
Hilbert space H; with an orthogonal decomposition

H; = Hp,; ® L*(R* \ B(0,Ry)), B(0,Ry) = {z € R" : |z| < Ry}, Ry >0, n>2.

Below A > 0 is a small parameter and we suppose the assumptions satisfied for j = 1,2. We suppose
that D; satisfies

o\ B(0,R) D = H*(R" \ B(0, Ro)), (2.1)

uniformly with respect to h in the sense of [36]. More precisely, equip H?(R™ \ B(0, Ry)) with the
norm || < kD >? ull;2, < hD >?= 1+ (hD)?, and equip D; with the norm |[(L; + é)ul|3,. Then
we require that lgn\ (o ry) : Dj — H?(R™\ B(0, Ry)) is uniformly bounded with respect to h and
this map has a uniformly bounded right inverse.
Assume that
U0,y (L + i)~ 'is compact (2.2)

and

(L) o 577 = @ (e 57T ) (23)
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where Q; is a formally self-adjoint differential operator

Qju = Z ajy(z;h)(hDy)"u, (2.4)

lv|<2

with a;,(z;h) = a;,(z) independent of h for |v| = 2 and a;, € Cp°(R") uniformly bounded with
respect to h.

We assume also the following properties:

There exists C > 0 such that

Lio(z,6) = Y aj,(z)e" > Clel, (2.5)
‘I/‘:Q

3 aju(@h)e” — €, |a] — o (2.6)

lv|<2

uniformly with respect to h.
There exists m > n such that we have

‘a1,,,(.r;h) - ag,y(x;h)\g O (z) " (2.7)

uniformly with respect to h. This assumption will guarantee that for every f € C§°(R) the operator
f(Ly) — f(Lg) is “trace class near infinity”.

There exist 0y €]0,5[, € > 0 and Ry > Ry so that the coefficients a;,(z;h) of Q; can be
extended holomorphically in x to

= {rw; weC, dist (w,S" ") <e,reCre ei[o’a“}]Rh—{—oo[} (2.8)

and (2.6), (2.7) extend to I.
Let R > Ry, Ty = (R/RZ)", R > 2R. Set
HF = Hpy; & L (T \ B(0,Ry))
and consider a differential operator
QF =Y a,(x;h)(hD)"
lv|<2

on Tj with afy(x; h) = a;,(z;h) for |z| < R satisfying (2.3), (2.4), (2.5) with R” replaced by T'.
Consider a self-adjoint operator L# : ’H‘?& — ’H‘?& defined by

qu = Ljpu + Qf&(l —@)u, u € D;#,

with domain
D}i ={ue€ ’H}i tpu €Dy, (1 —pue HQ};

where ¢ € C§°(B(0, R);[0,1]) is equal to 1 near B(0, Ry).
Denote by N(L#, [—A, A]) the number of eigenvalues of Lf in the interval [—A, A]. Then we
assume that

), n? >n, A > 1. (2.9)

o
/\)]/2 i =

N(LF A N) = 0((75
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Given f € C§°(R), independent on h, and x € C§°(R™) equal to 1 on B(0, Ry), we can define
tron[f (Lj)]5=,, as in [36], [37], by the equality

tron (£ (L2) = F(L1)) = [x(cf (Ly)x + xF (L) (1 = x) + (1= x) £ (L) )7y

Hr[(1 = x) F (L) (1 = X)) -
Following [36], [37], we define the resonances w € C_ by the complex scaling method as the eigen-
values of the complex scaling operators Ljg, 7 = 1,2. We denote by Res L;(h), j = 1,2, the set

of resonances and set n# = max{n}'sé ,n#} In the paper [aj]?:] means ag — a1 and C denotes a
positive constant which may change from line to line.

The spectral shift function £(\, h) € D'(R) related to Ly, Lg is defined by
(€' (0 k), FON) = trop (F(Lo) = f(L1)), | € CE(R)
and our result concerning the derivative of (A, h) is the following.
Theorem 1. Assume that Lj(h), j = 1,2, satisfy assumptions (2.1) — (2.9). Let
Q cc 7202000, 400[, 0 < 6y < 7/2,

be an open simply connected set and let W CC € be an open simply connected and relatively compact
set which is symmetric with respect to R. Assume that J = QN RT, I = W NR" are intervals.
Then for A € I we have the representation

1 —1 2
on) =—tmrn+[ Y it Y 0 -w)] (2.10)
n weRes L;NQ, 7T|)‘ B w| wERes L;N.J 7=l
Im w#0

where r(z,h) = g+ (z,h) — g+ (Z,h), g+(2,h) is a function holomorphic in Q and g1 (z,h) satisfies
the estimate

g4 (2,B)| S CW)R ™" 2eW (2.11)
with C(W) > 0 independent on h €]0, ho].

3. REPRESENTATION OF THE DERIVATIVE OF THE SPECTRAL SHIFT FUNCTION FOR NON
SEMI-BOUNDED OPERATORS

Let Lj, j = 1,2 be two operators satisfying the assumptions (2.1) - (2.9). Given 0 <6 < 6y < 7,
we choose 0 < k < 1 so that 20 < kw. Consider the functions

: . 2
0+(2) = (2 + 1 — 2z cos(km))™ trpy, [(Lj — ™)Ly —e ) T (2 — Lj)fl} X +Imz >0,

where m > n/2 is an integer. We will show below that o4 (z) is well defined and it is clear that we
have
o (z)=0_(2), Imz > 0.
Let Q CC ei]720,20[]0’ +o00[ be a simply connected open relatively compact set such that QNRT =
J is an interval. The spectrum of L; 4 outside of e2]0, +-00[ consists of the negative eigenvalues of
L; and the eigenvalues in e ~"[02%[]0, +o0[ (see [36]). We may choose zy = ¢ 7, 0 < x < 1, so that
zp and zy are away from sp (L;) and sp (L), 7 = 1,2. Given a positive number 6 > 0, a trivial
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modification of the proof of Proposition 4.1 of Sjostrand [37], yields that for all z € QN{z : Im z > ¢}
we have

tron (L = 2) 71 (L = 20) "™ (L — ZU)MK_I (3.1)

2
= tron (L = )" (L = 20) " (Ljg = 20) ™|

where in the definition of the complex scaling operators L; the parameter €y is chosen small
enough.

Below we assume  and 6 fixed and we will drop in the notations L; the index j writing L.
when the propertieq are satisfied for both operators L;, j = 1,2. Following [37], Section 4, there

exists an operator L. 0: D — H_ so that
K = L.’g — L _phas rank O(hfn#)
and for all N, M € N we have
K g=0(1): D(LY) — D(ILM).

Secondly, K g is compactly supported, that is if x € C§°(R") is equal to 1 on B(0, R) for R > Ry
large enough, we have K g = xK px and, finally, for every N € N we have

(Lo—2""'=0Q): DY) — DL,
uniformly for z € Q. These properties imply for z € QN {Im z > 0} the representation
(Lp—2)'=Lyg 2 "+Lg 2 'Kolg 2" (3.2)

—1

The contributions related to the resolvent (i/_’g — z)~ " are examined in the following.

Proposition 1. There exists a function ay(z,h) holomorphic in Q such that for z € QN{Imz > 0}
we have

72) = (Lo = ) Kyallio =2+ ailah) (3.3)
Moreover,
lai (2, k)] < C(QL ™, z€Q (3.4)
with a constant C() independent on h €]0, hyl.

Proof. The proof is a modification of that of Proposition 2 in [8] and for the sake of completeness
we will expose the main steps. According to (3.2), for z € 2N {Imz > §} we have

o (z) = ((z —20)(z — 20))mtrbb[(ﬁj79 - z)fl(Lj’a —20) " (Ljp — zo)m]j

+((Z —20) (2 — 50))m [tf((Lj,a —2) 'Kjp(Ljg—2) " (Ljg—20) ™ (Lje —Zo)m)]j] = A(z)+ B(z).

From the resolvent equation we obtain

((Z—Zo)(z—io))m([/j,e —20) ™ Ljp—7) "(Ljg—z) ' = (Ljg—z)""' =Y (z—2)" N(Ljp—2) "

m
Z—Zg mz Z—Zg 9—20)7m(Lj’g—20)7k.
k=1
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To treat B(z) we use the cyclicity of the trace and the above equality and conclude that B(z) is
. 2
equal to tr[(L]"g —2) 'K o(Ljg — z)’l} ~modulo a function holomorphic in €2 and bounded by

O(h~"").

