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1 Abstract

These master’s projects explore the development of Active Flux methods for solving evolutionary
partial differential equations (PDEs). Active Flux is a modern approach that blends ideas from
Finite Volume and Finite Element methods, using both cell averages and point values at inter-
faces without relying on Riemann solvers. Students can choose from three research directions:
extending Active Flux to non-hyperbolic equations like the heat equation, studying its ability
to preserve asymptotic regimes in singular limits (e.g., the Korteweg–de Vries equation), or im-
proving the method’s stability by aligning it with physical time step constraints. The projects
involve both theoretical analysis and numerical implementation, and are suited for students with
a background in numerical analysis and PDEs.

2 Context

The projects presented here are concerned with the numerical approximation of various types
of evolutionary partial differential equations (PDEs). The natural setting is that of an
initial-(boundary-)value problem, with the solution to the PDE sought in a domain Ω ⊂ Rd for
times t > 0. The numerical approach uses grid-based methods at the frontier between Finite
Volume and Finite Element methods.

A long-standing paradigm in the development of numerical methods for hyperbolic PDEs has
been that they need to be based on discontinuous reconstructions (see e.g. [LeV02]). This is
very different from e.g. classical Finite Element approximations, where continuity across element
boundaries is enforced. Finite Volume methods evolve the degrees of freedom using so-called
Riemann solvers: short-time evolutions of a discontinuity. Piecing together these short-time
evolutions as building blocks at every cell interface gives viable methods. The most well-known
Finite Element approach to conservation laws (Discontinuous Galerkin methods) also introduces
jumps at cell interfaces.

Active Flux methods (e.g. [ER13, WB21, DBK25]) take a radically different approach:
additionally to storing one average per cell, a point value is stored at every cell interface. The
reconstruction thus must be continuous and no Riemann solvers are needed. One requires instead
an update procedure for the point values. Here the approach of Active Flux is not to use a
variational formulation, as Finite Element methods would. Instead, the point values are evolved
directly, as a short-time evolution of (continuous) data. These building blocks are referred to
as evolution operators. Active Flux thus blends ideas from Finite Volume and Finite Element
methods, and has been shown to have many favorable properties.

For linear hyperbolic equations (e.g. linear advection) the time evolution can be found by
tracing the characteristics. For nonlinear problems, and for problems in multiple space dimensions
finding adequate updates for the point values is an active area of research. The choice of the
update has direct impact on the properties of the resulting method, most importantly on its
stability.
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3 List of projects

Many questions still remain unanswered for Active Flux today, but the novelty of Active Flux
can make significant progress easier to achieve. The following master projects are available:

1. Active Flux for non-hyperbolic equations

Hyperbolic PDEs are characterized by a finite speed of information propagation, i.e. the
solution at x ∈ Rd at time t > 0 depends only on the initial data in some compact set
around x. The actual domain of dependence can be just one point or e.g. a disk around
x. This is the reason why short-time evolutions can be assembled, as long as the time step
is short enough for them not to interact with each other. For non-hyperbolic equations,
the domain of dependence is no longer compact. For example, the heat equation involves
a convolution with all the initial datum. The aim of the project will be to find suitable
approximations, to implement them, and to study their order of accuracy and stability
both theoretically and experimentally.

2. Active Flux and the preservation of asymptotic regimes

“When you’ve got a hammer, everything looks like a nail”. An alternative approach to
non-hyperbolic equations is to write them as (singular) limits ν → ∞ of hyperbolic sys-
tems. Today, a huge number of such rewritings is known; the focus here will be on those
for the Korteweg-de-Vries equation. This equation is of great interest due to the existence
of solitons: solutions which travel without changing shape due to a balance between non-
linearity and dispersion. However, there is a price to pay when dealing numerically with
a singular limit: One might suffer from a very restrictive time step condition, and the nu-
merical method in the limit needs to be a consistent discretization of the (non-hyperbolic)
limit equation. This property is generally not guaranteed. Methods that remain consistent
in the limit are called asymptotic preserving, and are an active area of research. The aim
of this project is to implement an Active Flux method for several hyperbolic variants of
the KdV equation, to study theoretically and experimentally its asymptotic properties, and
possibly to modify the method to make it asymptotic preserving.

3. Stability of Active Flux

Stability of a numerical method is among the most important properties that need to be
guaranteed. A number of results (e.g. [CHK21, BKKL24]) have established the largest pos-
sible time step possible (the so-called CFL condition) for various variants of the method.
From the way how the method is constructed, a time step restriction also arises by requiring
that neighbouring short-time evolutions do not interact with each other; this is sometimes
referred to as the “physical stability condition”. In certain cases, the actual stability bound
is stricter, which means that simulations need to be run with a small time step and thus
are not as efficient as they could be. The aim of the project is to derive numerical meth-
ods whose actual stability corresponds to the physical stability condition. Starting from
known examples in one spatial dimension, new Active Flux methods will be systematically
implemented and studied both theoretically and experimentally, possibly thus uncover-
ing underlying patterns. Starting from existing results in one spatial dimension, multi-d
methods on Cartesian meshes will be the particular focus of this project.
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4 Requirements and further details

The student should have an understanding of the basics of numerical analysis (interpolation,
numerical integration and differentiation). Knowledge on numerical approximation to initial-
value problems for ordinary differential equations as well as some previous experience with Finite
Volume and/or Finite Element methods will be helpful. The student will also be expected to
implement and test the new methods in a programming language of the student’s choice (such
as matlab, py, F90, C/C++, . . . ).

Communication languages: English, French, or German.

For further inquires do not hesitate to contact Dr Wasilij Barsukow via the email address
wasilij.barsukow@math.u-bordeaux.fr.
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