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TL;DR: At low Mach number, the solutions approach the incompressible regime with ∇ · v = ∂xu + ∂yv ∈ O(ε). The aim is to achieve an all-speed (high + low Mach numbers) Finite Volume method.
The problematic term at low Mach number is 1

ε∂
2
xu in the numerical diffusion, but just removing it does not work for high Mach number flow. Here, a truly multi-dimensional way without ad-hoc fixes is

presented: to complement the term to 1
ε∂x(∂xu+∂yv) = 1

ε∂x(∇·v). The stabilizing terms for high-Mach flow are still in place, but the term is automatically O(1) if Mach number is low; no switch required.

Standard method (300× 150) Example: Kelvin-Helmholtz instability at Mach number 0.1 and less

Standard method (1200× 600)
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New, all-speed method (300× 150)

New, all-speed method (1200× 600)
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Simple way to think about the spatial low Mach number problem: A finite volume method that has an error ∼ ∆x
ε −→ requires unreasonable grid refinement if ε is small.

There is additionally a temporal low Mach number problem related to explicit time stepping: as ε→ 0, due to the CFL condition ∆t→ 0. A solution to this is implicit/IMEX methods. Here, let us
insist on the ability to integrate explicitly in time and focus on the spatial low Mach number problem only!

Identifying the problems of standard methods:

Low Mach number limit

Take ε > 0 and Mloc =
|v|√
γp/ρ

∈ O(ε) as ε→ 0. This corresponds to solving

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v) +
∇p
ε2

= 0 e =
p

γ − 1
+

1

2
ε2ρ|v|2

∂te+∇ · (v(e+ p)) = 0 v = (u, v)T in 2d

Formal asymptotic analysis:

v = v(0) + v(1)ε+ v(2)ε2 + . . .

p = p(0) + p(1)ε+ p(2)ε2 + . . .

Limit equations: ∇p(0) = ∇p(1) = 0, ∇ · v(0) = 0.

Asymptotic analysis
E.g. for the Roe solver, as ε→ 0, the following numerical diffusion appears

∂t(ρu) + . . .+
∂xp

ε2
' ∆x∂x

(cρ
ε
∂xu
)

+ ∆y∂y

(cρ
ε
∂yv
)

+ . . .

As ε→ 0, we have ∂xp
(0) = 0 (good), and either

∂xp
(1) 6= 0 or ∂xp

(1) = 0 and ∂x(c
(0)ρ(0)∂xu

(0)) + . . . = 0

the latter being an additional, artificial restriction on (u, v). The discrete limit
states are not discretizing all the limit states of the PDE: instead of all those
with ∂xu

(0) + ∂yv
(0) = 0, the limit states of the scheme are (at best)

∂xu
(0) = 0 ∂yv

(0) = 0

The low Mach problem is genuinely multi-dimensional.

Directional splitting
For the conservation law ∂tq +∇ · f(q) = 0 (e.g. in 2d)

∂tq + ∂xf
x(q) + ∂yf

y(q) = 0

the finite volume method on Cartesian grids reads

∂tq +
fx
i+1

2 ,j
− fx

i−1
2 ,j

∆x
+
f y
i,j+1

2

− f y
i,j−1

2

∆y
= 0

Directional splitting: make the x-flux fx
i+1

2 ,j
only depend on (qij, qi+1,j) and

f y
i,j+1

2

only on (qij, qi,j+1). (This is a simplification of life!)

Directional splitting allows to immediately extend a 1-dimensional method to
multi-d, but generally not in a way that takes into account subtle balances
between different directions.

Solution (usual path): Solution (new approach):

• Remove the 1
ε -scaling from the diffusion by multiplying those terms with f ∈ O(ε) (e.g

f = min(εv/c, 1)) (low Mach fix)

∂x

(cρ
ε
∂xu
)

7→ ∂x

(
f · cρ

ε
∂xu
)

with f ∈ O(ε)

Li and Gu [2008], Thornber and Drikakis [2008], Dellacherie [2010], Rieper [2011], Li and Gu [2013], Chalons

et al. [2016], Oßwald et al. [2016], Barsukow et al. [2017],...

• Remove all the diffusion in the acoustic operator → central derivatives (and retain it
only for advection) (implicit/IMEX methods) Degond et al. [2007], Degond and Tang [2011],

Cordier et al. [2012], Haack et al. [2012], Bispen et al. [2017], Boscheri et al. [2020], Thomann et al. [2020],...