( Now)we pass to the analysis of A(z). Our purpose is to show that A(z) is holomorphic in © and
bounded by O(h*”#). By construction, ([A/jvg—z)*l is holomorphic on € and for any cut-off function
x € C°(R"), x = 1 on B(0, Ry) with supp x C B(0, Ry) the operators x(L;g—Z0) ™™, (Ljg—Z0) ™x
are trace class ones. This implies that the function tr((ﬁjﬁ —2) " Y(Ljp—20)"™(Ljp — ZU)*mX) is

holomorphic in . On the other hand,

(Ljo— Z0) ™(Ljp —20) ™(Ljg—2) ' = (Ljg— 2) "(Ljp— 20) ™(Ljp—Z) ™
(3.5)

= (Ljp —20) " (Ljp — 20) " (Ljp — 2) "' Kjo(Ljp —2)""

—(Ljg = 2) " Kjg(Ljg = 2) " (Lje = 20) " (Ljg = 20) "
Consequently, for Imz > 0 if x; € C§°(R") is a cut-off function such that x; < x, applying the
cyclicity of the trace once more, we get

tI"(X] (f/j’g — Z)i] (Lj’() — 20)7m(Lj’() — 20)7"1(1 — X)) = 0
Here and below ¢ < ¢ means that ¢(x) = 1 on the support of ¢(z). Thus it remains to examine
. 2
7o (2) = tr[ (1= 1) (L — 2) 7' (1 = x)(Ljp = 20) ™ (Ljp — Z0) ™ (1 = )]

Consider the operator Q_y = @ |1, and note that for ¢ € C* supported away from B(0, R;) we

j=1

have L g9 = Q_g1. Repeating the construction of j—;_yg in Section 4, [37], we can find an operator
Q.p: H?*(Ty) — L*(Ty) so that

Q.9 — Q. ghas rank O(h™ "),
the operator Qﬂ — (.9 is compactly supported and for z € Q we have
(Q—2)'=0(1): D@QY) — D), YN e N.

Moreover, for 1) € C* supported away from B(0, Ry) we have Il_ygq,b = Q_ygw and for x € C5°(Iy)
equal to 1 on a sufficiently large set, z € Q and x; < xg < x we obtain

(Lo—2'1-0=0-x)Qu 2 "(1-x

+(L.p—2) Q0. x0)(Q.0 —2) ' (1 = x).
As above, we assume that zg = e """ is chosen so that zy ¢ sp (Q;), 20 ¢ sp (Qjp), j = 1,2. For
simplicity of the notations below we omit the index 6. Repeating the argument of Section 4 in [§],
we conclude that there exists a function b(z, h), holomorphic in ©, and bounded by (’)(hf"#), SO
that

T4 (2) = bz, h) + [ (1= X)(Q — 2) (@ — 20) ™(Q; — 20) ™ (1~ x)]j . (36)

i

We write

(Q2— 2) Q2 — 20) ™(Q2 — 20) ™ — (@1 — 2) Q1 — 20) ™(Q1 — z0) "
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= (Q—2) (@2 —20) ™= (Q1—20) ™) (Qa—70) ™ +(Q1 = 20) " ((Q2—20) "~ (@1 —20) ™)]

(@2 —2)7" = (@1~ 2) " ](@1 — 20) ™(@Q1— 70) ™" =T +11.

We treat these terms, as in [8], and we conclude that 7 (z) is holomorphic in © and bounded
by O(h’"#). To complete the proof we use an analytic continuation. O

Next we will obtain a representation of the derivative ¢(A\,h). Let f € C{(RT) and let
f(z) € C§°(C) be an almost analytic extension of f. Set

g(z) = f(2)(z* + 1 — 2z cos(km))™
Then
1 /- -
o(L) =~ [0 () + 1~ 2z cos(m)™ (2 — L) L(d2),
71'
where L(dz) denotes the Lebesgue measure on C. Clearly,

F(L) = (L.~ &™) ™(L. —e ™) ™g(L.)

=1|H

/8 F2)(2% +1 - 22 cos(km))™ (L. — ¢57) (L. — e )™ (z — L)' L(dz)

which implies

b (£(L2) — F(5) = —— [ 0.F)(=2 + 1~ 22 cosem))™ (3.7)

X trph |:(L] — eimr)fm(Lj — efimr)fm(z — L])il]?L(dZ)

We have 04(z) = O(h™"" |Im z|~2) and 9, f = O(|Im 2|?) so we may write the right hand side of
(3.9) as

(€, f) = tron (£ (L) = F(In))

= lim 7% (/Imwo 0, F(2)os (2 + i) L(dz) + ./ImKO 0:f(2)o (= — i) L(dz)).

According to Proposition 1, the function o4 (z + i€) (resp. o_(z — i€)) is holomorphic on {z € Q :
Imz > 0} (resp. {z € 2: Imz < 0} ) and applying the Green formula we obtain the following

Lemma 1. We have

(¢, f)*l{%%/f 0+(>\+ze)—a ()\—ze)]d)\

where the limit is taken in the sense of distributions.

Now Theorem 1 follows from the analysis of the singularities of o (z) for Im z \, 0 which is a
straightforward repetition of that in [8]. This competes the proof. O
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4. SPECTRAL SHIFT FUNCTION FOR STARK HAMILTONIANS

The Schrodinger operator describing the particles in a homogeneous electric field can be written
in the form
Pl(h‘) = 7h‘2A + 5.’1/'1,
where 3> 0, h >0 and z = (z1,2') € R x R* 1,

For a perturbation to the homogeneous electric field, the corresponding Schrodinger operator
has the form

Py(h) = —h*A + By + V(z), (4.1)

where V () is a real-valued C*°(R") function. It is natural to assume that for || — oo the potential
V(z) is small in comparison with Sz;. More precisely, we assume that

|0V (z)| < Colz1) *"{z!) 2, Va (4.2)
for some positive constants s; > 0, sy > 0, where (z) = (1 4 |z|?)/2.

There are two points of view of considering the hamiltonian (4.1). The first one, which is
usually used for the study of resonances in Stark effect, is to examine P,(h) as a perturbation of
—h2A + V(x), (see [15], [17]). The second one, is to consider Py(h) as a perturbation of P;(h) just
as in the scattering theory (see [1], [22], [42]). Here we will work with the later point of view with
B = 1. Under assumption (4.2), it is well known that Py(h) is essentially self-adjoint on C§°(R"),
o(P;j(h)) =R, j=1,2 and Pj(h) have no eigenvalues [28], [14].

Lemma 2. Let V satisfy (4.2) with sy > " and sp > n — 1.

i) For k € N large enough the operator
(i = Po(h))~F = (i = Py (h)) ™"

is trace class one and its trace norm is O(h™").
i1) Moreover, for Tm z # 0 we have

6~ Pa() *(z— Po(h) " (- PR E e P e = (). (43)
Proof. Taking (k — 1) derivatives in z in the resolvent identity
(2= Po(h) ™ = (z = Pi(h) ™" = (z = P2(h)) "'V (2 = Pi(h))”"
and setting z = i, we see that (i — Py(h))™* — (i — Py(h))~" is a linear combination of terms
(i Py() V(i Py(n)) 1D

with 1 < j < k. Hence, it suffices to prove that (i — Py(h))~'V and V(i — P;(h))~" are trace class
ones for [ large enough. On the other hand, by duality, we must show only that V(i — P;(h)) ! is
trace class.

Since the operators Pj(h),j = 1,2, are not elliptic, we cannot use the h-pseudodifferential
calculus for the analysis of (i — Pj(h))~!. To overcome this difficulty, we will decompose V (i —
Pj(h)) ! as a sum of three terms:

V(i P(h) ™ = gV (i = () + (1= g)V (1 7" (2. kD)) (i — Py(h)) "
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+(1— g)Vy* (2, hD;) (i — Pj(h)) ™" = F1j(h) + Fa,i(h) + F35(h).
Here g(z1) € C*®°(R) with g(z7) = 1 for 1 > —1 and g(z;) = 0 for z; < —2, and 7(z,§) =

(L), where (1) € Cg°([=2,2]; [0.1]), %() = 1 on [1,1]. We denote by 7" (z, hD,) the

h-pseudodifferential operator with symbol y(z, ).

On the support of g and (1 — 7), we can use the h-pseudodifferential calculus and prove that
Fy j(h) (resp. Fyj(h)) is an h-pseudodifferential operator with symbol in S%(m;) (resp. S%(my)),
where

ma(z,€) = (z1) " (2") 72 (L+ || + €))7,
ma(x,€) = (z1) " ()72 (€) .
We denote by S°(m) the class of symbols

§(m) = {a € C®(R*") : 920 a = Oq5(m), Yo, Y},

where m is an order function (see for instance, [10]). To justify this it is sufficient to observe that
the operators (P;(h) — i) are elliptic for z; € supp g and (z,£) € supp (1 — ) and to estimate
the principal symbols of their inverse. Under our assumptions and for [ > n/2 we have m; €
LY(R?™), § = 1,2. Thus, it follows from Theorem 9.4 in [10] that F; ;(h), i = 1,2, are trace class
and || Fy ()]l — O(h~™).

