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Abstract
In this poster we give a sufficient condition for the existence of locked state in

finite dimensional Winfree Model independently of choice of natural frequencies
and the number of oscillators, we complete our result by the existence of periodic
orbit in a torus which is equivalent to the existence of rotation vectors, the proof in
this paper can be applied to more generalized Winfree Model.

Introduction
The simplest synchronization model may be described by the behavior of
two pendulums of equal mass coupled by an horizontal string. One notice
that the two pendulums behave in the same way and begin to oscillate with
the same frequency. When the frequencies of the two oscillators are iden-
tical, they are said to be “locked”. This behavior seems to appears very
often in biological complex systems. We will study a particular model,
called the Winfree model, that may be described by N oscillators coupled
uniformly.

In 1967 Winfree proposed a mean field model which describes the syn-
chronization of a population of organisms or units that interact simulta-
neously. We assume that the state of each unit is described by a point
on a cycle. We call natural frequency, the frequency of a unit, if it were
isolated from the others. The natural frequencies are supposed to be dis-
tributed inside an interval [1 − γ, 1 + γ] for some constant γ called “fre-
quency width”. The interaction of the rest of the population on each unit
is supposed to be independent of the unit and controlled by a single pa-
rameter called the “coupling strength ” κ. There exist different states: the
“frequency-locked” state where all the units posses the same frequency,
the “dead” state where all the states are frozen with zero frequency, the
“incoherence” state where each unit oscillates at independent frequencies.
There may also exist mixed states where part of the oscillators is synchro-
nized an d the other part is dead for instance. For small values of κ, the
Winfree model may be reduced to the Kuramoto model. In both models
the interaction of the outside world on each unit is the same: we use the
word “mean-field” to describe this kind of interaction.

The collective behavior of a population of oscillators has first been stud-
ied by Winfree in [10]: for a fixed coupling and small spectrum width, all
the oscillators synchronize to a unique frequency. Kuramoto [5] extended
the model by passing to the limit when the number of oscillators goes to
infinity.

Winfree model is given by the following differential equation

ẋi = ωi − κ
1

N

N∑
j=1

P (xj)R(xi) (1)

where P and R are two periodic functions, X(t) = (x1(t), . . . , xN (t))
is the state, and xi(t) is the phase of the i-th oscillator. Althougth xi(t)
should represent a scalar in [0, 2π], we actually consider its unique con-
tinuous lift in R, that we continue to call xi(t). The parameter κ ≥ 0 is
the coupling strength; the vector of natural frequencies Ω := (ω1, . . . , ωN )
satisfy

1− γ ≤ ωi ≤ 1 + γ, ∀i = 1..N, (2)

where γ ∈ [0, 1[. We actually assume a more particular form of the mean-
field interaction, as in Ariaratnam and Strogatz [1, 2], we assume

ẋi = ωi − κσ(X) sin(xi) where σ(X) =
1

N

N∑
j=1

[1 + cos(xj)]. (3)

Notice that the mean-field interaction σ satisfies σ(X) ∈ [0, 2] for every
state X = (x1, . . . , xN ) ∈ RN .

Since the vector field is uniformly bounded, the flow is defined for all
time. Because of the presence of the coupling, the instantaneous fre-
quency ρi(t) :=

xi(t)
t may not be equal to ωi. A numerical study shows

that, for large t, depending on (γ, κ), three major cases occur: the “deaf
state” where all the oscillators are frozen, the “locking state” where all
ρi(t) = const 6= 0, and the “incoherence state” where ρi(t) is strictly in-
creasing in i (therefore in ωi); in addition there are two secondary cases:
the “partial death state” where some of the oscillators are frozen and
the others are incoherent, and the “partial locking state” where some are
locked and the others are incoherent. Intermediate cases exist numerically
but are more difficult to visualize. Ariaratnam and Strogatz [1, 2] have
given a precise definition of these transitions in the case N → +∞. The
partial locking is still not understood very well. Giannuzzi, Marinazzo,
Nardulli, Pellicoro, and Stramaglia [4] have extended Ariaratnam and
Strogatz result by putting a factor in front of the mean-field σ proportional
to some power of the modulus of the average phase 1

N

∑N
k=1 exp(ixk).