Low Mach fixes come at the disadvantage of being ad hoc, and reducing stability (Birken and
Meister [2005], Barsukow et al. [2017]). Implicit methods can be expensive for an all-speed
regime. The actual question really is: What’s wrong with Riemann solvers?

Change the diffusive terms to ∂x

(cρ
ε

(∂xu+∂yv )
)

+ ∂y

(cρ
ε

( ∂xu+ ∂yv)
)

thus making appear the divergence ∂xu+ ∂yv each time.

This is a low-dissipation scheme for (asymptotically) divergence-free flows. The procedure is the opposite of low Mach fixes and central
discretizations: They remove troublesome terms, we complement them to make the result disappear in the limit.

The only “magic” is how to do this discretely. Barsukow [2021]

From vorticity preserving methods (see on the bottom left) for linear acoustics, we know how to discretize divergences ∂xu+ ∂yv and gradients

of the divergence (e.g. ∂xxu + ∂xyv). The only part required for nonlinear problems is a discretization of ∂x

(
A(∂xu + ∂yv)

)
, where A is any

function of the dependent variables. Observe that we can rewrite ∂x

(
A(∂xu+ ∂yv)

)
= A(∂xxu+ ∂xyv) + (∂xA)(∂xu+ ∂yv).

Here is a discrete counterpart of this Leibniz rule (bracket-notation explained below):[
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A little bit of background: Example:
Acoustics and vorticity preservation

∂tv +∇p = 0 v : R+
0 × Rd → Rd

∂tp+∇ · v = 0 p : R+
0 × Rd → R

Vorticity ∇× v is stationary: ∂t(∇× v) = 0. Write v = (u, v) in 2d.
Modified equation of a standard scheme that is inspired by 1d-arguments:

∂tu+ ∂xp =
1

2
∆x ∂2

xu+O(∆x2)

∂tv + ∂yp =
1

2
∆x ∂2

yv +O(∆x2)

∂tp+ (∂xu+ ∂yv) =
1

2
∆x (∂2

xp+ ∂2
yp) +O(∆x2)

Vorticity is no longer stationary. A vorticity preserving method requires the numerical dif-
fusion to be a gradient: Morton and Roe [2001], Sidilkover [2002], Jeltsch and Torrilhon [2006], Mishra and

Tadmor [2009], Lung and Roe [2014], Barsukow [2019]

∂tu+ ∂xp =
1

2
∆x ∂x(∂xu+∂yv ) +O(∆x2)

∂tv + ∂yp =
1

2
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1

2
∆x (∂2
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The discrete version of ∂xu + ∂yv = 0 ⇒ ∂xxu + ∂xyv = 0 is not true for all discretizations of
∂x, ∂y, ∂xx, ∂xy, because Dxx 6= D2

x in general. However, the following finite differences have this
property (2d Cartesian grids):

∂xu+ ∂yv ∂xxu+ ∂xyv

Relaxation solver
Following Bouchut [2004], Chalons et al. [2010]:
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with the intermediate states
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and thus
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. Replace it by the discrete version of
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. To this end, define
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Notation: Square brackets are differences and curly brackets are sums. For example, [a]i+1
2

= ai+1 − ai, and {{a}}i±1
2

= {a}i+1
2

+ {a}i−1
2

=

ai+1 + 2ai + ai−1. For all details, see Barsukow [2019].
Define then (the divergence in the denominator is not necessary, but seems natural)
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The method is all-speed, i.e. it is able to resolve both low Mach number flow and shocks in a stable way. For more details and numerical
examples see Barsukow [2021].

Summary and outlook: References:
• Multi-dimensional extension ensures that the numerical diffusion depends on derivatives

of the divergence in the limit of low Mach number
• Leaves the 1d method untouched: conceptually pleasing and surely a reason for the

good stability properties
• Surprisingly easy to achieve all-speed property on Cartesian grids; strategy has been

applied to a relaxation solver and a Lagrange-Projection scheme Barsukow [2021]

• No ad-hoc parameters
• Automatically all-speed, no switches

Future work:
• Extension to high-order and unstructured grids (see Barsukow et al. [2023])
• Showing an entropy inequality

Wasilij Barsukow. Stationarity preserving schemes for multi-dimensional linear systems. Mathematics of Computation, 88(318):1621–1645, 2019.

Wasilij Barsukow. Truly multi-dimensional all-speed schemes for the euler equations on cartesian grids. Journal of Computational Physics, 435:110216, 2021.
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