Next, on the support of v we have |21 + [£]?| < 2(¢). So we can apply the h-pseudodifferentaial
calculus to V4" (z, hD,) and we deduce

WVAlke < Ch ™" / (x1) *'drzydE ('Y ~*2da’
J|zi+E[?1<2(8) JR1

o
< Chf"(/ (z1) *'dx1d€ + / 7“"7251(11“) < 400
- ‘ 1‘<17 \f\SC J1

T

if 51 > 2 and sy > n — 1. Consequently, |F3(h)|lsw = O(h™ ™) and this completes the proof of
the first part of the lemma.

To obtain (4.3), it suffices to observe that the operator in the left hand side of (4.3) can be
written in the form

(= Po(m) * = i = Pr() *) (= Po(m)) " (i = Pr(R) (2 = Palh) ! = (= = Pi(B) )
= ((i = Po(m)* = (i = Pi()F) (2 = Pa(R)"!

— (2= Pi(h) (i — Pi(h)) " (Po(h) — Pi(h)(z — Pa(h)) ",

(4.4)
which together with the above estimates and the fact that ||(z — P;j(h))~"|| = O(|Im2|~") yield
(4.3). O

By using Helffer-Sjostrand formula (see (3.9)) and the above lemma, we conclude that for
s1 > 2H and s9 > n — 1, the operator f(Ps(h)) — f(P1(h)) is trace class for every f € C§°(R). We
denote by ¢'(\, h) € D'(R) the spectral shift function related to the pair (Py(h), P;(h)) and defined
by

(€' h), FO) = tr(F(Pa(h)) = F(Pi(1))).
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5. ANALYTIC DISTORTION AND RESONANCES FOR STARK HAMILTONIANS

To define the resonances, we will suppose that V' admits a holomorphic extension in the x;-
variable into the region

I'sor:={2€C: Rez < R,|Imz| < dp}, (5.1)
for some 09 > 0 and R > 0. We also assume that (4.2) remains true on I's, r and
|0°V (z1,2")] < Co(|Rex|) * ') %2, Va. (5.2)

Let us recall the definition of the resonances for Stark hamiltonians by the method of analytic
distortion (for more details we refer to [15], [17], [42]). Let xo € C*°(R) be such that xo(¢) = ¢ for
t < —e<0and xo(t) =0 for t > 0. Set v(t) = 1 — eXolt=R0) ' where Ry < R and for § € R define

Dp(z) = (1 + Ov(z1),2").

We denote by Jy(z) = det [DPy(x)] = 1 + 0v'(z1) the Jacobian of ®y(z). Then, for |f| small, U(0)
defined by

1/2
UO)(z) = 1y (x) (B ()
is unitary on L2(R™). A simple calculus shows that

Py g(h) = U(O)Pi (W)U (0) " = ~h*V (ag(2) V) + 21 + Bv(w1) + hgy (),

Pyg(h) :=U(@)Po(mU(0) " = P1g(h) +V(Py()), (5.3)
where ag(z) = (ag,i,j(x));,; is the diagonal matrix given by

agi1(x) =1+ 91)'(3:]))72,a(;7j’j(x) =1,7#1,

and
2

0 5
go(z) = 51}'"({171)((1,9,17] (’I’)) — 1021)"(.771)2((1,97],1(.77)) .

By the analytic assumption, Pjg(h) admits a holomorphic extension in € into a complex disk
D(0,6y) C C of center 0 and radius 0y < dp.

3/2

Below we set
G(x) :=x1 +V(x), by(z) :=1—ag(z).
The diagonal matrix by(z) = (bg, j(x))s; has the form

by q(z) = (291)'(.’1;1) + 921)'(.'171)2) (14 6v'(z1)) 2 and by j;(z) =0 if j > 1.
Clearly, from the definitions of v(x1) and ®y, it follows that
Supern|bg,1,1(2)G(2)| < Colf],  supgernlbyi ()] < C1l6] (5.4)
and
supern |G(®Po(2)) — G(x)| < Colf], sup,ernlgo(z)| < C3/6], (5.5)

where Cy, C1,Cy, C3 are independent on 6 € D(0, 6)).
Using (5.4) and the exponential decay properties of v'(x1), we obtain

1129 (bg9 )ull> < C1IOF(1 Py (B)ull? + [l < Col0|(Py () £ ull®, =12 (5.6)
for all u € C§°(R"), where Cy is independent on h €]0,1[ and 6 € D(0,6y).
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We will use the notations P (h), P g(h) for the operators P;(h), Pjg(h), j = 1,2. From (5.5),
(5.6) and (5.2) we deduce that

I(P.o(h) = P.(h))ul” < ClOP([(P.(h) £ i)ul®, (5.7)
for all u € C$°(R™). Choose 6y small enough so that C#2 < 1, where C is the constant at the r.h.s
of (5.7). Therefore from (5.7) and the results on the perturbation of operators in [21] we deduce
that P y(h) is closed and D(P 4(h)) = D(P(h)) =: D for all§ € D(0,6p). On the other hand, using
the analytic assumption on V', we conclude that 6 — P gu is analytic for all u € D. Consequently,
the self-adjoint operator P; g, defined for § € D(0,6p) N R, extends to an analytic type-A family of
operators on D(0,6) with domain D. Moreover, by an approximation it is easy to show that the
estimate (5.7) remains true for u € D.

Now it is easy to see that for §y small enough and 6 € D(0,6y) we have £i ¢ o(P 4(h)). Indeed,
P o(h) =i = [T+ (P.g(h) = P(W)(P.(h) = i) "] (P.(h) = 1).
On the other hand,
I(P.g(h) = P(R)(P.(h) — i) "ull < C|8]||ul, Yu € L*(R").
Thus (P g(h) — ) is invertible and the same argument works for (P g(h) + 7).

Fix 6 € D(0,6) with 6y < dg, Im6 < 0 and fix the constants Ry > 0 and € > 0 in the definition
of v(z1). Consider an open simply connected relatively compact domain

Mo C{z€C: Rez< Ry 3¢, Imz>a(l —e )Imh}, 0 < < 1.
We assume that (2, is independent of h. The domain €}, depends on 6 and « but for
simplicity of notation we will write below {2 instead of g ,.

Lemma 3. There exist 0y > 0, hg > 0 small enough such that for 6 € D(0,6y) with Im <0, h €
10, ho] we have
Co

~ Py <
Iz o)< min{e/2, (—¢; Im6O +Imz — C1h)}
uniformly with respect to z € 2, provided Imz > ¢y Im@ + C1h. The constants Cy > 1, C; > 0
depend only on €.

,e1=1-e >0, (5.8)

Remark. The estimate (5.8) is similar to that in Lemma 3 in [2], where Im z is related to ¢
and Ch.

Proof. Let (1) + ¥3(z1) = 1, where 1y € C®(R) is equal to 1 for 1 > Ry — €, 19 = 0 for
1 < Ry — 2e. On the support of 1y, we have 1 — Rez > € for all z € 2. Combining this with the
fact that Reag > 0 for 6y small, we get

Re ((P1p — 2)thou, ou) > Re ((hV Re aghV + z1 — Re 2)hou, ou) — O(h*0)||vhoul|?
> ellgpoull” — O(R*0)||yhoul*.
Thus for z € Q and u € D and for 6 small we deduce
1(Pro — 2)oull > e/2lgoull (5.9)

uniformly on z € .
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On the support of ¢; we have
v(z) =1- e(m—Ro) > 1 _gm¢ 5
and
Imag,; = (2(Im o) + O(Realmg))e(wl*Rn)j

(Im 0)

Im gy(z) = (— 5

Choosing 6y small, we obtain

— (RefIm 9))6(“*0).

m(—hQVang]u,i/nu) <0, [Im h2(g(;1/11u,1/11u)\ < chQ\ Im 0|||¢]u||2
On the other hand, for 2y € supp 91 we get
Im ((z1 4 Ov(z1) — 2)h1u, ¢pru) < ((c] (Im @) — Tm z)i/nu,ip]u).
Consequently, for hg, and 6y sufficiently small, we deduce the estimate

|(Pro — 2)1ul| > (—c1 ImO + Imz — coh) |1 ul, (5.10)

uniforle on z € €.
Let ¢; € Cg°(R) be equal to 1 on the support of Vi);. Since

02V (a9 V) 5] = 9 [h?V gV, 455 = hap; (hV (an(Vepy) ) + 2(Vep)as (hV)),
as in the proof of (5.6), we obtain

182V (a9 V), ;]ull < Coh(II(Pro(h) — 2)ull + [[ul]) (5.11)

for z € Q and u € D with a constant Cy > 0 depending on 2.
Combining (5.9), (5.10), (5.11) with the estimate

I(Prg(h) = 2)ull® = ZII% Pry(h) — z)ull?