Nevertheless the fact that the instantaneous frequency ρi(t) admits a limit
(or the fact that the rotation vector exists) has never been addressed (ex-
cept of course in the deaf state). Our main result is a partial result in that
direction in the locking state when κ ∈]0, κ∗[ and γ ≈ 0 where κ∗ is the
locking bifurcation parameter for the Winfree model γ = 0 and N = 1
defined by

κ∗ := max{κ > 0 : 1− κ(1 + cosx) sinx > 0, ∀x ∈ R}. (4)

Main Result

We consider the Winfree model given by (3) and let Φt = (Φt1, . . . ,Φ
t
N )

its flow. Then, there exists a open set U in the space of parameters
(γ, κ) ∈ [0, 1] × [0, 1], independent of N , which its adherence contains
{0}× [0, κ∗] such that for every parameter (γ, κ) ∈ U and for every choice
of natural frequencies (ωi)

N
i=1 satisfying condition (2),

1. There exists an open set Cγ,κ invariant by the flow Φt, of the form,

Cγ,κ :=
{
X = (xi)

N
i=1 ∈ R

N : max
i,j
|xj − xi| < ∆γ,κ

( 1

N

N∑
i=1

xi

)}
where ∆γ,κ : R→]0, 1[ is a 2π-periodic smooth function.

2. There exists a constant rotation number ργ,κ > 0 and an initial condi-
tion X∗ ∈ Cγ,κ such that we have,

Φti(X∗) = ργ,κt + Ψi(t), ∀i = 1, N, ∀t ≥ 0,

where Ψi : R+→ R are C∞ and 2π
ργ,κ

-periodic function

Figure 1: The left figure show the open set U of parameters (γ, κ) bonded in left by
the segment [0, κ∗] and in right by the function γ = f (κ) = κ

580(1 −
κ
κ∗

)3. The right
figure show the phase shift δ(X(t)) = maxi,j |xi(t) − xj(t)| = xN(t) − x1(t) for so-
lution X(t) of Winfree Model with uniform distribution of natural infrequences where
κ = 0.1, γ = f (κ) = 0.0001136 and N = 200. Th initial condition of X(t) satisfying
X(0) = (0, .., 0) ∈ Cγ,κ, we shows that the phase shift is bounded by the dispersion curve
∆γ,κ,D(κ)(µX(t)) and the horizontal axes D = 0.0343399.

Definitions
To be close to the physical and biological terminology, we define the lock-
ing state, as follows
Definition 1. We call rotation number of the i-th oscillator xi the follow-
ing limit, if it exists,

ρi := lim
t→∞

xi(t)

t
.

We call rotation vector of the system (3), the vector of rotation numbers
of all oscillators, if they all exist.
Definition 2 (Weak Locking). Two oscillators xi and xj of the system 3
are said to be weakly locked if there exists a constant M > 0 such that

|xi(t)− xj(t)| ≤M, ∀t ≥ 0

Definition 3 (Locking). Two oscillators xi and xj of the system (3) are
said to be locked if they are weakly locked and xi or xj has a positive
rotation number.

Notice that if two oscillators xi and xj are locked and one of them has a
rotation number ρi, then ρj exists and ρj = ρi.
Definition 4. The Winfree Model withN ≥ 3 oscillators is said in partial-
locked state if there exists tow locked oscillators and two others not locked.

Consequence of Main Result.
For all N ≥ 3, there exists a family of density G and parameters
(γ, k) ∈ [0, 1]2 such that for all distribution of a natural frequencies (ωi)

N
i=1

with density f ∈ G, the Winfree Model (3) is partially-locked.

Generalized Winfree Model
The previous Main Result and consequence is also true for the following
generalized Winfree Model :

ẋi = τi(t)−
1

N

N∑
j=1

κij[1 + cos(xj)] sin(xi)

where κij ∈ [0, 1] for all i, j = 1.N and τi : R+ → [1 − γ, 1 + γ] for all
i = 1.N .

Last Researches
The last researches on the Winfree model have been published by Louca
and Attay in [6], by Pazó and Montbrió in [3] and by Seung-Yeal Ha in
[9].

Forthcoming Research
The notion of synchronization can be defined by different aspects; it is
interesting to give a model with phase diagram who has several cases like
Winfree Model and having one of the following cases :

• The oscillators diverge from their initial conditions to join them in the
future; This is a example of wound recovery time.

• The oscillators evolve over time to a critical phase synchronization,
with stable margins, such as a locally constant function. This phe-
nomenon can be see in the rotation of the Earth around the Sun or in
the phenomenon of leaves of a tree that changes its appearance in the
winter period to the summer period . . . etc. Intuitively, one can be, to
take the coupling strength in Winfree Model as a function of variable
time.
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