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TL;DR: At low Mach number, the solutions approach the incompressible regime with V - v = 0,u + 9,v € O(¢). The aim is to achieve an all-speed (high + low Mach numbers) Finite Volume method.

The problematic term at low Mach number is %Qﬁu in the numerical diffusion, but just removing it does not work for high Mach number flow. Here, a truly multi-dimensional way without ad-hoc fixes is

presented: to complement the term to %ax(ﬁxu +0yv) = %896(V -v). The stabilizing terms for high-Mach flow are still in place, but the term is automatically O(1) if Mach number is low; no switch required.

Standard method (300 x 150) Example: Kelvin-Helmholtz instability at Mach number 0.1 and less New, all-speed method (300 x 150)

Standard method (1200 x 600)

Az

-+ — requires unreasonable grid refinement if ¢ is small.

Simple way to think about the spatial low Mach number problem: A finite volume method that has an error ~

There is additionally a temporal low Mach number problem related to explicit time stepping: as ¢ — 0, due to the CFL condition At — 0. A solution to this is implicit/IMEX methods. Here, let us
insist on the ability to integrate explicitly in time and focus on the spatial low Mach number problem only!

Identifying the problems of standard methods:

Low Mach number limit Asymptotic analysis . . - Directional splitting ) .0
Take ¢ > 0 and M, = |V|/ € O(e) as ¢ — 0. This corresponds to solving E.g. for the Roe solver, as ¢ — 0, the following numerical diffusion appears For the conservation law d;q + V - f(¢) = 0 (e.g. in 2d)
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Formal asymptotic analysis: states are not discretizing all the limit states of the PDE: instead of all those Dylrectlonal splitting: make.t}?e o ﬂux fiJr%,j .only dépend on (gij, gi+15) and
— v ¢y 4 @2 4 with 9,u® + ﬁyv(o) = 0, the limit states of the scheme are (at best) fi’jj% only on (gij, gij+1)- (This is a simplification of life!)
= pO 4 pWMe 4 pPe2 4 o.u0 =0 9.0 =0 Directional splitting allows to immediately extend a 1-dimensional method to
v Y multi-d, but generally not in a way that takes into account subtle balances
Limit equations: Vpl» = vp) =0, V- v(® = 0. The low Mach problem is genuinely multi-dimensional. between different directions.
Solution (usual path): Solution (new approach):
. . C c . . .
* Remove the l-scaling from the diffusion by multiplying those terms with f € O(e) (e.g Change the diffusive terms to 0, (?p(@xu +0,v )) + 0, ({( Oy u+ 5’yv)> thus making appear the divergence 0,u + 0,v each time.
f=min(ev/c,1)) (low Mach fix) This is a low-dissipation scheme for (asymptotically) divergence-free flows. The procedure is the opposite of low Mach fixes and central

discretizations: They remove troublesome terms, we complement them to make the result disappear in the limit.

cp cp _
a(—au) - a( -—au) with f € O(c . o
\e LS € " / (€) The only “magic” is how to do this discretely. Barsukow [2021]
Li and Gu [2008], Thornber and Drikakis [2008], Dellacherie [2010], Rieper [2011], Li and Gu [2013], Chalons From vorticity preserving methods (see on the bottom left) for linear acoustics, we know how to discretize divergences d,u + 0,v and gradients
et al. [2016], OBwald et al. [2016], Barsukow et al. [2017],...

e Remove all the diffusion in the acoustic operator — central derivatives (and retain it

only for advection) (implicit/IMEX methods) Degond et al. [2007], Degond and Tang [2011], function of the dependent variables. Observe that we can rewrite 0, (A((?xu + (9yv)> = A(Oppu + Opyv) + (0, A)(Opu + Oyv).
Cordier et al. [2012], Haack et al. [2012], Bispen et al. [2017], Boscheri et al. [2020], Thomann et al. [2020],...

of the divergence (e.g. Oy,u + Oyyv). The only part required for nonlinear problems is a discretization of 0, (A(@xu + @,v)), where A is any

Here is a discrete counterpart of this Leibniz rule (bracket-notation explained below):

Low Mach fixes come at the disadvantage of being ad hoc, and reducing stability (Birken and

Meister [2005], Barsukow et al. [2017]). Implicit methods can be expensive for an all-speed (|1 » 1o Lo 1 . T Toa (L . 1 ,
regime. The actual question really is: What’s wrong with Riemann solvers? A 4{{u}}3+% + 4{[U]Ji1} i1 2{A}li%’j 4{{u}}]i% i1 * ZLHIU]HEI]]jEl * Q[A]li%d 4{{u}}]i% it * 4{{1)}}&% 1
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A little bit of background: Example:
Acoustics and vorticity preservation Relaxation solver
. . Following Bouchut [2004], Chalons et al. [2010]:
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Vorticity V X v is stationary: 9;(V x v) = 0. Write v = (u,v) in 2d. 0 r _ Qi Uil — G ST <U with the intermediate states Uit = 75 e Pli+}
Modified equation of a standard scheme that is inspired by 1d-arguments: taqza Gi+1 * W <Lyt 4 (»}
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O + Oyp = §Aa: 851) + O(Az?) and thus xf ~ x2p — Oy (gﬁmu) Replace it by the discrete version of xf ~ %p — Oy (g(ﬁxu +0,v )) To this end, define
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Vorticity is no longer stationary. A vorticity preserving method requires the numerical dif- i ({{phah ‘ (L], 1) {ohal;
fusion to be a gradient: Morton and Roe [2001], Sidilkover [2002], Jeltsch and Torrilhon [2006], Mishra and * _ PYiviI1jt; _ae Wit 353543 + Usitglixl otc
Tadmor [2009], Lung and Roe [2014], Barsukow [2019] pi""%’j 8 2 4 4 -
O + Opp = %Ag; 0, (0,1 +0,v)) + O(Ax?) Notation: Square brackets are differences and curly brackets are sums. For example, [a]; 11 = aj41 — a;, and {{a}}, 11 = {a}; 1 +{a};_1 =
1 aj+1 + 2a; + a;—1. For all details, see Barsukow [2019].
O + Oyp = §A£U 0y (| Oyu+ 0yv) + O(Az?) Define then (the divergence in the denominator is not necessary, but seems natural)
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The discrete version of d,u + Oyv = 0 = Oppu + Jyyv = 0 is not true for all discretizations of 1+ ‘;’—5 u”f ity + Z:er ’ — 5;@%
Oy, Oy, Opg, Opy, because D, # D? in general. However, the following finite differences have this
property (2d Cartesian grids): )
-1 11111211 11-2111l-1 1 Finally fz‘x+§,j = p;‘:-%,j,Lu;;%,j’ p;-%,j,L (u:‘;%,j) ’p;‘k+§,j,Lu;'k+%,jUz‘jvEz'+%,j,Lu:+§,j if u;:—%,j > 0, etc.
20 12 21-4|2 The method is all-speed, i.e. it is able to resolve both low Mach number flow and shocks in a stable way. For more details and numerical
les see Barsukow [2021].
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