1
z (P1o(h) — 2)hjul] Znh? (a0V). Wjull”.

for A small enough and z € Q we deduce

Col|(Prg(h) — z)ul| > min{e/2, (—¢i Im + Imz — Cih)}|u|, ueD. (5.12)

l\')l»—t

By the same argument, we prove an estimate similar to (5.12) for the adjoint operator Py 4(h)—z.
Since (P g(h) — z) is closed, the operator (P g(h) — z) has a zero index, and we conclude that
(P1g(h) — z) is invertible for every z € €. Finally, (5.8) follows from (5.12) and this completes the
proof. O

Now, it is easy to see that the operator P g(h) — z, z € Q, is a Fredholm operator and we have
the following.

Lemma 4. Let Imzy > ¢; 1m0+ Cih, zg € Q2. Then the operator Pyg(h) — zy is a Fredholm one
with index 0.
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Proof. For z € {2 we have

-1
Pyg(h)—z = (I+(Vo®y) (13- (2)) [(Pro(h)—2)+(Vode)w(2)] ) [(Pra(h)—2)+(Vo®y)p.(x)],
where 1, (z) € C*°(R") is a function such that 0 < ¢,(z) <1, ¥,(z) = 0 for |z| < Cy, .(z) = 1 for
|z| > Cy+1. Choosing Cj > 0 (depending on z) large enough, we may assume that |(Vo @g) ()

is small, so the operator
Avg(z) = Prg(h) — 2+ (V 0 @) 3. ()
is invertible for z € . On the other hand,

Ky(z) = (Vo @9) (1 = . (2)) Arg(2) !

is compact. Then
dimKer (P 9(h) — z0) = dimKer (I + Ky(z0)),
provided
Imzy > ¢; Im6 + Cih.
A simple argument shows that Im(Ps g(h) — 2¢) is closed and

codim (P 9(h) — zp) = dimKer (I + K4(zp)).
Thus P, g(h) — z is a Fredholm operator with index 0 and the proof is complete. O

Let 6 € D(0,6p), Im# < 0. We say that z € C is a resonance of Py g(h) if
dimKer (P, 5(h) — z) > 0.

To examine the dependence on 6 of the resonances, we will show that the operator Ky(zy) depends
analytically on @ € D(0,6p). To do this, it is sufficient to show that the resolvent (P g(h) — zp) !
is analytic with respect to 0. Fix 6; € D(0,6y) and write

Pig—20=Pg, — 2 — hQV((I,g —ag,)V+ (0 —0)v(z1) + hQ(gg —99,)

= P],gl —zy+ 39,91 = (I + Bg,gl(PUgl — 20)71>(P1791 — ZO).

Here the operator By, depends analytically on §. On the other hand, it is easy to see that for
|0 — 61| small enough we may arrange

1Bo.a, (Prg, — 20) ' || < C1(61,20)0 — 64] < 1/2.

For example, to estimate the terms involving ag, ag,, we apply the equality
h? (V(ao - aal)V) (Prg, —20) "
= hQ(V(ag — ay, )v) [(P] —i) (P =) (6= 2) (P, — zo)”]
and we use the bound (5.6). Thus
(Pro—20)"" = (Prg, — 20)71(1 + Bygg, (P10, — 20)71)7]

and we obtain the analyticity for small |§ —6;|. Also let us point out that if the resolvent (P, —2) "
exists, we have

(Poo—2) = (Ar0(2)) (1 + Ko(2)) .
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For fixed z the invertibility of (I + Kj(2)) implies that the inverse operator (I + Ky(2)) ' becomes
an analytic function of 6, so the resolvent (P — z)~! will be also an analytic function of 6.

The resonances depend on h but they are independent on 6 € D(0,6), Im# < 0. First, Lemma
3 implies easily that P g has no eigenvalues z € 2, Imz > ag > 0, where ag depends on V' and (2.
The unitary operators U (), 6 € R, do not form a group. Nevertheless, the maps

LAR") 5 f — f(z1+0,2'), 0 e R
form an unitary group. Then there exists a dense set A C L2(R™) of analytic vectors so that

is convergent for 6 € D(0,6y). This implies that for 6y small and for f € A the functions U(0)f =
J;, /2($)f(q)()(.’13)) admit a holomorphic extension in D(0,6y) . The same is true for

U 0)f = J, (0, (2)) (@, (),

since ®, ' (z) = (z1 + Ow(0, x), 2') with a function w (6, z) holomorphic with respect to 6.

,feA

Now, we will follow an argument similar to that used by Wang [42]. Take f, g € A and let
0 € R be small. For z, Imz > ag, we have

(f. (P = 2)"1g) = (UO)f, (Poy — 2)'U(0)g)- (5.13)
For Imz > ag and 0 < h < hg the right-hand side admits an analytic continuation for 8 € D(0, ).
Consequently, for every fixed complex 6 € D(0,6)), Imf < 0, the left-hand side of (5.13) admits a
meromorphic continuation with respect to z in QN {z € C: Imz > ¢; Im#@ + C1h}, hence this is

true for the right-hand side. Let us consider now the parameter € C satisfying Imf; < Im# <
Im Ay < 0. Introduce the set

Ro, (Py) = U {z: z isapoleof (f,(Py —2) 'g)and Tmz > ¢; Im 6y + Ch}.
f.geA
We claim that
z € Ry, (Py) <=z € m Opp (ngg).
Im 61 <Im #<Im 63
If z € Ry,(P2), then the left-hand side of (5.13) has a pole for some f,g € A and we obtain the
inclusion
R, (P2) C N Tpp (Po,0)-
Tm 61 <Im 6<Im 6>
On the other hand, if zy is a pole of (P — z)~1, then we can find ¢ # 0, ¢ # 0, so that
(4, (P20 — 2) ') has in a small complex neighborhood of zq an isolated singularity at z = 2. The
set A is dense in L?(R") and by approximation, we construct functions 1, € A, ¢, € A so that
Ym — P, om — . For m large enough (¢, (Pog — z) ') will have a pole at z = 2. We fix
a such m and setting f = U~'(0)¢m, g = U '(0)pom, we deduce that

(U(0)f, (Poy — z)""U(6)g)
has also a singularity at z = z3. This proves the inverse inclusion and the claim is established.
This implies immediately that the resonances z with Imz > ¢y Im#y + C1h are independent on
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the choice of Im#; < Im# < Im#6y < 0. Clearly, the above argument shows also that the operator
P g(h) has no resonances z with Imz > 0.

Finally, P, = P g(h) has no resonances z € RN(). For this purpose, we may apply the argument
of Theorem XIII.36 in [28]. Suppose that A € QN R is an eigenvalue for P, 3. Repeating the above
argument based on the density of A, we can find functions F' # 0, G # 0 so that (F, (P, — 2) 'G)
has a pole at z = A. Therefore,

11{1(1)7:6(1?, (P, — A —i€)'G) = (F,P;,G) # 0,

Pyyy being the spectral projector of P, at A. Consequently, A € opp(P2) and this leads to a contra-
diction with the absence of eigenvalues of P;.

We define the multiplicity of a resonance zg by

1

m(zg) = rank — / (2 — Pyg) 'dz,
271 Jy, (20)

where 7.(20) = {# = 20 + v, 0 < ¢ < 27} and v > 0 is small enough. The operator P, is of
type (A), and we conclude that the multiplicity m(zy) is an analytic function of §. Consequently,
m(zp) is independent on 6 € D(0,6p), Imf < Iméb, < 0.

6. REPRESENTATION OF &'(A,h) FOR STARK HAMILTONIANS

Let Q = Qp, C ¥y be the domain introduced in the previous section and let W be an open
relatively compact subset of 2. We assume that W and €2 are symmetric with respect to R and
independent of h and we suppose that J = QNR, I = W NR are intervals. The main result in this
section is the following.

Theorem 2. Assume (5.2) with s1 > " and sy > n — 1. Then &'(\, h) is real analytic in I and
for A € I we have the representation

1 -1
g = —Imr(\B) + Y
T wERes(Py(h))NQ 7T|>‘ B w|
Im w#0

where r(z,h) is a function holomorphic in Q and
|r(z,h)| < C(W)h ", ze W (6.1)
with C(W) > 0 independent on h €]0, hol.

Below we fix an integer m € N large enough so that the statement i) of Lemma 2 holds and we
define the functions

04 (2) = (22 + D)™tx[(P.(h) — i)™ (P.(h) +4) "™ (2 — R(h))ﬂ?, +Imz > 0.

For 6 real the operator (P.(k) —4) ™ (P.(h) + i) ™(z — P.(h))"! is unitary equivalent to
(P.o(h) = 0) "™ (P.p(h) +4) "™ (z = Po(h)~".
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Consequently, the cyclicity of the trace yields
2
7+ (2) = (2 1) (Pa(h) = i) ™ (Pp(h) +0) "z = P() '] (62)

forall z€ Qy =QnN{Imz >0}, § € D(0,6p) NR.

Now, fix § > 0 and let z € Q5 = QN {Imz > §}. Since P y(h) extends to an analytic type A
family of operators on D(0,6)), for sufficiently small 6y and z € Qg, the r.h.s of (6.2) extends by
analytic continuation in € to the disk D(0,6y). For 6 € D(0,60y) with Im6@ < 0 , both terms of (6.2)
are analytic on 4, and, consequently, (6.2) remains true for all z in Q.

From now on, the number 6 will be fixed in D(0,6y) with Tm# < 0. We drop the subscript
most of the time and write P, (resp. P.) instead of P 4(h), (resp. P g(h)).

In the Appendix, we will construct an operator ]3279(17,) : D — L*R") with the following
properties:

K = Pyy(h) — Pyg(h) has rank O(h™™), (6.3)

(ﬁQ’g(h) -2t =0(1): L*(R") = D, uniformly on z € Q. (6.4)

Moreover, K is compactly supported in the sense that K = yKyx with x € C§°(R").

Set K(z) = K(z — P,)~!. Then
(z—P) = (I +K(2))(z — P)
and the resonances z € Res P, coincide with their multiplicities with the zeros of the function
D(z,h) = det(I + K(z)).

Repeating the argument of [37], we obtain easily an upper bound of the number of the resonances
lying in 2. For the sake of completeness we present the proof. First, we have the estimate

|D(z,h)| < el K@l < eCoh" 2 e .
Next, for Imz > § > 0, z € Q we get
(I+K(z) "=z Pz P) ",
hence ||(I + K(z))~"|| < Cy. We write the operator (I + K(z))~" in the form
(I+K(2)) ' = (I~ K()(I+K()) ")
and we obtain

‘det(([ + R’(z))f])‘ <@ Imz >0
which implies
|D(z,h)| > Ce %" " 2 eQn{Imz > 4}
Now, applying the Jensen inequality in a slightly larger domain, we obtain the following.

Proposition 2. Let 0y, C C be a compact having the form given in Section 5. Then
#{z € Res Py(h), z € Qy o} < C(Qga)h ". (6.5)
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Using the resolvent identity
(z-P) '~ (z-P)'= (2 P)'K(z P)7",
we decompose the r.h.s of (6.2) as a sum of two terms I1 + I, where

L= (22 0)™e((P = i) ™ (Py i) ™(z = Po) ™ = (P =) (P +4) (2 = )7,

= (2 4+ 1)"tx((Py i) ™(Py+i) ™(Py— 2) 'K(z~ Py) ).

As in Section 3, by using the resolvent equation and the cyclicity of the trace, we show that Iy is

~

equal to tr((P2 —2) 'K(P, — z)’]) modulo a function holomorphic in  and bounded by O(h ™).
From (5.3) and (6.3), we get
ﬁgfpl =K+Vody

which together with the first resolvent identity

(z-P)"' (- B) ' =(z-P) (P B)(= B) ",
yield

L= (22 + )™t ([(Py—0) ™ +4) ™% (= Py) !

1= (27 + )™t ([(Py —d) ™(Pj +1) ]j:l(z 2)

HE )P ((Pr = i) (P ) (- P K (- By) )

+(22 + )™t (P — i) (P +0) (2~ P) (Vo @) (2 — Py) 7).

Exploiting (6.4) and Lemma 3, all terms on the right hand side of the above equality are holomorphic
in Q. Moreover, applying (6.3) and Lemma 2, we see that the first and the second terms are bounded
by O(h~™). Since V o & satisfies (5.2), the last term can be estimated in the same way. For this

purpose, it is sufficient to prove that the operator (P g —i)~"™ (V o (I>9) is a trace class with trace
norm bounded by O(h~™). The analysis, given in the proof of Lemma 3, implies that the operator
P, g — i is elliptic for Imf < 0. Then we decompose (P9 —4)~™ (V o @9) as a sum of three terms,
involving the functions g(z1) and 7(z,&), introduced in the proof of Lemma 2, and repeat the

argument of Lemma 2. Thus we have proved the following analogue to Proposition 1.

Proposition 3. There exists a function ay(z,h) holomorphic in S, such that for z € Q4 we have

o (z) = tr((P2 — ) 'K(Py - z)*l) +ay(zh). (6.6)
Moreover,
lai(z,h)] < CQOR™, z€Q (6.7)

with a constant C(Q) independent on h €0, hg].

Proof of Theorem 2. We repeat the argument of the proof of Lemma 1 and we get
(€)= tim o= [ ) [ +ie) o (A= ie)]ax, (6.8)

where the limit is taken in the sense of distributions. Next, we follow the proof of Theorem 1,
applying (6.8) and Proposition 3. O
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7. LOCAL TRACE FORMULA AND SPECTRAL ASYMPTOTICS

In this section we obtain a local trace formula in the spirit of [8] (see see [27] for compactly
supported perturbations and [36], [37] for general long-range perturbations). Repeating the proof
of Theorem 4 in [8], we get the following.

Theorem 3. Assume that P;(h), j = 1,2 satisfy the assumptions of Sections 4,5. Let
D=0 aC{ze€C: Rez<Ry—3¢, Imz>a(l—e )Imbh}, 0 <a<1

be an open, simply connected, relatively compact set defined in Section b such that I = QN R is an
interval. Suppose that f is holomorphic on a neighborhood of Q@ and that 1 € C§°(R) satisfies

_ 0, d(I, )\) > 27,
W)‘{ 1 d(1,\) <,

where n > 0 is sufficiently small. Then

elwN@E®)] = Y fE)+ B (7.1

I=1 cRes Pa(h) N QO
with
|Eq,fy(h)] < M (3, Q)sup {[f(2)] : 0<d(Q,2) <2n, Imz <O0}h™".

For the applications we need an asymptotic development of the trace. For this purpose we will
prove the following.

Theorem 4. Assume (5.2) satisfied with s > "+1 and s9 > n — 1 and suppose that suppV C {z €
R" : x> 61} for some 61 € R. Then for f € Co (R), we have

tr(f(P2(h)) — f(Pu(h Z”y’ﬂ "o h N0, (7.2)
7=0
with
—em) " [ [ @ VETER + o0+ Vi) dode = (o, 1), o1 =

To obtain a Weyl-type asymptotics of £(\, k), we need a expansion for the trace involving the
function

by (r) = (27h) / TG4 dt
which is the semi-classical Fourier inverse transform of § € C§°(R).
Theorem 5. In addition to the assumptions of Theorem 4 suppose that pa(x,€) = |2+ V (z) + 1

18 not ('7“7'1‘7'(’(1/ for all T € [Ey, E1]. Then there exist Cy > 0 and hy small enough such that for

0 e Coe(] - C_n’ CLO[ R), 6 =1 in a neighborhood of 0, f € C5°(]Eo, Fr[) and h €]0, hg] we have

tr ([ Pj(h))f(Pj(h))]j]) (2nh) " ((r Z (1) + O (7)"™)), ¥m € N, ¥N %712)

uniformly with respect to T € R, where

o(r) = (2mi) ! / '/W(am V(@) ((r 40— pa(,£) " — (7 — i0 — pa(a, £)) ") dut.
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The proof of Theorem 4 is a simple modification of that of Theorem 5, so we will establish

below (7.3).

As we have noticed in Section 1, in the case where the operators P;(h) are elliptic, Theorem 4
and Theorem 5 are well known (see [10], [30], [20]). Our idea is to apply the results of [10], [30]
and [20] after reducing the study of the left hand side of (7.2) and (7.3) to that of the trace of an
elliptic operator (see (7.12)).

Proof. Let f € C§°(]Ep, E1) and let fe C5°(C) be an almost analytic extension of f with
0,f(z) = O(]Tm z|>®). We choose f so that supp f C {z € C; Rez € [Ey, E1]}. Let By > 0 be a
large constant such that

R > ||VHoc + Ey + ‘(51| + 3.

Introduce a partition of unity 92(z1) + %?(21) = 1 on [§; — 1,+00c[, where 1 € C§°(R) and
supp %o C [Ry, +oco[. Notice that ¢1(z1) =1for & — 1 < 21 < ||Vl + E1 + |01] + 3.
As it was shown in Lemma 2.4, [32], for f € C§°(R) we have

tr(f(Po(h)) = F(Pi(R))) = —tr((D2, V) F(Pa())).

Applying this to the Lh.s of (7.3) and using the cyclicity of the trace, we get

2

te ([0 (r = Py F(P ()] ) = —te[gpofn(r — Po(h) F(Po(h)) (D, V)iho] (7.4)

j=1

—tr 110 (7 — Pa(R)) F(Po(h)) (D2, V)iin].
Let ¢ € C§°(R; [0, 1]) be equal to 1 for |t/ < 1 and equal to 0 for |¢| > 2 and introduce

| Im z|

Y

vy (2) = 9 ). Y =-Mhlogh,

where M is a large constant which we will choose below. Clearly, (¢y f)(z) = f(z) for z € R and
the function z — (7 — z) is analytic. Consequently, the Helffer-Sjostrand formula yields

tr (4164 (1 — Po(h) f (P (h)) (35, V) (7.5)

= *%tr(/ 0-(y )(2) 164 (1 — 2)(2 — Pa(h)) " (0, V)wlL(dz)) ,

Let G € C3°(R) with ¢; < G. Introduce the operators

Py(h) = —B?A + V(x) + G(z1)z1, Pi(h) = —h?A+ G(x))n,
and set

I =tr (1 [Bu(7 = Po(h) (Pa(h)) = Bu(7 = Po(R)) F(Pa(h))] (02, V)91 ).
It follows from (7.5) that

1= [ 0.0y )(2)n(r = 2)tr[ohr ((z = Pa(W) " = (z = Pa(h) ") (D0, V)1 | L(d2).

1
s
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We have G := (G — 1)z; = Py(h) — Py(h) = 0 near supp t; and this implies G(z — Py) "¢, =
[G, (z— P2) 'h1. Let o1 € C*°(R) be a function with 1/; = 1 near supp G and 9; = 0 near supp4.
Then

(2= Pa(h) ™" = (2= Pa(h)) ) (00, V)eht = —1 (2 — Pa(h)) " §1G (2 — Pa(h)) "1 (0, v(> |
7.6
= —h1(z = Po(h)) " (z = Po(h)) (G, Pa(h)](z = Pa(h)) "4 (05, V).
Let x1,...xnv € Cg°(R";[0,1]) with ¢ < x1 < ... < xn and xi[G, P(h)] = 0. By using the
equalities x1..xn%1 = ¥1, Xk |G, Pa(h)] =0, xx_1[xk, P2(h)] =0 and the fact that
(ks (2 = Po(R)) '] = (2 = Pa(h) ™' [xa, Po(M)](z — Pa(h)) ™",
we get
[G, P (m)](z — Pa(h) "4
=[G, Po(W))(z = Po(h) ' [x1, Bo(W)](z = Po(h) " lew, Pa(h)](z = Pa(h)) 41 = Liv(h).

Here
hN

| Tm 2|V
and we equip H" (R") with the h-dependent norm [[(hD)" | ;2. Choosing N > n our assumptions
on V and Theorem 9.4 in [10] yield

Ly(h) :ON(l)( ):HS*N(R") — HS(R™),

~N/2
H(—h?A +1)) V| =om™.
tr
Then
L . N/2 ~N/2
I[G, Bo)(z = Po) 4100, V)l = | Ew () (= WA +1) (= WA +1) 0, V]
(7.7)
9 —N/2 hN thn
< CH(*”' A+1) 8::1V||tr(m) < Cl(m)-
Since 8, f(z) = O(|Tm z|>°), we have
0:(y )(2) = f(2)0: (4y ) (2) + O(h™)
and, consequently,
1 ~ Sy
-/ (0.93)(F (2l - 2) (738)
T JY<|Tm 2| <2Y

xtr[yr (2 = Po(h) "~ (2 Pa(h) 1) (8, V)i | L(d2) + O(h™).
Next we take a real-valued function Ky € C§°(R) such that
Ky =1 near supp ¢1, Ko = 0 near supp 151.

Put K = aKj, a > 0. By using that K = a near supp %, and the fact that K = 0 near supp 1,51,
we get in the operator norm

Y1(z — Py(h)) 'hy = e @18 RN 8 Ry (2 — Py(h)) (e K18 R )y (7.9)

_ efalog%fl/}] (Z _ eKlng%PQ(h)eleog%)flq/}].
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On the other hand, a simple calculus shows that

Klog%(z _ PQ(h))eleog% —

(1 + [2hlog (VK) V + O(ahlog %)] (z — Py(h))~ )(z — Py(h))

in the operator norm for h < h(«@), h(a) > 0 being a continuous function.

Let us choose « as
| Im 2|

Chlgl’ﬁ)

where 8 > 0 is some arbitrary large and fixed constant and C' is sufficiently large. .

Since [|[(VK)V(z—P2(h)) '] = O(|Imz|~") and ahlog 4| Im 2| ' < %, then for C' large enough
the right hand side of (7.9) is O(e" 16 %|Im z|~!) in £(L2(R")). Combining this with (7.6), (7.7),
we get for |Im z| > —Mhlogh with a new constant Cy > 0

[ (= = o)™ = (2 = Po(B) ) (@ V)|

a'—-nnn(

Hm z|
= O(h " Imz| e % %) = O(h"Imz| > max(h®,c” @")).
On the other hand, the Paley-Wiener theorem yields

< 1 ﬁ“mz\
u(r — 2)| = O(eT ™),

where we have used that supp f C| — CLO’ CLO[ We choose Cy > Cy and the r.h.s of (7.8) becomes

| Im z|

—27 —n—1
h
Coh

I1=0(1

( ) Y <|Imz|<2Y
| Re z|<const.

max(hﬁ exp( ), exp(—%| Tmz|(Cy ' — C’U’I)))L(dz) + O(h™)
=01y 'h ! max(hﬁf%, exp(fM(log )(CQ C[f]))) + O(h™).

First choosing M sufficiently large and then the power in A? large enough, we see that this expression
is Oy (hY) for any N € N and h < h(N).

Turning to the study of first term in the r.h.s. of (7.4), choose a real-valued smooth function
F(xy) satisfying F'(z1) = 27 for x1 > Ry —1 and F(x1) > Ry —2 for all z; € R. Using the inequality
Ry > ||V|lso + E1 + 61| + 3, as well as the fact that suppf C {z € C; Rez € [Ey, E1]}, we get

€2+ F(21) + V(z) —Rez > 14101 > 1,
uniformly on (z, ) and z € supp f Introduce the operator
= —h2A + F(z) + V(x).

Clearly, P is semi-bounded on (Ofin (R”) and we denote also by P the selfadjoint extension of P. By
construction, z — (z — P)’] exists and is analytic in a neighborhood of supp f Combining this
with Helffer—Sjéstrand formula, we get

te[ (D, V)b (T — Pa(h)) £ (Pa(h))iho] (7.10)
= —tr( [ 0-v )R = )@ VIholi = Pol0) ™ (2 = Ba() ™ = (= = P) Voo (d)

where §(z) = f(2)(i — z)™. Here m is fixed so that (8,,V)(i — Py(h))~™ is a trace class operator.
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Since Py(h) — P = 2y — F(x1) =: F = 0 near supp v, we can repeat the argument of the proof
of (7.6) and get

((z —Pyh) (2 — P)*l)zpo = (2 — Pao(h)) "ho (2 — Pa(h)) " "eho

= (2 = Pa(h)) " a(z = P)"'[F, P)(z — P) "4y,
where b € C°°(R) with ¢, = 1 near supp F and o = 0 near supp 1.

To estimate the last term, notice that (z — P)~tand (hV)(z — P)~! € Opy(S°(1)) uniformly
for z € supp f (see the proof of Lemma 2 for the definition of S%(1)). Consequently,

(z = P)"'[F, P](z — P)"" € Opy/(5°(1)).
Since dist(suppis, supp 1)> 0, it follows from Lemma 2.1 of [13] that
lb2(z — P)"'[F, Pl(z — P)~ 4|l = O(h"), VN € N.

uniformly on z € supp f .
On the other hand, the argument of the proof of Lemma 2 yields

102, V) (i — Po(h)) " [lir = O(A"").
Combining the above three equalities with the estimate |(z — Py(h)) '] = O(|Im 2| '), we obtain
(D2, V)@~ Po(h)) ™ (2~ Pa(h)) " = (2= P) V)gholir = O(WN " /| Tm 2]).

Going back to the integral in (7.10), and using that 8, (¢y f)(2) = f(2)0.(¢y)(z) + O(h®), we
deduce

tr[ (02, V)0l (7 — Pa() F(Pa(h)bo| = O(h™).

Summing up, we have proved that

tr ([0 (7 - Pj(h))f(Pj(h))]j_l) = —tr[(92, V)On(r = Po(R)f (Po(h))ipr ] + O(h™). -

In the same way, we obtain
(s )

The operator Py(h) is a short-range perturbation with decreasing potential V of Pj(h), so
Theorem 4 and Theorem 5 follow from the h-pseudodifferential calculus and the analysis of elliptic
operators in Chapters 8, 9, 12, [10] (see also [29]). The leading term ag has the form

ag = (2m)™" / /R (f(\€|2 + G(z1)m1 + V(7)) — fIE° + G(ml)ml))wl(ml)dmdf

(0, V) F(Pa(R)h1 | + O(h). (7.12)

= @n) [ [ (FO6R + 20+ Vi)~ F(1gP +a0) dad

since the integration with respect to z; in the second integral is over the set 61 < 21 < Ey + [61] +
[Vl and G(z1) = 41(x1) = 1 on this set. This proves that the leading terms is independent on
the choice of G, 1. A similar argument implies the independence of the asymptotic expansion (7.2)
on the choice of G, 11, provided that 1, (z1) =1 for 6y — 1 < x1 < Ey 4 [61] 4+ ||V]|oo + 3. Next, we
have
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a = @n) 7 [ [ (FO6P + a0+ V@) = FO7 + 1)) dad

@) [ [ @nVIIER + 1+ V)dade

_ (gw)fn//RQn /va’(|§2+$1 + ) dtdwde.

a

Now we will apply Theorems 2, 4, 5 to obtain a lower bounds for the number of the resonances
and a Weyl-type asymptotics for A € [Ey, E1].

Theorem 6. Assume the assumptions of Theorem 5 fulfilled and suppose that Ey < § = inf{x; €
R: xy € supp,, V'}. Then there exists hg > 0 small enough such that for h €]0, ho] we have

(N ) = (27h) "eo(A) + O(h" T, (7.13)
uniformly on X € [Ey, E1], where

() = —rwn [ 2 V@O V() ) ids (7.14)
with wy, = vol S"~'. Moreover, if for all N € N,
Res(Py(h) N ([Bo, B1] —i[0, NhIn(1/h)]) =0, 0< h < h(N)),
then

h) ~ Y 7AW" N0
=0

with o (X) = ¢ (N).

Proof. Following [8], [12], the proof is rather similar to that in these papers and for this reason
we will present only the main steps. The reader may consult [8], [12] for more details. Let  C C
be a compact domain having the properties described in Section 5 and let [Fy, F1] C QN R. We
assume that z € 2 = Rez < ;. Let ¢ € C°(R), suppp C [Ey — €, 1 +¢€], C QNR, € > 0.
Introduce the functions

My(N) = —= Z /oo o up? (w)dp,

T
wE Req Pg

A

J =00
r(A, h) being the holomorphic function in Theorem 2 related to the domain Q. Applying Theorem
2, we get

A
e i = M) + Gy (). X € B, )

The function M, () is increasing and, as in [8], [12], we may apply a Tauberian theorem based on

the estimates

My(\) = O(h™™), %(éh * My)(\) =O(h™").
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The first estimate follows from Proposition 2, while for the second one we exploit Theorem 5 and
the argument of [12]. Consequently, we have

M,(X) = (0, = My)(N) + O(h' ™),
Guo(\) = (B + GL)(N) + O(h ™).

Without loss of the generality, we may assume that every A € supp ¢ is a non-critical value of the
symbol [£|? + 21 + V(z). Applying Theorem 5, we deduce

[ egtan=bue [ egtan 0wy = ([ wtwan)n 0w,

where the function o (p) is given by Theorem 5.

Now we choose C = d; — |V« and we apply the above argument for a cut-off function ()
for which we have
suppp C {AeR: A<}

For this purpose we choose a domain (2 as above and observe that |£|2 + 21 + V() has no critical
values A € supp . It is easy to see that v;(A\) =0, j =0,...,N — 1 for A < C}, so for such cut-off
function we have

[ eewin = 0m* ), vx e
Consider a partition of unity 901()\())0—}- ©2(A) +@3(X) =1, 9;(A) € Cg°(R), j =1,2,3, on the interval
[Co, By + €], E1 + € < dy, Cy < Cp. We assume that
w3 = lon[Ey, Ey], supp ps C [Ey — €, E1 + €,
supp 1 C|—o0, Cp —€[, € > 0.
For X € [Ey, E1], we get

1  Imw
OB —ECrl) =—— Y e ()
wé€(Res Pa(h)) NQ K

+2 /oo @1 (p) Imr (p, h)dp

T Jo,
wtefea(P))] |+ Myy() + G (.

For the terms involving @3 and ¢; we apply the above argument and we observe that

Ch1—e Ch1—e Co N
A p1&'dp = / o1&'dp — / 01&'dp = O(h™" ™), YN € N.
)

— 00 — 00
Next, we may choice the value of £(X, h) at one point and we suppose that £(Cy, h) = 0. Thus we
obtain the asymptotics (7.13). To find the coefficient cy(A), notice that from Theorem 4 and the
definition of £(\, h) we have

o f) = [ [, OV @IS + 1+ V(@) dade

1 o0 n
= 5un / / O, V() f(t + V(x) + z1)t2 Ldtdz
0 n
1 o0 o0 n
= ——wy / 0,V (7) / F'Nt2 " d\dtdx
2 Jo  Jrn Jt+V(z) 42
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1 L
— o [ A L 0aV@O = V) - o0 1 Ndrds,

n

which gives (7.14). The second assertion of Theorem 6 can be established combining Theorems 2,
5 with the argument of the proof of Theorem 3 in [12]. As in Theorem 3 in [12], we show that for
A € [Ey, Eq] we have

(éh*ﬂ)o\) —Imw +O(;€f%‘lmu}‘)’

| — w|? - A — w|? Imw|
- Imw Imw
(0 (1= p3()) 75 ) (V) = (1 = g3(\) 3 + O(h™),
| —w| A —w|

O * Gy = Gy + O(h™),

where we assume that § =1 on [f%, %] Since for all resonances w € (2 we have the lower bound
|Imw| > Nhlog(1l/h), we may estimate the exponent involving | Im w|. Thus we conclude that

O * (03€") (A, B) = p3(A)E' (A, h) + O(RNC/2"=1) YN e N

and this implies easily the second assertion of Theorem 6. O
Let V, [Fy, E1] and §; be as in Theorem 6. For f € C§°(R), introduce the measure

(1) = [ (£l + V@) = (o)) do (7.15)
Since
1)) < sup ] [ 1V (w)ld,
w1 is a distribution of first order. We denote by sing;uppa w1 the analytic singular support of p.

Theorem 7. Suppose the assumptions of Theorem 4 fulfilled. Let 61 > E1 > 61 — ||Vl and let
A\ €]Ey, E1[ N singsupp, u. Then for every h-independent complex neighborhood Q2 of X there exist
ho = h(Q2) > 0 sufficiently small and C = C(Q2) > 0 so that for h €]0, ho| we have

#{z € Q: z€Res(P(h)} >C(Q)h".
Proof. Let 1 € C§°(R) be a cut-off function so that ¢ = 1 near [0y — ||V — 1, E1 + |01] +
|Vl]leo + 3]. For f € C§°(]Fy, E1[) introduce the distributions

(i 1) = [ (F@)m + V@) = fen)a))ds.

@, £) = @0 [ (FUEP + pan)ar + V(@) = FUEL + P(on)an) ) dode.
Clearly, i € &'(R) and i = pu, @ = w on |Ey, Eq[, where the distribution w has been introduced
in Theorem 4. Next the proof follows with minor modifications that in [35] and we will present
only the main steps.

Denote by W F,(.) the analytic wave front. As it was shown in [35], we have

WF, (ﬂ) = WF, (aj)
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Since @ is real, it is clear that (A, 1) and (A, —1) are in WF,(@). From the definition of the analytic
wave front set by the F.B.I transformation, it follows that there exist sequences (o, 5;) — (A, 1),
v; /' +oo and € N\, 0 such that

\/(fj%)(t)@(t) dt| > e~ (7.16)

where f;(t) = €' (05 —1)8; o= F (=" anq X is a cut-off function supported in a small real neighbor-
hood of A, and equal to 1 near A.

Let a be a small positive constant. Set Qg :=]\ — 2a, A + 2a[+i] — 2a?,a?] and Q ;=]\ — a, A +
a[+i] — a?, a?]. By construction, there exist Cy > 0 such that for j large enough we have

fi@)] < ¢ T uniformly for ¢ € Qp\ Q, Im¢ <0. (7.17)

Let x(t) € C§°(JA — 2a, A + 2a[;[0,1]) with x(t) =1 on |A — a, A + a[. For a > 0 sufficiently small
the inequality (7.16) remains true for x replaced by x.
Applying Theorem 4, we get

tr[(xfi) (Pa(h)) = Ocfi) (Pr(h))] = (27Th)*"/(xfj)(t)@(t) dt+ O;(h'™"). (7.18)

Here we have used that we may write the leading term with the cut-off function 1 (z;) and for this
reason we use the distribution w. On the other hand, an application of Theorem 3 with f = f;, ¢ = x
and Qg , replaced by €2, yields

B
tr[Ocf3) (Pa(h) = () (P (R))] = > fi(z) + O(1)h™"e T, (7.19)
2€Res(Pa(h))NQ_
where Q_ = {w € Q; Im(w) < 0}. Combining (7.18) and (7.19), we get
1
S 5 =) [ ()05 i 0 e T+ 0,0,
z€Res(P1(h))NQ2—
which together with (7.16) imply
Y nE|zem e - o W]+ o,
2€Res(Pa(h))NO_
Fixing j large enough and then taking h sufficiently small, we conclude that
1
| > f(2)| > o (7.20)
2€Res(Pa(h))NO_

where f = f; (with j fixed) is independent of h. Thus we obtain a lower bound on the number of
resonances in {2_ and since we can choose €2 as small as we wish, the proof is complete. O

8. APPENDIX

Our purpose is to construct an operator ]3279 which satisfies (6.3) and (6.4). Introduce

1
0<e¢= roR min{e/2, (o« — 1)c; Im O} < min{e/2, (@ — 1)c; Im O},
0
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where Cj, ¢; are the constants of Lemma 3, € is given by the analytic distortion and 0 < a < 1 is
the constant in the definition of £2. We assume below all these constants fixed.

Since (V o @g) satisfies (5.2), we may choose R; > 0 large enough so that

SumeRrQ‘ (V o @9)‘ < %0. (8.1)

We fix below R; with the above property. Let xo+ x1 = 1, where xo € C§°(R"; [0,1]) is equal to 1
near B(0,R;) and xo = 0 for |z| > Ry + 1. Let x; < X;, where the function X; has a support close
to that of x;.

Choose a real-valued smooth function f(t) satisfying f(¢) — ¢t > M for 0 <t < M, f(t) =t for
t>2M and f(t) —t >0, f(t) > M > 0 for all t € Rt. Here M is a large constant which will be
fixed in the formula (8.5). Recall that, taking 6y small enough for |f| < 6y we have

(Reag()é.€) > SleP (52)

uniformly on = € R”.
Introduce the operator

Py 1= Xo(2) (F(h*D2) = (hD.)?) xo(x) + Pag.
Let 92 + ¢? = 1, where 1j has the same support properties as x;. We assume that 11 < xi.
Combining (8.1) with the estimate (5.9), we obtain
1(Po — 2)thrul > Cil[¢null, VueD (8.3)
for all z € Q. On the other hand, since g1 = 0 and x19; = 91, we have

(Py — 2)p1u = (Pg — 2)x191u = (Pag — 2)X1910.
Then, for z € Q and u € D, the estimate (8.3) yields
1(Py = 2)ihrull > Cullghrull. (8.4)

Let g € C§°(R™; [0,1]) have support close to that of ¢y and assume 1)y < Yo. Let G € C*(R;R)
be bounded with all its derivatives. We choose G so that G(x1) > 2¢ for x1 > 2¢ and G(z1 — Rez) =
x1 — Rez for xy € supp,, 9o and z € Q.

Next, we choose M so that

FUER) — €% + (Reag(2)€, &) — suppyy<p, [V 0 @o(z)| — Gl — [Bolllvlloc > (1 +[€[), 3
8.5

for some positive constant ¢ independent on 2z € R” and z € Q.

We define
Prg,. = Xo() (f(h2D2) = (hD.)?) xo(x)
thV(a,g(m)V) +G(x1 —Rez) + (V o (I)g) (2)o(z) + v(z1) —iIm z + hg(z1).
Clearly,
(Py — 2)hou = Py g bou, Yu € D, z € Q. (8.6)
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Exploiting (8.5), we will show that 151’(;72 is globally elliptic for z € Q. By using the h-pseudodifferential
calculus, we will construct a parametrix for P; g, and estimate its norm.
The principal symbol of P; g , has the form

B102(2,€) = (€2~ 1€1*) xo(@) +{ap(2)€, €) + (21 — Re z) + (V 0 @y ) (z)dho () +Ov (1) — i Tm 2.
Obviously, py1g..(z,€) € S((1 +]£/?)) and
[Pro (@, )] > &P, €0, ¢ >> 1. (87)

Here we use fairly the notations and the terminology for symbol spaces (see for instance, [10]). We
claim that

[Pro(w,€,2) > ca(1+[€1%), e2 >0 (88)
uniformly on z € Q and (z, £) € R?". For |z| < Ry, we have xo(z) = 1, and from (8.5) we deduce
|Repg(, & 2)| > c(1+[¢), (8.9)

uniformly on z € Q and |z| < R;.
For || > Ry and z1 — Ry > —e¢, we have 21 — Rez > 2¢, since Rez < Ry — 3¢ for z € Q (here
Ry is given by the definition of the set Q@ = €y ,). Combining this with (8.1), (8.2), and using

(fE7) - \§|2)Xg(gc) > 0 as well as the inequality G(t) > 2e for ¢ > 2¢, we obtain

Repno(w, € 2) = (F(€* — ¢1*) xo(w) (8.10)

+(Re ag(z)¢,€) + G(1 — Rez) +Re(V 0 &) () () > cale +[¢]?), e5 >0,

uniformly on z € Q, |z| > Ry and 1 — Ry > —e.
For |x| > Ry and 21 — Ry < —¢, we repeat the arguments of the proof of Lemma 3. More
precisely, applying the inequalities Imay < 0, Imf < 0 and Imz > (1 — e ¢) Im 0, we get

[Tmpy (2, ¢, 2)| = [(Imag()E, ) (8.11)
—I—Im(V o @g)( Nipo () + Im Qv (1) — Tm 2| > 2¢/3,
uniformly on z € Q, |z| > Ry and 21 — Ry < —e. Summing up the estimates (8.7), (8.9), (8.10) and
(8.11), we obtain (8.8).

Applying a classical result for elliptic operators, we deduce from (8.8) that for hg small enough
the operator P, 0,2 1s invertible for h €]0, hg] and ||P1 0.l = O(1), uniformly on z € Q). Combining
this with (8.6), we get

1(Py — 2)4poull > Collpoull. Yu € D, (8.12)

uniformly on z € €. N
Taking together (8.4), (8.12), and using an estimate for the commutator [¢;, Py], similar to
(5.11), for z € Q and h small we deduce

1(Ps — 2)ul® = Z 9 (Py = 2)ul” (8.13)
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lul|?, ¢4 >0, u€D.

1, 5 ! -
> 5 2 1P — 2)jull” = 31l Polull® > e
j=0 i=0

Exploiting once more the fact that the Weyl symbol of Py — P, 4y has compact support in z and &,
we conclude that Py — z is a Fredholm operator with index (0. Consequently, we have proved the
following.

Lemma 5. For h small enough and z € Q the operator (]59 — z) is invertible and
(z— Py)~' =0Q1) : LXR") — D.

By construction, we have ]597P2,g = Xo (f(—hQA)—I-hQA) X0 = XoQ(—h?A)xo with Q € C§°(R).

Let W € C®(R™; R") with W = 0 near suppxo and W = |z|? near infinity. Obviously, the operator
(—h%A + W) has discrete spectrum. This implies that

K = %0Q(—h*A + W)xo has rank O(h™").
On the other hand, the h-pseudodifferential calculus (see [10]) shows that
X0Q(=h*A)xo = K = O(h™)
in £(L?(R")). Thus we conclude that
XoQ(~h*A)xo = K + 1T, (8.14)

where K has rank O(h™") and ||T|| = O(h™).
Now it is clear that (6.3) and (6.4) are fulfilled with P,y = Py — T
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